
Onyx Manual, Version 3.0.2

Jason Evans

March 30, 2002

Preface

This manual primarily documents the Onyx programming language. However, Onyx is designed to
be run either as a stand alone program or as an embeddable interpreter, so the manual also docu-
ments different aspects of the implementation that are important when embedding Onyx into another
program.

For software distributions, news, and additional project information, see http://www.canonware.
com/ .

iii

http://www.canonware.com/
http://www.canonware.com/

Contents

1 Onyx Language Reference 1

1.1 Objects . 1

1.2 Syntax . 5

1.3 Stacks . 8

1.4 Interpreter recursion . 9

1.5 Error handling . 9

1.6 Threads . 10

1.6.1 Implicit synchronization . 10

1.6.2 Explicit synchronization . 11

1.7 Memory management . 11

1.8 Dictionary reference . 12

1.8.1 currenterror . 12

1.8.2 envdict . 16

1.8.3 errordict . 16

1.8.4 gcdict . 18

1.8.5 globaldict . 21

1.8.6 onyxdict . 21

1.8.7 outputsdict . 23

1.8.8 sprintsdict . 31

1.8.9 systemdict . 40

1.8.10 threaddict . 128

1.8.11 userdict . 129

2 The onyx program 131

v

2.1 Usage . 131

2.1.1 Options . 131

2.2 Environment variables . 131

2.3 Language differences . 131

3 The libonyx library 133

3.1 Compilation . 134

3.2 Types . 134

3.3 Global variables . 134

3.4 Threads . 135

3.5 Garbage collection . 135

3.6 Exceptions . 135

3.7 Integration issues . 135

3.7.1 Thread creation . 135

3.7.2 Restarted interrupted system calls . 136

3.8 Guidelines for writing extensions . 136

3.9 API . 136

3.10 Classes . 139

3.10.1 ch . 139

3.10.2 cnd . 143

3.10.3 dch . 144

3.10.4 mb . 147

3.10.5 mem . 148

3.10.6 mq . 150

3.10.7 mtx . 153

3.10.8 nx . 154

3.10.9 nxa . 156

3.10.10nxn . 160

3.10.11nxo . 161

3.10.12nxo array . 164

3.10.13nxo boolean . 165

vi

3.10.14nxo condition . 166

3.10.15nxo dict . 167

3.10.16nxo file . 169

3.10.17nxo fino . 175

3.10.18nxo hook . 175

3.10.19nxo integer . 177

3.10.20nxo mark . 178

3.10.21nxo mutex . 178

3.10.22nxo name . 179

3.10.23nxo no . 180

3.10.24nxo null . 180

3.10.25nxo operator . 180

3.10.26nxo pmark . 181

3.10.27nxo real . 181

3.10.28nxo stack . 182

3.10.29nxo string . 185

3.10.30nxo thread . 188

3.10.31ql . 195

3.10.32qr . 199

3.10.33qs . 201

3.10.34thd . 204

3.10.35tsd . 207

3.10.36xep . 208

3.11 Dictionaries . 210

3.11.1 gcdict . 210

3.11.2 systemdict . 211

Index 217

vii

viii

List of Tables

1.1 Simple and composite types . 2

1.2 Interpretation of objects by type and attribute . 3

1.3 Evaluation of objects by type and attribute . 4

1.4 currenterror summary . 12

1.5 errordict summary . 16

1.6 gcdict summary . 18

1.7 onyxdict summary . 21

1.8 outputsdict summary . 23

1.9 sprintsdict summary . 31

1.10 systemdict summary . 40

1.11 threaddict summary . 128

ix

x

Chapter 1

Onyx Language Reference

Onyx is a stack-based, threaded, interpreted language. Its closest relative is Adobe PostScript, followed
by Forth. Experienced PostScript programmers should find most aspects of Onyx familiar, but there are
significant differences that will prevent a knowledgeable PostScript programmer from programming
in Onyx without first skimming this chapter. This chapter does not assume specific knowledge of other
programming languages, so stands as a definitive reference for Onyx.

Onyx is different from most languages in that it is not compiled, but rather consumed. For example,
there are mechanisms for creating the equivalent of named procedures that can be called at a later
time, but behind the scenes, the code is actually being interpreted as it is scanned in such a way
that an executable object is created. As such, Onyx is not suited for compilation, native or byte code.
However, the language syntax is very simple and the scanner/parser is extremely fast. There is also a
mechanism for binding procedures, which makes interpreter performance approximately the same as
would be expected of a byte code interpreter.

Onyx is implemented as a C library that can be embedded in other programs. Mechanisms are provided
for extending the set of operators available. This manual only documents the base language; see
application-specific documentation for any language extensions.

Following is a list of basic language features that are discussed in more detail later in this chapter:

• Stack-based. There are no named variables as in procedural languages. Operations are done
using various stacks, so Onyx operations are coded in postfix order.

• Threaded. Onyx’s threading uses the native POSIX threads implementation of the operating
system.

• Interpreted. Onyx code is never compiled, but is instead interpreted as it is encountered.

• Garbage-collected. There is no need to manually track memory allocation, since the interpreter
has an integrated automatic mark and sweep garbage collector.

1.1 Objects

An Onyx object has three aspects: type, attribute, and value.

1

2 Onyx Manual Chapter 1

Objects fall into two categories according to type: simple and composite. A simple object takes up no
memory of its own; it uses space within a stack, array, or dictionary. A composite object requires space
of its own in addition to the space taken up in stacks, arrays, or dictionaries to refer to the composite
object. See Table 1.1 for object type classifications.

Simple Composite
boolean array
fino condition
integer dict
mark file
name hook
null mutex
operator stack
pmark string
real thread

Table 1.1: Simple and composite types

There can be multiple references that refer to the same memory backing composite objects. In most
cases, composite objects that refer to the same memory are indistinguishable, but for arrays and
strings, composite objects may only be able to access a subset of the total memory backing them.
This behavior is described in detail later.

All objects have a literal, executable, or evaluatable attribute associated with them. Composite ob-
jects each have their own attribute, even for composite objects that share the same backing memory.
Objects are “interpreted” when they are encountered directly by the interpreter. Objects can also be
“evaluated”. One of two actions is taken when an object is interpreted or evaluated:

• The object may be treated as code (executed). When executed, an object is pushed onto the
execution stack and executed.

• The object may be treated as data. A data object is push onto the operand stack.

Table 1.2 enumerates under what circumstances object interpretation results in execution. Table 1.3
enumerates under what circumstances object evaluation results in execution. Note that executable
arrays are the only objects that behave differently when interpreted versus evaluated.

In practice, attributes are only useful for types that can be executed. Attributes are not considered in
equality test operations.

array: An array is an ordered sequence of objects of any type. The sequence of objects contained in
an array is indexed starting at 0. References to existing arrays may be constructed such that a
contiguous subsequence is visible. The following code creates such an array:

[0 1 2 3 4]
1 3 getinterval

After the code executes, the array left on the operand stack looks like:

[1 2 3]

1.1. OBJECTS Jason Evans 3

Type Attribute
literal executable evaluatable

array data data code
boolean data data data
condition data data data
dict data data data
file data code code
fino data data data
hook data code code
integer data data data
mark data data data
mutex data data data
name data code code
null data code code
operator data code code
pmark data data data
real data data data
stack data data data
string data code code
thread data data data

Table 1.2: Interpretation of objects by type and attribute

Executable arrays are in effect procedures. When an array is executed, its elements are sequen-
tially interpreted.

boolean: A boolean can have two values: true or false.

condition: A condition is used for thread synchronization. The standard operations on a condition
are to wait and to signal.

dict: A dict (short for dictionary) is a collection of key/value pairs. Other names for dictionaries
include “associative array” and “hash”. A key can be of any type, though in most cases, keys are
of type name. A value can also be of any type.

file: A file is a handle to an ordered sequence of bytes with a current position. Read and write per-
missions are set when a file object is created.
When an executable file is executed, it is used as a source of Onyx code. Data are sequentially
read from the file and interpreted until the end of the file is reached.

fino: A fino (first in, never out) is used as a stack marker when constructing stacks.

hook: The hook type is not used by the core Onyx language. It can be used by applications that extend
the interpreter as a container object. Hooks can be executed, but the results are application
dependent.
Each hook has a tag associated with it that can used by C extension code as a form of type
checking. By default, the tag is a null object. In most cases, an application that extends the
interpreter using hook objects will set hook tags to be name objects.

integer: An integer is a signed integer in the range −263 to 263 − 1.

mark: A mark is used as a stack marker for various stack operations.

4 Onyx Manual Chapter 1

Type Attribute
literal executable evaluatable

array data code code
boolean data data data
condition data data data
dict data data data
file data code code
fino data data data
hook data code code
integer data data data
mark data data data
mutex data data data
name data code code
null data code code
operator data code code
pmark data data data
real data data data
stack data data data
string data code code
thread data data data

Table 1.3: Evaluation of objects by type and attribute

mutex: A mutex is a mutual exclusion lock. Mutexes cannot be acquired recursively, and the appli-
cation must take care to unlock mutexes before allowing them to be garbage collected (whether
during normal program execution or at program termination).

name: A name is a key that uniquely identifies a sequence of characters. Two name objects that
correspond to the same sequence of characters can be compared for equality with the same ap-
proximate cost as comparing two integers for equality. Names are typically used as keys in
dictionaries.

When an executable name is executed, the topmost value in the dictionary stack associated with
the name is evaluated.

null: A null has no significance other than its existence. When an executable null is executed, it does
nothing. Executable nulls can be useful as place holders that can later be replaced with useful
code, or for replacing obsolete code so that the code is no longer executed.

operator: An operator is an operation that is built in to the interpreter. Operators can be executed.

pmark: A pmark is used as a stack marker when creating procedures in deferred execution mode
(i.e. procedures that use the {} syntax). The application will only encounter pmarks in error
conditions, and there is never a reason for an application to explicitly create a pmark.

real: A real is a double precision (64 bit) floating point number.

stack: A stack provides LIFO (last in, first out) access to objects that it contains, as well as some
more advanced access methods. An application can create, then manipulate stacks in much the
same way that the operand stack can be manipulated.

1.2. SYNTAX Jason Evans 5

string: A string is an ordered sequence of 8 bit characters. The bytes contained in an string are
indexed starting at 0. References to existing strings may be constructed such that a contiguous
subsequence is visible. The following code creates such a string:

‘abcde’
1 3 getinterval

After the code executes, the string left on the operand stack looks like:

‘bcd’

When an executable string is executed, its contents are used as a source of Onyx code.

thread: A thread object serves as a handle for operations such as detaching and joining.

1.2 Syntax

Onyx’s syntax is very simple in comparison to most languages. The scanner and parser are imple-
mented as a human-understandable finite state machine (nested C switch statements with a couple of
auxiliary variables), which should give the reader an idea of the simplicity of the language syntax.

CRNL (carriage return, newline) pairs are in all important cases converted to newlines during scan-
ning.

The characters %, /, [,], {, }, (,), ‘, ’, <, and > are special. In most cases, any of the special char-
acters and whitespace (space, tab, newline, formfeed, null) terminate any preceding token. All other
characters including non-printing characters are considered regular characters.

A comment starts with a % character outside of a string context and extends to the next newline or
formfeed.

Procedures are actually executable arrays, but Onyx provides special syntax for declaring procedures.
Procedures are delimited by { and }, and can be nested. Normally, the interpreter executes code as it is
scanned, but inside of procedure declarations, execution is deferred. Instead of executing a procedure
body as it is encountered, the tokens of the procedure body are pushed onto the operand stack until
the closing } is encountered, at which time an executable array is constructed from the tokens in the
procedure body and pushed onto the operand stack.

A partial grammar specification, using BNF notation (where convenient) is as follows:

<program> ::= <statement>

<statement> ::= <procedure> <statement> | <object> <statement> | ε

<procedure> ::= {<statement>}

<object> ::= <integer> | <real> | <name> | <string>

<integer> ::= <dec integer> | <radix integer>

<real> ::= <dec real> | <exp real>

6 Onyx Manual Chapter 1

<name> : Any token that cannot be interpreted as a number or a string is interpreted as an exe-
cutable name. There are three syntaxes for names: executable, literal and immediately evalu-
ated. Executable names are looked up in the dictionary stack and executed (unless execution
is deferred). Literal names are simply pushed onto the operand stack. Immediately evaluated
names are replaced by their values as defined in the dictionary stack, even if execution is de-
ferred. Examples include:

foo % executable
4noth3r % executable
/bar % literal
//biz % immediately evaluated

If the result of an immediately evaluated name is an executable array, the evaluatable attribute
is set for the array so that when the array is interpreted, it is executed. This allows immediate
evaluation to be indiscriminately used without concern for whether the result is an executable
array or, say, an executable operator.

<string> ::= ‘’-delimited string. Ticks may be embedded in the string without escaping them, as
long as the unescaped ticks are balanced. The following sequences have special meaning when
escaped by a \ character:

‘ ‘ character.

’ ’ character.

\ \ character.

n Newline.

r Carriage return.

t Tab.

b Backspace.

f Formfeed.

x[0-9a-fA-F][0-9a-fA-F] Hex encoding for a byte.

\n (newline) Ignore.

\r\n (carriage return, newline) Ignore.

\ has no special meaning unless followed by a character in the above list.

Examples include:

‘’
‘A string.’
‘An embedded \n newline.’
‘Another embedded
newline.’
‘An ignored \
newline.’
‘Balanced ‘ and ’ are allowed.’
‘Manually escaped \‘ tick.’
‘Manually escaped \‘ tick and ‘balanced unescaped ticks’.’
‘An actual \\ backslash.’
‘Another actual \ backslash.’

1.2. SYNTAX Jason Evans 7

<dec integer> : Signed integer in the range −263 to 263 − 1. The sign is optional. Examples include:

0
42
-365
+17

<radix integer> : Signed integer with explicit base between 2 and 36, inclusive, in the range −263

to 263 − 1. Integer digits are composed of decimal numbers and lower or upper case letters. The
sign is optional. Examples include:

2#101
16#ff
16#Ff
16#FF
-10#42
10#42
+10#42
9#18
35#7r3x
35#7R3x

<dec real> : Double precision floating point number in decimal notation. At least one decimal digit
and a decimal point are required. Examples include:

0.
.0
3.
.141
3.141
42.75
+3.50
-5.0

<exp real> : Floating point number in exponential notation. The format is the same as for <dec real>,
except that an exponent is appended. The exponent is composed of an “e” or “E”, an optional sign,
and a base 10 integer that is limited by the precision of the floating point format (approximately
−308 to 307). Examples include:

6.022e23
60.22e22
6.022e+23
1.661e-24
1.661E-24

Arrays do not have explicit syntactic support, but the [and] operators support their construction.
Examples of array construction include:

[]
[0 ‘A string’ ‘Another string.’ true]
[5
42
false]

8 Onyx Manual Chapter 1

Dictionaries do not have explicit syntactic support, but the < and > operators support their construc-
tion. Examples of dictionary construction include:

<>
</answer 42 /question ‘Who knows’ /translate {babelfish} >

Stacks do not have explicit syntactic support, but the (and) operators support their construction.
Examples of stack contstruction include:

()
(1 2 mark ‘a’)

1.3 Stacks

Stacks in Onyx are the core data structure that programs act on. Stacks store objects in a last in, first
out (LIFO) order. Onyx includes a number of operators that manipulate stacks.

Each Onyx thread has four program-visible stacks associated with it:

Operand stack (ostack): Most direct object manipulations are done using the operand stack. Op-
erators use the operand stack for inputs and outputs, and code generally uses the operand stack
for a place to store objects as they are being manipulated.

Dictionary stack (dstack): The dictionary stack is used for looking up names. Each thread starts
with with four dictionaries on its dictionary stack, which are, from top to bottom:

• userdict

• globaldict

• systemdict

• threaddict

The dictionary stack is manipulated via the begin and end operators. The initial dictionaries on
the dictionary stack cannot be removed.

Execution stack (estack): The interpreter uses the execution stack to store objects that are being
executed. The application generally does not need to explicitly manipulate the execution stack,
but its contents are accessible, mainly for debugging purposes.

Index stack (istack): The interpreter uses the index stack to store execution offsets for arrays that
are being executed. There is a one to one correspondence of the elements of the execution stack
to the elements of the index stack, even though the elements of the index stack that do not
correspond to arrays have no meaning. The index stack does not affect execution, and exists
purely to allow useful execution stack traces when errors occur.

The application can also create additional stacks and manipulate them in much the same way as the
operand stack can be manipulated.

1.4. INTERPRETER RECURSION Jason Evans 9

1.4 Interpreter recursion

During typical Onyx interpreter initialization, the start operator is executed, which in turn executes
a file object corresponding to stdin. However, depending on how the interpreter is invoked, the initial
execution stack state may differ.

The interpreter can be recursively invoked. For example, if the following code is executed, the eval
operator recursively invokes the interpreter to interpret the string.

‘2 2 add’ cvx eval

The depth of the execution stack directly corresponds to the recursion depth of the interpreter. Execu-
tion stack depth is limited in order to catch unbounded recursion.

Onyx converts tail calls in order to prevent unbounded execution stack growth due to tail recursion.
For example, the following code does not cause the execution stack to grow:

/foo {foo} def
foo

The following code will result in an execution stack overflow:

/foo {foo ‘filler’} def
foo

1.5 Error handling

The error handling mechanisms in Onyx are simple but flexible. When an error occurs, throw is
called. An error can have any name, but only the following error names are generated internally by
Onyx:

dstackunderflow: An attempt was made to remove one of the initial dictionaries from dstack.

estackoverflow: Maximum interpreter recursion was exceeded.

invalidaccess: Permission error.

invalidexit: The exit operator was called outside of any loop. This error is generated as a result of
catching an exit, so the execution state for where the error really happened is gone.

invalidfileaccess: Insufficient file permissions.

ioerror: I/O error (read(), write(), etc.).

limitcheck: Value outside of legal range.

rangecheck: Out of bounds string or array access.

stackunderflow: Not enough objects on ostack.

10 Onyx Manual Chapter 1

syntaxerror: Scanner syntax error.

typecheck: Incorrect argument type.

undefined: Name not defined in any of the dictionaries on dstack.

undefinedfilename: Bad filename.

undefinedresult: Attempt to divide by 0.

unmatchedfino: No fino on ostack.

unmatchedmark: No mark on ostack.

unregistered: Non-enumerated error.

The Onyx scanner handles syntax errors specially, in that it pushes an executable string onto the
operand stack that represents the code that caused the syntax error and records the line and column
numbers in currenterror before invoking throw.

The Onyx scanner also handles immediate name evaluation errors specially, in that it pushes the name
that could not be evaluated onto ostack before invoking throw.

1.6 Threads

Onyx supports multiple threads of execution by using the operating system’s native threading facili-
ties. Along with threads comes the need for methods of synchronization between threads.

1.6.1 Implicit synchronization

Implicit synchronization is a mandatory language feature, since objects such as globaldict are implic-
itly accessed by the interpreter, which makes it impossible to require the user to explicitly handle all
synchronization. Onyx provides optional implicit synchronization capabilities for composite objects on
an object by object basis. Each thread has a setting which can be accessed via currentlocking (ini-
tially set to false) and set via setlocking. If implicit locking is active, then new objects will be created
such that simple accesses are synchronized.

Implicit synchronization can be a source of deadlock, so care must be taken when accessing implicitly
locked objects. For example, if two threads copy two implicitly locked strings to the other string,
deadlock can result.

% Initialization.
/A ‘aaaaaa’
/B ‘bbbbbb’

...

% In thread A:
A B copy

1.7. MEMORY MANAGEMENT Jason Evans 11
...

% In thread B:
B A copy

The following are descriptions of the implicit locking semantics for each type of composite object:

array: Array copying is protected. Array element modifications are protected, but element reads are
not protected.

condition: No implicit locking is done for conditions.

dict: All dict operations are protected.

file: All file operations are protected. There are no potential deadlocks due to implicit file locking.

hook: No implicit locking is done for hooks.

mutex: No implicit locking is done for mutexes.

stack: All stack operations are protected. There are no potential deadlocks due to implicit stack
locking. However, there are races in stack copying, such that the results of copying a stack that
is concurrently being modified are unpredictable. In addition, removing an object that is being
concurrently accessed from a stack is unsafe.

string: String copying is protected. Character access is protected by many operators, but string
copying is the only potential cause of deadlock for string access.

thread: Implicit locking is not done for thread operations, since other synchronization is adequate to
protect thread objects.

1.6.2 Explicit synchronization

Onyx includes a foundation of mutexes and condition variables, with which all other synchronization
primitives can be constructed.

1.7 Memory management

Onyx programs do not need to track memory allocations, since memory reclamation is done implicitly
via automatic garbage collection. Onyx uses an atomic mark and sweep garbage collector.

The atomic nature of garbage collection may sound worrisome with regard to performance, but in fact
there are tangible benefits and no significant negative impacts for most applications. Total through-
put is improved, since minimal locking is necessary. Concurrent garbage collection would impose a
significant locking overhead.

On the down side, atomic garbage collection cannot make strong real-time guarantees. However, the
garbage collector is very efficient, and for typical applications, garbage collection delays are measured
in microseconds up to tens of milliseconds on current hardware as of the year 2000. For interactive
applications, anything under about 100 milliseconds is undetectable by the user, so under normal
circumstances the user will not notice that garbage collection is happening.

There are three parameters that can be used to control garbage collection:

12 Onyx Manual Chapter 1

1. The garbage collector can be turned off for situations where many objects are being created over
a short period of time.

2. The garbage collector runs whenever a certain number of bytes of memory have been allocated
since the last collection. This threshold can be changed or disabled.

3. If no composite objects have been created for an extended period of time (seconds), the garbage
collector will run if any composite objects have been allocated since the last collection. This idle
timeout period can be changed or disabled.

There is one situation in which it is possible for garbage to never be collected, despite the garbage
collector being properly configured. Suppose that a program creates some objects, the garbage collector
runs, then the program enters a code path that clobbers object references, such that the objects could
be collected, but no new objects are allocated. In such a situation, neither the allocation inactivity
timer (period), nor the object allocation threshold will trigger a collection, and garbage will remain
uncollected. In practice this situation is unlikely, and is not a significant problem since the program
size is not growing.

Garbage collection is controlled via the gcdict dictionary, which is described in Section 1.8.4.

1.8 Dictionary reference

All operators built in to Onyx have corresponding names that are composed entirely of lower case
letters. In order to avoid any possibility of namespace collisions with names defined by current and
future versions of Onyx, use at least one character that is not a lower case letter in names (for example,
capital letters, numbers, underscore, etc.).

1.8.1 currenterror

Each thread has its own currenterror dictionary, which is used by the error handling machinery to
store error state.

Table 1.4: currenterror summary

Input(s) Op/Proc/Var Output(s) Description
– newerror boolean Set to true during error handling.
– errorname name Name of most recent error.
– line number Get line number of syntax error.
– column number Get column number of syntax error.
– ostack stack ostack snapshot.
– dstack stack dstack snaphot.
– estack stack estack snapshot.
– istack stack istack snapshot.

– column integer:
Input(s): None.

1.8. DICTIONARY REFERENCE Jason Evans 13

Output(s):
integer: Column number, valid only if the error was a syntaxerror. Column numbering

starts at 0.

Errors(s): None.

Description: Get the column number that a syntaxerror occurred on.

Example(s):
onyx:0> ‘1 2 3}’ cvx eval
At line 1, column 5: Error /syntaxerror
ostack: (1 2 3 ‘}’)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..3):
0: ‘1 2 3}’
1: --eval--
2: -file-
3: --start--
onyx:5> currenterror /column get 1 sprint
5
onyx:5>

– dstack stack:
Input(s): None.

Output(s):
stack: A dstack snapshot.

Errors(s): None.

Description: Get a stack that is a dstack snapshot as of the most recent error.

Example(s):
onyx:0> x
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin dstack end 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:1>

– errorname name:
Input(s): None.

Output(s):
name: Name of the most recent error.

Errors(s): None.

Description: Get the name of the most recent error.

Example(s):
onyx:0> x
Error /undefined

14 Onyx Manual Chapter 1

ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin errorname end 1 sprint
/undefined
onyx:1>

– estack stack:
Input(s): None.
Output(s):

stack: An estack snapshot.
Errors(s): None.
Description: Get a stack that is an estack snapshot as of the most recent error.
Example(s):

onyx:0> x
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin estack end 1 sprint
(--start-- -file- x)
onyx:1>

– istack stack:
Input(s): None.
Output(s):

stack: An istack snapshot.
Errors(s): None.
Description: Get a stack that is an istack snapshot as of the most recent error.
Example(s):

onyx:0> x
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin istack end 1 sprint
(0 0 0)
onyx:1>

– newerror boolean:

1.8. DICTIONARY REFERENCE Jason Evans 15

Input(s): None.
Output(s):

boolean: False if there has been no error since the last time newerror was reset; true
otherwise.

Errors(s): None.
Description: Get a boolean that represents whether there has been an error since the last

time newerror was set to false (as during interpreter initialization). It is the application’s
responsibility to reset newerror after each error if it expects the value to be useful across
multiple errors.

Example(s):
onyx:0> currenterror begin
onyx:0> newerror 1 sprint
false
onyx:0> x
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> newerror 1 sprint
true
onyx:1> /newerror false def
onyx:1> newerror 1 sprint
false
onyx:1> resume
onyx:1> y
Error /undefined
ostack: (x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: y
1: -file-
2: --start--
onyx:2> newerror 1 sprint
true
onyx:2>

– line integer:
Input(s): None.
Output(s):

integer: Line number, valid only if the error was a syntaxerror. Line numbering starts at
1.

Errors(s): None.
Description: Get the line number that a syntaxerror occurred on.
Example(s):

onyx:0> ‘1 2 3}’ cvx eval
At line 1, column 5: Error /syntaxerror

16 Onyx Manual Chapter 1

ostack: (1 2 3 ‘}’)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..3):
0: ‘1 2 3}’
1: --eval--
2: -file-
3: --start--
onyx:5> currenterror /line get 1 sprint
1
onyx:5>

– ostack stack:
Input(s): None.
Output(s):

stack: An ostack snapshot.
Errors(s): None.
Description: Get a stack that is an ostack snapshot as of the most recent error.
Example(s):

onyx:0> x
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin ostack end 1 sprint
()
onyx:1>

1.8.2 envdict

The envdict dictionary contains keys of type name and values of type string that correspond to the
environment passed into the program. All threads share the same envdict, which is implicitly locked.
Modifications to envdict should be made via the setenv and unsetenv operators. If envdict is modified
directly, the changes will not be visible to programs such as ps.

1.8.3 errordict

Each thread has its own errordict, which is used by default by the error handling machinery.

Table 1.5: errordict summary

Input(s) Op/Proc/Var Output(s) Description
– handleerror – Print a state dump.
– stop – Last operation during error handling.

1.8. DICTIONARY REFERENCE Jason Evans 17

– handleerror –:
Input(s): None.

Output(s): None.

Errors(s): Under normal conditions, no errors occur. However, it is possible for the application
to corrupt the error handling machinery to the point that an error will occur. If that happens,
the result is possible infinite recursion, and program crashes are a real possibility.

Description: Print a dump of the most recent error recorded in the currenterror dictionary.

Example(s):
onyx:0> {true {true 1 sprint x y} if} eval
true
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..5):
0: x
1: {

true
1
sprint

3:--> x
y

}
2: --if--
3: --eval--
4: -file-
5: --start--
onyx:1> errordict begin handleerror end
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..5):
0: x
1: {

true
1
sprint

3:--> x
y

}
2: --if--
3: --eval--
4: -file-
5: --start--
onyx:1>

– stop –:
Input(s): None.

Output(s): None.

Errors(s): None.

18 Onyx Manual Chapter 1

Description: This is called as the very last operation when an error occurs. Initially, its value
is the same as that for the stop operator in systemdict.

Example(s):
onyx:0> errordict begin
onyx:0> /stop {‘Custom stop\n’ print flush quit} def
onyx:0> x
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
Custom stop

1.8.4 gcdict

The gcdict dictionary provides garbage collection control and status capabilities.

Table 1.6: gcdict summary by functional group

Input(s) Op/Proc/Var Output(s) Description
Control operators

– collect – Force a garbage collection.
boolean setactive – Set whether the garbage collector is active.
seconds setperiod – Set the inactivity period before the garbage collector will

run.
count setthreshold – Set the number of bytes of memory allocation that will trig-

ger a garbage collection.
State and statistics operators

– active boolean Get whether the garbage collector is active.
– period seconds Get the inactivity period befor the garbage collector will

run.
– threshold count Get the number of bytes of memory allocation that will trig-

ger a garbage collection.
– stats array Get garbage collection statistics.

– active boolean:
Input(s): None.
Output(s):

boolean: If true, the garbage collector is active; otherwise it is not active.
Errors(s): None.
Description: Get whether the garbage collector is active.
Example(s):

onyx:0> gcdict begin active end 1 sprint
false

1.8. DICTIONARY REFERENCE Jason Evans 19

– collect –:
Input(s): None.
Output(s): None.
Errors(s): None.
Description: Force a garbage collection.
Example(s):

onyx:0> gcdict begin collect end
onyx:0>

– period seconds:
Input(s): None.
Output(s):

seconds: The minimum number of seconds since the last object allocation that the garbage
collector will wait before doing a garbage collection. 0 is treated specially to mean for-
ever.

Errors(s): None.
Description: Get the minimum number of seconds of object allocation inactivity that the garbage

collector will wait before doing a garbage collection. This setting is disjoint from the thresh-
old setting, and does not prevent garbage collection due to the threshold having been reached.

Example(s):
onyx:0> gcdict begin period end 1 sprint
60
onyx:0>

boolean setactive –:
Input(s):

boolean: If true (initial setting), activate the garbage collector; otherwise deactivate the
garbage collector.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set whether the garbage collector is active. This setting takes effect asynchronously,
so it is possible for the garbage collector to run even after it has been deactivated. This set-
ting overrides the allocation inactivity period and allocation threshold settings, so that if
this setting is set to false, the other settings have no effect.

Example(s):
onyx:0> gcdict begin false setactive end
onyx:0>

seconds setperiod –:
Input(s):

seconds: The minimum number of seconds since the last object allocation that the garbage
collector will wait before doing a garbage collection. 0 is treated specially to mean for-
ever.

Output(s): None.

20 Onyx Manual Chapter 1

Errors(s):
stackunderflow.
typecheck.
limitcheck.

Description: Set the minimum number of seconds of object allocation inactivity that the garbage
collector will wait before doing a garbage collection. This setting is disjoint from the thresh-
old setting, and does not prevent garbage collection due to the threshold having been reached.

Example(s):
onyx:0> gcdict begin 60 setperiod end
onyx:0>

count setthreshold –:
Input(s):

count: Number of bytes of memory allocation since the last garbage collection that will
trigger a garbage collection. 0 is treated specially to mean infinity.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.
limitcheck.

Description: Set the number of bytes of memory allocation since the last garbage collection
that will trigger a garbage collection. This setting is disjoint from the inactivity period
setting, and does not prevent garbage collection due to the allocation inactivity period having
been exceeded.

Example(s):
onyx:0> gcdict begin 40000 setthreshold end
onyx:0>

– stats array:
Input(s): None.

Output(s):
array: An array with the format [collections count [ccount cmark csweep] [mcount mmark

msweep] [scount smark ssweep]], where the fields have the following meanings:

collections: Total number of collections the garbage collector has performed.
count: Current number of bytes of memory allocated.
ccount: Number of bytes of memory allocated as of the end of the most recent garbage

collection.
cmark: Number of microseconds taken by the most recent garbage collection mark

phase.
csweep: Number of microseconds taken by the most recent garbage collection sweep

phase.
mcount: Largest number of bytes of memory ever allocated at any point in time.
mmark: Maximum number of microseconds taken by any garbage collection mark

phase.
msweep: Number of microseconds taken by any garbage collection sweep phase.

1.8. DICTIONARY REFERENCE Jason Evans 21

scount: Total number of bytes of memory ever allocated.
smark: Total number of microseconds taken by all garbage collection mark phases.
ssweep: Total number of microseconds taken by all garbage collection sweep phases.

Errors(s): None.
Description: Get statistics about the garbage collector.
Example(s):

onyx:0> gcdict begin
onyx:0> stats 2 sprint
[23 72673 [72268 754 3467] [4752223 930 36492] [51057886 17448 136807]]
onyx:0>

– threshold count:
Input(s): None.
Output(s):

count: Number of bytes of memory allocation since the last garbage collection that will
trigger a garbage collection. 0 is treated specially to mean infinity.

Errors(s): None.
Description: Get the number of bytes of memory allocation since the last garbage collection

that will trigger a garbage collection. This setting is disjoint from the inactivity period
setting, and does not prevent garbage collection due to the allocation inactivity period having
been exceeded.

Example(s):
onyx:0> gcdict begin threshold end 1 sprint
65536
onyx:0>

1.8.5 globaldict

All threads share the same globaldict, which is meant as a repository for globally shared objects.
globaldict is empty when the Onyx interpreter is initialized, and is implicitly locked.

1.8.6 onyxdict

Various portions of Onyx use the onyxdict dictionary for storage of miscellaneous objects that normally
should not be part of the namespace visible to dstack searches.

Table 1.7: onyxdict summary

Input(s) Op/Proc/Var Output(s) Description
– mpath post array Get path searched by mrequire.
– mpath pre array Get path searched by mrequire.
– rpath post array Get path searched by require.
– rpath pre array Get path searched by require.

22 Onyx Manual Chapter 1

– mpath post array:
Input(s): None.
Output(s):

array: An array of strings.
Errors(s): None.
Description: Get an array of strings used by mrequire as prefixes for file searches. The ele-

ments of the array are tried in the order listed.
Example(s):

onyx:0> onyxdict /mpath_post get 1 sprint
[‘/usr/local/share/onyx-3.0.0/nxm’]
onyx:0>

– mpath pre array:
Input(s): None.
Output(s):

array: An array of strings.
Errors(s): None.
Description: Get an array of strings used by mrequire as prefixes for file searches. The ele-

ments of the array are tried in the order listed.
Example(s):

onyx:0> onyxdict /mpath_pre get 1 sprint
[‘’ ‘.’]
onyx:0>

– rpath post array:
Input(s): None.
Output(s):

array: An array of strings.
Errors(s): None.
Description: Get an array of strings used by require as prefixes for file searches. The elements

of the array are tried in the order listed.
Example(s):

onyx:0> onyxdict /rpath_post get 1 sprint
[‘/usr/local/share/onyx-3.0.0/nx’]
onyx:0>

– rpath pre array:
Input(s): None.
Output(s):

array: An array of strings.
Errors(s): None.
Description: Get an array of strings used by require as prefixes for file searches. The elements

of the array are tried in the order listed.
Example(s):

onyx:0> onyxdict /rpath_pre get 1 sprint
[‘’ ‘.’]
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 23

1.8.7 outputsdict

The outputsdict dictionary is primarily used to support outputs, but its contents may be of use to an
application that wishes to extend or modify formatted printing.

There is an entry in outputsdict for each Onyx type. Each entry renders objects that correspond to its
name using optional flags stored in a dictionary. The following flags are supported for all types:

/n : Maximum length, in bytes. Default: disabled.

/w : Minimum length, in bytes. Default: disabled.

/j : Justification. Legal values:

/l : Left.
/c : Center.
/r : Right (default).

/p : Padding character. Default: ‘ ’ .

/r : Syntactic rendering recursion depth. Default: 1.

The following additional flags are supported for integers:

/b : Base, from 2 to 36. Default: 10.

/s : Sign. Legal values:

/- : Only print sign if output is negative (default).
/+ : Always print sign.

The following additional flags are supported for reals:

/d : Digits of precision past decimal point. Default: 6.

/e : Exponential notation, if true. Default: false.

Table 1.8: outputsdict summary

Input(s) Op/Proc/Var Output(s) Description
array flags arraytype string Create formatted string from array.

boolean flags booleantype string Create formatted string from boolean.
condition flags conditiontype string Create formatted string from condition.

dict flags dicttype string Create formatted string from dict.
file flags filetype string Create formatted string from file.

fino flags finotype string Create formatted string from fino.
hook flags hooktype string Create formatted string from hook.

integer flags integertype string Create formatted string from integer.
mark flags marktype string Create formatted string from mark.

mutex flags mutextype string Create formatted string from mutex.
Continued on next page...

24 Onyx Manual Chapter 1

Table 1.8: continued

Input(s) Op/Proc/Var Output(s) Description
name flags nametype string Create formatted string from name.

null flags nulltype string Create formatted string from null.
operator flags operatortype string Create formatted string from operator.

pmark flags pmarktype string Create formatted string from pmark.
real flags realtype string Create formatted string from real.

stack flags stacktype string Create formatted string from stack.
string flags stringtype string Create formatted string from string.

thread flags threadtype string Create formatted string from thread.

array flags arraytype string:
Input(s):

array: An array object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of array.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of array.
Example(s):

onyx:0> outputsdict begin
onyx:0> [1 [2 3] 4]
onyx:1> dup </w 9 /p ‘_’ /r 0> arraytype print ‘\n’ print flush
__-array-
onyx:1> dup </w 9 /p ‘_’ /r 1> arraytype print ‘\n’ print flush
[1 -array- 4]
onyx:1>

boolean flags booleantype string:
Input(s):

boolean: A boolean object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of boolean.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of boolean.
Example(s):

onyx:0> outputsdict begin
onyx:0> false
onyx:1> dup </n 3> booleantype print ‘\n’ print flush

1.8. DICTIONARY REFERENCE Jason Evans 25

fal
onyx:1> dup </n 7> booleantype print ‘\n’ print flush
false
onyx:1>

condition flags conditiontype string:
Input(s):

condition: A condition object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of condition.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of condition.
Example(s):

onyx:0> outputsdict begin
onyx:0> condition
onyx:1> </w 15 /p ‘_’ /j /c> booleantype print ‘\n’ print flush
__-condition-__
onyx:0>

dict flags dicttype string:
Input(s):

dict: A dict object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of dict.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of dict.
Example(s):

onyx:0> outputsdict begin
onyx:0> </foo ‘foo’> </w 30 /p ‘.’ /j /r> dicttype print ‘\n’ print flush
..................</foo ‘foo’>
onyx:0>

file flags filetype string:
Input(s):

file: A file object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of file.

Errors(s):
stackunderflow.

26 Onyx Manual Chapter 1

typecheck.
Description: Create a formatted string representation of file.

Example(s):
onyx:0> outputsdict begin
onyx:0> stdin
onyx:1> </w 30 /p ‘.’ /j /c> filetype print ‘\n’ print flush
............-file-............
onyx:0>

fino flags finotype string:
Input(s):

fino: A fino object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of fino.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of fino.

Example(s):
onyx:0> outputsdict begin
onyx:0> (
onyx:1> </w 30 /p ‘.’ /j /c> finotype print ‘\n’ print flush
............-fino-............
onyx:0>

hook flags hooktype string:
Input(s):

hook: A hook object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of hook.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of hook.

Example(s): The following example is a bit contrived, since there is no way to create a hook
object with a stock onyx interpreter. Therefore, imagine that an operator named taggedhook
exists that creates a hook with a tag that is the name “tagged”.

onyx:0> outputsdict begin
onyx:0> taggedhook
onyx:1> </w 30 /p ‘.’ /j /l hooktype print ‘\n’ print flush
=tagged=......................
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 27

integer flags integertype string:
Input(s):

integer: An integer object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of integer.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of integer.
Example(s):

onyx:0> outputsdict begin
onyx:0> 42 </w 6 /p ‘_’ /j /c /s /-> integertype print ‘\n’ print flush
__42__
onyx:0> 42 </w 6 /p ‘_’ /j /c /s /+> integertype print ‘\n’ print flush
_+42__
onyx:0> ‘0x’ print 42 </w 6 /p ‘0’ /b 16> integertype print ‘\n’ print flush
0x00002a
onyx:0>

mark flags marktype string:
Input(s):

mark: A mark object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of mark.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of mark.
Example(s):

onyx:0> outputsdict begin
onyx:0> mark
onyx:1> </w 30 /p ‘.’ /j /c> marktype print ‘\n’ print flush
............-mark-............
onyx:0>

mutex flags mutextype string:
Input(s):

mutex: A mutex object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of mutex.

Errors(s):
stackunderflow.
typecheck.

28 Onyx Manual Chapter 1

Description: Create a formatted string representation of mutex.

Example(s):
onyx:0> outputsdict begin
onyx:0> mutex
onyx:1> </w 30 /p ‘.’ /j /c> mutextype print ‘\n’ print flush
...........-mutex-............
onyx:0>

name flags nametype string:
Input(s):

name: A name object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of name.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of name.

Example(s):
onyx:0> outputsdict begin
onyx:0> /foo
onyx:1> </w 30 /p ‘.’ /j /c> nametype print ‘\n’ print flush
............./foo.............
onyx:0>

null flags nulltype string:
Input(s):

null: A null object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of null.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of null.

Example(s):
onyx:0> outputsdict begin
onyx:0> null
onyx:1> </w 30 /p ‘.’ /j /c> nulltype print ‘\n’ print flush
.............null.............
onyx:0>

operator flags operatortype string:
Input(s):

operator: An operator object.
flags: Formatting flags.

1.8. DICTIONARY REFERENCE Jason Evans 29

Output(s):
string: Formatted string representation of operator.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of operator.

Example(s): The following example shows an operator printed out with two leading and trail-
ing dashes. If the interpreter cannot determine the name associated with an operator, as
will be the case for custom operators, the operator will be printed as -operator- .

onyx:0> outputsdict begin
onyx:0> //realtime
onyx:1> </w 30 /p ‘.’ /j /c> operatortype print ‘\n’ print flush
.........--realtime--.........
onyx:0>

pmark flags pmarktype string:
Input(s):

pmark: A pmark object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of pmark.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of pmark.

Example(s):
onyx:0> outputsdict begin
onyx:0> { //x
Error /undefined
ostack: (-pmark- /x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:3> pop pop resume
onyx:1> </w 30 /p ‘.’ /j /c> pmarktype print ‘\n’ print flush
...........-pmark-............
onyx:0>

real flags realtype string:
Input(s):

real: A real object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of real.

30 Onyx Manual Chapter 1

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of real.

Example(s):
onyx:0> outputsdict begin
onyx:0> 6.022e23 </d 4> realtype print ‘\n’ print flush
602200000000000027262976.0000
onyx:0> 6.022e23 </d 4 /e true> realtype print ‘\n’ print flush
6.0220e+23
onyx:0> 6.022e23 </d 0 /e true> realtype print ‘\n’ print flush
6e+23
onyx:0> 6.022e23 </d 4 /w 40 /p ‘0’> realtype print ‘\n’ print flush
00000000000602200000000000027262976.0000
onyx:0>

stack flags stacktype string:
Input(s):

stack: A stack object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of stack.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of stack.

Example(s):
onyx:0> outputsdict begin
onyx:0> (1 (2 3) 4)
onyx:1> dup </w 9 /p ‘_’ /r 0> stacktype print ‘\n’ print flush
__-stack-
onyx:1> </w 9 /p ‘_’ /r 1> stacktype print ‘\n’ print flush
(1 -stack- 4)
onyx:0>

string flags stringtype string:
Input(s):

string: A string object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of string.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of string.

1.8. DICTIONARY REFERENCE Jason Evans 31

Example(s):
onyx:0> outputsdict begin
onyx:0> ‘A string’
onyx:1> </w 30 /p ‘.’ /j /c> stringtype print ‘\n’ print flush
...........A string...........
onyx:0>

thread flags threadtype string:
Input(s):

thread: A thread object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of thread.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of thread.
Example(s):

onyx:0> outputsdict begin
onyx:0> () {} thread
onyx:1> </w 30 /p ‘.’ /j /c> threadtype print ‘\n’ print flush
...........-thread-...........
onyx:0>

1.8.8 sprintsdict

The sprintsdict dictionary is primarily used to support sprints, but its contents may be of use to an
application that wishes to extend or modify syntactical printing.

There is an entry in sprintsdict for each Onyx type. If there is a syntactically valid representation for
an object and the recursion depth is greater than 0, the corresponding operator creates a string that
syntactically represents the object. Otherwise, a string with a non-syntictical representation of the
object is created, except for booleans, integers, names, nulls, reals, and strings, for which the results
are always syntactical. If the recursion depth is greater than 0, the operators will recursively convert
any contained objects.

The implementation of sprints is useful in illustrating a useful method of doing type-dependent oper-
ations:

/sprints {
1 index type /sprintsdict load exch get eval

} def

Table 1.9: sprintsdict summary

Input(s) Op/Proc/Var Output(s) Description
array depth arraytype string Create syntactical string from array.

Continued on next page...

32 Onyx Manual Chapter 1

Table 1.9: continued

Input(s) Op/Proc/Var Output(s) Description
boolean depth booleantype string Create syntactical string from boolean.

condition depth conditiontype string Create syntactical string from condition.
dict depth dicttype string Create syntactical string from dict.
file depth filetype string Create syntactical string from file.

fino depth finotype string Create syntactical string from fino.
hook depth hooktype string Create syntactical string from hook.

integer depth integertype string Create syntactical string from integer.
mark depth marktype string Create syntactical string from mark.

mutex depth mutextype string Create syntactical string from mutex.
name depth nametype string Create syntactical string from name.

null depth nulltype string Create syntactical string from null.
operator depth operatortype string Create syntactical string from operator.

pmark depth pmarktype string Create syntactical string from pmark.
real depth realtype string Create syntactical string from real.

stack depth stacktype string Create syntactical string from stack.
string depth stringtype string Create syntactical string from string.

thread depth threadtype string Create syntactical string from thread.

array depth arraytype string:
Input(s):

array: An array object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of array.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of array.

Example(s):
onyx:0> sprintsdict begin
onyx:0> [1 [2 3] 4]
onyx:1> dup 0 arraytype print ‘\n’ print flush
-array-
onyx:1> dup 1 arraytype print ‘\n’ print flush
[1 -array- 4]
onyx:1> dup 2 arraytype print ‘\n’ print flush
[1 [2 3] 4]
onyx:1>

boolean depth booleantype string:
Input(s):

boolean: A boolean object.
depth: Recursion depth.

1.8. DICTIONARY REFERENCE Jason Evans 33

Output(s):
string: Syntactical string representation of boolean.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of boolean.
Example(s):

onyx:0> sprintsdict begin
onyx:0> true
onyx:1> dup 0 booleantype print ‘\n’ print flush
true
onyx:1>

condition depth conditiontype string:
Input(s):

condition: A condition object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of condition.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of condition.
Example(s):

onyx:0> sprintsdict begin
onyx:0> condition
onyx:1> dup 0 conditiontype print ‘\n’ print flush
-condition-
onyx:1> dup 1 conditiontype print ‘\n’ print flush
-condition-
onyx:1>

dict depth dicttype string:
Input(s):

dict: A dict object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of dict.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of dict.
Example(s):

onyx:0> sprintsdict begin
onyx:0> </a ‘a’ /subdict </b ‘b’>>
onyx:1> dup 0 dicttype print ‘\n’ print flush

34 Onyx Manual Chapter 1

-dict-
onyx:1> dup 1 dicttype print ‘\n’ print flush
</subdict -dict- /a ‘a’>
onyx:1> dup 2 dicttype print ‘\n’ print flush
</subdict </b ‘b’> /a ‘a’>
onyx:1>

file depth filetype string:
Input(s):

file: A file object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of file.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of file.

Example(s):
onyx:0> sprintsdict begin
onyx:0> stdout
onyx:1> dup 0 filetype print ‘\n’ print flush
-file-
onyx:1> dup 1 filetype print ‘\n’ print flush
-file-
onyx:1>

fino depth finotype string:
Input(s):

fino: A fino object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of fino.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of fino.

Example(s):
onyx:0> sprintsdict begin
onyx:0> (
onyx:1> dup 0 finotype print ‘\n’ print flush
-fino-
onyx:1> dup 1 finotype print ‘\n’ print flush
-fino-
onyx:1>

hook depth hooktype string:
Input(s):

1.8. DICTIONARY REFERENCE Jason Evans 35

hook: A hook object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of hook.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of hook.
Example(s): The following example is a bit contrived, since there is no way to create a hook

object with a stock onyx interpreter. Therefore, imagine that an operator named taggedhook
exists that creates a hook with a tag that is the name “tagged”, and that an operator named
untaggedhook exists that creates an untagged hook.

onyx:0> sprintsdict begin
onyx:0> taggedhook
onyx:1> dup 0 hooktype print ‘\n’ print flush
=tagged=
onyx:1> 1 hooktype print ‘\n’ print flush
=tagged=
onyx:0> untaggedhook
onyx:1> dup 0 hooktype print ‘\n’ print flush
-hook-
onyx:1> 1 hooktype print ‘\n’ print flush
-hook-
onyx:0>

integer depth integertype string:
Input(s):

integer: An integer object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of integer.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of integer.
Example(s):

onyx:0> sprintsdict begin
onyx:0> 42
onyx:1> dup 0 integertype print ‘\n’ print flush
42
onyx:1> dup 1 integertype print ‘\n’ print flush
42
onyx:1>

mark depth marktype string:
Input(s):

36 Onyx Manual Chapter 1

mark: A mark object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of mark.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of mark.
Example(s):

onyx:0> sprintsdict begin
onyx:0> mark
onyx:1> dup 0 marktype print ‘\n’ print flush
-mark-
onyx:1> dup 1 marktype print ‘\n’ print flush
-mark-
onyx:1>

mutex depth mutextype string:
Input(s):

mutex: A mutex object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of mutex.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of mutex.
Example(s):

onyx:0> sprintsdict begin
onyx:0> mutex
onyx:1> dup 0 mutextype print ‘\n’ print flush
-mutex-
onyx:1> dup 1 mutextype print ‘\n’ print flush
-mutex-
onyx:1>

name depth nametype string:
Input(s):

name: A name object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of name.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of name.

1.8. DICTIONARY REFERENCE Jason Evans 37

Example(s):
onyx:0> sprintsdict begin
onyx:0> /foo
onyx:1> dup 0 nametype print ‘\n’ print flush
/foo
onyx:1> dup 1 nametype print ‘\n’ print flush
/foo
onyx:1>

null depth nulltype string:
Input(s):

null: A null object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of null.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of null.
Example(s):

onyx:0> sprintsdict begin
onyx:0> null
onyx:1> dup 0 nulltype print ‘\n’ print flush
-null-
onyx:1> dup 1 nulltype print ‘\n’ print flush
-null-
onyx:1>

operator depth operatortype string:
Input(s):

operator: An operator object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of operator.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of operator.
Example(s): The following example shows an operator printed out with two leading and trail-

ing dashes. If the interpreter cannot determine the name associated with an operator, as
will be the case for custom operators, the operator will be printed as -operator- .

onyx:0> sprintsdict begin
onyx:0> //realtime
onyx:1> dup 0 operatortype print ‘\n’ print flush
--realtime--
onyx:1> 1 operatortype print ‘\n’ print flush
--realtime--
onyx:0>

38 Onyx Manual Chapter 1

pmark depth pmarktype string:
Input(s):

pmark: A pmark object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of pmark.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of pmark.
Example(s):

onyx:0> sprintsdict begin
onyx:0> { //x
Error /undefined
ostack: (-pmark- /x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:3> pop pop resume
onyx:1> dup 0 pmarktype print ‘\n’ print flush
-pmark-
onyx:1> dup 1 pmarktype print ‘\n’ print flush
-pmark-
onyx:1>

real depth realtype string:
Input(s):

real: A real object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of real.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of real.
Example(s):

onyx:0> sprintsdict begin
onyx:0> 42.0
onyx:1> dup 0 realtype print ‘\n’ print flush
4.200000e+01
onyx:1> dup 1 realtype print ‘\n’ print flush
4.200000e+01
onyx:1>

stack depth stacktype string:
Input(s):

1.8. DICTIONARY REFERENCE Jason Evans 39

stack: A stack object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of stack.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of stack.

Example(s):
onyx:0> sprintsdict begin
onyx:0> (1 (2 3) 4)
onyx:1> dup 0 stacktype print ‘\n’ print flush
-stack-
onyx:1> dup 1 stacktype print ‘\n’ print flush
(1 -stack- 4)
onyx:1> dup 2 stacktype print ‘\n’ print flush
(1 (2 3) 4)
onyx:1>

string depth stringtype string:
Input(s):

string: A string object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of string.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of string.

Example(s):
onyx:0> sprintsdict begin
onyx:0> ‘abcd’
onyx:1> dup 0 stringtype print ‘\n’ print flush
‘abcd’
onyx:1> dup 1 stringtype print ‘\n’ print flush
‘abcd’
onyx:1>

thread depth threadtype string:
Input(s):

thread: A thread object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of thread.

Errors(s):
stackunderflow.

40 Onyx Manual Chapter 1

typecheck.
Description: Create a syntactical string representation of thread.
Example(s):

onyx:0> sprintsdict begin
onyx:0> thread
onyx:1> dup 0 threadtype print ‘\n’ print flush
-thread-
onyx:1> dup 1 threadtype print ‘\n’ print flush
-thread-
onyx:1>

1.8.9 systemdict

The systemdict dictionary contains most of the operators that are of general use. Although there are
no mechanisms that prevent modification of systemdict, programs should not normally need to modify
systemdict, since globaldict provides a place for storing globally shared objects. All threads share the
same systemdict, which is implicitly locked.

Table 1.10: systemdict summary by functional group

Input(s) Op/Proc/Var Output(s) Description
Operand stack operators

– mark mark Create a mark.
– count count Get the number of objects on

ostack.
mark . . . counttomark mark . . . count Get the depth of the topmost

mark on ostack.
object dup object object Duplicate an object.

objects count ndup objects objects Duplicate objects.
object . . . index index object . . . object Duplicate object on ostack

at a given index.
a b exch b a Exchange the top two ob-

jects on ostack.
region count amount roll rolled Roll the top count objects up

by amount.
any pop – Remove the top object from

ostack.
objects count npop – Remove objects from ostack.

objects clear – Pop all objects off ostack.
mark . . . cleartomark – Remove objects from ostack

through topmost mark.
– ostack stack Get a current ostack snap-

shot.
Execution, control, and execution stack operators

object eval – Evaluate object.
boolean object if – Conditionally evaluate ob-

ject.
Continued on next page...

1.8. DICTIONARY REFERENCE Jason Evans 41

Table 1.10: continued

Input(s) Op/Proc/Var Output(s) Description
boolean a b ifelse – Conditionally evaluate one

of two objects.
init inc limit proc for – Iterate with a control vari-

able.
count proc repeat – Iterate a set number of

times.
proc loop – Iterate indefinitely.

array proc foreach – Iterate on array elements.
dict proc foreach – Iterate on dictionary

key/value pairs.
stack proc foreach – Iterate on stack elements.

string proc foreach – Iterate on string elements.
– exit – Terminate innermost loop-

ing context.
file/string token false Scan for a token.
file/string token rem object true

object start – Evaluate object.
– quit – Unwind to innermost start

context.
object stopped boolean Evaluate object.

– stop – Unwind to innermost
stopped or start context.

name throw object Throw an error.
– estack stack Get a current estack snap-

shot.
– countestack count Get current estack depth.
– istack stack Get a current istack snap-

shot.
status die – Exit program.

path symbol modload – Load a module.
file symbol mrequire – Search for and load a mod-

ule.
file require – Search for and evaluate a

source file.
– fork pid Fork a new process.

args exec – Overlay a new program and
execute it.

pid waitpid status Wait for a program to termi-
nate.

args system status Execute a program.
– pid pid Get process ID.
– ppid pid Get parent’s process ID.
– uid uid Get the process’s user ID.

uid setuid boolean Set the process’s user ID.
– euid uid Get the process’s effective

user ID.
Continued on next page...

42 Onyx Manual Chapter 1

Table 1.10: continued

Input(s) Op/Proc/Var Output(s) Description
uid seteuid boolean Set the process’s effective

user ID.
– gid gid Get the process’s group ID.

gid setgid boolean Set the process’s group ID.
– egid gid Get the process’s effective

group ID.
gid setegid boolean Set the process’s effective

group ID.
– realtime nsecs Get the number of nanosec-

onds since the epoch.
nanoseconds nsleep – Nanosleep.

Stack operators
– (fino Begin a stack declaration.

fino objects) stack Create a stack.
– stack stack Create a stack.

stack object spush – Push an object onto a stack.
stack scount count Get the number of objects on

a stack.
stack scounttomark count Get the depth of the topmost

mark on stack.
stack sdup – Duplicate an object.

stack index sindex – Duplicate object in a stack
at a given index.

stack sexch – Exchange top objects on
stack.

stack count amount sroll – Roll objects on stack.
stack spop object Pop an object off stack.
stack sclear – Remove all objects on stack.
stack scleartomark – Remove objects from stack

down through topmost
mark.

(a) (b) catenate (a b) Catenate two stacks.
srcstack dststack copy dststack Copy stack contents.

Number (integer, real) and math operators
a b add r Add a and b.
a b sub r Subtract b from a.
a b mul r Multiply a and b.
a b div r Divide a by b.
a b idiv r Divide a by b (integers).
a b mod r Mod a by b (integers).
a b exp r Raise a to the power of b.

a sqrt r Square root.
a ln r Natural log.
a log r Base 10 log.
a abs r Get the absolute value of a.

Continued on next page...

1.8. DICTIONARY REFERENCE Jason Evans 43

Table 1.10: continued

Input(s) Op/Proc/Var Output(s) Description
a neg r Get the negative of a.
a ceiling r Integer ceiling of a real.
a floor r Integer floor of a real.
a round r Real rounded to integer.
a trunc r Integer from real with trun-

cated fractional.
a sin r Sine in radians.
a cos r Cosine in radians.

y x atan r Arctangent in radians of
y/x.

seed srand – Seed pseudo-random num-
ber generator.

– rand integer Get a pseudo-random num-
ber.

String operators
length string string Create a string.
string length count Get string length.

string index get integer Get string element.
string index integer put – Set string element.
string index length getinterval substring Get a string interval.

string index substring putinterval – Copy substring into string.
‘a’ ‘b’ catenate ‘ab’ Catenate two strings.

srcstring dststring copy dstsubstring Copy string.
object depth sprints string Create syntactical string

from object.
object flags outputs string Create formatted string

from object.
string pattern search post pattern pre true Successfully search for pat-

tern.
string pattern search string false Unsuccessfully earch for

pattern.
Name operators

name length count Get name length.
Array operators

– argv args Get program arguments.
– [mark Begin an array declaration.

mark objects] array Construct an array.
length array array Create an array.
array length count Get array length.

array index get object Get array element.
array index object put – Set array element.
array index length getinterval subarray Get an array interval.

array index subarray putinterval – Copy subarray into array.
[a] [b] catenate [a b] Catenate two arrays.

srcarray dstarray copy dstsubarray Copy array.
Continued on next page...

44 Onyx Manual Chapter 1

Table 1.10: continued

Input(s) Op/Proc/Var Output(s) Description
Dictionary and dictionary stack operators

– gcdict dict Get gcdict.
– globaldict dict Get globaldict.
– onyxdict dict Get onyxdict.
– sprintsdict dict Get sprintsdict.
– outputsdict dict Get outputsdict.
– envdict dict Get envdict.

key val setenv – Set environment variable.
key unsetenv – Unset environment vari-

able.
– < mark Begin a dictionary declara-

tion.
mark kvpairs > dict Construct a dictionary.

– dict dict Create a dictionary.
dict begin – Pust dict onto dstack.

– end – Pop a dictionary off dstack.
key val def – Define key/value pair.

dict key undef – Undefine key in dict.
key load val Look up a key’s value.

dict key known boolean Check for key in dict.
key where false Get topmost dstack dictio-

nary that
key where dict true defines key.
dict length count Get number of dictionary

key/value pairs.
dict key get value Get dict value associate

with key.
dict key value put – Set dict key/value pair.
srcdict dstdict copy dstdict Copy dictionary contents.

– currentdict dict Get topmost dstack dictio-
nary.

– dstack stack Get dstack snapshot.
– countdstack count Get number of stacks on

dstack.
– cleardstack – Pop all dstack elements

pushed by begin.
File and filesystem operators

filename flags open file Open a file.
file close – Close file.
file read integer boolean Read from file.

file string read string boolean
file readline string boolean Read a line from file.
file bytesavailable count Get number of buffered

readable bytes.
file iobuf count Get size of I/O buffer.

Continued on next page...

1.8. DICTIONARY REFERENCE Jason Evans 45

Table 1.10: continued

Input(s) Op/Proc/Var Output(s) Description
file count setiobuf – Set size of I/O buffer.

file integer/string write – Write to file.
string print – Print string to stdout.

object depth sprint – Syntactically print object to
stdout.

object flags output – Formatted print to stdout.
– pstack – Syntactically print ostack

elements.
file flushfile – Flush file buffer.

– flush – Flush stdout buffer.
file length truncate – Truncate file.
file offset seek – Move file position pointer.

file tell offset Get file position pointer off-
set.

path mode mkdir – Create a directory.
old new rename – Rename a file or directory.

file/filename mode chmod – Change file permissions.
file/filename uid gid chown – Change file owner and

group.
filename linkname link – Create a hard link.
filename linkname symlink – Create a symbolic link.

filename unlink – Unlink a file.
path rmdir – Remove an empty directory.

file/filename flag test boolean Test a file.
file/filename status dict Get file information.

path proc dirforeach – Iterate on directory entries.
– pwd path Get present working direc-

tory.
path cd – Change present working di-

rectory.
– stdin file Get stdin.
– stdout file Get stdout.
– stderr file Get stderr.

Logical and bitwise operators
a b lt boolean a less than b? (integer/real,

string)
a b le boolean a less than or equal to b?

(integer/real, string)
a b eq boolean a equal to b? (any type)
a b ne boolean a not equal to b? (any type)
a b ge boolean a greater than or equal to b?

(integer/real, string)
a b gt boolean a greater than b? (inte-

ger/real, string)
a b and r Logical/bitwise and.

(boolean/integer)
Continued on next page...

46 Onyx Manual Chapter 1

Table 1.10: continued

Input(s) Op/Proc/Var Output(s) Description
a b or r Logical/bitwise or.

(boolean/integer)
a b xor r Logical/bitwise exclusive or.

(boolean/integer)
a not r Logical/bitwise not.

(boolean/integer)
a shift shift integer Bitwise shift.

– false false Return true.
– true true Return false.

Type, conversion, and attribute operators
object type name Get object type.
object echeck boolean Evaluatable?
object xcheck boolean Executable?
object cve object Set evaluatable attribute.
object cvx object Set executable attribute.
object cvlit object Set literal attribute.
string cvn name Convert string to name.
object cvs string Convert object to string.

integer radix cvrs string Convert integer to radix
string.

real precision cvds string Convert real to decimal
string.

real precision cves string Convert real to exponential
string.

hook hooktag tag Get hook tag.
Threading and synchronization operators

stack entry thread thread Create and run a thread.
– self thread Get a thread object for the

running thread.
thread join – Wait for thread to exit.
thread detach – Detach thread.

– yield – Voluntarily yield the proces-
sor.

– mutex mutex Create a mutex.
mutex proc monitor – Evaluate an object under

the protection of a mutex.
mutex lock – Acquire mutex.
mutex trylock boolean Try to acquire mutex.
mutex unlock – Release mutex.

– condition condition Create a condition variable.
condition mutex wait – Wait on condition.

condition mutex timeout timedwait boolean Wait on condition with time-
out.

condition signal – Signal a condition waiter.
condition broadcast – Signal all condition waiters.

Continued on next page...

1.8. DICTIONARY REFERENCE Jason Evans 47

Table 1.10: continued

Input(s) Op/Proc/Var Output(s) Description
– currentlocking boolean Get implicit locking mode.

boolean setlocking – Set implicit locking mode.
object lcheck boolean Implicitly locked?

Miscellaneous operators
– #! mark Begin interpreter magic.

mark names !# – End interpreter magic.
– product string Get the product string.
– version string Get the version string.

proc bind proc Bind names to operators.
– null null Create a null object.

mark names !# –:
Input(s):

mark: A mark object.
names: Zero or more name objects.

Output(s): None.
Errors(s):

unmatchedmark.
Description: Remove mark and name objects constructed as a side effect of interpreter magic.

This operator is an alias of cleartomark.
Example(s):

onyx:0> #!/usr/local/bin/onyx pstack
/onyx
/bin
/local
/usr
-mark-
onyx:5> !#
onyx:0>

– #! mark:
Input(s): None.
Output(s):

mark: A mark object.
Errors(s): None.
Description: Create a mark object in preparation for an interpreter path. This operator is an

alias of mark.
Example(s):

onyx:0> #! pstack
-mark-
onyx:1>

– (fino:

48 Onyx Manual Chapter 1

Input(s): None.
Output(s):

fino: A fino object.
Errors(s): None.
Description: Push a fino object onto ostack to denote the bottom of a stack that has not yet

been constructed.
Example(s):

onyx:0> (
onyx:1> pstack
-fino-
onyx:1>

fino objects) stack:
Input(s):

fino: A fino object, usually created by the) operator.
objects: 0 or more objects.

Output(s):
stack: A stack object.

Errors(s):
unmatchedfino.

Description: Create a stack object and move all objects from ostack down to the first fino object
to the new stack.

Example(s):
onyx:0> ()
onyx:1> 1 sprint
()
onyx:0> (1 2
onyx:3> pstack
2
1
-fino-
onyx:3>)
onyx:1> 1 sprint
(1 2)
onyx:0>

– < mark:
Input(s): None.
Output(s):

mark: A mark object.
Errors(s): None.
Description: Begin a dictionary declaration. See the ¿ operator documentation for more details

on dictionary construction.
Example(s):

onyx:0> < 1 sprint
-mark-
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 49

mark kvpairs > dict:
Input(s):

mark: A mark object.
kvpairs: Zero or more pairs of non-mark objects, where the first is a key and the second is

an associated value.
Output(s):

dict: A dictionary that contains kvpairs.
Errors(s):

rangecheck.
unmatchedmark.

Description: Construct a dictionary that contains kvpairs.
Example(s):

onyx:0> <
onyx:1> /foo ‘foo’
onyx:3> /bar ‘bar’
onyx:5> /biz ‘biz’
onyx:7> /pop //pop
onyx:9> >
onyx:1> pstack
</pop --pop-- /biz ‘biz’ /bar ‘bar’ /foo ‘foo’>
onyx:1>

– [mark:
Input(s): None.
Output(s):

mark: A mark object.
Errors(s): None.
Description: Begin an array declaration. See the] operator documentation for more details on

array construction.
Example(s):

onyx:0> [1 sprint
-mark-
onyx:0>

mark objects] array:
Input(s):

mark: A mark object.
objects: Zero or more non-mark objects.

Output(s):
array: An array that contains objects.

Errors(s):
unmatchedmark.

Description: Construct an array that contains all objects on ostack down to the first mark.
Example(s):

onyx:0> mark 1 2 3] 1 sprint
[1 2 3]

50 Onyx Manual Chapter 1

a abs r:
Input(s):

a: An integer or real.

Output(s):
r: Absolute value of a.

Errors(s):
stackunderflow.
typecheck.

Description: Return the absolute value of a.

Example(s):
onyx:0> 5 abs 1 sprint
5
onyx:0> -5 abs 1 sprint
5
onyx:0> 3.14 abs 1 sprint
3.140000e+00
onyx:0> -3.14 abs 1 sprint
3.140000e+00
onyx:0>

a b add r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: The sum of a and b.

Errors(s):
stackunderflow.
typecheck.

Description: Return the sum of a and b.

Example(s):
onyx:0> 2 2 add 1 sprint
4
onyx:0> -1 3 add 1 sprint
2
onyx:0> 2.0 3.1 add 1 sprint
5.100000e+00
onyx:0> -1.5 +3e1 add 1 sprint
2.850000e+01
onyx:0>

a b and r:
Input(s):

a: An integer or boolean.
b: The same type as a.

Output(s):

1.8. DICTIONARY REFERENCE Jason Evans 51

r: If a and b are integers, their bitwise and, otherwise their logical and.

Errors(s):
stackunderflow.
typecheck.

Description: Return the bitwise and of two integers, or the logical and of two booleans.

Example(s):
onyx:0> false true and 1 sprint
false
onyx:0> true true and 1 sprint
true
onyx:0> 5 3 and 1 sprint
1
onyx:0>

– argv args:
Input(s): None.

Output(s):
args: An array of strings. The first string in args is the path of this program, and any

additional array elements are the arguments that were passed during invocation.

Errors(s): None.

Description: Get the argument vector that was used to invoke this program.

Example(s):
onyx:0> argv 1 sprint
[‘/usr/local/bin/onyx’]
onyx:0>

length array array:
Input(s):

length: Non-negative number of array elements.

Output(s):
array: An array of length elements.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create an array of length elements. The elements are initialized to null objects.

Example(s):
onyx:0> 3 array 1 sprint
[null null null]
onyx:0> 0 array 1 sprint
[]
onyx:0>

y x atan r:
Input(s):

y: An integer or real.

52 Onyx Manual Chapter 1

x: An integer or real.

Output(s):
r: Arctangent of y/x in radians.

Errors(s):
stackunderflow.
typecheck.

Description: Return the arctangent of y/x in radians.

Example(s):
onyx:0> 1 1 atan 1 sprint
7.853982e-01
onyx:0> 0 1 atan 1 sprint
0.000000e+00
onyx:0> -1.0 0 atan 1 sprint
-1.570796e+00
onyx:0>

dict begin –:
Input(s):

dict: A dictionary.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Push dict onto dstack, thereby adding its keys to the namespace.

Example(s):
onyx:0> </foo ‘foo’> begin
onyx:0> foo 1 sprint
‘foo’
onyx:0>

proc bind proc:
Input(s):

proc: A procedure (array). proc will be bound even if it is literal, but contained literal
arrays will not be recursively bound.

Output(s):
proc: The same procedure as was passed in.

Errors(s):
stackunderflow.
typecheck.

Description: Recursively bind unbound procedures. Executable names within a procedure are
replaced with their values if defined in dstack, in any of the following cases:

• The value is a literal object.
• The value is an executable or evaluatable operator.
• The value is an executable or evaluatable hook.
• The value is an evaluatable array.

1.8. DICTIONARY REFERENCE Jason Evans 53

Example(s):
onyx:0> {pop sprint {pop sprint}}
onyx:1> dup 2 sprint
{pop sprint {pop sprint}}
onyx:1> bind
onyx:1> dup 2 sprint
{--pop-- _{sprints --print-- ‘\n’ --print-- --flush--}_ {--pop-- -array-}}
onyx:1>

condition broadcast –:
Input(s):

condition: A condition object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Signal all threads that are waiting on condition. If there are no waiters, this
operator has no effect.

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch broadcast unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

file bytesavailable count:
Input(s):

file: A file object.

Output(s):
count: Number of buffered readable bytes.

Errors(s):
stackunderflow.
typecheck.

Description: Get the number of buffered readable bytes that can be read without the possibility
of blocking.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup ‘Goodbye\n’ write
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1> dup bytesavailable 1 sprint
8
onyx:1>

54 Onyx Manual Chapter 1

[a] [b] catenate [a b]:

(a) (b) catenate (a b):

‘a’ ‘b’ catenate ‘ab’:
Input(s):

a: An array, stack, or string.
b: An array, stack, or string.

Output(s):
ab: The catenation of a and b.

Errors(s):
stackunderflow.
typecheck.

Description: Catenate two arrays, strings, or stacks.

Example(s):
onyx:0> [‘a’] [‘b’] catenate
onyx:1> 1 sprint
[‘a’ ‘b’]
onyx:0> (‘a’) (‘b’) catenate
onyx:1> 1 sprint
(‘a’ ‘b’)
onyx:0> ‘a’ ‘b’ catenate
onyx:1> 1 sprint
‘ab’
onyx:0>

path cd –:
Input(s):

path: A string that represents a filesystem path.

Output(s): None.

Errors(s):
invalidaccess.
ioerror.
stackunderflow.
typecheck.

Description: Change the present working directory to path.

Example(s):
onyx:0> pwd 1 sprint
‘/usr/local’
onyx:0> ‘bin’ cd
onyx:0> pwd 1 sprint
‘/usr/local/bin’
onyx:0>

a ceiling r:
Input(s):

a: An integer or real.

1.8. DICTIONARY REFERENCE Jason Evans 55

Output(s):
r: Integer ceiling of a.

Errors(s):
stackunderflow.
typecheck.

Description: Return the integer ceiling of a.
Example(s):

onyx:0> -1.51 ceiling 1 sprint
-1
onyx:0> -1.49 ceiling 1 sprint
-1
onyx:0> 0 ceiling 1 sprint
0
onyx:0> 1.49 ceiling 1 sprint
2
onyx:0> 1.51 ceiling 1 sprint
2
onyx:0>

file/filename mode chmod –:
Input(s):

file: A file object.
filename: A string that represents a filename.
mode: An integer that represents a Unix file mode.

Output(s): None.
Errors(s):

invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description:
Example(s):

onyx:0> ‘/tmp/tdir’ 8#755 mkdir
onyx:0> ‘/tmp/tdir’ status /mode get 1 sprint
16877
onyx:0> ‘/tmp/tdir’ ‘r’ open
onyx:1> dup 8#555 chmod
onyx:1> ‘/tmp/tdir’ status /mode get 1 sprint
16749
onyx:1>

file/filename uid gid chown –:
Input(s):

file: A file object.
filename: A string that represents a filename.

56 Onyx Manual Chapter 1

uid: An integer that represents a user ID.
gid: An integer that represents a group ID.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Change the owner and group of a file.

Example(s):
onyx:0> ‘/tmp/tdir’ 8#755 mkdir
onyx:0> ‘/tmp/tdir’ status
onyx:1> dup /uid get 1 sprint
1001
onyx:1> /gid get 1 sprint
0
onyx:0> ‘/tmp/tdir’ 1001 1001 chown
onyx:0> ‘/tmp/tdir’ status
onyx:1> dup /uid get 1 sprint
1001
onyx:1> /gid get 1 sprint
1001
onyx:0>

objects clear –:
Input(s):

objects: All objects on ostack.

Output(s): None.

Errors(s): None.

Description: Pop all objects off of ostack.

Example(s):
onyx:0> 1 2 3 pstack
3
2
1
onyx:3> clear pstack
onyx:0>

– cleardstack –:
Input(s): None.

Output(s): None.

Errors(s): None.

Description: Pop all dictionaries on dstack that were pushed by begin.

1.8. DICTIONARY REFERENCE Jason Evans 57

Example(s):
onyx:0> dict begin
onyx:0> dstack 1 sprint
(-dict- -dict- -dict- -dict- -dict-)
onyx:0> cleardstack
onyx:0> dstack 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:0> cleardstack
onyx:0> dstack 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:0>

mark . . . cleartomark –:
Input(s):

mark: A mark object.
. . . : Zero or more non-mark objects.

Output(s): None.

Errors(s):
unmatchedmark.

Description: Remove objects from ostack down to and including the topmost mark.

Example(s):
onyx:0> 3 mark 1 0 pstack
0
1
-mark-
3
onyx:4> cleartomark pstack
3
onyx:1>

file close –:
Input(s):

file: A file object.

Output(s): None.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Close a file.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> close
onyx:0>

– condition condition:
Input(s): None.

Output(s):

58 Onyx Manual Chapter 1

condition: A condition object.
Errors(s): None.
Description: Create a condition object.
Example(s):

onyx:0> condition 1 sprint
-condition-
onyx:0>

srcarray dstarray copy dstsubarray:

srcdict dstdict copy dstdict:

srcstack dststack copy dststack:

srcstring dststring copy dstsubstring:
Input(s):

srcarray: An array object.
srcdict: A dict object.
srcstack: A stack object.
srcstring: A string object.
dstarray: An array object, at least as long as srcarray.
dstdict: A dict object.
dststack: A stack object.
dststring: A string object, at least as long as srcstring.

Output(s):
dstsubarray: A subarray of dstarray, with the same contents as srcarray.
dstdict: The same object as the input dstdict, but with the contents of srcdict inserted.
dststack: The same object as the input dststack, but with the contents of srcstack pushed.
dstsubstring: A substring of dststring, with the same contents as srcstring.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Copy from one object to another. Array and string copying are destructive; dictio-
nary and stack copying are not.

Example(s):
onyx:0> [‘a’] [‘b’ ‘c’] copy 1 sprint
[‘a’]
onyx:0> </foo ‘foo’> </bar ‘bar’> copy 1 sprint
</bar ‘bar’ /foo ‘foo’>
onyx:1> (1 2) (3 4) copy 1 sprint
(3 4 1 2)
onyx:1> ‘a’ ‘bc’ copy 1 sprint
‘a’
onyx:1>

a cos r:
Input(s):

1.8. DICTIONARY REFERENCE Jason Evans 59

a: An integer or real.
Output(s):

r: Cosine of a in radians.
Errors(s):

stackunderflow.
typecheck.

Description: Return the cosine of a in radians.
Example(s):

onyx:0> 0 cos 1 sprint
1.000000e+00
onyx:0> 3.14 cos 1 sprint
-9.999987e-01
onyx:0> 3.1415927 cos 1 sprint
-1.000000e+00
onyx:0>

– count count:
Input(s): None.
Output(s):

count: The number of objects on ostack.
Errors(s): None.
Description: Get the number of objects on ostack.
Example(s):

onyx:0> 2 1 0 count pstack
3
0
1
2
onyx:4>

– countdstack count:
Input(s): None.
Output(s):

count: Number of dictionaries on dstack.
Errors(s): None.
Description: Get the number of dictionaries on dstack.
Example(s):

onyx:0> countdstack 1 sprint
4
onyx:0> dict begin
onyx:0> countdstack 1 sprint
5
onyx:0>

– countestack count:
Input(s): None.
Output(s):

60 Onyx Manual Chapter 1

count: The number of objects currently on the execution stack (recursion depth).
Errors(s): None.
Description: Get the current number of objects on the execution stack.
Example(s):

onyx:0> countestack 1 sprint
3
onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

mark . . . counttomark mark . . . count:
Input(s):

mark: A mark object.
. . . : Zero or more non-mark objects.

Output(s):
mark: The same mark that was passed in.
. . . : The same non-mark objects that were passed in.
count: The depth of mark on ostack.

Errors(s):
unmatchedmark.

Description: Get the depth of the topmost mark on ostack.
Example(s):

onyx:0> 4 mark 2 1 0 counttomark 1 sprint
3
onyx:5>

– currentdict dict:
Input(s): None.
Output(s):

dict: Topmost stack on dstack.
Errors(s): None.
Description: Get the topmost dictionary on dstack.
Example(s):

onyx:0> </foo ‘foo’> begin
onyx:0> currentdict 1 sprint
</foo ‘foo’>
onyx:0>

– currentlocking boolean:
Input(s): None.
Output(s):

boolean: If false, new objects are created with implicit locking disabled. Otherwise, new
objects are created with implicit locking enabled.

Errors(s): None.
Description: Get the current implicit locking mode. See Section 1.6.1 for implicit synchroniza-

tion details.

1.8. DICTIONARY REFERENCE Jason Evans 61

Example(s):
onyx:0> currentlocking 1 sprint
false
onyx:0> true setlocking
onyx:0> currentlocking 1 sprint
true
onyx:0>

real precision cvds string:
Input(s):

real: A real.
precision: Number of digits after the decimal point to show.

Output(s):
string: A string representation of real in decimal form with precision digits of decimal

precision.
Errors(s):

stackunderflow.
typecheck.

Description: Convert real to a string representation in decimal notation, with precision digits
of decimal precision.

Example(s):
onyx:0> 42.3 0 cvds 1 sprint
‘42’
onyx:0> 42.3 1 cvds 1 sprint
‘42.3’
onyx:0> -42.3 4 cvds 1 sprint
‘-42.3000’
onyx:0>

object cve object:
Input(s):

object: An object.
Output(s):

object: The same object that was passed in, but with the evaluatable attribute set.
Errors(s):

stackunderflow.
Description: Set the evaluatable attribute for object.
Example(s):

onyx:0> [1 2 3] cve 1 sprint
{1 2 3}
onyx:0>

real precision cves string:
Input(s):

real: A real.
precision: Number of digits after the decimal point to show.

Output(s):

62 Onyx Manual Chapter 1

string: A string representation of real in exponential form with precision digits of decimal
precision.

Errors(s):
stackunderflow.
typecheck.

Description: Convert real to a string representation in exponential notation, with precision
digits of decimal precision.

Example(s):
onyx:0> 42.3 0 cves 1 sprint
‘4e+01’
onyx:0> 42.3 1 cves 1 sprint
‘4.2e+01’
onyx:0> 42.3 2 cves 1 sprint
‘4.23e+01’
onyx:0> -42.3 5 cves 1 sprint
‘-4.23000e+01’
onyx:0>

object cvlit object:
Input(s):

object: An object.
Output(s):

object: The same object that was passed in, but with the literal attribute set.
Errors(s):

stackunderflow.
Description: Set the literal attribute for object.
Example(s):

onyx:0> {1 2 3} cvlit 1 sprint
[1 2 3]
onyx:0>

string cvn name:
Input(s):

string: A string.
Output(s):

name: A literal name that corresponds to string.
Errors(s):

stackunderflow.
typecheck.

Description: Convert string to a literal name.
Example(s):

onyx:0> ‘foo’ cvn 1 sprint
/foo
onyx:0>

integer radix cvrs string:
Input(s):

1.8. DICTIONARY REFERENCE Jason Evans 63

integer: An integer.
radix: A numerical base, from 2 to 36, inclusive.

Output(s):
string: A string representation of integer in base radix.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Convert integer to a string representation in base radix.
Example(s):

onyx:0> 42 2 cvrs 1 sprint
‘101010’
onyx:0> 42 16 cvrs 1 sprint
‘2a’
onyx:0>

object cvs string:
Input(s):

object: An object.
Output(s):

string: A string representation of object. The string depends on the type of object:
boolean: ‘true’ or ‘false’ .
name: The string representation of the name.
integer: The integer in base 10.
operator: The string representation of the operator name or ‘-operator-’ .
real: The real in exponential notation.
string: A printable representation of object. The result can be evaluated to produce

the original string.
Other types: ‘--nostringval--’ .

Errors(s):
stackunderflow.

Description: Convert object to a string representation.
Example(s):

onyx:0> true cvs 1 sprint
‘true’
onyx:0> /foo cvs 1 sprint
‘foo’
onyx:0> 42 cvs 1 sprint
‘42’
onyx:0> //pop cvs 1 sprint
‘pop’
onyx:0> 42.0 cvs 1 sprint
‘4.200000e+01’
onyx:0> ‘foo\nbar\\biz\‘baz’ cvs 1 sprint
‘\‘foo\\nbar\\\\biz\\\‘baz\’’
onyx:0> mutex cvs 1 sprint
‘--nostringval--’
onyx:0>

64 Onyx Manual Chapter 1

object cvx object:
Input(s):

object: An object.
Output(s):

object: The same object that was passed in, but with the executable attribute set.
Errors(s):

stackunderflow.
Description: Set the executable attribute for object.
Example(s):

onyx:0> [1 2 3] cvx 1 sprint
{1 2 3}
onyx:0>

key val def –:
Input(s):

key: An object.
val: A value associated with key.

Output(s): None.
Errors(s):

stackunderflow.
Description: Define key with associated value val in the topmost dictionary on dstack. If key is

already defined in that dictionary, the old definition is replaced.
Example(s):

onyx:0> /foo ‘foo’ def
onyx:0> foo 1 sprint
‘foo’
onyx:0> /foo ‘FOO’ def
onyx:0> foo 1 sprint
‘FOO’
onyx:0>

thread detach –:
Input(s):

thread: A thread object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Detach thread so that its resources will be automatically reclaimed after it exits.
A thread may only be detached or joined once; any attempt to do so more than once results
in undefined behavior (likely crash).

Example(s):
onyx:0> (1 2) {add 1 sprint self detach} thread
3
onyx:1>

– dict dict:

1.8. DICTIONARY REFERENCE Jason Evans 65

Input(s): None.
Output(s):

dict: An empty dictionary.
Errors(s): None.
Description: Create an empty dictionary.
Example(s):

onyx:0> dict 1 sprint
<>
onyx:0>

status die –:
Input(s):

status: A integer from 0 to 255 that is used as the program exit code.
Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Exit the program with exit code status.
Example(s):

onyx:0> 1 die

path proc dirforeach –:
Input(s):

path: A string that represents a filesystem path.
proc: An object to be executed.

Output(s): None.
Errors(s):

invalidaccess.
ioerror.
stackunderflow.
typecheck.

Description: For each entry in the directory represented by path except for “.” and “..”, push
a string that represents the entry onto ostack and execute proc. This operator supports the
exit operator.

Example(s):
onyx:0> pwd {1 sprint} dirforeach
‘CVS’
‘.cvsignore’
‘Cookfile’
‘Cookfile.inc’
‘latex’
‘Cookfile.inc.in’
onyx:0> pwd {‘Cookfile.inc’ search

{pop ‘Yes: ’ print 1 sprint pop exit}
{‘Not: ’ print 1 sprint} ifelse

66 Onyx Manual Chapter 1

} dirforeach
Not: ‘CVS’
Not: ‘.cvsignore’
Not: ‘Cookfile’
Yes: ‘Cookfile.inc’
onyx:0>

a b div r:
Input(s):

a: An integer or real.
b: A non-zero integer or real.

Output(s):
r: The quotient of a divided by b.

Errors(s):
stackunderflow.
typecheck.
undefinedresult.

Description: Return the quotient of a divided by b.
Example(s):

onyx:0> 4 2 div 1 sprint
2.000000e+00
onyx:0> 5 2.0 div 1 sprint
2.500000e+00
onyx:0> 5.0 0 div
Error /undefinedresult
ostack: (5.000000e+00 0)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --div--
1: -file-
2: --start--
onyx:3>

– dstack stack:
Input(s): None.
Output(s):

stack: A snapshot of dstack.
Errors(s): None.
Description: Get a snapshot of dstack.
Example(s):

onyx:0> dstack 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:0>

object dup object object:
Input(s):

object: An object.
Output(s):

1.8. DICTIONARY REFERENCE Jason Evans 67

object: The same object that was passed in.

Errors(s):
stackunderflow.

Description: Create a duplicate of the top object on ostack. For composite objects, the new
object is a reference to the same composite object.

Example(s):
onyx:0> 1 dup pstack
1
1
onyx:2>

object echeck boolean:
Input(s):

object: An object.

Output(s):
boolean: True if object has the evaluatable attribute, false otherwise.

Errors(s):
stackunderflow.

Description: Check object for evaluatable attribute.

Example(s):
onyx:0> {1 2 3} cve
onyx:1> dup 1 sprint
{1 2 3}
onyx:1> echeck 1 sprint
true
onyx:0> {1 2 3} echeck 1 sprint
false
onyx:0> [1 2 3] echeck 1 sprint
false
onyx:0>

– egid gid:
Input(s): None.

Output(s):
gid: Process’s effective group ID.

Errors(s): None.

Description: Get the process’s effective group ID.

Example(s):
onyx:0> egid 1 sprint
1001
onyx:0>

– end –:
Input(s): None.

Output(s): None.

Errors(s):

68 Onyx Manual Chapter 1

dstackunderflow.
Description: Pop the topmost dictionary off dstack, thereby removing its contents from the

namespace.

Example(s):
onyx:0> </foo ‘foo’> begin
onyx:0> foo 1 sprint
‘foo’
onyx:0> end
onyx:0> foo 1 sprint
Error /undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: foo
1: -file-
2: --start--
onyx:1>

– envdict dict:
Input(s): None.

Output(s):
dict: A dictionary.

Errors(s): None.

Description: Get envdict. See Section 1.8.2 for details on envdict.

Example(s):
onyx:0> envdict 0 sprint
-dict-
onyx:0>

a b eq boolean:
Input(s):

a: An object.
b: An object.

Output(s):
boolean: True if a is equal to b, false otherwise.

Errors(s):
stackunderflow.

Description: Compare two objects for equality. Equality has the following meaning, depending
on the types of a and b:

array, condition, dict, file, hook, mutex, stack, thread: a and b are equal iff they refer
to the same memory.

operator: a and b are equal iff they refer to the same function.
name, string: a and b are equal iff they are lexically equivalent. A name can be equal to a

string.
boolean: a and b are equal iff they are the same value.
integer, real: a and b are equal iff they are the same value.

1.8. DICTIONARY REFERENCE Jason Evans 69

Example(s):
onyx:0> mutex mutex eq 1 sprint
false
onyx:0> mutex dup eq 1 sprint
true
onyx:0> /foo ‘foo’ eq 1 sprint
true
onyx:0> true true eq 1 sprint
true
onyx:0> true false eq 1 sprint
false
onyx:0> 1 1 eq 1 sprint
true
onyx:0> 1 2 eq 1 sprint
false
onyx:0> 1.0 1 eq 1 sprint
true
onyx:0> 1.0 1.1 eq 1 sprint
false
onyx:0>

– estack stack:
Input(s): None.
Output(s):

stack: A current snapshot (copy) of the execution stack.
Errors(s): None.
Description: Get a current snapshot of the execution stack.
Example(s):

onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

– euid uid:
Input(s): None.
Output(s):

uid: Process’s effective user ID.
Errors(s): None.
Description: Get the process’s effective user ID.
Example(s):

onyx:0> euid 1 sprint
1001
onyx:0>

object eval –:
Input(s):

object: An object.
Output(s): None.
Errors(s):

70 Onyx Manual Chapter 1

stackunderflow.
Description: Evaluate object. See Section 1.1 for details on object evaluation.
Example(s):

onyx:0> ‘‘hi’ 1 sprint’ cvx eval
‘hi’
onyx:0>

a b exch b a:
Input(s):

a: An object.
b: An object.

Output(s):
b: The same object that was passed in.
a: The same object that was passed in.

Errors(s):
stackunderflow.

Description: Exchange the top two objects on ostack.
Example(s):

onyx:0> 1 2 pstack
2
1
onyx:2> exch pstack
1
2
onyx:2>

args exec –:
Input(s):

args: An array of strings. The first string in args is the path of the program to invoke, and
any additional array elements are passed as command line arguments to the invoked
program.

Output(s): None (this operator does not return).
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Overlay a new program and execute it. The current contents of envdict are used
to construct the new program’s environment.

Example(s):
onyx:0> ‘Old program’
onyx:1> [‘/usr/local/bin/onyx’] exec
Canonware Onyx, version 1.0.0.
onyx:0>

– exit –:
Input(s): None.
Output(s): None.

1.8. DICTIONARY REFERENCE Jason Evans 71

Errors(s): None.
Description: Exit the innermost enclosing looping context immediately. This operator can be

called within the looping context of for, repeat, loop, foreach, and dirforeach.
Example(s):

onyx:0> {‘hi’ 1 sprint exit ‘bye’ 1 sprint} loop
‘hi’
onyx:0>

a b exp r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: a to the b power.

Errors(s):
stackunderflow.
typecheck.

Description: Return a to the b power. If a negative exponent is specified, the result will always
be a real, even if both arguments are integers.

Example(s):
onyx:0> 5 0 exp 1 sprint
1
onyx:0> 5 1 exp 1 sprint
5
onyx:0> 5 2 exp 1 sprint
25
onyx:0> -5 3 exp 1 sprint
-125
onyx:0> 5 -3 exp 1 sprint
8.000000e-03
onyx:0> 2.1 3.5 exp 1 sprint
1.342046e+01
onyx:0> 100 .01 exp 1 sprint
1.000000e+02
onyx:0>

– false false:
Input(s): None.
Output(s):

false: The boolean value false.
Errors(s): None.
Description: Return false.
Example(s):

onyx:0> false 1 sprint
false
onyx:0>

a floor r:

72 Onyx Manual Chapter 1

Input(s):
a: An integer or real.

Output(s):
r: Integer floor of a.

Errors(s):
stackunderflow.
typecheck.

Description: Return the integer floor of a.
Example(s):

onyx:0> -1.51 floor 1 sprint
-2
onyx:0> -1.49 floor 1 sprint
-2
onyx:0> 0 floor 1 sprint
0
onyx:0> 1.49 floor 1 sprint
1
onyx:0> 1.51 floor 1 sprint
1
onyx:0>

– flush –:
Input(s): None.
Output(s): None.
Errors(s):

ioerror.
Description: Flush any buffered data associated with stdout.
Example(s):

onyx:0> ‘Hi\n’ print
onyx:0> flush
Hi
onyx:0>

file flushfile –:
Input(s):

file: A file object.
Output(s): None.
Errors(s):

ioerror.
stackunderflow.
typecheck.

Description: Flush any buffered data associated with file.
Example(s):

onyx:0> ‘Hi\n’ print
onyx:0> stdout flushfile
Hi
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 73

init inc limit proc for –:
Input(s):

init: Initial value of control variable.
inc: Amount to increment control variable by at the end of each iteration.
limit: Inclusive upper bound for control variable if less than or equal to init, otherwise

inclusive lower bound for control variable.
proc: An object.

Output(s): At the beginning of each iteration, the current value of the control variable is pushed
onto ostack.

Errors(s):
stackunderflow.
typecheck.

Description: Iteratively evaluate proc, pushing a control variable onto ostack at the beginning
of each iteration, until the control variable has exceeded limit. This operator supports the
exit operator.

Example(s):
onyx:0> 0 1 3 {1 sprint} for
0
1
2
3
onyx:0> 0 -1 -3 {1 sprint} for
0
-1
-2
-3
onyx:0> 0 2 7 {1 sprint} for
0
2
4
6
onyx:0> 0 1 1000 {dup 1 sprint 3 eq {exit} if} for
0
1
2
3
onyx:0>

array proc foreach –:

dict proc foreach –:

stack proc foreach –:

string proc foreach –:
Input(s):

array: An array object.
dict: A dict object.
stack: A stack object.

74 Onyx Manual Chapter 1

string: A string object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: For each entry in the first input argument (array, dict, stack, or string), push the
entry onto ostack and execute proc. This operator supports the exit operator.

Example(s):
onyx:0> [1 2] {1 sprint} foreach
1
2
onyx:0> </foo ‘foo’ /bar ‘bar’> {pstack clear} foreach
‘bar’
/bar
‘foo’
/foo
onyx:0> (1 2) {pstack clear} foreach
2
1
onyx:0> ‘ab’ {pstack clear} foreach
97
98
onyx:0>

– fork pid:
Input(s): None.
Output(s):

pid: Process identifier for the new process, or 0 if the child process.
Errors(s):

limitcheck.
Description: Fork a new process. Care must be taken when using the fork operator due to

the fact that onyx consumes programs on the fly. The child process cannot reliably scan
onyx code from the same source as the parent, so the child process should be forked into
an environment where it is executing an object that has already been constructed by the
interpreter, which in turn avoids unwinding the onyx execution stack.

Example(s):
onyx:0> {fork dup 0 eq

{pop ‘Child\n’ print flush}
{‘Parent\n’ print flush waitpid}
ifelse} eval

Parent
Child
onyx:0>

– gcdict dict:
Input(s): None.
Output(s):

dict: A dictionary.

1.8. DICTIONARY REFERENCE Jason Evans 75

Errors(s): None.
Description: Get gcdict. See Section 1.8.4 for details on gcdict.
Example(s):

onyx:0> gcdict 0 sprint
-dict-
onyx:0>

a b ge boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is greater than or equal to b, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.
Example(s):

onyx:0> 1 2 ge 1 sprint
false
onyx:0> 1 1 ge 1 sprint
true
onyx:0> 2 1 ge 1 sprint
true
onyx:0> 1 1.1 ge 1 sprint
false
onyx:0> 1.1 1.1 ge 1 sprint
true
onyx:0> 1.1 1 ge 1 sprint
true
onyx:0> ‘a’ ‘b’ ge 1 sprint
false
onyx:0> ‘a’ ‘a’ ge 1 sprint
true
onyx:0> ‘b’ ‘a’ ge 1 sprint
true
onyx:0>

array index get object:

dict key get value:

string index get integer:
Input(s):

array: An array object.
dict: A dict object.
string: A string object.
index: Offset of array element or string element.
key: A key in dict.

76 Onyx Manual Chapter 1

Output(s):
object: The object in array at offset index.
value: The value in dict corresponding to key.
integer: The ascii value of the character in string at offset index.

Errors(s):
rangecheck.
stackunderflow.
typecheck.
undefined.

Description: Get an element of array, a value in dict, or an element of string.

Example(s):
onyx:0> [‘a’ ‘b’ ‘c’] 1 get 1 sprint
‘b’
onyx:0> </foo ‘foo’ /bar ‘bar’> /bar get 1 sprint
‘bar’
onyx:0> ‘abc’ 1 get 1 sprint
98
onyx:0>

array index length getinterval subarray:

string index length getinterval substring:
Input(s):

array: An array object.
string: A string object.
index: The offset into array or string to get the interval from.
length: The length of the interval in array or string to get.

Output(s):
subarray: A subarray of array at offset index and of length length.
substring: A substring of string at offset index and of length length.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Get an interval of array or string.

Example(s):
onyx:0> [0 1 2 3] 1 2 getinterval 1 sprint
[1 2]
onyx:0> ‘abcd’ 1 2 getinterval 1 sprint
‘bc’
onyx:0>

– gid gid:
Input(s): None.

Output(s):
gid: Process’s group ID.

1.8. DICTIONARY REFERENCE Jason Evans 77

Errors(s): None.
Description: Get the process’s group ID.
Example(s):

onyx:0> gid 1 sprint
1001
onyx:0>

– globaldict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Errors(s): None.
Description: Get globaldict. See Section 1.8.5 for details on globaldict.
Example(s):

onyx:0> globaldict 1 sprint
<>
onyx:0>

a b gt boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is greater than b, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.
Example(s):

onyx:0> 1 1 gt 1 sprint
false
onyx:0> 2 1 gt 1 sprint
true
onyx:0> 1.1 1.1 gt 1 sprint
false
onyx:0> 1.1 1 gt 1 sprint
true
onyx:0> ‘a’ ‘a’ gt 1 sprint
false
onyx:0> ‘b’ ‘a’ gt 1 sprint
true
onyx:0>

hook hooktag tag:
Input(s):

hook: A hook object.
Output(s):

78 Onyx Manual Chapter 1

tag: The tag associated with hook.
Errors(s):

stackunderflow.
typecheck.

Description: Get the tag associated with hook.
Example(s):

a b idiv r:
Input(s):

a: An integer.
b: A non-zero integer.

Output(s):
r: The integer quotient of a divided by b.

Errors(s):
stackunderflow.
typecheck.
undefinedresult.

Description: Return the integer quotient of a divided by b.
Example(s):

onyx:0> 4 2 idiv 1 sprint
2
onyx:0> 5 2 idiv 1 sprint
2
onyx:0> 5 0 idiv
Error /undefinedresult
ostack: (5 0)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --idiv--
1: -file-
2: --start--
onyx:3>

boolean object if –:
Input(s):

boolean: A boolean.
object: An object.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Evaluate object if boolean is true.
Example(s):

onyx:0> true {‘yes’ 1 sprint} if
‘yes’
onyx:0> false {‘yes’ 1 sprint} if
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 79

boolean a b ifelse –:
Input(s):

boolean: A boolean.
a: An object.
b: An object.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Evaluate a if boolean is true, evaluate b otherwise. See Section 1.1 for details on
object evaluation.

Example(s):
onyx:0> true {‘yes’}{‘no’} ifelse 1 sprint
‘yes’
onyx:0> false {‘yes’}{‘no’} ifelse 1 sprint
‘no’
onyx:0>

object . . . index index object . . . object:
Input(s):

object: An object.
. . . : index objects.
index: Depth (count starts at 0, not counting index) of the object to duplicate on ostack.

Output(s):
object: The same object that was passed in.
. . . : The same index objects that were passed in.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on on ostack at depth index.
Example(s):

onyx:0> 3 2 1 0 2 index pstack
2
0
1
2
3
onyx:5>

file iobuf count:
Input(s):

file: A file object.
Output(s):

count: The size in bytes of the I/O buffer associated with file.
Errors(s):

80 Onyx Manual Chapter 1

stackunderflow.
typecheck.

Description: Get the size of the I/O buffer associated with file.
Example(s):

onyx:0> stdout iobuf 1 sprint
512
onyx:0> stderr iobuf 1 sprint
0
onyx:0>

– istack stack:
Input(s): None.
Output(s):

stack: A current snapshot (copy) of the index stack.
Errors(s): None.
Description: Get a current snapshot of the index stack.
Example(s):

onyx:0> istack 1 sprint
(0 0 0)
onyx:0>

thread join –:
Input(s):

thread: A thread object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Wait for thread to exit. A thread may only be detached or joined once; any attempt
to do so more than once results in undefined behavior (likely crash).

Example(s):
onyx:0> (1 2) {add 1 sprint} thread join ‘Done\n’ print flush
3
Done
onyx:0>

dict key known boolean:
Input(s):

dict: A dictionary.
key: A key to look for in dict.

Output(s):
boolean: True if key is defined in dict, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Check whether key is defined in dict.

1.8. DICTIONARY REFERENCE Jason Evans 81

Example(s):
onyx:1> </foo ‘foo’> /foo known 1 sprint
true
onyx:1> </foo ‘foo’> /bar known 1 sprint
false
onyx:1>

object lcheck boolean:
Input(s):

object: An array, dict, file, or string.

Output(s):
boolean: True if object is implicitly locked, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Check if object is implicitly locked.

Example(s):
onyx:0> false setlocking
onyx:0> [1 2 3] lcheck 1 sprint
false
onyx:0> true setlocking
onyx:0> [1 2 3] lcheck 1 sprint
true
onyx:0>

a b le boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is less than or equal to b, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.

Example(s):
onyx:0> 1 2 le 1 sprint
true
onyx:0> 1 1 le 1 sprint
true
onyx:0> 2 1 le 1 sprint
false
onyx:0> 1 1.1 le 1 sprint
true
onyx:0> 1.1 1.1 le 1 sprint
true
onyx:0> 1.1 1 le 1 sprint

82 Onyx Manual Chapter 1

false
onyx:0> ‘a’ ‘b’ le 1 sprint
true
onyx:0> ‘a’ ‘a’ le 1 sprint
true
onyx:0> ‘b’ ‘a’ le 1 sprint
false
onyx:0>

array length count:

dict length count:

name length count:

string length count:
Input(s):

array: An array object.
dict: A dict object.
name: A name object.
string: A string object.

Output(s):
count: Number of elements in array, number of entries in dict, number of characters in

name, or number of characters in string.
Errors(s):

stackunderflow.
typecheck.

Description: Get the umber of elements in array, number of entries in dict, number of charac-
ters in name, or number of characters in string.

Example(s):
onyx:0> [1 2 3] length 1 sprint
3
onyx:0> </foo ‘foo’ /bar ‘bar’> length 1 sprint
2
onyx:0> /foo length 1 sprint
3
onyx:0> ‘foo’ length 1 sprint
3
onyx:0>

filename linkname link –:
Input(s):

filename: A string that represents a filename.
linkname: A string that represents a filename.

Output(s): None.
Errors(s):

invalidfileaccess.
ioerror.
stackunderflow.

1.8. DICTIONARY REFERENCE Jason Evans 83

typecheck.
undefinedfilename.
unregistered.

Description: Create a hard link from linkname to filename.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ ‘/tmp/bar’ link
onyx:0> ‘/tmp/bar’ ‘r’ open
onyx:1> readline
onyx:2> pstack
false
‘Hello’
onyx:2>

a ln r:
Input(s):

a: An integer or real.
Output(s):

r: Natural logarithm of a.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the natural logarithm of a.
Example(s):

onyx:0> 5 ln 1 sprint
1.609438e+00
onyx:0> 8.5 ln 1 sprint
2.140066e+00
onyx:0>

key load val:
Input(s):

key: A key to look up in dstack.
Output(s):

val: The value associated with the topmost definition of key in dstack.
Errors(s):

stackunderflow.
undefined.

Description: Get the topmost definition of key in dstack.
Example(s):

onyx:1> </foo ‘foo’> begin
onyx:1> </foo ‘FOO’> begin
onyx:1> /foo load 1 sprint
‘FOO’
onyx:1>

84 Onyx Manual Chapter 1

mutex lock –:
Input(s):

mutex: A mutex object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Acquire mutex, waiting if necessary. Attempting to acquire mutex recursively will
result in undefined behavior (likely deadlock or crash).

Example(s):
onyx:0> mutex dup lock unlock
onyx:0>

a log r:
Input(s):

a: An integer or real.
Output(s):

r: Base 10 logarithm of a.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the base 10 logarithm of a.
Example(s):

onyx:0> 5 log 1 sprint
6.989700e-01
onyx:0> 8.5 log 1 sprint
9.294189e-01
onyx:0>

proc loop –:
Input(s):

proc: An object to evaluate.
Output(s): None.
Errors(s):

stackunderflow.
Description: Iteratively evaluate proc indefinitely. This operator supports the exit operator.
Example(s):

onyx:0> 0 {1 add dup 1 sprint dup 3 eq {pop exit} if} loop
1
2
3
onyx:0>

a b lt boolean:
Input(s):

1.8. DICTIONARY REFERENCE Jason Evans 85

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is less than b, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.

Example(s):
onyx:0> 1 2 lt 1 sprint
true
onyx:0> 1 1 lt 1 sprint
false
onyx:0> 1 1.1 lt 1 sprint
true
onyx:0> 1.1 1.1 lt 1 sprint
false
onyx:0> 1.1 1 lt 1 sprint
false
onyx:0> ‘a’ ‘b’ lt 1 sprint
true
onyx:0> ‘a’ ‘a’ lt 1 sprint
false
onyx:0>

– mark mark:
Input(s): None.

Output(s):
mark: A mark object.

Errors(s): None.

Description: Push a mark onto ostack.

Example(s):
onyx:0> mark pstack
-mark-
onyx:1>

path mode mkdir –:
Input(s):

path: A string object that represents a directory path.
mode: An integer that represents a Unix file mode.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.

86 Onyx Manual Chapter 1

typecheck.
unregistered.

Description: Create a directory.
Example(s):

onyx:0> ‘/tmp/tdir’ 8#755 mkdir
onyx:0> ‘/tmp/tdir’ {1 sprint} dirforeach
‘.’
‘..’
onyx:0>

a b mod r:
Input(s):

a: An integer.
b: A non-zero integer.

Output(s):
r: The modulus of a and b.

Errors(s):
stackunderflow.
typecheck.
undefinedresult.

Description: Return the modulus of a and b.
Example(s):

onyx:0> 4 2 mod 1 sprint
0
onyx:0> 5 2 mod 1 sprint
1
onyx:0> 5 0 mod
Error /undefinedresult
ostack: (5 0)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --mod--
1: -file-
2: --start--
onyx:3>

path symbol modload –:
Input(s):

path: A string that represents a module filename.
symbol: A string that represents the symbol name of a module initialization function to be

executed.
Output(s): None.
Errors(s):

invalidfileaccess.
stackunderflow.
typecheck.
undefined.

1.8. DICTIONARY REFERENCE Jason Evans 87

Description: Dynamically load a module, create a hook object that encapsulates the handle
returned by dlopen(3) (hook data pointer) and the module initialization function (hook eval-
uation function), and evaluate the hook.
All objects that refer to code and/or data that are part of the module must directly and/or
indirectly maintain a reference to the hook that is evaluated by this operator, since failing to
do so would allow the garbage collector to unload the module, which could result in dangling
pointers to unmapped memory regions.
Loadable modules present a problem for the garbage collector during the sweep phase. All
objects that refer to memory that is dynamically mapped as part of the module must be
destroyed before the module is unloaded. Destruction ordering constraints show up in other
situations as well, but in the case of loadable modules, there is no reasonable solution except
to explicitly order the destruction of objects. Therefore, by default, the hook that is evaluated
by modload is destroyed during the second sweep pass. It is possible for a module to override
what sweep pass the hook is destroyed on, in cases where there are additional ordering
constraints for the objects created by a module. This isn’t important from the Onyx language
perspective, but is important to understand when implementing modules.

Example(s):
onyx:0> ‘/usr/local/share/onyx/nxmod/gtk.nxm’ ‘modpane_init’
onyx:2> modload
onyx:0>

mutex proc monitor –:
Input(s):

mutex: A mutex.
proc: Any object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Execute proc while holding mutex.

Example(s):
onyx:0> mutex {‘hello\n’ print} monitor flush
hello
onyx:0>

file symbol mrequire –:
Input(s):

file: A string that represents a module filename.
symbol: A string that represents the symbol name of a module initialization function to be

executed.

Output(s): None.

Errors(s):
invalidfileaccess.
stackunderflow.
typecheck.
undefined.
undefinedfilename.

88 Onyx Manual Chapter 1

Description: Search for and load a module. The module is searched for by catenating a prefix,
a “/”, and file to form a file path. Prefixes are tried in the following order:

1. The ordered elements of the mpath pre array, which is defined in onyxdict.
2. If defined, the ordered elements of the ONYX MPATH environment variable, which is a

colon-separated list.
3. The ordered elements of the mpath post array, which is defined in onyxdict.

Example(s):
onyx:0> ‘modgtk.nxm’ ‘modgtk_init’ mrequire
onyx:0>

a b mul r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: The product of a and b.

Errors(s):
stackunderflow.
typecheck.

Description: Return the product of a and b.

Example(s):
onyx:0> 3 17 mul 1 sprint
51
onyx:0> -5 -6 mul 1 sprint
30
onyx:0> 3.5 4.0 mul 1 sprint
1.400000e+01
onyx:0> -1.5 3 mul 1 sprint
-4.500000e+00
onyx:0>

– mutex mutex:
Input(s): None.

Output(s):
mutex: A mutex object.

Errors(s): None.

Description: Create a mutex.

Example(s):
onyx:0> mutex 1 sprint
-mutex-
onyx:0>

objects count ndup objects objects:
Input(s):

objects: Zero or more objects.
count: The number of objects do duplicate.

1.8. DICTIONARY REFERENCE Jason Evans 89

Output(s):
objects: The same objects that were passed in.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create duplicates of the top count objects on ostack. For composite objects, the
new object is a reference to the same composite object.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ 2 ndup pstack
‘c’
‘b’
‘c’
‘b’
‘a’
onyx:5>

a b ne boolean:
Input(s):

a: An object.
b: An object.

Output(s):
boolean: True if a is not equal to b, false otherwise.

Errors(s):
stackunderflow.

Description: Compare two objects for inequality. Inequality has the following meaning, de-
pending on the types of a and b:
array, condition, dict, file, hook, mutex, stack, thread: a and b are not equal unless

they refer to the same memory.
operator: a and b are not equal unless they refer to the same function.
name, string: a and b are not equal iff they are lexically equivalent. A name can be equal

to a string.
boolean: a and b are not equal unless they are the same value.
integer, real: a and b are not equal unless they are the same value.

Example(s):
onyx:0> mutex mutex ne 1 sprint
true
onyx:0> mutex dup ne 1 sprint
false
onyx:0> /foo ‘foo’ ne 1 sprint
false
onyx:0> /foo /bar ne 1 sprint
true
onyx:0> true false ne 1 sprint
true
onyx:0> true true ne 1 sprint
false

90 Onyx Manual Chapter 1

onyx:0> 1 1 ne 1 sprint
false
onyx:0> 1 2 ne 1 sprint
true
onyx:0> 1.0 1 ne 1 sprint
false
onyx:0> 1.0 1.1 ne 1 sprint
true
onyx:0>

a neg r:
Input(s):

a: An integer.
Output(s):

r: The negative of a.
Errors(s):

stackunderflow.
typecheck.

Description: Return the negative of a.
Example(s):

onyx:0> 0 neg 1 sprint
0
onyx:0> 5 neg 1 sprint
-5
onyx:0> -5 neg 1 sprint
5
onyx:0> 3.14 neg 1 sprint
-3.140000e+00
onyx:0> -3.14 neg 1 sprint
3.140000e+00
onyx:0>

a not r:
Input(s):

a: An integer or boolean.
Output(s):

r: If a is an integer, the bitwise negation of a, otherwise the logical negation of a.
Errors(s):

stackunderflow.
typecheck.

Description: Return the bitwise negation of an integer, or the logical negation of a boolean.
Example(s):

onyx:0> true not 1 sprint
false
onyx:0> false not 1 sprint
true
onyx:0> 1 not 1 sprint
-2
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 91

objects count npop –:
Input(s):

objects: Zero or more objects.
count: Number of objects to pop.

Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Remove the top count objects off ostack and discard them.
Example(s):

onyx:0> ‘a’ ‘b’ ‘c’ 2 npop pstack
‘a’
onyx:1>

nanoseconds nsleep –:
Input(s):

nanoseconds: Minimum number of nanoseconds to sleep. Must be greater than 0.
Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Sleep for at least nanoseconds nanonseconds.
Example(s):

onyx:0> 1000 nsleep
onyx:0>

– null null:
Input(s): None.
Output(s):

null: A null object.
Errors(s): None.
Description: Create a null object.
Example(s):

onyx:0> null pstack
null
onyx:1>

– onyxdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Errors(s): None.
Description: Get onyxdict. See Section 1.8.6 for details on onyxdict.

92 Onyx Manual Chapter 1

Example(s):
onyx:0> onyxdict 1 sprint
</rpath_pre -array- /rpath_post -array- /mpath_pre -array- /mpath_post -array->
onyx:0>

filename flags open file:
Input(s):

filename: A string that represents a filename.
flags: A string that represents a file mode:

‘r’: Read only.
‘r+’: Read/write, starting at offset 0.
‘w’: Write only. Create file if necessary. Truncate file if non-zero length.
‘w+’: Read/write, starting at offset 0. Create file if necessary.
‘a’: Write only, starting at end of file.
‘a+’: Read/write, starting at end of file.

Output(s):
file: A file object.

Errors(s):
invalidfileaccess.
ioerror.
limitcheck.
stackunderflow.
typecheck.

Description: Open a file.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open pstack
-file-
onyx:1>

a b or r:
Input(s):

a: An integer or boolean.
b: The same type as a.

Output(s):
r: If a and b are integers, their bitwise or, otherwise their logical or.

Errors(s):
stackunderflow.
typecheck.

Description: Return the bitwise or of two integers, or the logical or of two booleans.
Example(s):

onyx:0> false false or 1 sprint
false
onyx:0> true false or 1 sprint
true
onyx:0> 5 3 or 1 sprint
7
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 93

– ostack stack:
Input(s): None.
Output(s):

stack: A current snapshot (copy) of ostack.
Errors(s): None.
Description: Get a current snapshot of ostack.
Example(s):

onyx:0> 1 2 3 ostack pstack
(1 2 3)
3
2
1
onyx:4>

object depth output –:
Input(s):

object: An object to print syntactically.
depth: Maximum recursion depth.

Output(s): None.
Errors(s):

ioerror.
stackunderflow.
typecheck.

Description: Syntactically print object. See Section 1.8.7 for format specifier details.
Example(s):

onyx:0> [1 [2 3] 4] </w 20 /p ‘_’ /j /c /r 1> output ‘\n’ print flush
___[1 -array- 4]____
onyx:0> [1 [2 3] 4] </w 20 /p ‘_’ /j /c /r 2> output ‘\n’ print flush
____[1 [2 3] 4]_____
onyx:0> 4242 </s /+> output ‘\n’ print flush
+4242
onyx:0> ‘0x’ print 4242 </b 16> output ‘\n’ print flush
0x1092
onyx:0> ‘0x’ 4242 </b 16> outputs catenate </w 10 /p ‘.’>
onyx:2> output ‘\n’ print flush
....0x1092
onyx:0> ‘0x’ print 4242 </w 8 /p ‘0’ /b 16> output ‘\n’ print flush
0x00001092
onyx:0>

object flags outputs string:
Input(s):

object: An object to print syntactically.
depth: Formatting flags. See Section 1.8.7 for details on the supported flags.

Output(s):
string: A formatted string representation of object. See Section 1.8.7 for format specifier

details.

94 Onyx Manual Chapter 1

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of object.
Example(s):

onyx:0> [1 [2 3] 4] </w 20 /p ‘_’ /j /c /r 1> outputs print ‘\n’ print flush
___[1 -array- 4]____
onyx:0> [1 [2 3] 4] </w 20 /p ‘_’ /j /c /r 2> outputs print ‘\n’ print flush
____[1 [2 3] 4]_____
onyx:0> 4242 </s /+> outputs print ‘\n’ print flush
+4242
onyx:0> ‘0x’ print 4242 </b 16> outputs print ‘\n’ print flush
0x1092
onyx:0> ‘0x’ 4242 </b 16> outputs catenate </w 10 /p ‘.’> outputs
onyx:1> print ‘\n’ print flush
....0x1092
onyx:0> ‘0x’ print 4242 </w 8 /p ‘0’ /b 16> outputs print ‘\n’ print flush
0x00001092
onyx:0>

– outputsdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Errors(s): None.
Description: Get outputsdict. See Section 1.8.7 for details on outputsdict.
Example(s):

onyx:0> outputsdict 0 sprint
-dict-
onyx:0>

– pid pid:
Input(s): None.
Output(s):

pid: Process identifier.
Errors(s): None.
Description: Get the process ID of the running process.
Example(s):

onyx:0> pid 1 sprint
80624
onyx:0>

any pop –:
Input(s):

any: Any object.
Output(s): None.
Errors(s):

1.8. DICTIONARY REFERENCE Jason Evans 95

stackunderflow.
Description: Remove the top object off ostack and discard it.

Example(s):
onyx:0> 1 2
onyx:2> pstack
2
1
onyx:2> pop
onyx:1> pstack
1
onyx:1>

– ppid pid:
Input(s): None.

Output(s):
pid: Process identifier.

Errors(s): None.

Description: Get the process ID of the running process’s parent.

Example(s):
onyx:0> ppid 1 sprint
352
onyx:0>

string print –:
Input(s):

string: A string object.

Output(s): None.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Print string to stdout.

Example(s):
onyx:0> ‘Hi\n’ print flush
Hi
onyx:0>

– product string:
Input(s): None.

Output(s):
string: A string that contains the product name, normally ‘Canonware Onyx’.

Errors(s): None.

Description: Get the product string. The string returned is a reference to the original product
string.

96 Onyx Manual Chapter 1

Example(s):
onyx:0> product pstack
‘Canonware Onyx’
onyx:1>

– pstack –:
Input(s): None.
Output(s): None.
Errors(s):

ioerror.
Description: Syntactically print the elements of ostack, one per line.
Example(s):

onyx:0> ‘a’ 1 mark /foo [1 2 3] (4 5 6)
onyx:6> pstack
(4 5 6)
[1 2 3]
/foo
-mark-
1
‘a’
onyx:6>

array index object put –:

dict key value put –:

string index integer put –:
Input(s):

array: An array object.
dict: A dict object.
string: A string object.
index: Offset in array or string to put object or integer, respectively.
key: An object to use as a key in dict.
object: An object to insert into array at offset index.
value: An object to associate with key in dict.
integer: The ascii value of a character to insert into string at offset index.

Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Insert into array, dict, or string.
Example(s):

onyx:0> 3 array dup 1 ‘a’ put 1 sprint
[null ‘a’ null]
onyx:0> dict dup /foo ‘foo’ put 1 sprint
</foo ‘foo’>
onyx:0> 3 string dup 1 97 put 1 sprint
‘\x00a\x00’
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 97

array index subarray putinterval –:

string index substring putinterval –:

Input(s):
array: An array object.
string: A string object.
index: Offset into array or string to put subarray or substring, respectively.
subarray: An array object to put into array at offset index. When inserted subarray must

not extend past the end of array.
substring: A string object to put into string at offset index. When inserted substring must

not extend past the end of string.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Replace a portion of array or string.

Example(s):
onyx:0> 4 array dup 1 [‘a’ ‘b’] putinterval 1 sprint
[null ‘a’ ‘b’ null]
onyx:0> 4 string dup 1 ‘ab’ putinterval 1 sprint
‘\x00ab\x00’
onyx:0>

– pwd path:

Input(s): None.

Output(s):
path: A string that represents the present working directory.

Errors(s):
invalidaccess.

Description: Push a string onto ostack that represents the present working directory.

Example(s):
onyx:0> pwd
onyx:1> pstack
‘/usr/local/bin’
onyx:1>

– quit –:

Input(s): None.

Output(s): None.

Errors(s): None.

Description: Unwind the execution stack to the innermost start context. Under normal cir-
cumstances, there is always at least one such context.

98 Onyx Manual Chapter 1

Example(s):
onyx:0> stdin cvx start
onyx:0> estack 1 sprint
(--start-- -file- --start-- -file- --estack--)
onyx:0> quit
onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

– rand integer:
Input(s): None.

Output(s):
integer: A pseudo-random non-negative integer, with 63 bits of psuedo-randomness.

Errors(s): None.

Description: Return a pseudo-random integer.

Example(s):
onyx:0> 0 srand
onyx:0> rand 1 sprint
9018578418316157091
onyx:0> rand 1 sprint
8979240987855095636
onyx:0>

file read integer boolean:

file string read substring boolean:
Input(s):

file: A file object.
string: A string object.

Output(s):
integer: An integer that represents the ascii value of a character that was read from file.
substring: A substring of string that contains data read from file.
boolean: If true, end of file reached during read.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Read from file.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> dup 0 seek
onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hello\n’

file readline string boolean:

1.8. DICTIONARY REFERENCE Jason Evans 99

Input(s):
file: A file object.

Output(s):
string: A string that contains a line of text from file.
boolean: If true, end of file reached during read.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Read a line of text from file. Lines are separated by “\n” or “\r\n”, which is
removed. The last line in a file may not have a newline at the end.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup ‘Goodbye\n’ write
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1> dup readline 1 sprint 1 sprint
false
‘Goodbye’
onyx:1> dup readline 1 sprint 1 sprint
true
‘’
onyx:1>

– realtime nsecs:
Input(s): None.

Output(s):
nsecs: Number of nanoseconds since the epoch (midnight on 1 January 1970).

Errors(s): None.

Description: Get the number of nanoseconds since the epoch.

Example(s):
onyx:0> realtime 1 sprint
993539837806479000
onyx:0>

old new rename –:
Input(s):

old: A string object that represents a file path.
new: A string object that represents a file path.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.

100 Onyx Manual Chapter 1

limitcheck.
stackunderflow.
typecheck.
undefinedfilename.

Description: Rename a file or directory from old to new.
Example(s):

onyx:0> ‘/tmp/tdir’ 8#755 mkdir
onyx:0> ‘/tmp/tdir’ ‘/tmp/ndir’ rename
onyx:0> ‘/tmp/ndir’ {1 sprint} dirforeach
‘.’
‘..’
onyx:0>

count proc repeat –:
Input(s):

count: Number of times to evaluate proc (non-negative).
proc: An object to evaluate.

Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Evaluate proc count times. This operator supports the exit operator.
Example(s):

onyx:0> 3 {‘hi’ 1 sprint} repeat
‘hi’
‘hi’
‘hi’
onyx:0>

file require –:
Input(s):

file: A string that represents a module filename.
Output(s): None.
Errors(s):

invalidfileaccess.
stackunderflow.
typecheck.
undefined.
undefinedfilename.

Description: Search for and evaluate an Onyx source file. The file is searched for by catenating
a prefix, a “/”, and file to form a file path. Prefixes are tried in the following order:
1. The ordered elements of the rpath pre array, which is defined in onyxdict.
2. If defined, the ordered elements of the ONYX RPATH environment variable, which is a

colon-separated list.
3. The ordered elements of the rpath post array, which is defined in onyxdict.

1.8. DICTIONARY REFERENCE Jason Evans 101

Example(s):
onyx:0> ‘modgtk/modgtk_defs.nx’ require
onyx:0>

path rmdir –:
Input(s):

path: A string object that represents a directory path.
Output(s): None.
Errors(s):

invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
unregistered.

Description: Remove an empty directory.
Example(s):

onyx:0> ‘/tmp/tdir’ 8#755 mkdir
onyx:0> ‘/tmp/tdir’ rmdir
onyx:0>

region count amount roll rolled:
Input(s):

region: 0 or more objects to be rolled.
count: Number of objects in region.
amount: Amount by which to roll. If positive, roll upward. If negative, roll downward.

Output(s):
rolled: Rolled version of region.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Roll the top count objects on ostack (not counting count and amount) by amount
positions. A positive amount indicates an upward roll, whereas a negative amount indicates
a downward roll.

Example(s):
onyx:0> 3 2 1 0
onyx:4> pstack
0
1
2
3
onyx:4> 3 1 roll
onyx:4> pstack
1
2
0
3

102 Onyx Manual Chapter 1

onyx:4> 3 -2 roll
onyx:4> pstack
2
0
1
3
onyx:4> 4 0 roll
onyx:4> pstack
2
0
1
3
onyx:4>

a round r:
Input(s):

a: An integer or real.
Output(s):

r: Integer round of a.
Errors(s):

stackunderflow.
typecheck.

Description: Round a to the nearest integer and return the result.
Example(s):

onyx:0> -1.51 round 1 sprint
-2
onyx:0> -1.49 round 1 sprint
-1
onyx:0> 0 round 1 sprint
0
onyx:0> 1.49 round 1 sprint
1
onyx:0> 1.51 round 1 sprint
2
onyx:0>

stack sclear –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Remove all objects on stack.
Example(s):

onyx:0> (1 2 3 4) dup sclear pstack
()
onyx:1>

1.8. DICTIONARY REFERENCE Jason Evans 103

stack scleartomark –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.
unmatchedmark.

Description: Remove objects from stack down to and including the topmost mark.
Example(s):

onyx:0> (3 mark 1 0) dup scleartomark pstack
(3)
onyx:1>

stack scount count:
Input(s):

stack: A stack object.
Output(s):

count: The number of objects on stack.
Errors(s):

stackunderflow.
typecheck.

Description: Get the number of objects on stack.
Example(s):

onyx:0> (1 2) scount 1 sprint
2
onyx:0>

stack scounttomark count:
Input(s):

stack: A stack object.
Output(s):

count: The depth of the topmost mark on stack.
Errors(s):

stackunderflow.
typecheck.
unmatchedmark.

Description: Get the depth of the topmost mark on stack.
Example(s):

onyx:0> (3 mark 1 0) scounttomark 1 sprint
2
onyx:0>

stack sdup –:
Input(s):

104 Onyx Manual Chapter 1

stack: A stack object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Duplicate the top object on stack and push it onto stack.

Example(s):
onyx:0> (1) dup sdup 1 sprint
(1 1)
onyx:0>

string pattern search post pattern pre true:

string pattern search string false:
Input(s):

string: A string object.
pattern: A string that represents a substring to search for in string.

Output(s):
post: The substring of string that follows the match.
pattern: The substring of string that matches the input pattern.
pre: The substring of string that precedes the match.
true: Success.
string: The same object as the input string.
false: Failure.

Errors(s):
stackunderflow.
typecheck.

Description: Search for the first instance of pattern in string, and if found, return substrings
that partition string into pre, pattern, and post.

Example(s):
onyx:0> ‘abcabc’ ‘ab’ search pstack clear
true
‘’
‘ab’
‘cabc’
onyx:0> ‘abcabc’ ‘ca’ search pstack clear
true
‘ab’
‘ca’
‘bc’
onyx:0> ‘abcabc’ ‘cb’ search pstack clear
false
‘abcabc’
onyx:0>

file offset seek –:
Input(s):

1.8. DICTIONARY REFERENCE Jason Evans 105

file: A file object.
offset: Offset in bytes from the beginning of file to move the file position pointer to.

Output(s): None.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Move the file position pointer for file to offset.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup 0 seek
onyx:1> readline pstack
false
‘Hello’
onyx:2>

– self thread:
Input(s): None.

Output(s):
thread: A thread object that corresponds to the running thread.

Errors(s): None.

Description: Get a thread object for the running thread.

Example(s):
onyx:0> self 1 sprint
-thread-
onyx:0>

gid setegid boolean:
Input(s):

gid: A group ID.

Output(s):
boolean: If false, success, otherwise failure.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s effective group ID to gid.

Example(s):
onyx:0> 1001 setegid 1 sprint
false
onyx:0> 0 setegid 1 sprint
true
onyx:0>

key val setenv –:

106 Onyx Manual Chapter 1

Input(s):
key: A name object.
val: A value to associate with key.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Set an environment variable named key and associate val with it. If val is not a
string, it is converted to a string using the cvs operator before the environment variable is
set. An corresponding entry is also created in the envdict dictionary.

Example(s):
onyx:0> /foo ‘foo’ setenv
onyx:0> envdict /foo known 1 sprint
true
onyx:0> envdict /foo get 1 sprint
‘foo’
onyx:0> /foo unsetenv
onyx:0> envdict /foo known 1 sprint
false
onyx:0>

uid seteuid boolean:
Input(s):

uid: A user ID.

Output(s):
boolean: If false, success, otherwise failure.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s effective user ID to uid.

Example(s):
onyx:0> 1001 seteuid 1 sprint
false
onyx:0> 0 seteuid 1 sprint
true
onyx:0>

gid setgid boolean:
Input(s):

gid: A group ID.

Output(s):
boolean: If false, success, otherwise failure.

Errors(s):
rangecheck.
stackunderflow.

1.8. DICTIONARY REFERENCE Jason Evans 107

typecheck.
Description: Set the process’s group ID to gid.
Example(s):

onyx:0> 1001 setgid 1 sprint
false
onyx:0> 0 setgid 1 sprint
true
onyx:0>

file count setiobuf –:
Input(s):

file: A file object.
count: The size in bytes to set the I/O buffer associated with file to.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the size of the I/O buffer associated with file.
Example(s):

onyx:0> stdout iobuf 1 sprint
512
onyx:0> stdout 0 setiobuf
onyx:0> stdout iobuf 1 sprint
0
onyx:0>

boolean setlocking –:
Input(s):

boolean: A boolean to set the implicit locking mode to.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the current implicit locking mode. See Section 1.6.1 for implicit synchroniza-
tion details.

Example(s):
onyx:0> currentlocking 1 sprint
false
onyx:0> true setlocking
onyx:0> currentlocking 1 sprint
true
onyx:0>

uid setuid boolean:
Input(s):

uid: A user ID.
Output(s):

108 Onyx Manual Chapter 1

boolean: If false, success, otherwise failure.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s user ID to uid.
Example(s):

onyx:0> 1001 setuid 1 sprint
false
onyx:0> 0 setuid 1 sprint
true
onyx:0>

stack sexch –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Exchange the top two objects on stack.
Example(s):

onyx:0> (1 2 3) dup sexch pstack
(1 3 2)
onyx:1>

– shift –:
Input(s):

a: An integer.
shift: An integer that represents a bitwise shift amount. Negative means right shift, and

positive means left shift.
Output(s):

r: a shifted by shift bits.
Errors(s):

stackunderflow.
typecheck.

Description: Shift an integer bitwise.
Example(s):

onyx:0> 4 1 shift 1 sprint
8
onyx:0> 4 -1 shift 1 sprint
2
onyx:0>

condition signal –:
Input(s):

1.8. DICTIONARY REFERENCE Jason Evans 109

condition: A condition object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Signal a thread that is waiting on condition. If there are no waiters, this operator
has no effect.

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

a sin r:
Input(s):

a: An integer or real.
Output(s):

r: Sine of a in radians.
Errors(s):

stackunderflow.
typecheck.

Description: Return the sine of a in radians.
Example(s):

onyx:0> 0 sin 1 sprint
0.000000e+00
onyx:0> 1.570796 sin 1 sprint
1.000000e+00
onyx:0> 0.7853982 sin 1 sprint
7.071068e-01
onyx:0>

stack index sindex –:
Input(s):

stack: A stack object.
index: Depth (count starts at 0) of the object to duplicate in stack.

Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on stack at depth index and push it onto stack.
Example(s):

onyx:0> (3 2 1 0) dup 2 sindex
onyx:1> 1 sprint
(3 2 1 0 2)
onyx:0>

110 Onyx Manual Chapter 1

stack spop object:
Input(s):

stack: A stack object.

Output(s):
object: The object that was popped off of stack.

Errors(s):
stackunderflow.
typecheck.

Description: Pop an object off of stack and push it onto ostack.

Example(s):
onyx:0> (1 2) dup spop
onyx:2> pstack
2
(1)
onyx:2>

object depth sprint –:
Input(s):

object: An object to print syntactically.
depth: Maximum recursion depth.

Output(s): None.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Syntactically print object. See Section 1.8.8 for printing details.

Example(s):
onyx:0> [1 [2 3] 4]
onyx:1> dup 0 sprint
-array-
onyx:1> dup 1 sprint
[1 -array- 4]
onyx:1> dup 2 sprint
[1 [2 3] 4]
onyx:1>

object depth sprints string:
Input(s):

object: An object to print syntactically.
depth: Maximum recursion depth.

Output(s):
string: A syntactical string representation of object. See Section 1.8.8 for printing details.

Errors(s):
stackunderflow.
typecheck.

1.8. DICTIONARY REFERENCE Jason Evans 111

Description: Create a syntactical string representation of object.
Example(s):

onyx:0> [1 [2 3] 4]
onyx:1> dup 0 sprints print ‘\n’ print flush
-array-
onyx:1> dup 1 sprints print ‘\n’ print flush
[1 -array- 4]
onyx:1> dup 2 sprints print ‘\n’ print flush
[1 [2 3] 4]
onyx:1>

– sprintsdict dict:
Input(s): None.

Output(s):
dict: A dictionary.

Errors(s): None.

Description: Get sprintsdict. See Section 1.8.8 for details on sprintsdict.

Example(s):
onyx:0> sprintsdict 0 sprint
-dict-
onyx:0>

stack object spush –:
Input(s):

stack: A stack object.
object: An object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Push object onto stack.

Example(s):
onyx:0> () dup 1 spush
onyx:1> pstack
(1)
onyx:1>

a sqrt r:
Input(s):

a: A non-negative integer or real.

Output(s):
r: Square root of a.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

112 Onyx Manual Chapter 1

Description: Return the square root of a.
Example(s):

onyx:0> 4 sqrt 1 sprint
2.000000e+00
onyx:0> 2.0 sqrt 1 sprint
1.414214e+00
onyx:0>

seed srand –:
Input(s):

seed: A non-negative integer.
Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Seed the pseudo-random number generator with seed.
Example(s):

onyx:0> 5 srand
onyx:0>

stack count amount sroll –:
Input(s):

stack: A stack object.
count: Number of objects to roll in stack.
amount: Amount by which to roll. If positive, roll upward. If negative, roll downward.

Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Roll the top count objects on stack by amount positions. A positive amount indi-
cates an upward roll, whereas a negative amount indicates a downward roll.

Example(s):
onyx:0> (3 2 1 0)
onyx:1> dup 3 1 sroll pstack
(3 0 2 1)
onyx:1> dup 3 -2 sroll pstack
(3 1 0 2)
onyx:1> dup 4 0 sroll pstack
(3 1 0 2)
onyx:1>

– stack stack:
Input(s): None.
Output(s):

stack: An empty stack object.

1.8. DICTIONARY REFERENCE Jason Evans 113

Errors(s): None.
Description: Create a new stack object and push it onto ostack.
Example(s):

onyx:0> stack
onyx:1> pstack
()

object start –:
Input(s):

object: An object.
Output(s): None.
Errors(s):

stackunderflow.
Description: Evaluate object. This operator provides a context that silently terminates execu-

tion stack unwinding due to the exit, quit, and stop operators.
Example(s):

onyx:0> stdin cvx start
onyx:0> quit
onyx:0>

file/filename status dict:
Input(s):

file: A file object.
filename: A string that represents a filename.

Output(s):
dict: A dictionary that contains the following entries:

dev: Inode’s device.
ino: Inode’s number.
mode: Inode permissions.
nlink: Number of hard links.
uid: User ID of the file owner.
gid: Group ID of the file owner.
rdev: Device type.
size: File size in bytes.
atime: Time of last access, in nanoseconds since the epoch.
mtime: Time of last modification, in nanoseconds since the epoch.
ctime: Time of last file status change, in nanoseconds since the epoch.
blksize: Optimal block size for I/O.
blocks: Number of blocks allocated.

Errors(s):
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.

114 Onyx Manual Chapter 1

unregistered.
Description: Get status information about a file.
Example(s):

onyx:0> ‘/tmp’ status 1 sprint
</dev 134405 /ino 2 /mode 17407 /nlink 5 /uid 0 /gid 0 /rdev 952 /size 3584
/atime 994883041000000000 /mtime 994883041000000000 /ctime 994883041000000000
/blksize 0 /blocks 8>
onyx:0>

– stderr file:
Input(s): None.
Output(s):

file: A file object corresponding to stderr.
Errors(s): None.
Description: Get stdout.
Example(s):

onyx:0> stderr pstack
-file-
onyx:1>

– stdin file:
Input(s): None.
Output(s):

file: A file object corresponding to stdin.
Errors(s): None.
Description: Get stdin.
Example(s):

onyx:0> stdin pstack
-file-
onyx:1>

– stdout file:
Input(s): None.
Output(s):

file: A file object corresponding to stdout.
Errors(s): None.
Description: Get stdout.
Example(s):

onyx:0> stdout pstack
-file-
onyx:1>

– stop –:
Input(s): None.
Output(s): None.
Errors(s): None.

1.8. DICTIONARY REFERENCE Jason Evans 115

Description: Unwind the execution stack to the innermost stopped or start context.
Example(s):

onyx:0> {stop} stopped 1 sprint
true
onyx:0>

object stopped boolean:
Input(s):

object: An object to evaluate.
Output(s):

boolean: True if stop operator was executed, false otherwise.
Errors(s):

invalidexit.
stackunderflow.

Description: Evaluate object. This operator provides a context that terminates execution stack
unwinding due to the stop. It will also terminate execution stack unwinding due to the exit
operator, but will throw an invalidexit error, then do the equivalent of calling quit.

Example(s):
onyx:0> {stop} stopped 1 sprint
true
onyx:0> {} stopped 1 sprint
false
onyx:0>

length string string:
Input(s):

length: Non-negative number of bytes.
Output(s):

string: A string of length bytes.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Create a string of length bytes. The bytes are initialized to 0.
Example(s):

onyx:0> 3 string 1 sprint
‘\x00\x00\x00’
onyx:0>
onyx:0> 0 string 1 sprint
‘’
onyx:0>

a b sub r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):

116 Onyx Manual Chapter 1

r: The value of b subtracted from a.

Errors(s):
stackunderflow.
typecheck.

Description: Subtract b from a and return the result.

Example(s):
onyx:0> 5 3 sub 1 sprint
2
onyx:0> -3 4 sub 1 sprint
-7
onyx:0> 5.1 1.1 sub 1 sprint
4.000000e+00
onyx:0> 5 1.0 sub 1 sprint
4.000000e+00
onyx:0> -3.0 4.1 sub 1 sprint
-7.100000e+00
onyx:0>

filename linkname symlink –:
Input(s):

filename: A string that represents a filename.
linkname: A string that represents a filename.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Create a symbolic link from linkname to filename.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ ‘/tmp/bar’ symlink
onyx:0> ‘/tmp/bar’ ‘r’ open
onyx:1> readline
onyx:2> pstack
false
‘Hello’
onyx:2>

args system status:
Input(s):

1.8. DICTIONARY REFERENCE Jason Evans 117

args: An array of strings. The first string in args is the path of the program to invoke, and
any additional array elements are passed as command line arguments to the invoked
program.

Output(s):
status: Exit code of terminated process. A negative value indicates that the process was

terminated by a signal (use the neg operator to get the signal number), and a non-
negative value is the exit code of a program that terminated normally.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Execute a program as a child process and wait for it to terminate.

Example(s):
onyx:0> [‘/usr/bin/which’ ‘onyx’] system
/usr/local/bin/onyx
onyx:1> 1 sprint
0
onyx:0>

file tell offset:
Input(s):

fil: A file object.

Output(s):
offset: Offset of the file position pointer for file.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Get the file position pointer offset for file.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup tell 1 sprint
0
onyx:1> dup ‘Hello\n’ write
onyx:1> dup tell 1 sprint
6
onyx:1>

file/filename flag test boolean:
Input(s):

file: A file object.
filename: A string that represents a filename.
flag: A single-character string that represents the test to do on file or filename:

‘b’: Block special device?
‘c’: Character special device?

118 Onyx Manual Chapter 1

‘d’: Directory?
‘e’: Exists?
‘f’: Regular file?
‘g’: Setgid?
‘k’: Sticky?
‘p’: Named pipe?
‘r’: Readable?
‘s’: Size greater than 0?
‘t’: tty?
‘u’: Setuid?
‘w’: Write bit set?
‘x’: Executable bit set?
‘L’: Symbolic link?
‘O’: Owner matches effective uid?
‘G’: Group matches effective gid?
‘S’: Socket?

Output(s):
boolean: If true, the test evaluated to true; false otherwise.

Errors(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Test a file for an attribute.

Example(s):
onyx:0> ‘/blah’ ‘e’ test 1 sprint
false
onyx:0> ‘/tmp’ ‘e’ test 1 sprint
true
onyx:0>

stack entry thread thread:
Input(s):

stack: A stack that contains the contents for the new thread’s ostack.
entry: An initial object to execute in the new thread.

Output(s):
thread: A thread object that corresponds to the new thread.

Errors(s):
stackunderflow.
typecheck.

Description: Create and run a new thread.

1.8. DICTIONARY REFERENCE Jason Evans 119

Example(s):
onyx:0> (1 2) {add 1 sprint} thread join ‘Done\n’ print flush
3
Done
onyx:0>

name throw object:
Input(s):

name: The name of an error.

Output(s):
object: The object that was being executed when the error was thrown.

Errors(s):
stackunderflow.
typecheck.
undefined.

Description: Throw an error, using the following steps:

1. Set newerror in the currenterror dictionary to true.
2. Set errorname in the currenterror dictionary to name.
3. Set ostack, dstack, estack, and istack in the currenterror dictionary to be current stack

snapshots.
4. Push the object that was being executed before throw was called onto ostack.
5. If there is an error handler in the errordict dictionary that corresponds to name, evaluate

it. Otherwise, evaluate errordict’s handleerror and stop operators.

Example(s):
onyx:0> /unregistered throw
Error /unregistered
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:1> pstack
-file-
onyx:1>

condition mutex timeout timedwait boolean:
Input(s):

condition: A condition object.
mutex: A mutex object that this thread currently owns.
timeout: Minimum number of nanoseconds to wait for condition.

Output(s):
boolean: If false, success, otherwise timeout.

Errors(s):
stackunderflow.
typecheck.

120 Onyx Manual Chapter 1

Description: Wait on condition for at least timeout nanoseconds. mutex is atomically released
when the current thread blocks, then acquired again before the current thread runs again.
Using a mutex that the current thread does not own will result in undefined behavior (likely
crash).

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> 1000000000 timedwait 1 sprint unlock join
false
onyx:0> mutex condition 1 index dup lock 1000000000 timedwait 1 sprint unlock
true
onyx:0>

file/string token false:

file/string token file/substring object true:
Input(s):

file: A file that is used as onyx source code to scan a token from.
string: A string that is used as onyx source code to scan a token from.

Output(s):
file: The same file object that was passed in.
substring: The remainder of string after scanning a token.
object: An object that was constructed by scanning a token.
false/true: If true, a token was successfully scanned, false otherwise.

Errors(s):
stackunderflow.
syntaxerror.
typecheck.
undefined.

Description: Scan a token from a file or string, using onyx syntax rules. If a token is followed
by whitespace, one character of whitespace is consumed when the token is scanned.

Example(s):
onyx:0> ‘1 2’ token pstack clear
true
1
‘2’
onyx:0> ‘foo’ token pstack clear
true
foo
‘’
onyx:0> ‘foo ’ token pstack clear
true
foo
‘’
onyx:0> ‘foo ’ token pstack clear
true
foo

1.8. DICTIONARY REFERENCE Jason Evans 121

‘ ’
onyx:0> ‘foo/bar’ token pstack clear
true
foo
‘/bar’
onyx:0> ‘foo{}’ token pstack clear
true
foo
‘{}’
onyx:0> ‘ ’ token pstack clear
false
onyx:0>

a trunc r:
Input(s):

a: An integer or real.

Output(s):
r: Integer created from a by discarding the fractional portion.

Errors(s):
stackunderflow.
typecheck.

Description: Discard the fractional portion of a to create an integer, and return the result.

Example(s):
onyx:0> -1.51 trunc 1 sprint
-1
onyx:0> -1.49 trunc 1 sprint
-1
onyx:0> 0 trunc 1 sprint
0
onyx:0> 1.49 trunc 1 sprint
1
onyx:0> 1.51 trunc 1 sprint
1
onyx:0>

file length truncate –:
Input(s):

file: A file object.
length: New length for file.

Output(s): None.

Errors(s):
ioerror.
rangecheck.
stackunderflow.
typecheck.

Description: Set the length of file to length. If this causes the file to grow, the appended bytes
will have the value zero.

122 Onyx Manual Chapter 1

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> dup 0 seek
onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hello\n’
onyx:1> dup 3 truncate
onyx:1> dup 0 seek
onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hel’
onyx:1>

– true true:
Input(s): None.
Output(s):

true: The boolean value true.
Errors(s): None.
Description: Return true.
Example(s):

onyx:0> true 1 sprint
true
onyx:0>

mutex trylock boolean:
Input(s):

mutex: A mutex object.
Output(s):

boolean: If false, mutex was successfully acquired. Otherwise the mutex acquisition failed.
Errors(s):

stackunderflow.
typecheck.

Description: Try to acquire mutex, but return a failure immediately if mutex cannot be ac-
quired, rather than blocking.

Example(s):
onyx:0> mutex dup
onyx:2> trylock 1 sprint
false
onyx:1> trylock 1 sprint
true
onyx:0>

object type name:
Input(s):

object: An object.
Output(s):

1.8. DICTIONARY REFERENCE Jason Evans 123

name: An executable name that corresponds to the type of object:
array: arraytype.
boolean: booleantype.
condition: conditiontype.
dict: dicttype.
file: filetype.
fino: finotype.
hook: hooktype.
integer: integertype.
mark: marktype.
mutex: mutextype.
name: nametype.
null: nulltype.
operator: operatortype.
pmark: pmarktype.
stack: stacktype.
string: stringtype.
thread: threadtype.

Errors(s):
stackunderflow.

Description: Get a name that represent the type of object.
Example(s):

onyx:0> true type 1 sprint
booleantype
onyx:0>

– uid uid:
Input(s): None.
Output(s):

uid: Process’s user ID.
Errors(s): None.
Description: Get the process’s user ID.
Example(s):

onyx:0> uid 1 sprint
1001
onyx:0>

dict key undef –:
Input(s):

dict: A dictionary.
val: A key in dict to undefine.

Output(s): None
Errors(s):

stackunderflow.
typecheck.

124 Onyx Manual Chapter 1

Description: If key is defined in dict, undefine it.
Example(s):

onyx:0> /foo ‘foo’ def
onyx:0> currentdict /foo undef
onyx:0> currentdict /foo undef
onyx:0>

filename unlink –:
Input(s):

filename: A string that represents a filename.
Output(s): None.
Errors(s):

invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Unlink filename.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ unlink
onyx:0> ‘/tmp/foo’ ‘r’ open
Error /invalidfileaccess
ostack: (‘/tmp/foo’ ‘r’)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --open--
1: -file-
2: --start--
onyx:3>

mutex unlock –:
Input(s):

mutex: A mutex object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Unlock mutex. Unlocking a mutex that the running thread does not own will
result in undefined behavior (likely crash).

Example(s):
onyx:0> mutex dup lock unlock
onyx:0>

1.8. DICTIONARY REFERENCE Jason Evans 125

key unsetenv –:
Input(s):

key: A name object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Unset key in the environment and in the envdict dictionary, if key is defined.
Example(s):

onyx:0> /foo ‘foo’ setenv
onyx:0> envdict /foo known 1 sprint
true
onyx:0> envdict /foo get 1 sprint
‘foo’
onyx:0> /foo unsetenv
onyx:0> envdict /foo known 1 sprint
false
onyx:0>

– version string:
Input(s): None.
Output(s):

string: A string that contains the version name.
Errors(s): None.
Description: Get the version string. The string returned is a reference to the original version

string.
Example(s):

onyx:0> version pstack
‘1.0.0’
onyx:1>

condition mutex wait –:
Input(s):

condition: A condition object.
mutex: A mutex object that this thread currently owns.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Wait on condition. mutex is atomically released when the current thread blocks,
then acquired again before the current thread runs again. Using a mutex that the current
thread does not own will result in undefined behavior (likely crash).

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll

126 Onyx Manual Chapter 1

onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

pid waitpid status:
Input(s):

pid: Process identifier.
Output(s):

status: Exit code of terminated process. A negative value indicates that the process was
terminated by a signal (use the neg operator to get the signal number), and a non-
negative value is the exit code of a program that terminated normally.

Errors(s):
stackunderflow.
typecheck.

Description: Wait for the process with process ID pid to exit.
Example(s):

onyx:0> {fork dup 0 eq
{pop ‘Child\n’ print flush}
{‘Parent\n’ print flush waitpid}
ifelse} eval

Parent
Child
onyx:0>

key where false:

key where dict true:
Input(s):

key: A key to search for in dstack.
Output(s):

dict: The topmost dictionary in dstack that contains a definition for key.
false/true: If false, no definition of key was found in dstack. Otherwise dict is the topmost

dictionary in dstack that contains a definition for key.
Errors(s):

stackunderflow.
Description: Get the topmost dictionary in dstack that defines key.
Example(s):

onyx:0> /foo where pstack clear
false
onyx:0> /threaddict where pstack clear
true
</threaddict -dict- /userdict -dict- /currenterror -dict- /errordict -dict-
/resume --stop-->
onyx:0>

file integer/string write –:
Input(s):

file: A file object.

1.8. DICTIONARY REFERENCE Jason Evans 127

integer: An integer that represents an ascii character value.
string: A string object.

Output(s): None.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Write integer or string to file.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1>

object xcheck boolean:

Input(s):
object: An object.

Output(s):
boolean: True if object has the executable or evaluatable attribute, false otherwise.

Errors(s):
stackunderflow.

Description: Check object for executable or evaluatable attribute.

Example(s):
onyx:0> {1 2 3} xcheck 1 sprint
true
onyx:0> [1 2 3] xcheck 1 sprint
false
onyx:0>

a b xor r:

Input(s):
a: An integer or boolean.
b: The same type as a.

Output(s):
r: If a and b are integers, their bitwise exclusive or, otherwise their logical exclusive or.

Errors(s):
stackunderflow.
typecheck.

Description: Return the bitwise exclusive or of two integers, or the logical exclusive or of two
booleans.

128 Onyx Manual Chapter 1

Example(s):
onyx:0> true false xor 1 sprint
true
onyx:0> true true xor 1 sprint
false
onyx:0> 5 3 xor 1 sprint
6
onyx:0>

– yield –:
Input(s): None.
Output(s): None.
Errors(s): None.
Description: Vuluntarily yield the processor, so that another thread or process may be run.
Example(s):

onyx:0> 0 100000 {1 add yield} repeat 1 sprint
100000
onyx:0>

1.8.10 threaddict

Each thread has its own threaddict, which is not shared with any other threads. threaddict is meant
to be used for thread-specific definitions that would otherwise go in systemdict.

Table 1.11: threaddict summary

Input(s) Op/Proc/Var Output(s) Description
– threaddict dict Get threaddict.
– userdict dict Get userdict.
– currenterror dict Get currenterror.
– errordict dict Get errordict.

– currenterror dict:
Input(s): None.
Output(s):

dict: The currenterror dictionary. See Section 1.8.1 for details on currenterror.
Errors(s): None.
Description: Get currenterror.
Example(s):

onyx:0> currenterror 0 sprint
-dict-
onyx:0>

– errordict dict:
Input(s): None.

1.8. DICTIONARY REFERENCE Jason Evans 129

Output(s):
dict: The errordict dictionary. See Section 1.8.3 for details on errordict.

Errors(s): None.
Description: Get errordict.
Example(s):

onyx:0> errordict 0 sprint
-dict-
onyx:0>

– threaddict dict:
Input(s): None.
Output(s):

dict: The threaddict dictionary.
Errors(s): None.
Description: Get threaddict.
Example(s):

onyx:0> threaddict 0 sprint
-dict-
onyx:0>

– userdict dict:
Input(s): None.
Output(s):

dict: The userdict dictionary. See Section 1.8.11 for details on userdict.
Errors(s): None.
Description: Get userdict.
Example(s):

onyx:0> userdict 1 sprint
<>
onyx:0>

1.8.11 userdict

Each thread has its own userdict, which is not shared with any other threads. userdict is meant to be
used for general storage of definitions that do not need to be shared among threads. userdict starts out
empty when a thread is created.

Chapter 2

The onyx program

onyx is a stand-alone Onyx interpreter, with an integrated command line editor. The Onyx language is
documented in a separate chapter, so this chapter documents only the differences from the main Onyx
language documentation.

2.1 Usage

onyx -h

onyx -V

onyx -e <expr>

onyx <file> [<args>]

2.1.1 Options

-e <expr>: Execute <expr> as Onyx code.

-h: Display usage information and exit.

-V: Display the version number and exit.

2.2 Environment variables

ONYX EDITOR: By default, the command line editor uses emacs key bindings. Use this variable to
explicitly set the key bindings to either “emacs” or “vi”.

2.3 Language differences

If onyx is being run interactively:

131

132 Onyx Manual Chapter 2

• The name “stop” is redefined in the initial thread’s errordict to recursively execute the stdin file
in a stopped context in order to keep the interpreter from exiting on error. It is possible (though
generally unlikely, since the user must type a very long line of code) for buffering of stdin to cause
strange things to occur; any additional program execution after an error is a result of this.

• The name “resume” is defined in the initial thread’s threaddict as an alias to the stop operator.
Thus, when an error occurs, when the user is ready to continue running after addressing any
issues the error caused, resume can be called as a more intuitive name for resuming.

• The name “promptstring” is defined in systemdict; it takes no arguments and returns a string.
The return string is used as the interactive prompt.

If onyx is being run non-interactively:

• The name “stop” in errordict is redefined to call the die operator with an argument of 1.

Chapter 3

The libonyx library

The libonyx library implements an embeddable Onyx interpreter. libonyx is designed to allow multiple
interpreter instances in the same program, though since Onyx is a multi-threaded language, in most
cases it makes more sense to use a single interpreter instance with multiple threads.

The Onyx language is described elsewhere in this manual, so this chapter documents the C API with
as little information about the Onyx language as possible.

A minimal program that runs the Onyx interpreter interactively looks like:

#include <libonyx/libonyx.h>

int
main(int argc, char **argv, char **envp)
{

cw_nx_t nx;
cw_nxo_t thread, *nxo;

/* Initialize libonyx and the Onyx interpreter. */
libonyx_init();
nx_new(&nx, NULL, argc, argv, envp);

/* Create a thread. */
nxo_thread_new(&thread, &nx);

/* Set up stdin for evaluation. */
nxo = nxo_stack_push(nxo_thread_ostack_get(&thread));
nxo_dup(nxo, nxo_thread_stdin_get(&thread));
nxo_attr_set(nxo, NXOA_EXECUTABLE);

/* Start the thread. */
nxo_thread_start(&thread);

/* Clean up. */
nx_delete(&nx);
libonyx_shutdown();

133

134 Onyx Manual Chapter 3

return 0;
}

In most cases, an application will need to implement additional Onyx operators (and make them acces-
sible from within the Onyx interpreter) in order to make the application accessible/controllable from
the Onyx interpreter. If the application user interface is to be interaction with the Onyx interpreter,
then little else needs to be done.

3.1 Compilation

Use the following compiler command line to compile applications with libonyx.

cc <file> -lonyx -lpthread

3.2 Types

libonyx is careful to use the following data types rather than the built-in types (other than when using
system library functions and string pointers (char *)) to allow easy porting and explicit knowledge of
variable sizes:

cw bool t: Boolean, either FALSE or TRUE.

cw sint8 t: Signed 8 bit variable.

cw uint8 t: Unsigned 8 bit variable.

cw sint16 t: Signed 16 bit variable.

cw uint16 t: Unsigned 16 bit variable.

cw sint32 t: Signed 32 bit variable.

cw uint32 t: Unsigned 32 bit variable.

cw sint64 t: Signed 64 bit variable.

cw uint64 t: Unsigned 64 bit variable.

3.3 Global variables

libonyx defines the following global variables, which can be used by the application:

cw g mem: mem instance, default memory allocator.

3.4. THREADS Jason Evans 135

3.4 Threads

libonyx encapsulates each interpreter instance in an nx object. An nx object supports running multiple
concurrent threads. Each thread context is encapsulated by an nxo thread object.

In general, each process thread should execute in its own nxo thread object context, though the only
explicit restriction placed on nxo thread object operations is that only one thread can be executing in an
nxo thread object context at a time. In other words, the nxo thread class does not synchronize access to
its internals, since there is normally no reason for multiple threads to execute in the same nxo thread
object context.

3.5 Garbage collection

Since there can be arbitrary threads executing in the interpreter concurrently, there are two ways
to implement safe garbage collection: concurrent or atomic. libonyx uses atomic garbage collection,
which means that the thread doing garbage collection suspends all other threads that are created via
thd new(..., TRUE) during the mark phase. In order for this to work, the garbage collector must not
do any locking while the other threads are suspended, or else there is a high probability of eventual
deadlock. libonyx itself meets these criteria, as must any C extensions to the interpreter that are
executed by the garbage collector during the mark phase (reference iteration).

3.6 Exceptions

libonyx reserves xep exception numbers 0 to 127 and defines the following exceptions:

CW ONYXX OOM: Memory allocation error.

CW ONYXX EXIT: Internal use, for the exit operator.

CW ONYXX STOP: Internal use, for the stop operator.

CW ONYXX QUIT: Internal use, for the quit operator.

3.7 Integration issues

3.7.1 Thread creation

libonyx’s garbage collector uses the thd class to suspend and resume all other threads during the mark
phase of atomic collection. For this to work, all threads that have any contact with libonyx must be
created as suspendible threads using the thd class.

This can cause integration headaches for existing threaded applications, but there is no other portable
way to suspend and resume threads. The only alternative is to assure that only one thread is executing
in the interpreter and to disable timeout-based (asynchronous) collection.

136 Onyx Manual Chapter 3

3.7.2 Restarted interrupted system calls

As mentioned above, libonyx uses thread suspension and resumption to implement garbage collection.
This has the side-effect of making restarted interrupted system calls a real possibility. However, the
operating system will return with a partial result if the system call was partially complete when it
was interrupted. In practice, what this means is that short reads and writes are possible where they
otherwise wouldn’t happen, so the application should not make any assumptions about interruptible
system calls always completing with a full result. See the thd class documentation for more details.

3.8 Guidelines for writing extensions

When embedding libonyx in an application, it is usually desireable to add some operators so that the
interpreter can interact with the rest of the application. The libonyx source code contains hundreds
of operators that can be used as examples when writing new operators. However, there are some very
important rules that operators must follow, some of which may not be obvious when reading the code.

• Manually managed (malloc()/free()) memory should not be allocated unless the code is very care-
ful. If a function recurses into the interpreter (this includes calls to functions such as nxo thread nerror()),
there is the very real possibility that control will never return to the operator due to an exception.
Code must either catch all exceptions and clean up allocations, or not recurse into the interpreter.

• Composite objects should never be allocated on the C stack. The garbage collector has no knowl-
edge of such objects, so if the only reference to an object is on the C stack, the object may be
collected, which will lead to unpredictable program behavior. Instead of allocating objects on the
C stack, use tstack, available via nxo thread tstack get(), which is a per-thread stack that the
garbage collector scans.

• For an object to be safe from garbage collection, there must always be at least one reference to it
inside the interpreter. So, if C code obtains a pointer to a composite object, then destroys the last
known internal Onyx reference (pops it off a stack, redefines it in a dict, replaces an element of
an array, etc.), the pointer is no longer safe to use. The libonyx API is structured such that it is
invalid to do such a thing, for this reason.

• tstack must be cleaned up before returning from a function. This constraint is placed on the
code in order to avoid leaking space on tstack. In debug versions of libonyx, this is enforced by
assertions. The one exception to this rule has to do with xep exceptions, in which case the catchers
of the exceptions are responsible for cleaning up tstack. Therefore, it is not necessary to catch
exceptions merely to avoid tstack leakage.

Since Onyx type checking is dynamic, it is the responsibility of the operators to assure objects are
the correct type before calling any of the type-specific nxo *() functions. Failure to do so will result in
unpredictable behavior and likely crashes.

3.9 API
void libonyx init(void):

Input(s): None.

3.9. API Jason Evans 137

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Initialize various global variables. In particular, initialize cw g mem.

void libonyx shutdown(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Clean up the global variables that are initialized by libonyx init().

void * cw opaque alloc t(void *a arg, size t a size, const char *a filename, cw uint32 t a line num):

Input(s):
a arg: Opaque pointer.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Allocate a size of space and return a pointer to it.

void * cw opaque realloc t(void *a arg, void *a ptr, size t a size, const char *a filename,
cw uint32 t a line num):

Input(s):
a arg: Opaque pointer.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Allocate a size of space and return a pointer to it.

void cw opaque dealloc t(void *a mem, void *a ptr, size t a size, const char *a filename,
cw uint32 t a line num):

Input(s):
a arg: Opaque pointer.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .

138 Onyx Manual Chapter 3

a line num: Should be LINE .

Output(s): None.

Exception(s): None.

Description: Deallocate the memory pointed to by a ptr.

void cw onyx code(cw nxo t *a thread, const char *a code):

Input(s):
a thread: Pointer to a thread nxo.
a code: A ”-delimited string constant.

Output(s): None.

Exception(s): Depends on actions of a code.

Description: Convenience macro for static embedded Onyx code.

void cw assert(expression):

Input(s):
expression: C expression that evaluates to zero or non-zero.

Output(s): Possible error printed to file descriptor 2.

Exception(s): None.

Description: If the expression evaluates to zero, print an error message to file descriptor 2
and abort().
Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw not reached(void):

Input(s): None.

Output(s): Error printed to file descriptor 2.

Exception(s): None.

Description: Abort with an error message.
Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw check ptr(a pointer):

Input(s):
a pointer: A pointer.

Output(s): Possible error printed to file descriptor 2.

Exception(s): None.

Description: If a pointer is NULL, print an error message to file descriptor 2 and abort().
Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw error(const char *a str):

Input(s):
a str: Pointer to a NULL-terminated character array.

Output(s): Contents of a str, followed by a carriage return, printed to file descriptor 2.

Exception(s): None.

3.10. CLASSES Jason Evans 139

Description: Print the contents of a str, followed by a carriage return, to file descriptor 2.

cw uint64 t cw ntohq(cw uint64 t a val):

Input(s):
a val: 64 bit integer.

Output(s):
retval: 64 bit integer.

Exception(s): None.

Description: Convert a val from network byte order to host byte order and return the result.

cw uint64 t cw htonq(cw uint64 t a val):

Input(s):
a val: 64 bit integer.

Output(s):
retval: 64 bit integer.

Exception(s): None.

Description: Convert a val from host byte order to network byte order and return the result.

3.10 Classes

3.10.1 ch

The ch class implements chained hashing. It uses a simple bucket chaining hash table implementation.
Table size is set at creation time, and cannot be changed, so performance will suffer if a ch object is
over-filled. The main cw ch t data structure and the table are contiguously allocated, which means
that care must be taken when manually pre-allocating space for the structure. Each item that is
inserted into the ch object is encapsulated by a chi object, for which space can optionally be passed in
as a parameter to ch insert(). If no space for the chi object is passed in, the mem class is used internally
for allocation.

Multiple entries with the same key are allowed and are stored in LIFO order.

Calling ch remove iterate() and ch get iterate() are guaranteed to operate on the oldest item in the hash
table, which means that the hash code has an integrated FIFO queue.

The ch class is meant to be small and simple without compromising performance. Note that it is not
well suited for situations where the number of items can vary wildly; the dch class is designed for such
situations.

API

cw uint32 t CW CH TABLE2SIZEOF(cw uint32 t a table size):

Input(s):
a table size: Number of slots in the hash table.

140 Onyx Manual Chapter 3

Output(s):
retval: Size of a ch object with a table size slots.

Exception(s): None.
Description: Calculate the size of a ch object with a table size slots.

ch new(cw ch t *a ch, cw opaque alloc t *a alloc, cw opaque dealloc t *a dealloc, void *a arg,
cw uint32 t a table size, cw ch hash t *a hash, cw ch key comp t *a key comp):

Input(s):
a ch: Pointer to space for a ch with a table size slots, or NULL. Use the

CW CH TABLE2SIZEOF() macro to calculate the total space needed for a given table
size.

a alloc: Pointer to an allocation function to use internally.
a dealloc: Pointer to a deallocation function to use internally.
a arg: Opaque pointer to pass to a alloc() and a dealloc().
a table size: Number of slots in the hash table.
a hash: Pointer to a hashing function.
a key comp: Pointer to a key comparison function.

Output(s):
retval: Pointer to a ch.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void ch delete(cw ch t *a ch):

Input(s):
a ch: Pointer to a ch.

Output(s): None.
Exception(s): None.
Description: Destructor.

cw uint32 t ch count(cw ch t *a ch):

Input(s):
a ch: Pointer to a ch.

Output(s):
retval: Number of items in a ch.

Exception(s): None.
Description: Return the number of items in a ch.

void ch insert(cw ch t *a ch, const void *a key, const void *a data, cw chi t *a chi):

Input(s):
a ch: Pointer to a ch.
a key: Pointer to a key.
a data: Pointer to data associated with a key.
a chi: Pointer to space for a chi, or NULL.

3.10. CLASSES Jason Evans 141

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Insert a data into a ch, using key a key. Use a chi for the internal chi container

if non-NULL.

cw bool t ch remove(cw ch t *a ch, const void *a search key, void **r key, void **r data,
cw chi t **r chi):

Input(s):
a ch: Pointer to a ch.
a search key: Pointer to the key to search with.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: Item with key a search key not found.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
*r chi: If (r chi != NULL) and (retval == FALSE), pointer to space for a chi, or NULL.

Otherwise, undefined.
Exception(s): None.
Description: Remove the item from a ch that was most recently inserted with key

a search key. If successful, set *r key and *r data to point to the key, data, and externally
allocated chi, respectively.

cw bool t ch search(cw ch t *a ch, const void *a key, void **r data):

Input(s):
a ch: Pointer to a ch.
a key: Pointer to a key.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: Item with key a key not found in a ch.

*r data: If (r data != NULL) and (retval == FALSE), pointer to data.
Exception(s): None.
Description: Search for the most recently inserted item with key a key. If found, *r data to

point to the associated data.

cw bool t ch get iterate(cw ch t *a ch, void **r key, void **r data):

Input(s):
a ch: Pointer to a ch.

142 Onyx Manual Chapter 3

r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: a ch is empty.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
Exception(s): None.
Description: Set *r key and *r data to point to the oldest item in a ch. Promote the item so

that it is the newest item in a ch.

cw bool t ch remove iterate(cw ch t *a ch, void **r key, void **r data, cw chi t **r chi):

Input(s):
a ch: Pointer to a ch.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: a ch is empty.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
*r chi: If (r chi != NULL) and (retval == FALSE), pointer to a chi, or NULL. Otherwise,

undefined.
Exception(s): None.
Description: Set *r key and *r data to point to the oldest item in a ch, set *r chi to point to

the item’s container, if externally allocated, and remove the item from a ch.

cw uint32 t ch string hash(const void *a key):

Input(s):
a key: Pointer to a key.

Output(s):
retval: Hash result.

Exception(s): None.
Description: NULL-terminated string hashing function.

cw uint32 t ch direct hash(const void *a key):

Input(s):
a key: Pointer to a key.

Output(s):

3.10. CLASSES Jason Evans 143

retval: Hash result.
Exception(s): None.
Description: Direct (pointer) hashing function.

cw bool t ch string key comp(const void *a k1, const void *a k2):

Input(s):
a k1: Pointer to a key.
a k2: Pointer to a key.

Output(s):
retval:

FALSE: Not equal.
TRUE: Equal.

Exception(s): None.
Description: Test two keys (NULL-terminated strings) for equality.

cw bool t ch direct key comp(const void *a k1, const void *a k2):

Input(s):
a k1: Pointer to a key.
a k2: Pointer to a key.

Output(s):
retval:

FALSE: Not equal.
TRUE: Equal.

Exception(s): None.
Description: Test two keys (pointers) for equality.

3.10.2 cnd

The cnd class implements condition variables, which can be used in conjunction with the mtx class to
wait for a condition to occur.

API

void cnd new(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to space for a cnd.

Output(s): None.
Exception(s): None.
Description: Constructor.

void cnd delete(cw cnd t *a cnd):

Input(s):

144 Onyx Manual Chapter 3

a cnd: Pointer to a cnd.
Output(s): None.
Exception(s): None.
Description: Destructor.

void cnd signal(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to a cnd.

Output(s): None.
Exception(s): None.
Description: Signal one thread waiting on a cnd, if there are any waiters.

void cnd broadcast(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to a cnd.

Output(s): None.
Exception(s): None.
Description: Signal all threads waiting on a cnd.

cw bool t cnd timedwait(cw cnd t *a cnd, cw mtx t *a mtx, const struct timespec *a timeout):

Input(s):
a cnd: Pointer to a cnd.
a mtx: Pointer to a mtx.
a timeout: Timeout, specified as an absolute time interval.

Output(s):
retval:

FALSE: Success.
TRUE: Timeout.

Exception(s): None.
Description: Wait for a cnd for at least a time.

void cnd wait(cw cnd t *a cnd, cw mtx t *a mtx):

Input(s):
a cnd: Pointer to a cnd.
a mtx: Pointer to a mtx.

Output(s): None.
Exception(s): None.
Description: Wait for a cnd.

3.10.3 dch

The dch class implements dynamic chained hashing. The dch class is a wrapper around the ch class
that enforces fullness/emptiness constraints and rebuilds the hash table when necessary. Other than
this added functionality, the dch class behaves almost exactly like the ch class. See the ch class docu-
mentation for additional information.

3.10. CLASSES Jason Evans 145

API

dch new(cw dch t *a dch, cw opaque alloc t *a alloc, cw opaque dealloc t *a dealloc, void
*a arg, cw uint32 t a base table, cw uint32 t a base grow, cw uint32 t a base shrink, cw ch hash t
*a hash, cw ch key comp t *a key comp):

Input(s):
a dch: Pointer to space for a dch, or NULL.
a alloc: Pointer to an allocation function to use internally.
a dealloc: Pointer to a deallocation function to use internally.
a arg: Opaque pointer to pass to a alloc() and a dealloc().
a base table: Number of slots in the initial hash table.
a base grow: Maximum number of items to allow in a dch before doubling the hash table

size. The same proportions (in relation to a base table) are used to decide when to
double the table additional times.

a base shrink: Minimum proportional (with respect to a base table) emptiness to allow
in the hash table before cutting the hash table size in half.

a hash: Pointer to a hashing function.
a key comp: Pointer to a key comparison function.

Output(s):
retval: Pointer to a dch.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void dch delete(cw dch t *a dch):

Input(s):
a dch: Pointer to a dch.

Output(s): None.

Exception(s): None.

Description: Destructor.

cw uint32 t dch count(cw dch t *a dch):

Input(s):
a dch: Pointer to a dch.

Output(s):
retval: Number of items in a dch.

Exception(s): None.

Description: Return the number of items in a dch.

void dch insert(cw dch t *a dch, const void *a key, const void *a data, cw chi t *a chi):

Input(s):
a dch: Pointer to a dch.
a key: Pointer to a key.
a data: Pointer to data associated with a key.

146 Onyx Manual Chapter 3

a chi: Pointer to space for a chi, or NULL.
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Insert a data into a dch, using key a key. Use a chi for the internal chi

container if non-NULL.

cw bool t dch remove(cw dch t *a dch, const void *a search key, void **r key, void **r data,
cw chi t **r chi):

Input(s):
a dch: Pointer to a dch.
a search key: Pointer to the key to search with.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: Item with key a search key not found.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
*r chi: If (r chi != NULL) and (retval == FALSE), pointer to space for a chi, or NULL.

Otherwise, undefined.
Exception(s): None.
Description: Remove the item from a dch that was most recently inserted with key

a search key. If successful, set *r key and *r data to point to the key, data, and externally
allocated chi, respectively.

cw bool t dch search(cw dch t *a dch, const void *a key, void **r data):

Input(s):
a dch: Pointer to a dch.
a key: Pointer to a key.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: Item with key a key not found in a dch.

*r data: If (r data != NULL) and (retval == FALSE), pointer to data.
Exception(s): None.
Description: Search for the most recently inserted item with key a key. If found, *r data to

point to the associated data.

cw bool t dch get iterate(cw dch t *a dch, void **r key, void **r data):

Input(s):

3.10. CLASSES Jason Evans 147

a dch: Pointer to a dch.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: a dch is empty.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
Exception(s): None.
Description: Set *r key and *r data to point to the oldest item in a dch. Promote the item so

that it is the newest item in a dch.

cw bool t dch remove iterate(cw dch t *a dch, void **r key, void **r data, cw chi t **r chi):

Input(s):
a dch: Pointer to a dch.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: a dch is empty.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
*r chi: If (r chi != NULL) and (retval == FALSE), pointer to a chi, or NULL. Otherwise,

undefined.
Exception(s): None.
Description: Set *r key and *r data to point to the oldest item in a dch, set *r chi to point to

the item’s container, if externally allocated, and remove the item from a dch.

3.10.4 mb

The mb class implements memory barriers. A memory barrier is a low level construct that is some-
times useful for guaranteeing the order in which memory operations take place, even when multiple
microprocessors are involved. In most cases, mutexes are the best choice for synchronizing data ac-
cess, but sometimes it is convenient (and critical to performance) to use memory barriers where weaker
access constraints are adequate.

API

void mb write(void):

148 Onyx Manual Chapter 3

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Create a write barrier, so that any memory writes done before the memory
barrier are guaranteed to be visible by the time any memory writes after the memory
barrier become visible.

3.10.5 mem

The mem class implements a memory allocation (malloc) wrapper. For the debug version of libonyx,
extra information is hashed for each memory allocation that allows tracking of the following:

• File/line number of allocation.

• Double allocation/deallocation of the same address.

• Memory leaks (memory left allocated at mem destruction time).

If any memory leaks are detected, diagnostic output is printed to stderr.

Also, the debug version of libonyx sets all newly allocated bytes to 0xa5 , and all deallocated bytes to
0x5a (except in the case of mem calloc()). This tends to cause things to break sooner when uninitialized
or deallocated memory is referenced.

In general, the mem class doesn’t need to be used directly. Instead, there are several preprocessor
macros that can be used: cw malloc(), cw calloc(), cw realloc(), and cw free().

API

cw mem t * mem new(cw mem t *a mem, cw mem t *a internal):

Input(s):
a mem: Pointer to space for a mem, or NULL.
a internal: Pointer to a mem to use for internal memory allocation, or NULL.

Output(s):
retval: Pointer to a mem.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void mem delete(cw mem t *a mem):

Input(s):
a mem: Pointer to a mem.

Output(s): None.

Exception(s): None.

3.10. CLASSES Jason Evans 149

Description: Destructor.

void * mem malloc e(cw mem t *a mem, size t a size, const char *a filename, cw uint32 t
a line num):
void * mem malloc(cw mem t *a mem, size t a size):
void * cw malloc(size t a size):

Input(s):
a mem: Pointer to a mem.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: malloc() wrapper.

void * mem calloc e(cw mem t *a mem, size t a number, size t a size, const char *a filename,
cw uint32 t a line num):
void * mem calloc(cw mem t *a mem, size t a number, size t a size):
void * cw calloc(size t a number, size t a size):

Input(s):
a mem: Pointer to a mem.
a number: Number of elements to allocate.
a size: Size of each element to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a zeroed memory range.

Exception(s):
CW ONYXX OOM.

Description: calloc() wrapper.

void * mem realloc e(cw mem t *a mem, void *a ptr, size t a size, size t a old size, const char
*a filename, cw uint32 t a line num):
void * mem realloc(cw mem t *a mem, void *a ptr, size t a size):
void * cw realloc(void *a ptr, size t a size):

Input(s):
a mem: Pointer to a mem.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a old size: Size of memory range previously pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):

150 Onyx Manual Chapter 3

retval: Pointer to a memory range.
Exception(s):

CW ONYXX OOM.
Description: realloc() wrapper.

void mem free e(cw mem t *a mem, void *a ptr, size t a size, const char *a filename, cw uint32 t
a line num):
void mem free(cw mem t *a mem, void *a ptr, size t a size):
void cw free(void *a ptr):

Input(s):
a mem: Pointer to a mem.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s): None.
Description: free() wrapper.

3.10.6 mq

The mq class implements a simple unidirectional message queue. In addition to putting and getting
messages, there are methods that control the ability to get or put. This provides a simple out of band
state transition capability.

API

void mq new(cw mq t *a mq, cw mem t *a mem, cw uint32 t a msg size):

Input(s):
a mq: Pointer to space for a mq.
a mem: Pointer to the allocator to use internally.
a msg size: Size (in bytes) of messages used for all subsequent calls to mq *get() and

mq put().
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void mq delete(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s): None.
Exception(s): None.

3.10. CLASSES Jason Evans 151

Description: Destructor.

cw bool t mq tryget(cw mq t *a mq, ...):

Input(s):
a mq: Pointer to a mq.
...: Pointer to space to store a message.

Output(s):
retval:

FALSE: Success.
TRUE: No messages in the queue, or get is in the stop state.

*...: If retval is FALSE, a message. Otherwise, undefined.
Exception(s): None.
Description: Try to get a message, but return TRUE if none are available.

cw bool t mq timedget(cw mq t *a mq, const struct timespec *a timeout, ...):

Input(s):
a mq: Pointer to a mq.
a timeout: Timeout, specified as an absolute time interval.
...: Pointer to space to store a message.

Output(s):
retval:

FALSE: Success.
TRUE: No messages in the queue, or get is in the stop state.

*...: If retval is FALSE, a message. Otherwise, undefined.
Exception(s): None.
Description: Get a message. If none are available, block until a message is available, or until

timeout.

cw bol t mq get(cw mq t *a mq, ...):

Input(s):
a mq: Pointer to a mq.
...: Pointer to space to store a message.

Output(s):
retval:

FALSE: Success.
TRUE: Get is in the stop state.

*...: If retval is FALSE, a message. Otherwise, undefined.
Exception(s): None.
Description: Get a message. If none are available, block until a message is available.

cw bool t mq put(cw mq t *a mq, ...):

Input(s):
a mq: Pointer to a mq.
...: A message.

152 Onyx Manual Chapter 3

Output(s):
retval:

FALSE: Success.
TRUE: Failure due to put being in the stop state.

Exception(s):
CW ONYXX OOM.

Description: Put a message in a mq.

cw bool t mq get start(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

FALSE: Success.
TRUE: Error (already in start state).

Exception(s): None.

Description: Change the get operation to the start state (mq get() will not return TRUE).

cw bool t mq get stop(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

FALSE: Success.
TRUE: Error (already in stop state).

Exception(s): None.

Description: Change the get operation to the stop state (mq get() will return TRUE).

cw bool t mq put start(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

FALSE: Success.
TRUE: Error (already in start state).

Exception(s): None.

Description: Change the put operation to the start state (mq put() will not return TRUE).

cw bool t mq put stop(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

3.10. CLASSES Jason Evans 153

FALSE: Success.
TRUE: Error (already in stop state).

Exception(s): None.

Description: Change the put operation to the stop state (mq put() will return TRUE).

3.10.7 mtx

The mtx class implements typical mutual exclusion locks. Only one thread can hold a lock at a time,
and attempting to attain the lock while already owning it has undefined results.

API

void mtx new(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to space for a mtx.

Output(s): None.

Exception(s): None.

Description: Constructor.

void mtx delete(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Destructor.

void mtx lock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Lock a mtx.

cw bool t mtx trylock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s):
retval:

FALSE: Success.
TRUE: Failure.

Exception(s): None.

154 Onyx Manual Chapter 3

Description: Try to lock a mtx, but return immediately instead of blocking if a mtx is already
locked.

void mtx unlock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Unlock a mtx.

3.10.8 nx

The nx class encapsulates an Onyx interpreter instance. It contains a number of interpreter-global
objects, as well as the garbage collector. Reclamation all objects associated with an nx instance is
managed by a garbage collector, so when an nx is destroyed, all associated objects are deallocated.

API

cw nx t * nx new(cw nx t *a nx, cw op t *a thread init, int a argc, char **a argv, char **a envp):

Input(s):
a nx: Pointer to space for an nx, or NULL.
a thread init: Pointer to an initialization function to be called during thread

initialization, or NULL.
a argc: Number of command line arguments.
a argv: Pointer to an array of command line argument strings.
a envp: Pointer to an array of environment variable strings.

Output(s):
retval: Pointer to an nx.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nx delete(cw nx t *a nx):

Input(s): Pointer to an nx.

Output(s): None.

Exception(s): None.

Description: Destructor.

cw nxa t * nx nxa get(cw nx t *a nx):

Input(s): Pointer to an nx.

Output(s):
retval: Pointer to an nxa.

3.10. CLASSES Jason Evans 155

Exception(s): None.
Description: Return a pointer to the garbage collector.

cw nxo t * nx systemdict get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to systemdict .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to systemdict .

cw nxo t * nx globaldict get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to globaldict .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to globaldict .

cw nxo t * nx envdict get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to envdict .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to envdict .

cw nxo t * nx stdin get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to stdin .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stdin .

cw nxo t * nx stdout get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to stdout .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stdout .

cw nxo t * nx stderr get(cw nx t *a nx):

156 Onyx Manual Chapter 3

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to stderr .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stderr .

3.10.9 nxa

The nxa class implements garbage collection. The garbage collector runs a separate thread that is
controlled via an asynchronous message queue. The collector thread is only responsible for doing asyn-
chronous collection due to allocation inactivity and all sweeping; all other marking is synchronously
done in the thread context of the mutator that triggers collection.

API

void * nxa malloc e(cw nxa t *a nxa, size t a size, const char *a filename, cw uint32 t a line num):
void * nxa malloc(cw nxa t *a nxa, size t a size):

Input(s):
a nxa: Pointer to a nxa.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: malloc() wrapper.

void * nxa realloc e(cw nxa t *a nxa, size t a size, size t a old size, const char *a filename,
cw uint32 t a line num):
void * nxa realloc(cw nxa t *a nxa, size t a size):

Input(s):
a nxa: Pointer to a nxa.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a old size: Size of memory range previously pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

3.10. CLASSES Jason Evans 157

Description: realloc() wrapper.

void * nxa free e(cw nxa t *a nxa, void *a ptr, size t a size, const char *a filename, cw uint32 t
a line num):
void * nxa free(cw nxa t *a nxa, void *a ptr, size t a size):

Input(s):
a nxa: Pointer to a nxa.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s): None.
Description: free() wrapper.

void nxa collect(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Do a synchronous garbage collection.

void nxa dump(cw nxa t *a nxa, cw nxo t *a thread):

Input(s):
a nxa: Pointer to a nxa.
a thread: Pointer to a thread nxo.

Output(s): Output printed to stdout .
Exception(s):

CW ONYXX OOM.
Description: Print the internal state of gcdict to stdout .

cw bool t nxa active get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval:

FALSE: Garbage collector deactivated.
TRUE: Garbage collector active.

Exception(s): None.
Description: Return whether the garbage collector is active (runnable).

void nxa active set(cw nxa t *a nxa, cw bool t a active):

Input(s):

158 Onyx Manual Chapter 3

a nxa: Pointer to a nxa.
a active:

FALSE: Deactivate garbage collector.
TRUE: Activate garbage collector.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Send a message to the garbage collector to activate or deactivate. The
asynchronous nature of the message means that it is possible for the garbage collector to
run after this function returns, even if a deactivation message has been sent.

cw nxoi t nxa period get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval: Current inactivity period in seconds that the garbage collector waits before doing

a collection.

Exception(s): None.

Description: Return the current inactivity period in seconds that the garbage collector waits
before doing a collection.

void nxa period set(cw nxa t *a nxa, cw nxoi t a period):

Input(s):
a nxa: Pointer to a nxa.
a period: Inactivity period in seconds that the garbage collector should wait before doing

a collection. If 0, the garbage collector will never run due to inactivity.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Set the inactivity period in seconds that the garbage collector should wait before
doing a collection.

cw nxoi t nxa threshold get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval: Number of bytes of memory allocated since the last garbage collection that will

trigger the garbage collector to run.

Exception(s): None.

Description: Return the number of bytes of memory allocated since the last garbage collection
that will trigger the garbage collector to run.

void nxa threshold set(cw nxa t *a nxa, cw nxoi t a threshold):

Input(s):

3.10. CLASSES Jason Evans 159

a nxa: Pointer to a nxa.
a threshold: The number of bytes of memory allocated since the last garbage collection

that will trigger the garbage collector to run.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Set the number of bytes of memory allocated since the last garbage collection
that will trigger the garbage collector to run.

void nxa stats get(cw nxa t *a nxa, cw nxoi t *r collections, cw nxoi t *r count, cw nxoi t
*r ccount, cw nxoi t *r cmark, cw nxoi t *r csweep, cw nxoi t *r mcount, cw nxoi t *r mmark,
cw nxoi t *r msweep, cw nxoi t *r scount, cw nxoi t *r smark, cw nxoi t *r ssweep):

Input(s):
a nxa: Pointer to a nxa.
r collections: Pointer to an integer.
r count: Pointer to an integer.
r ccount: Pointer to an integer.
r cmark: Pointer to an integer.
r csweep: Pointer to an integer.
r mcount: Pointer to an integer.
r mmark: Pointer to an integer.
r msweep: Pointer to an integer.
r scount: Pointer to an integer.
r smark: Pointer to an integer.
r ssweep: Pointer to an integer.

Output(s):
*r collections: Number of times the garbage collector has run.
*r count: Current number of bytes of memory allocated.
*r ccount: Number of bytes of memory allocated as of the end of the most recent garbage

collection.
*r cmark: Number of microseconds spent in the mark phase of the most recent garbage

collection.
*r csweep: Number of microseconts spent in the sweep phase of the most recent garbage

collection.
*r mcount: Largest number of bytes of memory ever allocated at any point in time.
*r mmark: Largest number of microseconds ever spent in the mark phase of a garbage

collection.
*r msweep: Largest number of microseconts spent in the sweep phase of a garbage

collection.
*r scount: Total number of bytes of memory ever allocated.
*r smark: Total number of microseconds spent in the mark phase of all garbage

collections.
*r ssweep: Total number of microseconts spent in the sweep phase of all garbage

collections.

Exception(s): None.

160 Onyx Manual Chapter 3

Description: Return garbage collector statistics.

cw nx t * nxa nx get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval: Pointer to a nx.

Exception(s): None.

Description: Return a pointer to the nx associated with a nxa.

cw nxo t * nxa gcdict get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval: Pointer to a dict nxo.

Exception(s): None.

Description: Return a pointer to the dict nxo corresponding to gcdict .

3.10.10 nxn

The nxn class provides access to a table of string constants. The main reason for this class’s existence
is that multiple C files often use identical string constants, and this saves memory by allowing all to
refer to a single string.

API

const cw uint8 t * nxn str(cw nxn t a nxn):

Input(s):
a nxn: A number that corresponds to an entry in the string table.

Output(s):
retval: Pointer to a string constant.

Exception(s): None.

Description: Return a pointer to the string constant associated with a nxn.

cw uint32 t nxn len(cw nxn t a nxn):

Input(s):
a nxn: A number that corresponds to an entry in the string table.

Output(s):
retval: String length of a string constant.

Exception(s): None.

Description: Return the string length of the string constant associated with a nxn.

3.10. CLASSES Jason Evans 161

3.10.11 nxo

The nxo class is the basis for the Onyx type system. nxo objects can be any of the following types, as
determined by the cw nxot t type:

NXOT NO: nxo no

NXOT ARRAY: nxo array

NXOT BOOLEAN: nxo boolean

NXOT CONDITION: nxo condition

NXOT DICT: nxo dict

NXOT FILE: nxo file

NXOT FINO: nxo fino

NXOT HOOK: nxo hook

NXOT INTEGER: nxo integer

NXOT MARK: nxo mark

NXOT MUTEX: nxo mutex

NXOT NAME: nxo name

NXOT NULL: nxo null

NXOT OPERATOR: nxo operator

NXOT STACK: nxo stack

NXOT STRING: nxo string

NXOT THREAD: nxo thread

Due to limitations of the C programming language, it is the responsibility of the application to do
type checking to assure that an incompatible nxo object is not passed to a type-specific function. For
example, passing a file nxo to nxo string get() is prohibited, and will result in undefined behaviour
(including crashes).

Composite objects contain a reference to an nxoe object. For the most part, the application does not
need to be aware of this. The only exception is when writing extensions with the hook type. Hook
objects need to be able to iterate over the objects they reference internally, and return nxoe references
to the garbage collector.

The following functions are applicable to all types of nxo objects.

162 Onyx Manual Chapter 3

API

cw sint32 t nxo compare(cw nxo t *a a, cw nxo t *a b):

Input(s):
a a: Pointer to an nxo.
a b: Pointer to an nxo.

Output(s):
retval:

-1: For types which it is meaningful (integer, string), a a is less than a b.
0: a a and a b are equal.
1: For types which it is meaningful (integer, string), a a is greater than a b.
2: Incompatible types, or not the same composite object.

Exception(s): None.
Description: Compare a a and a b.

void nxo dup(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to an nxo.
a from: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Duplicate a from to a to. This does not do a copy of composite objects; rather it

creates a new reference to the value of a composite object.

cw nxot t nxo type get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s):
retval:

NXOT NO: nxo no
NXOT ARRAY: nxo array
NXOT BOOLEAN: nxo boolean
NXOT CONDITION: nxo condition
NXOT DICT: nxo dict
NXOT FILE: nxo file
NXOT FINO: nxo fino
NXOT HOOK: nxo hook
NXOT INTEGER: nxo integer
NXOT MARK: nxo mark
NXOT MUTEX: nxo mutex
NXOT NAME: nxo name
NXOT NULL: nxo null
NXOT OPERATOR: nxo operator
NXOT STACK: nxo stack

3.10. CLASSES Jason Evans 163

NXOT STRING: nxo string
NXOT THREAD: nxo thread

Exception(s): None.

Description: Return the type of a nxo.

cw nxoe t * nxo nxoe get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s):
retval: Pointer to the nxoe associated with a nxo, or NULL if a nxo is not composite.

Exception(s): None.

Description: Return a pointer to the nxoe associated with a nxo.

cw bool t nxo lcheck():

Input(s):
a nxo: Pointer to an array, dict, file, stack, or string nxo.

Output(s):
retval:

FALSE: a nxo is not implicitly locked.
TRUE: a nxo is implicitly locked.

Exception(s): None.

Description: For array, dict, file, stack, or string nxos, return whether a nxo is implicitly
locked.

cw nxoa t nxo attr get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s):
retval:

NXOA LITERAL: a nxo is literal.
NXOA EXECUTABLE: a nxo is executable.

Exception(s): None.

Description: Return the attribute for a nxo.

void nxo attr set(cw nxo t *a nxo, cw nxoa t a attr):

Input(s):
a nxo: Pointer to an nxo.
a attr: Value of attribute to set for a nxo.

Output(s): None.

Exception(s): None.

Description: Set the attribute for a nxo to a attr.

164 Onyx Manual Chapter 3

3.10.12 nxo array

The nxo array class is a subclass of the nxo class.

API

void nxo array new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking, cw uint32 t a len):

Input(s):
a nxo: Pointer to an array nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.
a len: Number of array elements.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo array subarray new(cw nxo t *a nxo, cw nxo t *a array, cw nx t *a nx, cw uint32 t
a offset, cw uint32 t a len):

Input(s):
a nxo: Pointer to an array nxo.
a array: Pointer to an array nxo to create a subarray of.
a nx: Pointer to an nx.
a offset: Offset into a array.
a len: Number of array elements.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Subarray constructor.

void nxo array copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to an array nxo.
a from: Pointer to an array nxo.

Output(s): None.

Exception(s): None.

Description: Copy the contents of a from to a to. The length of a to must be at least that of
a from.

cw uint32 t nxo array len get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an array nxo.

Output(s):

3.10. CLASSES Jason Evans 165

retval: Number of elements in a nxo.
Exception(s): None.
Description: Return the number of elements in a nxo.

void nxo array el get(cw nxo t *a nxo, cw nxoi t a offset, cw nxo t *r el):

Input(s):
a nxo: Pointer to an array nxo.
a offset: Offset of element to get.
r el: Pointer to space to dup an object to.

Output(s):
*r el: A dup of the element of a nxo at offset a offset.

Exception(s): None.
Description: Get a dup of the element of a nxo at offset a offset.

void nxo array el set(cw nxo t *a nxo, cw nxo t *a el, cw nxoi t a offset):

Input(s):
a nxo: Pointer to an array nxo.
a el: Pointer to an nxo.
a offset: Offset of element in a nxo to replace with a el.

Output(s): None.
Exception(s): None.
Description: Dup a el into the element of a nxo at offset a offset.

3.10.13 nxo boolean

The nxo boolean class is a subclass of the nxo class.

API

void nxo boolean new(cw nxo t *a nxo, cw bool t a val):

Input(s):
a nxo: Pointer to a boolean nxo.
a val: Initial value.

Output(s): None.
Exception(s): None.
Description: Constructor.

cw bool t nxo boolean get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a boolean nxo.

Output(s):
retval: Value of a nxo.

166 Onyx Manual Chapter 3

Exception(s): None.
Description: Return the value of a nxo.

void nxo boolean set(cw nxo t *a nxo, cw bool t a val):

Input(s):
a nxo: Pointer to a boolean nxo.
a val: Value to set a nxo to.

Output(s): None.
Exception(s): None.
Description: Set the value of a nxo to a val.

3.10.14 nxo condition

The nxo condition class is a subclass of the nxo class.

API

void nxo condition new(cw nxo t *a nxo, cw nx t *a nx):

Input(s):
a nxo: Pointer to a condition nxo.
a nx: Pointer to an nx.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo condition signal(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a condition nxo.

Output(s): None.
Exception(s): None.
Description: Signal one thread waiting on a nxo, if there are any waiters.

void nxo condition broadcast(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a condition nxo.

Output(s): None.
Exception(s): None.
Description: Signal all threads waiting on a nxo.

void nxo condition wait(cw nxo t *a nxo, cw nxo t *a mutex):

Input(s):

3.10. CLASSES Jason Evans 167

a nxo: Pointer to a condition nxo.
a mutex: Pointer to a mutex nxo.

Output(s): None.

Exception(s): None.

Description: Wait for a nxo.

cw bool t nxo condition timedwait(cw nxo t *a nxo, cw nxo t *a mutex, const struct time-
spec *a timeout):

Input(s):
a nxo: Pointer to a condition nxo.
a mutex: Pointer to a mutex nxo.
a timeout: Timeout, specified as an absolute time interval.

Output(s):
retval:

FALSE: Success.
TRUE: Timeout.

Exception(s): None.

Description: Wait for a nxo for at least a timeout.

3.10.15 nxo dict

The nxo dict class is a subclass of the nxo class.

API

void nxo dict new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking, cw uint32 t a dict size):

Input(s):
a nxo: Pointer to a dict nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.
a dict size: Initial number of slots. Dictionaries dynamically grow and shrink as needed,

but if the maximum size of a nxo is known, it should be specified here to save space.

Output(s): None

Exception(s):
CW ONYXX OOM.

Description: Constructor.

nxo dict copy(cw nxo t *a to, cw nxo t *a from, cw nx t *a nx):

Input(s):
a to: Pointer to a dict nxo.
a from: Pointer to a dict nxo.
a nx: Pointer to an nx.

168 Onyx Manual Chapter 3

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Do a deep copy (actual contents are copied) of a from to a to.

void nxo dict def(cw nxo t *a nxo, cw nx t *a nx, cw nxo t *a key, cw nxo t *a val):

Input(s):
a nxo: Pointer to a dict nxo.
a nx: Pointer to an nx.
a key: Pointer to an nxo.
a val: Pointer to an nxo.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Define a key with value a val in a nxo.

void nxo dict undef(cw nxo t *a nxo, cw nx t *a nx, cw nxo t *a key):

Input(s):
a nxo: Pointer to a dict nxo.
a nx: Pointer to an nx.
a key: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Undefine a key in a nxo, if defined.

cw bool t nxo dict lookup(cw nxo t *a nxo, const cw nxo t *a key, cw nxo t *r nxo):

Input(s):
a nxo: Pointer to a dict nxo.
a key: Pointer to an nxo.
r nxo: Pointer to an nxo.

Output(s):
retval:

FALSE: Success.
TRUE: a key not found.

r nxo: If retval is FALSE, value associated with a key in a nxo, otherwise unmodified.

Exception(s): None.

Description: Find a key in a nxo and dup its associated value to r nxo.

cw uint32 t nxo dict count(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a dict nxo.

Output(s):
retval: The number of key/value pairs in a nxo.

3.10. CLASSES Jason Evans 169

Exception(s): None.

Description: Return the number of key/value pairs in a nxo.

void nxo dict iterate(cw nxo t *a nxo, cw nxo t *r nxo):

Input(s):
a nxo: Pointer to a dict nxo.
r nxo: Pointer to an nxo.

Output(s):
FALSE: Success.
TRUE: a nxo is empty.

r nxo: If retval is FALSE, A key in a nxo, otherwise unmodified.

Exception(s): None.

Description: Iteratively get a key in a nxo. Each successive call to this function will get the
next key, and wrap back around to the first key when all keys have been returned.

3.10.16 nxo file

The nxo file class is a subclass of the nxo class.

API

cw sint32 t cw nxo file read t(void *a arg, cw nxo t *a file, cw uint32 t a len, cw uint8 t *r str):

Input(s):
a arg: Opaque data pointer.
a file: Pointer to a file nxo.
a len: Length of r str.
r str: Pointer to space to put read data.

Output(s):
retval:

-1: Read error.
>= 0: Number of bytes stored in r str.

r str: If retval is non-negative, retval bytes of read data, otherwise undefined.

Exception(s): Application specific.

Description: Read up to a len bytes of data from a file and store the result in r str.

cw bool t cw nxo file write t(void *a arg, cw nxo t *a file, const cw uint8 t *a str, cw uint32 t
a len):

Input(s):
a arg: Opaque data pointer.
a file: Pointer to a file nxo.
a str: Pointer to data to write.
a len: Length of a str.

170 Onyx Manual Chapter 3

Output(s):
retval:

FALSE: Success.
TRUE: Write error.

Exception(s): Application specific.

Description: Write a len bytes of data from a str to a file.

cw nxoe t * cw nxo file ref iter t(void *a arg, cw bool t a reset):

Input(s):
a arg: Opaque data pointer.
a reset:

FALSE: At least one iteration has already occurred.
TRUE: First iteration.

Output(s):
retval:

non-NULL: Pointer to an nxoe.
NULL: No more references.

Exception(s): None.

Description: Reference iterator function typedef.

void cw nxo file delete t(void *a arg, cw nx t *a nx):

Input(s):
a arg: Opaque data pointer.
a nx: Pointer to an nx.

Output(s): None.

Exception(s): None.

Description: Destructor function typedef.

void nxo file new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking):

Input(s):
a nxo: Pointer to a file nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo file fd wrap(cw nxo t *a nxo, cw uint32 t a fd):

Input(s):
a nxo: Pointer to a file nxo.
a fd: File descriptor number.

Output(s): None.

3.10. CLASSES Jason Evans 171

Exception(s): None.
Description: Wrap file descriptor a fd so that operations on a nxo will be backed by the file

descriptor.

void nxo file synthetic(cw nxo t *a nxo, cw nxo file read t *a read, cw nxo file write t *a write,
cw nxo file ref iter t *a ref iter, cw nxo file delet t *a delete, void *a arg):

Input(s):
a nxo: Pointer to a file nxo.
a read: Pointer to a read function.
a write: Pointer to a write function.
a ref iter: Pointer to a reference iterator function.
a delete: Pointer to a destructor function.
a arg: Opaque pointer to be passed to the read and write functions.

Output(s): None.
Exception(s): None.
Description: Set up a nxo to call the specified read and write functions to satisfy file

operations.

cw nxn t nxo file open(cw nxo t *a nxo, const cw uint8 t *a filename, cw uint32 t a nlen,
const cw uint8 t *a flags, cw uint32 t a flen):

Input(s):
a nxo: Pointer to a file nxo.
a filename: Pointer to a string (not required to be ’\0’ terminated) that represents a

filename.
a nlen: Length in bytes of a filename.
a flags: Pointer to a string (not required to be ’\0’ terminated) that represents a file mode:

“r”: Read only.
“r+”: Read/write, starting at offset 0.
“w”: Write only. Create file if necessary. Truncate file if non-zero length.
“w+”: Read/write, starting at offset 0. Create file if necessary.
“a”: Write only, starting at end of file.
“a+”: Read/write, starting at end of file.

a flen: Length in bytes of a flags.
Output(s):

retval:
NXN ZERO.
NXN ioerror.
NXN invalidfileaccess.
NXN limitcheck.

Exception(s): None.
Description: Open a file.

cw nxn t nxo file close(cw nxo t *a nxo):

Input(s):

172 Onyx Manual Chapter 3

a nxo: Pointer to a file nxo.
Output(s):

retval:
NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Close a file.

cw sint32 t nxo file fd get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

-1: Invalid or synthetic file.
>= 0: File descriptor number.

Exception(s): None.
Description: Return the file descriptor associated with a nxo.

cw sint32 t nxo file read(cw nxo t *a nxo, cw uint32 t a len, cw uint8 t *r str):

Input(s):
a nxo: Pointer to a file nxo.
a len: Length in bytes of r str.
r str: Pointer to a string to store read data into.

Output(s):
retval:

-1: NXN ioerror.
>= 0: Number of bytes of data read into r str.

r str: If retval is non-negative, retval bytes of read data.
Exception(s): None.
Description: Read data.

cw nxn t nxo file readline(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking, cw nxo t *r string,
cw bool t *r eof):

Input(s):
a nxo: Pointer to a file nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.
r string: Pointer to an nxo.
r eof: Pointer to a cw bool t.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

3.10. CLASSES Jason Evans 173

r string: If retval is NXN ZERO, a string object, otherwise unmodified.
*r eof:

FALSE: End of file not reached.
TRUE: End of file reached.

Exception(s):
CW ONYXX OOM.

Description: Read a line, terminated by “\r”, “\r\n”, or EOF.

cw nxn t nxo file write(cw nxo t *a nxo, const cw uint8 t *a str, cw uint32 t a len):

Input(s):
a nxo: Pointer to a file nxo.
a str: Pointer to data to write.
a len: Length of a str.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Write the a len bytes of data pointed to a str.

cw nxn t nxo file truncate(cw nxo t *a nxo, off t a length):

Input(s):
a nxo: Pointer to a file nxo.
a length: Length to set file to.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Truncate or extend the file associated with a nxo so that it is a length bytes long.

cw nxoi t nxo file position get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

-1: NXN ioerror.
>= 0: Current file position.

Exception(s): None.
Description: Get the current file position.

cw nxn t nxo file position set(cw nxo t *a nxo, cw nxoi t a position):

Input(s):

174 Onyx Manual Chapter 3

a nxo: Pointer to a file nxo.
a position: File position.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Move the current file position to a position.

cw uint32 t nxo file buffer size get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval: Size in bytes of the internal data buffer.

Exception(s): None.
Description: Return the size of the internal data buffer.

void nxo file buffer size set(cw nxo t *a nxo, cw uint32 t a size):

Input(s):
a nxo: Pointer to a file nxo.
a size: Size in bytes of internal buffer to use.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Use an internal buffer of a size bytes.

cw nxoi t nxo file buffer count(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval: Current number of buffered bytes available for reading.

Exception(s): None.
Description: Return the current number of buffered bytes available for reading.

cw nxn t nxo file buffer flush(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Flush any buffered write data to disk, and discard any buffered read data.

3.10. CLASSES Jason Evans 175

3.10.17 nxo fino

The nxo fino class is a subclass of the nxo class.

API

void nxo fino new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Constructor.

3.10.18 nxo hook

The nxo hook class is a subclass of the nxo class.

API

void cw nxo hook eval t(void *a data, cw nxo t *a thread):

Input(s):
a data: Opaque data pointer.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): Hook-dependent.
Description: Evaluation function typedef.

cw nxoe t * cw nxo hook ref iter t(void *a data, cw bool t a reset):

Input(s):
a data: Opaque data pointer.
a reset:

FALSE: At least one iteration has already occurred.
TRUE: First iteration.

Output(s):
retval:

non-NULL: Pointer to an nxoe.
NULL: No more references.

Exception(s): None.
Description: Reference iterator function typedef.

cw bool t cw nxo hook delete t(void *a data, cw nx t *a nx, cw uint32 t a iter):

Input(s):

176 Onyx Manual Chapter 3

a data: Opaque data pointer.
a nx: Pointer to an nx.
a iter: Garbage collector sweep iteration count (starts at 0). This value can be used to

impose ordering of dependent object deletions.
Output(s):

retval:
FALSE: Success.
TRUE: Defer deletion until a later garbage collector sweep iteration.

Exception(s): None.
Description: Destructor function typedef.

void nxo hook new(cw nxo t *a nxo, cw nx t *a nx, void *a data, cw nxo hook eval t *a eval f,
cw nxo hook ref iter t *a ref iter f, cw nxo hook delete t *a delete f):

Input(s):
a nxo: Pointer to a hook nxo.
a nx: Pointer to an nx.
a data: Opaque data pointer to be passed to a eval f, a ref iter f, and a delete f.
a eval f: Pointer to an evaluation function.
a ref iter f: Pointer to a reference iterator function.
a delete f: Pointer to a destructor function.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

cw nxo t * nxo hook tag get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a hook nxo.

Output(s):
retval: Pointer to the tag object associated with a nxo.

Exception(s): None.
Description: Return a pointer to the tag object associated with a nxo. This object pointer can

safely be used for modifying the tag object.

void * nxo hook data get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a hook nxo.

Output(s):
retval: Opaque data pointer.

Exception(s): None.
Description: Return the opaque data pointer associated with a nxo.

void nxo hook data set(cw nxo t *a nxo, void *a data):

Input(s):

3.10. CLASSES Jason Evans 177

a nxo: Pointer to a hook nxo.
a data: Opaque data pointer.

Output(s): None.
Exception(s): None.
Description: Set the opaque data pointer associated with a nxo.

void nxo hook eval(cw nxo t *a nxo, cw nxo t *a thread):

Input(s):
a nxo: Pointer to a hook nxo.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): Hook-specific.
Description: Evaluate the a nxo. If there is no evaluation function associated with a nxo, it is

pushed onto ostack.

3.10.19 nxo integer

The nxo integer class is a subclass of the nxo class.

API

void nxo integer new(cw nxo t *a nxo, cw nxoi t a val):

Input(s):
a nxo: Pointer to an integer nxo.
a val: Initial value.

Output(s): None.
Exception(s): None.
Description: Constructor.

cw nxoi t nxo integer get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an integer nxo.

Output(s):
retval: Value of a nxo.

Exception(s): None.
Description: Return the value of a nxo.

void nxo integer set(cw nxo t *a nxo, cw nxoi t a val):

Input(s):
a nxo: Pointer to an integer nxo.
a val: Integer value.

Output(s): None.
Exception(s): None.
Description: Set the value of a nxo to a val.

178 Onyx Manual Chapter 3

3.10.20 nxo mark

The nxo mark class is a subclass of the nxo class.

API

void nxo mark new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Constructor.

3.10.21 nxo mutex

The nxo mutex class is a subclass of the nxo class.

API

void nxo mutex new(cw nxo t *a nxo, cw nx t *a nx):

Input(s):
a nxo: Pointer to a mutex nxo.
a nx: Pointer to an nx.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo mutex lock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s): None.

Exception(s): None.

Description: Lock a nxo.

cw bool t nxo mutex trylock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s):
retval:

FALSE: Success.

3.10. CLASSES Jason Evans 179

TRUE: Failure.
Exception(s): None.
Description: Try to lock a nxo, but return immediately with an error if unable to do so.

void nxo mutex unlock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s): None.
Exception(s): None.
Description: Unlock a nxo.

3.10.22 nxo name

The nxo name class is a subclass of the nxo class.

API

void nxo name new(cw nxo t *a nxo, cw nx t *a nx, const cw uint8 t *a str, cw uint32 t a len,
cw bool t a is static):

Input(s):
a nxo: Pointer to a name nxo.
a nx: Pointer to an nx.
a str: Pointer to a character string (not required to be ’\0’ terminated).
a len: Length in bytes of a str.
a is static:

FALSE: a str may be modified or deallocated during the lifetime of the program.
TRUE: a str will not be modified for the lifetime of the program.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

const cw uint8 t * nxo name str get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a name nxo.

Output(s):
retval: Pointer to a string that represents a nxo.

Exception(s): None.
Description: Return a pointer to a string that represents a nxo.

cw uint32 t nxo name len get(cw nxo t *a nxo):

Input(s):

180 Onyx Manual Chapter 3

a nxo: Pointer to a name nxo.

Output(s):
retval: Length in bytes of the name associated with a nxo.

Exception(s): None.

Description: Return the length in bytes of the name associated with a nxo.

3.10.23 nxo no

The nxo no class is a subclass of the nxo class.

API

void nxo no new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Constructor.

3.10.24 nxo null

The nxo null class is a subclass of the nxo class.

API

void nxo null new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Constructor.

3.10.25 nxo operator

The nxo operator class is a subclass of the nxo class.

3.10. CLASSES Jason Evans 181

API

void nxo operator new(cw nxo t *a nxo, cw op t *a op, cw nxn t a nxn):

Input(s):
a nxo: Pointer to an operator nxo.
a op: Pointer to an operator function.
a nxn: NXN ZERO, or an nxn.

Output(s): None.
Exception(s): None.
Description: Constructor.

cw op t * nxo operator f(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an operator nxo.

Output(s):
retval: Pointer to an operator function.

Exception(s): None.
Description: Return the operator function associated with a nxo.

3.10.26 nxo pmark

The nxo pmark class is a subclass of the nxo class.

API

void nxo pmark new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Constructor.

3.10.27 nxo real

The nxo real class is a subclass of the nxo class.

API

void nxo real new(cw nxo t *a nxo, cw nxor t a val):

Input(s):
a nxo: Pointer to a real nxo.

182 Onyx Manual Chapter 3

a val: Initial value.
Output(s): None.
Exception(s): None.
Description: Constructor.

cw nxor t nxo real get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a real nxo.

Output(s):
retval: Value of a nxo.

Exception(s): None.
Description: Return the value of a nxo.

void nxo real set(cw nxo t *a nxo, cw nxor t a val):

Input(s):
a nxo: Pointer to a real nxo.
a val: Real value.

Output(s): None.
Exception(s): None.
Description: Set the value of a nxo to a val.

3.10.28 nxo stack

The nxo stack class is a subclass of the nxo class.

API

void nxo stack new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking):

Input(s):
a nxo: Pointer to a stack nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo stack copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to a stack nxo.
a from: Pointer to a stack nxo.

Output(s): None.

3.10. CLASSES Jason Evans 183

Exception(s):
CW ONYXX OOM.

Description: Copy the objects in a from onto a to.

cw uint32 t nxo stack count(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval: Number of objects on a nxo.

Exception(s): None.

Description: Return the number of objects on a nxo.

cw nxo t * nxo stack push(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval: Pointer to a no nxo that has been pushed onto a nxo.

Exception(s):
CW ONYXX OOM.

Description: Push a no nxo onto a nxo and return a pointer to it.

cw nxo t * nxo stack under push(cw nxo t *a nxo, cw nxo t *a object):

Input(s):
a nxo: Pointer to a stack nxo.
a object: Pointer to an nxo on a nxo.

Output(s):
retval: Pointer to a no nxo that has been pushed under a object on a nxo.

Exception(s):
CW ONYXX OOM.

Description: Push a no nxo under a object on a nxo.

cw bool t nxo stack pop(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.

Description: Pop an object off of a nxo.

cw bool t nxo stack npop(cw nxo t *a nxo, cw uint32 t a count):

Input(s):

184 Onyx Manual Chapter 3

a nxo: Pointer to a stack nxo.
a count: Number of objects to pop off of a nxo.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.

Description: Pop a count objects off of a nxo.

cw nxo t * nxo stack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

non-NULL: Pointer to the top nxo on a nxo.
NULL: Stack underflow.

Exception(s): None.

Description: Return a pointer to the top nxo on a nxo.

cw nxo t * nxo stack nget(cw nxo t *a nxo, cw uint32 t a index):

Input(s):
a nxo: Pointer to a stack nxo.
a index: Index of object in a nxo to return a pointer to.

Output(s):
retval:

non-NULL: Pointer to the nxo on a nxo at index a index.
NULL: Stack underflow.

Exception(s): None.

Description: Return a pointer to the nxo on a nxo at index a index.

cw nxo t * nxo stack down get(cw nxo t *a nxo, cw nxo t *a object):

Input(s):
a nxo: Pointer to a stack nxo.
a object: Pointer to an object on a nxo, or NULL for the top object on a nxo.

Output(s):
retval:

non-NULL: Pointer to the nxo on a nxo under a object.
NULL: Stack underflow.

Exception(s): None. Return a pointer to the nxo on a nxo under a object.
Description:

cw bool t nxo stack exch(cw nxo t *a nxo):

Input(s):

3.10. CLASSES Jason Evans 185

a nxo: Pointer to a stack nxo.
Output(s):

retval:
FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.
Description: Exchange the top two objects on a nxo.

cw bool t nxo stack roll(cw nxo t *a nxo, cw uint32 t a count, cw sint32 t a amount):

Input(s):
a nxo: Pointer to a stack nxo.
a count: Number of objects in roll region.
a amount: Amount to roll upward. A negative value rolls downward.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.
Description: Roll the top a count objects on a nxo up by a amount.

3.10.29 nxo string

The nxo string class is a subclass of the nxo class. Strings are not ‘\0’-terminated, mainly since sub-
strings are references to other strings, and the termination character wouldn’t be consistently useful.
nxo string cstring() is useful for creating ‘\0’-terminated copies of strings for situations where other C
functions expect terminated strings.

API

void nxo string new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking, cw uint32 t a len):

Input(s):
a nxo: Pointer to a string nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.
a len: Length in bytes of string to create.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo string substring new(cw nxo t *a nxo, cw nxo t *a string, cw nx t *a nx, cw uint32 t
a offset, cw uint32 t a len):

Input(s):

186 Onyx Manual Chapter 3

a nxo: Pointer to a string nxo.
a string: Pointer to a string nxo to create a substring of.
a nx: Pointer to an nx.
a offset: Offset into a string.
a len: Length in bytes of substring to create.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Substring constructor.

void nxo string copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to a string nxo.
a from: Pointer to a string nxo.

Output(s): None.

Exception(s): None.

Description: Copy the contents of a from to a to. The length of a to must be at least that of
a from.

void nxo string cstring(cw nxo t *a to, cw nxo t *a from, cw nxo t *a thread):

Input(s):
a to: Pointer to an nxo.
a from: Pointer to a string nxo.
a thread: Pointer to a thread nxo.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Create a copy of a from, but append a ‘\0’ character to make it usable in calls to
typical C functions that expect a terminated string.

cw uint32 t nxo string len get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s):
retval: Length of a nxo.

Exception(s): None.

Description: Return the length of a nxo.

void nxo string el get(cw nxo t *a nxo, cw nxoi t a offset, cw uint8 t *r el):

Input(s):
a nxo: Pointer to a string nxo.
a offset: Offset of character to get.
r el: Pointer to space to copy a character to.

3.10. CLASSES Jason Evans 187

Output(s):
*r el: A copy of the character of a nxo at offset a offset.

Exception(s): None.
Description: Get a copy of the character of a nxo at offset a offset.

void nxo string el set(cw nxo t *a nxo, cw uint8 t a el, cw nxoi t a offset):

Input(s):
a nxo: Pointer to a string nxo.
a el: A character.
a offset: Offset of character in a nxo to replace with a el.

Output(s): None.
Exception(s): None.
Description: Copy a el into the element of a nxo at offset a offset.

void nxo string lock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s): None.
Exception(s): None.
Description: If implicit locking is activated for a nxo, lock it.

void nxo string unlock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s): None.
Exception(s): None.
Description: If implicit locking is activated for a nxo, unlock it.

cw uint8 t * nxo string get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s):
retval: Pointer to the string internal to a nxo.

Exception(s): None.
Description: Return a pointer to the string internal to a nxo.

void nxo string set(cw nxo t *a nxo, cw uint32 t a offset, const cw uint8 t *a str, cw uint32 t
a len):

Input(s):
a nxo: Pointer to a string nxo.
a offset: Offset into a nxo to replace.
a str: String to replace a range of a nxo with.
a len: Length in bytes of a str.

Output(s): None.
Exception(s): None.
Description: Replace a len bytes of a nxo at offset a offset with a str.

188 Onyx Manual Chapter 3

3.10.30 nxo thread

The nxo thread class is a subclass of the nxo class.

The threadp class is a helper class that contains scanner position information. The threadp state is
used when recording syntax errors.

API

void nxo threadp new(cw nxo threadp t *a threadp):

Input(s):
a threadp: Pointer to space for a threadp.

Output(s): None.
Exception(s): None.
Description: Constructor.

void nxo threadp delete(cw nxo threadp t *a threadp, cw nxo t *a thread):

Input(s):
a threadp: Pointer to a threadp.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Destructor.

void nxo threadp position get(cw nxo threadp t *a threadp, cw uint32 t *r line, cw uint32 t
*r column):

Input(s):
a threadp: Pointer to space for a threadp.
r line: Pointer to a location to store a line number.
r column: Pointer to a location to store a column number.

Output(s):
*r line: Line number.
*r column: Column number.

Exception(s): None.
Description: Retrieve the line number and column number.

void nxo threadp position set(cw nxo threadp t *a threadp, cw uint32 t a line, cw uint32 t
a column):

Input(s):
a threadp: Pointer to space for a threadp.
a line: Line number.
a column: Column number.

Output(s): None.
Exception(s): None.

3.10. CLASSES Jason Evans 189

Description: Set the line number and column number.

void nxo thread new(cw nxo t *a nxo, cw nx t *a nx):

Input(s):
a nxo: Pointer to a thread nxo.
a nx: Pointer to an nx.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo thread start(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): Application dependent.
Description: Start a thread running by calling the start operator such that the top object on

ostack will be executed.

void nxo thread exit(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Terminate the thread. This has the same effect as a detached thread exiting.

Calling this function may is necessary (depending on the application) to allow the thread to
be garbage collected, much the same way as the detach and join operators do.

void nxo thread thread(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Create a new thread. The new thread calls nxo thread start().

void nxo thread detach(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Detach a nxo so that when it exits it can be garbage collected.

void nxo thread join(cw nxo t *a nxo):

190 Onyx Manual Chapter 3

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Wait for a nxo to exit.

cw nxo threadts t nxo thread state(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: The current scanner state of a nxo.

THREADTS START: Start state.
THREADTS SLASH CONT: One ’/’ seen.
THREADTS COMMENT: ’%’ seen, but no line break yet.
THREADTS INTEGER: Scanning an integer.
THREADTS INTEGER RADIX: Scanning a radix integer.
THREADTS STRING: Scanning a string.
THREADTS STRING NEWLINE CONT: ’\r’ seen in a string.
THREADTS STRING PROT CONT: ’\\’ seen in a string.
THREADTS STRING CRLF CONT: ’\’ ’\r’ seen in a string.
THREADTS STRING HEX CONT: ’\’ ’x’ seen in a string.
THREADTS STRING HEX FINISH: First hex digit of a “\xDD” string escape

sequence seen.
THREADTS NAME: Scanning a name.

Exception(s): None.
Description: Return the current scanner state. In general this is only useful when

implementing an interactive environment for which the prompt behaves differently
depending on what state the scanner is in. For example the interactive onyx shell needs
only to know whether the scanner is in the start state.

cw bool t nxo thread deferred(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval:

FALSE: Execution is not deferred.
TRUE: Execution is deferred.

Exception(s): None.
Description: Return whether the scanner is currently in deferred execution mode. See

Section 1.2 for information on deferred execution. In general this is only useful when
implementing an interactive environment for which the prompt behaves differently
depending on what state the scanner is in.

void nxo thread reset(cw nxo t *a nxo):

3.10. CLASSES Jason Evans 191

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.

Exception(s): None.

Description: Reset the scanner to the start state, and turn deferral off. This is a dangerous
feature that should be used with great care. nxo no objects should never be visible from
inside the interpreter, so the caller must assure that any nxo no objects are removed before
further processing is done in the context of a nxo.

void nxo thread loop(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.

Exception(s): Application specific.

Description: Execute the top object on estack. The caller is responsible for placing the object
on estack, but it is removed before this function returns.

void nxo thread interpret(cw nxo t *a nxo, cw nxo threadp t *a threadp, const cw uint8 t
*a str, cw uint32 t a len):

Input(s):
a nxo: Pointer to a thread nxo.
a threadp: A threadp.
a str: Pointer to a string to interpret.
a len: Length in bytes of a str.

Output(s): None.

Exception(s): Application specific.

Description: Interpret the string pointed to by a str.

void nxo thread flush(cw nxo t *a nxo, cw nxo threadp t *a threadp):

Input(s):
a nxo: Pointer to a thread nxo.
a threadp: A threadp.

Output(s): None.

Exception(s): Application specific.

Description: Do the equivalent of interpreting a carriage return in order to force acceptance
of the previous token if no whitespace has yet followed.

void nxo thread nerror(cw nxo t *a nxo, cw nxn t a nxn):

Input(s):
a nxo: Pointer to a thread nxo.
a nxn: An nxn corresponding to the name of an error.

Output(s): None.

Exception(s): Application dependent.

192 Onyx Manual Chapter 3

Description: Throw an error.

void nxo thread serror(cw nxo t *a nxo, const cw uint8 t a str, cw uint32 t a len):

Input(s):
a nxo: Pointer to a thread nxo.
a str: Pointer to a string that represents the name of an error.
a len: The length of a str.

Output(s): None.
Exception(s): Application dependent.
Description: Throw an error.

cw bool t nxo thread dstack search(cw nxo t *a nxo, cw nxo t *a key, cw nxo t *r value):

Input(s):
a nxo: Pointer to a thread nxo.
a key: Pointer to an nxo.
r value: Pointer to an nxo.

Output(s):
retval:

FALSE: Success.
TRUE: a key not found on dstack.

r value: Top value in dstack associated with a key.
Exception(s): None.
Description: Search dstack for the topmost definition of a key and dup its value to r value.

cw bool t nxo thread currentlocking(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval:

FALSE: Implicit locking deactivated for new objects.
TRUE: Implicit locking activated for new objects.

Exception(s): None.
Description: Return whether implicit locking is activated for new objects.

void nxo thread setlocking(cw nxo t *a nxo, cw bool t a locking):

Input(s):
a nxo: Pointer to a thread nxo.
a locking:

FALSE: Do not implicitly lock new objects.
TRUE: Implicitly lock new objects.

Output(s): None.
Exception(s): None.
Description: Activate or deactivate implicit locking for new objects.

cw nx t * nxo thread nx get(cw nxo t *a nxo):

3.10. CLASSES Jason Evans 193

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nx.

Exception(s): None.
Description: Return the nx associated with a nxo.

cw nxo t * nxo thread userdict get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the userdict associated with a nxo.

cw nxo t * nxo thread errordict get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the errordict associated with a nxo.

cw nxo t * nxo thread currenterror get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the currenterror associated with a nxo.

cw nxo t * nxo thread ostack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the ostack associated with a nxo.

cw nxo t * nxo thread dstack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):

194 Onyx Manual Chapter 3

retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

Description: Return a pointer to the dstack associated with a nxo.

cw nxo t * nxo thread estack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

Description: Return a pointer to the estack associated with a nxo.

cw nxo t * nxo thread istack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

Description: Return a pointer to the istack associated with a nxo.

cw nxo t * nxo thread tstack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

Description: Return a pointer to the tstack associated with a nxo.

cw nxo t * nxo thread stdin get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

Description: Return a pointer to the stdin associated with a nxo.

cw nxo t * nxo thread stdout get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

3.10. CLASSES Jason Evans 195

Description: Return a pointer to the stdout associated with a nxo.

cw nxo t * nxo thread stderr get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the stderr associated with a nxo.

3.10.31 ql

The ql macros implement operations on a list. The type of the list elements and which field of the ele-
ments to use are determined by arguments that are passed into the macros. The macros are optimized
for speed and code size, which means that there is minimal error checking built in. As a result, care
must be taken to assure that these macros are ussed as intended, or strange things can happen.

Internally, the list is represented as a ring, so with some care, the ql and qr interfaces can be used in
conjunction with each other.

Since a ql is actually a ring, it is possible to have multiple ql heads that share the same ring. This
works just fine, with the caveat that operations on one ql can have side-effects on another.

API

ql head(<ql type> a type):

Input(s):
a type: Data type for the ql elements.

Output(s): A data structure that can be used as a ql head.
Exception(s): None.
Description: Generate code for a ql head data structure.

ql head initializer(<ql type> *a head):

Input(s):
a head: Pointer to a ql head.

Output(s): None.
Exception(s): None.
Description: Statically initialize a ql head.

ql elm(<ql type> a type):

Input(s):
a type: Data type for the ql elements.

Output(s): A data structure that can be used as a ql element.
Exception(s): None.

196 Onyx Manual Chapter 3

Description: Generate code for a ql element data structure.

void ql new(<ql head> *a head):

Input(s):
a head: Pointer to a ql head.

Output(s): None.

Exception(s): None.

Description: Constructor.

void ql elm new(<ql type> *a elm, <field name> a field):

Input(s):
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Constructor.

<ql type> * ql first(<ql head> *a head):

Input(s):
a head: Pointer to a ql head.

Output(s):
retval:

non-NULL: Pointer to the first element in a head.
NULL: a head is empty.

Exception(s): None.

Description: Return a pointer to the first element in the ql.

<ql type> * ql last(<ql head> *a head, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a field: Field within the ql elements to use.

Output(s):
retval:

non-NULL: Pointer to the last element in a head.
NULL: a head is empty.

Exception(s): None.

Description: Return a pointer to the last element in the ql.

<ql type> * ql next(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

3.10. CLASSES Jason Evans 197

Output(s):
retval:

non-NULL: Pointer to the element after a elm.
NULL: a elm is the last element in a head.

Exception(s): None.
Description: Return a pointer to the element in a head after a elm.

<ql type> * ql prev(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s):
retval:

non-NULL: Pointer to the element before a elm.
NULL: a elm is the first element in a head.

Exception(s): None.
Description: Return a pointer to the element in a head before a elm.

void ql before insert(<ql head> *a head, <ql type> *a qlelm, <ql type> *a elm, <field name>
a field):

Input(s):
a head: Pointer to a ql head.
a qlelm: Pointer to an element within a head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a elm into a head before a qlelm.

void ql after insert(<ql type> *a qlelm, <ql type> *a elm, <field name> a field):

Input(s):
a qlelm: Pointer to an element within a head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a elm into a head after a qlelm.

void ql head insert(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

198 Onyx Manual Chapter 3

Output(s): None.
Exception(s): None.
Description: Insert a elm at the head of a head.

void ql tail insert(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a elm at the tail of a head.

void ql remove(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Remove a elm from a head.

void ql head remove(<ql head> *a head, <ql type> a type, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a type: Data type for the ql elements.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Remove the head element of a head.

void ql tail remove(<ql head> *a head, <ql type> a type, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a type: Data type for the ql elements.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Remove the tail element of a head.

ql foreach(<ql type> *a var, <ql type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.

3.10. CLASSES Jason Evans 199

a head: Pointer to a ql head.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Iterate through the ql, storing a pointer to each element in a var along the way.

ql reverse foreach(<ql type> *a var, <ql type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a head: Pointer to a ql head.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Iterate through the ql in the reverse direction, storing a pointer to each element
in a var along the way.

3.10.32 qr

The qr macros implement operations on a ring. The type of the ring elements and which field of
the elements to use are determined by arguments that are passed into the macros. The macros are
optimized for speed and code size, which means that there is minimal error checking built in. As a
result, care must be taken to assure that these are used as intended, or strange things can happen.

API

qr(<qr type> a type):

Input(s):
a type: Data type for the qr.

Output(s): A data structure that can be used for a qr.

Exception(s): None.

Description: Generate code for a qr data structure.

void qr new(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Constructor.

<qr type> * qr next(<qr type> *a qr, <field name> a field):

Input(s):

200 Onyx Manual Chapter 3

a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s):
retval: Pointer to the next element in the qr.

Exception(s): None.
Description: Return a pointer to the next element in the qr.

<qr type> * qr prev(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s):
retval: Pointer to the previous element in the qr.

Exception(s): None.
Description: Return a pointer to the previous element in the qr.

void qr before insert(<qr type> *a qrelm, <qr type> *a qr, <field name> a field):

Input(s):
a qrelm: Pointer to an element in a qr.
a qr: Pointer to an element that is the only element in its ring.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a qr before a qrelm.

void qr after insert(<qr type> *a qrelm, <qr type> *a qr, <field name> a field):

Input(s):
a qrelm: Pointer to an element in a qr.
a qr: Pointer to an element that is the only element in its ring.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a qr after a qrelm.

void qr meld(<qr type> *a qr a, <qr type> *a qr b, <field name> a field):

Input(s):
a qr a: Pointer to a qr.
a qr b: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Meld a qr a and a qr b into one ring.

void qr split(<qr type> *a qr a, <qr type> *a qr b, <field name> a field):

3.10. CLASSES Jason Evans 201

Input(s):
a qr a: Pointer to a qr.
a qr b: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Split a ring at a qr a and a qr b.

void qr remove(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Remove a qr from the ring.

qr foreach(<qr type> *a var, <qr type> *a qr, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Iterate through the qr, storing a pointer to each element in a var along the way.

qr reverse foreach(<qr type> *a var, <qr type> *a qr, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Iterate through the qr in the reverse direction, storing a pointer to each element
in a var along the way.

3.10.33 qs

The qs macros implement operations on a stack. The type of the stack elements and which field of
the elements to use are determined by arguments that are passed into the macros. The macros are
optimized for speed and code size, which means that there is minimal error checking built in. As a
result, care must be taken to assure that these macros are used as intended, or strange things can
happen.

202 Onyx Manual Chapter 3

API

qs head(<qs type> a type):

Input(s):
a type: Data type for the qs.

Output(s): A data structure that can be used as a qs head.
Exception(s): None.
Description: Generate code for a qs head data structure.

qs head initializer(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s): None.
Exception(s): None.
Description: Statically initialize a qs head.

qs elm(<qs elm type> a type):

Input(s):
a type: Data type for the qs elements.

Output(s): A data structure that can be used as a qs element.
Exception(s): None.
Description: Generate code for a qs element data structure.

void qs new(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s): None.
Exception(s): None.
Description: Constructor.

void qs elm new(<qs elm type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a qs element.
a field: Field within the qs elements to use.

Output(s): None.
Exception(s): None.
Description: Constructor.

<qs type> * qs top(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s):
retval: Pointer to the top element in the qs.

3.10. CLASSES Jason Evans 203

Exception(s): None.

Description: Return a pointer to the top element in the qs.

<qs type> * qs down(<qs elm type> *a elm, <field name> a field):

Input(s):
a elm: Pointer to a qs element.
a field: Field within the qs elements to use.

Output(s):
retval:

non-NULL: Pointer to the next element in the qs.
NULL: a elm is the bottom element in the qs.

Exception(s): None.

Description: Return a pointer to the next element in the qs below a elm.

void qs push(<qs type> *a head, <qs elm type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a qs head.
a elm: Pointer to an element.
a field: Field within the qs elements to use.

Output(s): None.

Exception(s): None.

Description: Push a elm onto the qs.

void qs under push(<qs elm type> *a qselm, <qs elm type> *a elm, <field name> a field):

Input(s):
a qselm: Pointer to a qs element.
a elm: Pointer to an element.
a field: Field within the qs elements to use.

Output(s): None.

Exception(s): None.

Description: Push a elm under a qselm.

void qs pop(<qs type> *a head, <field name> a field):

Input(s):
a head: Pointer to a qs head.
a field: Field within the qs elements to use.

Output(s): None.

Exception(s): None.

Description: Pop an element off of a head.

qs foreach(<qs elm type> *a var, <qs type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.

204 Onyx Manual Chapter 3

a head: Pointer to a qs head.
a field: Field within the qs elements to use.

Output(s): None.
Exception(s): None.
Description: Iterate down the qs, storing a pointer to each element in a var along the way.

3.10.34 thd

The thd class implements a wrapper around the system threads library (POSIX threads only, so far). In
most regards, this is a thin wrapper around the normal threads functionality provided by the system,
but some extra information is kept in order to allow implmentation of thread suspension/resumption,
“critical sections”, and “single sections”.

In most cases, the additional functionality is implemented with the aid of signals. As a result, system
calls may be interrupted by signals. The system calls will be automaticalaly restarted if they have
made no progress at the time of interruption, but will return a partial result otherwise. Therefore, if
any of the additional functionality is utilized, the application must be careful to handle partial system
call results. At least the following system calls can be interrupted: read(), write(), sendto(), recvfrom(),
sendmsg(), recvmsg(), ioctl(), and wait(). See the system documentation for additional information.

API

cw thd t * thd new(void *(*a start func)(void *), void *a arg, cw bool t a suspendible):

Input(s):
a start func: Pointer to a start function.
a arg: Argument passed to a start func().
a suspendible:

FALSE: Not suspendible.
TRUE: Suspendible.

Output(s):
retval: Pointer to a thd.

Exception(s):
CW ONYXX OOM.

Description: Constructor (creates a new thread).

void thd delete(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.
Exception(s): None.
Description: Destructor.

void * thd join(cw thd t *a thd):

Input(s):

3.10. CLASSES Jason Evans 205

a thd: Pointer to a thd.

Output(s):
retval: Return value from thread entry function.

Exception(s): None.

Description: Join (wait for) the thread associated with a thd.

cw thd t * thd self(void):

Input(s): None.

Output(s):
retval: Pointer to the calling thread’s thd structure.

Exception(s): None.

Description: Return a pointer to the thd structure that corresponds to the calling thread.

void thd yield(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Give up the rest of the calling thread’s time slice.

int thd sigmask(int a how, const sigset t *a set, sigset t *r oset):

Input(s):
a how:

SIG BLOCK: Block signals in a set.
SIG UNBLOCK: Unblock signals in a set.
SIG SETMASK: Set signal mask to a set.

a set: Pointer to a signal set.
r oset:

non-NULL: Pointer space to store the old signal mask.
NULL: Ignored.

Output(s):
retval: Always zero, unless the arguments are invalid.
*r oset: Old signal set.

Exception(s): None.

Description: Set the calling thread’s signal mask.

void thd crit enter(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Enter a critical region where the calling thread may not be suspended by
thd suspend(), thd trysuspend(), or thd single enter().

void thd crit leave(void):

206 Onyx Manual Chapter 3

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Leave a critical section; the calling thread may once again be suspended.

void thd single enter(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Enter a critical region where all other suspendible threads must be suspended.

void thd single leave(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Leave a critical section where all other threads must be suspended. All threads
that were suspended in thd single enter() are resumed.

void thd suspend(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.

Exception(s): None.

Description: Suspend a thd.

cw bool t thd trysuspend(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s):
retval:

FALSE: Success.
TRUE: Failure.

Exception(s): None.

Description: Try to suspend a thd, but fail if it is in a critical section.

void thd resume(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.

Exception(s): None.

Description: Resume (make runnable) a thd.

3.10. CLASSES Jason Evans 207

3.10.35 tsd

The tsd class implements thread-specific data. A tsd instance can be created, then any number of
threads can use that same instance to store and retrieve a thread-specific pointer to data.

API

void tsd new(cw tsd t *a tsd, void (*a func)(void *)):

Input(s):
a tsd: Pointer to space for a tsd.
a func: Pointer to a cleanup function, or NULL.

Output(s): None.

Exception(s): None.

Description: Constructor.

void tsd delete(cw tsd t *a tsd):

Input(s):
a tsd: Pointer to a tsd.

Output(s): None.

Exception(s): None.

Description: Destructor.

void * tsd get(cw tsd t *a tsd):

Input(s):
a tsd: Pointer to a tsd.

Output(s):
retval: Pointer to thread-specific data.

Exception(s): None.

Description: Get thread-specific data pointer.

tsd set(cw tsd t *a tsd, void *a val):

Input(s):
a tsd: Pointer to a tsd.
a val: Pointer to thread-specific data.

Output(s): None.

Exception(s): None.

Description: Set thread-specific data pointer.

208 Onyx Manual Chapter 3

3.10.36 xep

The xep class implements exception handling, with support for xep try, xep catch(), and xep finally
blocks. Minimal use must include at least:

xep_begin();
xep_try {

/* Code that might throw an exception. */
}
xep_end();

A more complete skeleton looks like:

xep_begin();
xep_try {

/* Code that might throw an exception. */
}
xep_catch(SOME_EXCEPTION) {

/* Handle exception... */
xep_handled();

}
xep_catch(ANOTHER_EXCEPTION)
xep_mcatch(YET_ANOTHER) {

/* React to exception, but propagate... */
}
xep_acatch {

/* Handle all exceptions not explicitly handled above... */
xep_handled();

}
xep_finally {

/* Execute after everything else. */
}
xep_end();

Note that there is some serious cpp macro magic behind the xep interface, and as such, if usage deviates
significantly from the above templates, compiler errors may result.

Exception values are of type cw xepv t. 0 to 127 are reserved by libonyx, and other ranges may be
reserved by other libraries. See their documentation for details.

An exception is not implicitly handled if an exception handler is executed for that exception. Instead,
xep handled() must be manually called to avoid propagating the exception up the handler chain.

It is not legal to return from a function within an exception handling code block; doing so will corrupt
the exception handler chain.

API

void xep begin(void):

Input(s): None.

3.10. CLASSES Jason Evans 209

Output(s): None.

Exception(s): None.

Description: Begin an exception handling code block.

void xep end(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: End an exception handling block.

xep try . . . :

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Begin a block of code that is to be executed, with the possibility that an
exception might be thrown.

xep catch(cw xepv t a xepv) . . . :

Input(s):
a xepv: Exception number.

Output(s): None.

Exception(s): None.

Description: Begin a block of code that catches an exception. The exception is not considered
handled unless xep handled() is called.

xep mcatch(cw xepv t a xepv) . . . :

Input(s):
a xepv: Exception number.

Output(s): None.

Exception(s): None.

Description: Begin a block of code that catches an exception. Must immediately follow a
xep catch() call. This interface is used for the case where more than one exception type is to
be handled by the same code block. The exception is not considered handled unless
xep handled() is called.

xep acatch . . . :

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Begin a block of code that catches all exceptions not explicitly caught by
xep catch() and xep mcatch() blocks. There may only be one xep acatch block within a
try/catch block. The exception is not considered handled unless xep handled() is called.

xep finally . . . :

210 Onyx Manual Chapter 3

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Begin a block of code that is executed if no exceptions are thrown in the

exception handling code block or if an exception handler is executed.

cw xepv t xep value(void):

Input(s): None.
Output(s):

retval: Value of the current exception being handled.
Exception(s): None.
Description: Return the value of the current exception being handled.

void xep throw e(cw xepv t a xepv, const char *a filename, cw uint32 t a line num):
void xep throw(cw xepv t a xepv):

Input(s):
a xepv: Exception number to throw.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s):

a xepv.
Description: Throw an exception.

void xep retry(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Implicitly handle the current exception and retry the xep try code block.

void xep handled(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Mark the current exception as handled.

3.11 Dictionaries

3.11.1 gcdict

The gcdict functions implement the operators contained in gcdict . Only the C API is documented
here; see Section 1.8.4 for operator semantics.

3.11. DICTIONARIES Jason Evans 211

API

void gcdict active(cw nxo t *a thread):
void gcdict collect(cw nxo t *a thread):
void gcdict period(cw nxo t *a thread):
void gcdict setactive(cw nxo t *a thread):
void gcdict setperiod(cw nxo t *a thread):
void gcdict setthreshold(cw nxo t *a thread):
void gcdict stats(cw nxo t *a thread):
void gcdict threshold(cw nxo t *a thread):

Input(s):
a thread: Pointer to a thread.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: C interfaces to Onyx operators that control garbage collection.

3.11.2 systemdict

The systemdict functions implement the operators contained in systemdict . Only the C API is docu-
mented here; see Section 1.8.9 for operator semantics.

API

void systemdict abs(cw nxo t *a thread):
void systemdict add(cw nxo t *a thread):
void systemdict and(cw nxo t *a thread):
void systemdict array(cw nxo t *a thread):
void systemdict atan(cw nxo t *a thread):
void systemdict begin(cw nxo t *a thread):
void systemdict bind(cw nxo t *a thread):
void systemdict broadcast(cw nxo t *a thread):
void systemdict bytesavailable(cw nxo t *a thread):
void systemdict catenate(cw nxo t *a thread):
void systemdict cd(cw nxo t *a thread):
void systemdict ceiling(cw nxo t *a thread):
void systemdict chmod(cw nxo t *a thread):
void systemdict chown(cw nxo t *a thread):
void systemdict clear(cw nxo t *a thread):
void systemdict cleardstack(cw nxo t *a thread):
void systemdict cleartomark(cw nxo t *a thread):
void systemdict close(cw nxo t *a thread):
void systemdict condition(cw nxo t *a thread):
void systemdict copy(cw nxo t *a thread):
void systemdict cos(cw nxo t *a thread):
void systemdict count(cw nxo t *a thread):
void systemdict countdstack(cw nxo t *a thread):

212 Onyx Manual Chapter 3

void systemdict countestack(cw nxo t *a thread):
void systemdict counttomark(cw nxo t *a thread):
void systemdict currentdict(cw nxo t *a thread):
void systemdict currentlocking(cw nxo t *a thread):
void systemdict cvds(cw nxo t *a thread):
void systemdict cve(cw nxo t *a thread):
void systemdict cves(cw nxo t *a thread):
void systemdict cvlit(cw nxo t *a thread):
void systemdict cvn(cw nxo t *a thread):
void systemdict cvrs(cw nxo t *a thread):
void systemdict cvs(cw nxo t *a thread):
void systemdict cvx(cw nxo t *a thread):
void systemdict def(cw nxo t *a thread):
void systemdict detach(cw nxo t *a thread):
void systemdict dict(cw nxo t *a thread):
void systemdict dirforeach(cw nxo t *a thread):
void systemdict div(cw nxo t *a thread):
void systemdict dstack(cw nxo t *a thread):
void systemdict dup(cw nxo t *a thread):
void systemdict echeck(cw nxo t *a thread):
void systemdict egid(cw nxo t *a thread):
void systemdict end(cw nxo t *a thread):
void systemdict eq(cw nxo t *a thread):
void systemdict estack(cw nxo t *a thread):
void systemdict euid(cw nxo t *a thread):
void systemdict eval(cw nxo t *a thread):
void systemdict exch(cw nxo t *a thread):
void systemdict exec(cw nxo t *a thread):
void systemdict exit(cw nxo t *a thread):
void systemdict exp(cw nxo t *a thread):
void systemdict floor(cw nxo t *a thread):
void systemdict flush(cw nxo t *a thread):
void systemdict flushfile(cw nxo t *a thread):
void systemdict for(cw nxo t *a thread):
void systemdict foreach(cw nxo t *a thread):
void systemdict fork(cw nxo t *a thread):
void systemdict ge(cw nxo t *a thread):
void systemdict get(cw nxo t *a thread):
void systemdict getinterval(cw nxo t *a thread):
void systemdict gid(cw nxo t *a thread):
void systemdict gt(cw nxo t *a thread):
void systemdict hooktag(cw nxo t *a thread):
void systemdict idiv(cw nxo t *a thread):
void systemdict if(cw nxo t *a thread):
void systemdict ifelse(cw nxo t *a thread):
void systemdict index(cw nxo t *a thread):
void systemdict iobuf(cw nxo t *a thread):
void systemdict join(cw nxo t *a thread):
void systemdict known(cw nxo t *a thread):
void systemdict lcheck(cw nxo t *a thread):
void systemdict le(cw nxo t *a thread):

3.11. DICTIONARIES Jason Evans 213

void systemdict length(cw nxo t *a thread):
void systemdict link(cw nxo t *a thread):
void systemdict ln(cw nxo t *a thread):
void systemdict load(cw nxo t *a thread):
void systemdict lock(cw nxo t *a thread):
void systemdict log(cw nxo t *a thread):
void systemdict loop(cw nxo t *a thread):
void systemdict lt(cw nxo t *a thread):
void systemdict mark(cw nxo t *a thread):
void systemdict mkdir(cw nxo t *a thread):
void systemdict mod(cw nxo t *a thread):
void systemdict monitor(cw nxo t *a thread):
void systemdict mul(cw nxo t *a thread):
void systemdict mutex(cw nxo t *a thread):
void systemdict ndup(cw nxo t *a thread):
void systemdict ne(cw nxo t *a thread):
void systemdict neg(cw nxo t *a thread):
void systemdict not(cw nxo t *a thread):
void systemdict npop(cw nxo t *a thread):
void systemdict nsleep(cw nxo t *a thread):
void systemdict open(cw nxo t *a thread):
void systemdict or(cw nxo t *a thread):
void systemdict ostack(cw nxo t *a thread):
void systemdict pid(cw nxo t *a thread):
void systemdict pop(cw nxo t *a thread):
void systemdict ppid(cw nxo t *a thread):
void systemdict print(cw nxo t *a thread):
void systemdict put(cw nxo t *a thread):
void systemdict putinterval(cw nxo t *a thread):
void systemdict pwd(cw nxo t *a thread):
void systemdict quit(cw nxo t *a thread):
void systemdict rand(cw nxo t *a thread):
void systemdict read(cw nxo t *a thread):
void systemdict readline(cw nxo t *a thread):
void systemdict realtime(cw nxo t *a thread):
void systemdict rename(cw nxo t *a thread):
void systemdict repeat(cw nxo t *a thread):
void systemdict rmdir(cw nxo t *a thread):
void systemdict roll(cw nxo t *a thread):
void systemdict round(cw nxo t *a thread):
void systemdict sclear(cw nxo t *a thread):
void systemdict scleartomark(cw nxo t *a thread):
void systemdict scount(cw nxo t *a thread):
void systemdict scounttomark(cw nxo t *a thread):
void systemdict sdup(cw nxo t *a thread):
void systemdict seek(cw nxo t *a thread):
void systemdict self(cw nxo t *a thread):
void systemdict setegid(cw nxo t *a thread):
void systemdict setenv(cw nxo t *a thread):
void systemdict seteuid(cw nxo t *a thread):
void systemdict setgid(cw nxo t *a thread):

214 Onyx Manual Chapter 3

void systemdict setiobuf(cw nxo t *a thread):
void systemdict setlocking(cw nxo t *a thread):
void systemdict setuid(cw nxo t *a thread):
void systemdict sexch(cw nxo t *a thread):
void systemdict shift(cw nxo t *a thread):
void systemdict signal(cw nxo t *a thread):
void systemdict sin(cw nxo t *a thread):
void systemdict sindex(cw nxo t *a thread):
void systemdict spop(cw nxo t *a thread):
void systemdict sprint(cw nxo t *a thread):
void systemdict spush(cw nxo t *a thread):
void systemdict sqrt(cw nxo t *a thread):
void systemdict srand(cw nxo t *a thread):
void systemdict sroll(cw nxo t *a thread):
void systemdict stack(cw nxo t *a thread):
void systemdict start(cw nxo t *a thread):
void systemdict status(cw nxo t *a thread):
void systemdict stderr(cw nxo t *a thread):
void systemdict stdin(cw nxo t *a thread):
void systemdict stdout(cw nxo t *a thread):
void systemdict stop(cw nxo t *a thread):
void systemdict stopped(cw nxo t *a thread):
void systemdict string(cw nxo t *a thread):
void systemdict sub(cw nxo t *a thread):
void systemdict sym rp(cw nxo t *a thread) (“)”):
void systemdict sym gt(cw nxo t *a thread) (“>”):
void systemdict sym rb(cw nxo t *a thread) (“]”):
void systemdict symlink(cw nxo t *a thread):
void systemdict tell(cw nxo t *a thread):
void systemdict test(cw nxo t *a thread):
void systemdict thread(cw nxo t *a thread):
void systemdict timedwait(cw nxo t *a thread):
void systemdict token(cw nxo t *a thread):
void systemdict trunc(cw nxo t *a thread):
void systemdict truncate(cw nxo t *a thread):
void systemdict trylock(cw nxo t *a thread):
void systemdict type(cw nxo t *a thread):
void systemdict uid(cw nxo t *a thread):
void systemdict undef(cw nxo t *a thread):
void systemdict unlink(cw nxo t *a thread):
void systemdict unlock(cw nxo t *a thread):
void systemdict unsetenv(cw nxo t *a thread):
void systemdict wait(cw nxo t *a thread):
void systemdict waitpid(cw nxo t *a thread):
void systemdict where(cw nxo t *a thread):
void systemdict write(cw nxo t *a thread):
void systemdict xcheck(cw nxo t *a thread):
void systemdict xor(cw nxo t *a thread):
void systemdict yield(cw nxo t *a thread):

Input(s):

3.11. DICTIONARIES Jason Evans 215

a thread: Pointer to a thread.
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: C interfaces to onyx operators.

Index

!#, 47
#!, 47
(, 47
), 48
<, 48
>, 48
[, 49
], 49

abs, 49
active, 18
add, 50
and, 50
argv, 51
array, 51
arraytype, 24, 32
atan, 51

begin, 52
bind, 52
booleantype, 24, 32
broadcast, 53
bytesavailable, 53

catenate, 53
cd, 54
ceiling, 54
ch, 139
ch count(), 140
ch delete(), 140
ch direct hash(), 142
ch direct key comp(), 143
ch get iterate(), 141
ch insert(), 140
ch new(), 140
ch remove(), 141
ch remove iterate(), 142
ch search(), 141
ch string hash(), 142
ch string key comp(), 143
chmod, 55
chown, 55
clear, 56

cleardstack, 56
cleartomark, 57
close, 57
cnd, 143
cnd broadcast(), 144
cnd delete(), 143
cnd new(), 143
cnd signal(), 144
cnd timedwait(), 144
cnd wait(), 144
collect, 18
column, 12
condition, 57
conditiontype, 25, 33
copy, 58
cos, 58
count, 59
countdstack, 59
countestack, 59
counttomark, 60
currentdict, 60
currenterror, 128
currentlocking, 60
cvds, 61
cve, 61
cves, 61
cvlit, 62
cvn, 62
cvrs, 62
cvs, 63
cvx, 63
cw assert(), 138
cw calloc(), 149
CW CH TABLE2SIZEOF(), 139
cw check ptr(), 138
cw error(), 138
cw free(), 150
cw htonq(), 139
cw malloc(), 149
cw not reached(), 138
cw ntohq(), 139
cw nxo file delete t(), 170

217

218 Onyx Manual INDEX

cw nxo file read t(), 169
cw nxo file ref iter t(), 170
cw nxo file write t(), 169
cw nxo hook delete t(), 175
cw nxo hook eval t(), 175
cw nxo hook ref iter t(), 175
cw onyx code(), 138
cw opaque alloc t(), 137
cw opaque dealloc t(), 137
cw opaque realloc t(), 137
cw realloc(), 149

dch, 144
dch count(), 145
dch delete(), 145
dch get iterate(), 146
dch insert(), 145
dch new(), 145
dch remove(), 146
dch remove iterate(), 147
dch search(), 146
def, 64
detach, 64
dict, 64
dicttype, 25, 33
die, 65
dirforeach, 65
div, 66
dstack, 13, 66
dup, 66

echeck, 67
egid, 67
end, 67
envdict, 68
eq, 68
errordict, 128
errorname, 13
estack, 14, 69
euid, 69
eval, 69
exch, 70
exec, 70
exit, 70
exp, 71

false, 71
filetype, 25, 34
finotype, 26, 34
floor, 71
flush, 72
flushfile, 72

for, 72
foreach, 73
fork, 74

gcdict, 210
gcdict, 74
gcdict active(), 211
gcdict collect(), 211
gcdict period(), 211
gcdict setactive(), 211
gcdict setperiod(), 211
gcdict setthreshold(), 211
gcdict stats(), 211
gcdict threshold(), 211
ge, 75
get, 75
getinterval, 76
gid, 76
globaldict, 77
gt, 77

handleerror, 16
hooktag, 77
hooktype, 26, 34

idiv, 78
if, 78
ifelse, 78
index, 79
integertype, 26, 35
iobuf, 79
istack, 14, 80

join, 80

known, 80

lcheck, 81
le, 81
length, 82
libonyx init(), 136
libonyx shutdown(), 137
line, 15
link, 82
ln, 83
load, 83
lock, 83
log, 84
loop, 84
lt, 84

mark, 85
marktype, 27, 35

INDEX Jason Evans 219

mb, 147
mb write(), 147
mem, 148
mem calloc(), 149
mem calloc e(), 149
mem delete(), 148
mem free(), 150
mem free e(), 150
mem malloc(), 149
mem malloc e(), 149
mem new(), 148
mem realloc(), 149
mem realloc e(), 149
mkdir, 85
mod, 86
modload, 86
monitor, 87
mpath post, 21
mpath pre, 22
mq, 150
mq delete(), 150
mq get(), 151
mq get start(), 152
mq get stop(), 152
mq new(), 150
mq put(), 151
mq put start(), 152
mq put stop(), 152
mq timedget(), 151
mq tryget(), 151
mrequire, 87
mtx, 153
mtx delete(), 153
mtx lock(), 153
mtx new(), 153
mtx trylock(), 153
mtx unlock(), 154
mul, 88
mutex, 88
mutextype, 27, 36

nametype, 28, 36
ndup, 88
ne, 89
neg, 90
newerror, 14
not, 90
npop, 90
nsleep, 91
null, 91
nulltype, 28, 37

nx, 154
nx delete(), 154
nx envdict get(), 155
nx globaldict get(), 155
nx new(), 154
nx nxa get(), 154
nx stderr get(), 155
nx stdin get(), 155
nx stdout get(), 155
nx systemdict get(), 155
nxa, 156
nxa active get(), 157
nxa active set(), 157
nxa collect(), 157
nxa dump(), 157
nxa free(), 157
nxa free e(), 157
nxa gcdict get(), 160
nxa malloc(), 156
nxa malloc e(), 156
nxa nx get(), 160
nxa period get(), 158
nxa period set(), 158
nxa malloc(), 156
nxa realloc e(), 156
nxa stats get(), 159
nxa threshold get(), 158
nxa threshold set(), 158
nxn, 160
nxn len(), 160
nxn str(), 160
nxo, 161
nxo array, 164
nxo array copy(), 164
nxo array el get(), 165
nxo array el set(), 165
nxo array len get(), 164
nxo array new(), 164
nxo array subarray new(), 164
nxo attr get(), 163
nxo attr set(), 163
nxo boolean, 165
nxo boolean get(), 165
nxo boolean new(), 165
nxo boolean set(), 166
nxo compare(), 162
nxo condition, 166
nxo condition broadcast(), 166
nxo condition new(), 166
nxo condition signal(), 166
nxo condition timedwait(), 167

220 Onyx Manual INDEX

nxo condition wait(), 166
nxo dict, 167
nxo dict copy(), 167
nxo dict count(), 168
nxo dict def(), 168
nxo dict iterate(), 169
nxo dict lookup(), 168
nxo dict new(), 167
nxo dict undef(), 168
nxo dup(), 162
nxo file, 169
nxo file buffer count(), 174
nxo file buffer flush(), 174
nxo file buffer size get(), 174
nxo file buffer size set(), 174
nxo file close(), 171
nxo file fd get(), 172
nxo file fd wrap(), 170
nxo file new(), 170
nxo file open(), 171
nxo file position get(), 173
nxo file position set(), 173
nxo file read(), 172
nxo file readline(), 172
nxo file synthetic(), 171
nxo file truncate(), 173
nxo file write(), 173
nxo fino, 175
nxo fino new(), 175
nxo hook, 175
nxo hook data get(), 176
nxo hook data set(), 176
nxo hook eval(), 177
nxo hook new(), 176
nxo hook tag get(), 176
nxo integer, 177
nxo integer get(), 177
nxo integer new(), 177
nxo integer set(), 177
nxo lcheck(), 163
nxo mark, 178
nxo mark new(), 178
nxo mutex, 178
nxo mutex lock(), 178
nxo mutex new(), 178
nxo mutex trylock(), 178
nxo mutex unlock(), 179
nxo name, 179
nxo name len get(), 179
nxo name new(), 179
nxo name str get(), 179

nxo no, 180
nxo no new(), 180
nxo null, 180
nxo null new(), 180
nxo nxoe get(), 163
nxo operator, 180
nxo operator f(), 181
nxo operator new(), 181
nxo pmark, 181
nxo pmark new(), 181
nxo real, 181
nxo real get(), 182
nxo real new(), 181
nxo real set(), 182
nxo stack, 182
nxo stack copy(), 182
nxo stack count(), 183
nxo stack down get(), 184
nxo stack exch(), 184
nxo stack get(), 184
nxo stack new(), 182
nxo stack nget(), 184
nxo stack npop(), 183
nxo stack pop(), 183
nxo stack push(), 183
nxo stack roll(), 185
nxo stack under push(), 183
nxo string, 185
nxo string copy(), 186
nxo string cstring(), 186
nxo string el get(), 186
nxo string el set(), 187
nxo string get(), 187
nxo string len get(), 186
nxo string lock(), 187
nxo string new(), 185
nxo string set(), 187
nxo string substring new(), 185
nxo string unlock(), 187
nxo thread, 188
nxo thread currenterror get(), 193
nxo thread currentlocking(), 192
nxo thread deferred(), 190
nxo thread detach(), 189
nxo thread dstack get(), 193
nxo thread dstack search(), 192
nxo thread errordict get(), 193
nxo thread estack get(), 194
nxo thread exit(), 189
nxo thread flush(), 191
nxo thread interpret(), 191

INDEX Jason Evans 221

nxo thread istack get(), 194
nxo thread join(), 189
nxo thread loop(), 191
nxo thread nerror(), 191
nxo thread new(), 189
nxo thread nx get(), 192
nxo thread ostack get(), 193
nxo thread reset(), 190
nxo thread serror(), 192
nxo thread setlocking(), 192
nxo thread start(), 189
nxo thread state(), 190
nxo thread stderr get(), 195
nxo thread stdin get(), 194
nxo thread stdout get(), 194
nxo thread thread(), 189
nxo thread tstack get(), 194
nxo thread userdict get(), 193
nxo threadp delete(), 188
nxo threadp new(), 188
nxo threadp position get(), 188
nxo threadp position set(), 188
nxo type get(), 162

onyxdict, 91
open, 92
operatortype, 28, 37
or, 92
ostack, 16, 92
output, 93
outputs, 93
outputsdict, 94

period, 19
pid, 94
pmarktype, 29, 38
pop, 94
ppid, 95
print, 95
product, 95
pstack, 96
put, 96
putinterval, 96
pwd, 97

ql, 195
ql after insert(), 197
ql before insert(), 197
ql elm(), 195
ql elm new(), 196
ql first(), 196
ql foreach(), 198

ql head(), 195
ql head initializer(), 195
ql head insert(), 197
ql head remove(), 198
ql last(), 196
ql new(), 196
ql next(), 196
ql prev(), 197
ql remove(), 198
ql reverse foreach(), 199
ql tail insert(), 198
ql tail remove(), 198
qr, 199
qr(), 199
qr after insert(), 200
qr before insert(), 200
qr foreach(), 201
qr meld(), 200
qr new(), 199
qr next(), 199
qr prev(), 200
qr remove(), 201
qr reverse foreach(), 201
qr split(), 200
qs, 201
qs down(), 203
qs elm(), 202
qs elm new(), 202
qs foreach(), 203
qs head(), 202
qs head initializer(), 202
qs new(), 202
qs pop(), 203
qs push(), 203
qs top(), 202
qs under push(), 203
quit, 97

rand, 98
read, 98
readline, 98
realtime, 99
realtype, 29, 38
rename, 99
repeat, 100
require, 100
rmdir, 101
roll, 101
round, 102
rpath post, 22
rpath pre, 22

222 Onyx Manual INDEX

sclear, 102
scleartomark, 102
scount, 103
scounttomark, 103
sdup, 103
search, 104
seek, 104
self, 105
setactive, 19
setegid, 105
setenv, 105
seteuid, 106
setgid, 106
setiobuf, 107
setlocking, 107
setperiod, 19
setthreshold, 20
setuid, 107
sexch, 108
shift, 108
signal, 108
sin, 109
sindex, 109
spop, 109
sprint, 110
sprints, 110
sprintsdict, 111
spush, 111
sqrt, 111
srand, 112
sroll, 112
stack, 112
stacktype, 30, 38
start, 113
stats, 20
status, 113
stderr, 114
stdin, 114
stdout, 114
stop, 17, 114
stopped, 115
string, 115
stringtype, 30, 39
sub, 115
symlink, 116
system, 116
systemdict, 211
systemdict abs(), 211
systemdict add(), 211
systemdict and(), 211
systemdict array(), 211

systemdict atan(), 211
systemdict begin(), 211
systemdict bind(), 211
systemdict broadcast(), 211
systemdict bytesavailable(), 211
systemdict catenate(), 211
systemdict cd(), 211
systemdict ceiling(), 211
systemdict chmod(), 211
systemdict chown(), 211
systemdict clear(), 211
systemdict cleardstack(), 211
systemdict cleartomark(), 211
systemdict close(), 211
systemdict condition(), 211
systemdict copy(), 211
systemdict cos(), 211
systemdict count(), 211
systemdict countdstack(), 211
systemdict countestack(), 211
systemdict counttomark(), 212
systemdict currentdict(), 212
systemdict currentlocking(), 212
systemdict cvds(), 212
systemdict cve(), 212
systemdict cves(), 212
systemdict cvlit(), 212
systemdict cvn(), 212
systemdict cvrs(), 212
systemdict cvs(), 212
systemdict cvx(), 212
systemdict def(), 212
systemdict detach(), 212
systemdict dict(), 212
systemdict dirforeach(), 212
systemdict div(), 212
systemdict dstack(), 212
systemdict dup(), 212
systemdict echeck(), 212
systemdict egid(), 212
systemdict end(), 212
systemdict eq(), 212
systemdict estack(), 212
systemdict euid(), 212
systemdict eval(), 212
systemdict exch(), 212
systemdict exec(), 212
systemdict exit(), 212
systemdict exp(), 212
systemdict floor(), 212
systemdict flush(), 212

INDEX Jason Evans 223

systemdict flushfile(), 212
systemdict for(), 212
systemdict foreach(), 212
systemdict fork(), 212
systemdict ge(), 212
systemdict get(), 212
systemdict getinterval(), 212
systemdict gid(), 212
systemdict gt(), 212
systemdict hooktag(), 212
systemdict idiv(), 212
systemdict if(), 212
systemdict ifelse(), 212
systemdict index(), 212
systemdict iobuf(), 212
systemdict join(), 212
systemdict known(), 212
systemdict lcheck(), 212
systemdict le(), 212
systemdict length(), 212
systemdict link(), 213
systemdict ln(), 213
systemdict load(), 213
systemdict lock(), 213
systemdict log(), 213
systemdict loop(), 213
systemdict lt(), 213
systemdict mark(), 213
systemdict mkdir(), 213
systemdict mod(), 213
systemdict monitor(), 213
systemdict mul(), 213
systemdict mutex(), 213
systemdict ndup(), 213
systemdict ne(), 213
systemdict neg(), 213
systemdict not(), 213
systemdict npop(), 213
systemdict nsleep(), 213
systemdict open(), 213
systemdict or(), 213
systemdict ostack(), 213
systemdict pid(), 213
systemdict pop(), 213
systemdict ppid(), 213
systemdict print(), 213
systemdict put(), 213
systemdict putinterval(), 213
systemdict pwd(), 213
systemdict quit(), 213
systemdict rand(), 213

systemdict read(), 213
systemdict readline(), 213
systemdict realtime(), 213
systemdict rename(), 213
systemdict repeat(), 213
systemdict rmdir(), 213
systemdict roll(), 213
systemdict round(), 213
systemdict sclear(), 213
systemdict scleartomark(), 213
systemdict scount(), 213
systemdict scounttomark(), 213
systemdict sdup(), 213
systemdict seek(), 213
systemdict self(), 213
systemdict setegid(), 213
systemdict setenv(), 213
systemdict seteuid(), 213
systemdict setgid(), 213
systemdict setiobuf(), 213
systemdict setlocking(), 214
systemdict setuid(), 214
systemdict sexch(), 214
systemdict shift(), 214
systemdict signal(), 214
systemdict sin(), 214
systemdict sindex(), 214
systemdict spop(), 214
systemdict sprint(), 214
systemdict spush(), 214
systemdict sqrt(), 214
systemdict srand(), 214
systemdict sroll(), 214
systemdict stack(), 214
systemdict start(), 214
systemdict status(), 214
systemdict stderr(), 214
systemdict stdin(), 214
systemdict stdout(), 214
systemdict stop(), 214
systemdict stopped(), 214
systemdict string(), 214
systemdict sub(), 214
systemdict sym gt(), 214
systemdict sym rb(), 214
systemdict sym rp(), 214
systemdict symlink(), 214
systemdict tell(), 214
systemdict test(), 214
systemdict thread(), 214
systemdict timedwait(), 214

224 Onyx Manual INDEX

systemdict token(), 214
systemdict trunc(), 214
systemdict truncate(), 214
systemdict trylock(), 214
systemdict type(), 214
systemdict uid(), 214
systemdict undef(), 214
systemdict unlink(), 214
systemdict unlock(), 214
systemdict unsetenv(), 214
systemdict wait(), 214
systemdict waitpid(), 214
systemdict where(), 214
systemdict write(), 214
systemdict xcheck(), 214
systemdict xor(), 214
systemdict yield(), 214

tell, 117
test, 117
thd, 204
thd crit enter(), 205
thd crit leave(), 205
thd delete(), 204
thd join(), 204
thd new(), 204
thd resume(), 206
thd self(), 205
thd sigmask(), 205
thd single enter(), 206
thd single leave(), 206
thd suspend(), 206
thd trysuspend(), 206
thd yield(), 205
thread, 118
threaddict, 129
threadtype, 31, 39
threshold, 21
throw, 119
timedwait, 119
token, 120
true, 122
trunc, 121
truncate, 121
trylock, 122
tsd, 207
tsd delete(), 207
tsd get(), 207
tsd new(), 207
tsd set(), 207
type, 122

uid, 123
undef, 123
unlink, 124
unlock, 124
unsetenv, 124
userdict, 129

version, 125

wait, 125
waitpid, 126
where, 126
write, 126

xcheck, 127
xep, 208
xep acatch, 209
xep begin(), 208
xep catch(), 209
xep end(), 209
xep finally, 209
xep handled(), 210
xep mcatch(), 209
xep retry(), 210
xep throw(), 210
xep throw e(), 210
xep try, 209
xep value(), 210
xor, 127

yield, 128

	Onyx Language Reference
	Objects
	Syntax
	Stacks
	Interpreter recursion
	Error handling
	Threads
	Implicit synchronization
	Explicit synchronization

	Memory management
	Dictionary reference
	currenterror
	envdict
	errordict
	gcdict
	globaldict
	onyxdict
	outputsdict
	sprintsdict
	systemdict
	threaddict
	userdict

	The onyx program
	Usage
	Options

	Environment variables
	Language differences

	The libonyx library
	Compilation
	Types
	Global variables
	Threads
	Garbage collection
	Exceptions
	Integration issues
	Thread creation
	Restarted interrupted system calls

	Guidelines for writing extensions
	API
	Classes
	ch
	cnd
	dch
	mb
	mem
	mq
	mtx
	nx
	nxa
	nxn
	nxo
	nxo_array
	nxo_boolean
	nxo_condition
	nxo_dict
	nxo_file
	nxo_fino
	nxo_hook
	nxo_integer
	nxo_mark
	nxo_mutex
	nxo_name
	nxo_no
	nxo_null
	nxo_operator
	nxo_pmark
	nxo_real
	nxo_stack
	nxo_string
	nxo_thread
	ql
	qr
	qs
	thd
	tsd
	xep

	Dictionaries
	gcdict
	systemdict

	Index

