Hat Tutorial: Part 1

The ART Team
ART-team@cs.york.ac.uk

14 June 2002

1 Introduction

This tutorial is intended as a practical introduction to the Hat tools! for tracing
Haskell 98 programs. It introduces the basic ideas and explains with worked
examples how to use the tools.

Readers are encouraged to follow the tutorial using an installation of Hat.
This first version of the tutorial assumes hat (Version 2.00), nhc98 (Version
1.14), hmake (Version 3.05) and Linux, but it works equally well with ghc instead
of nhc98.

There are several Hat tools for examining traces, but the tutorial will con-
sider only the two used most: hat-trail and hat-observe. Even for these
tools not every option and command is discussed. For a more comprehensive
reference see the Hat User Manual.

The tutorial makes use of a small example program — at first a correctly
working version, later one with faults deliberately introduced. The intended
behaviour of the program is very simple: it should sort the letters of the word
‘program’ using insertion sort. The working program is given? in Figure 1.

2 Hat Compilation and Execution

To use Hat, the Haskell program to be traced must first be compiled with the
-hat option to hmake:

$ hmake -hat Insort

hat-trans Insort.hs

Wrote TInsort.hs

nhc98 -package hat -c -o TInsort.o TInsort.hs
nhc98 -package hat -o Insort TInsort.o

A program compiled for tracing can be executed just as if it had been com-
piled normally.

$ Insort
agmoprr

1 Available from http://www.cs.york.ac.uk/fp/hat/.
2The program may also be found in the file Insort.hs.

sort :: Ord a => [a] —-> [a]

sort [] = [

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <=y then x : y : ys
else y : insert x ys

main = putStrln (sort "program")

Figure 1: An insertion-sort program.

The main difference from untraced execution is that as Insort runs it records
a detailed trace of its computation in a file Insort.hat. The trace is a graph
of program expressions encoded in a special-purpose binary format.

Two further files Insort.hat.output and Insort.hat.bridge record the
output and associated references to the trace file.?

3 Hat-trail: Basics

After a program compiled for tracing has been run, creating a trace file, special-
purpose tools are used to examine the trace. The first such tool we shall look
at is hat-trail. The idea of hat-trail is to answer the question “‘Where did that
come from?’ in relation to values, expressions, outputs and error messages. The
immediate answer will be a parent application or name. More specifically:

e crrors: the application or name being reduced when the error occurred
(eg. head []1 might be the parent of a pattern-match failure);

e outputs: the monadic action that caused the output (eg. putStr "Hello
world" might the parent of a section of output text);

e non-value expressions: the application or name whose defining body con-
tains the expression of which the child is an instance (eg. append [1,2]
[3,4] might be the parent of append [2] [3,4]);

e values: as for non-value expressions, or the application of a predefined
function with the child as result (eg. [1,2]++[3,4] might be the parent
of [1,2,3,4]).

Parent expressions, and their subexpressions, may in turn have parents of their
own. The tool is called hat-trail because it displays trails of ancestral redexes,
tracing effects back to their causes.

Hat-trail sessions and requests

A hat-trail session can be started from a shell command line, or from within
existing sessions of hat tools. The immediate result of the shell command

3Trace files do not include program sources, but they do include references to program
sources; modifying source files could invalidate source links from traces.

$ hat-trail Insort

is the display of a terminal window with an upper part headed Output and a
lower part headed Trail:

Trail: ------ hat-trail 2.00 (:h for help, :q to quit) -------

The line of output is highlighted* because it is the current selection.

Requests in hat-trail are of two kinds. Some are single key presses with an
immediate response; others are command-lines starting with a colon and only
acted upon when completed by keying return. A basic repertoire of single-key
requests is:

return add to the trail the parent expression of the current selection

backspace remove the last addition to the trail display

arrow keys select (a) parts of the output generated by different actions, or
(b) subexpressions of expressions already on display

And a basic repertoire of command-line requests is:

:source show the source expression of which the current selection is an
instance
1quit finish this hat-trail session

It is enough to give initial letters, :s or :q, rather than :source or :quit.

Some Insort trails

To trace the output from the Insort computation, keying return alters the
Trail part of the display to:

Trail: —-——--——-——————————————- Insort.hs line: 10 col: 8 —————-
<- |putStrLn "agmoprr"

The source reference is to the corresponding application of putStrLn in the
program. Giving the command :s at this point creates a separate source window
showing the relevant extract of the program.®

Back to the Trail display. Keying return again:

Trail: -~ Insort.hs line: 10 col: 1 -—--——-
<—‘ putStrLn "agmoprr"

<{man]

That is, the line of output was produced by an application of putStrLn occurring
in the body of main.

So far, so good; but what about the sorting? How do we see where putStr’s
string argument "agmoprr" came from? By making that string the current
selection and requesting its parent:

4In the printed version of this tutorial, highlighted text or expressions are shown boxed;
the Hat tools actually use colour for highlighting.

5The only thing to do with a source extract is to look at it: tracing with Hat does not
involve annotating or otherwise modifying program sources.

backspace
right-arrow
right-arrow

removes main),
selects putStrLn),
selects "agmoprr"),

Py

return requests parent expression)
Trail: ——————————————————————- Insort.hs line: 7 col: 19 --——-
<- |insert ’p’ "agmorr" | if False‘

The string "agmoprr" is the result of inserting ’p’, the head of the string
"program", into the recursively sorted tail. More specifically, the string was
computed in the else-branch of the conditional by which insert is defined in
the recursive case (because ’p’ <= ’a’ is False).

And so we could continue. For example, following the trail of string argu-
ments:

<- insert ’p’ |"agmorr"| | if False
<- insert ’r’ |"agmor"| | if False
<- insert ’o’ | if False
<- insert ’g’ | if False
<- insert ’r’ | if False

<- insert ’a’ | if True

<- |insert ’m’ []‘

But let’s leave hat-trail for now.

:quit

4 Hat-observe: Basics

The idea of hat-observe is to answer the question ‘To which arguments, if any,
was that applied, and with what results?’, mainly in relation to a top-level
function. Answers take the form of a list of equational observations, showing for
each application of the function to distinct arguments what result was computed.
The user has the option to limit observations to particular patterns of arguments
or results, or to particular application contexts.

Hat-observe sessions and requests

A hat-observe session can be started from a shell command line, or from within
existing sessions of hat tools.

$ hat-observe Insort
hat-observe 2.00 (:h for help, :q to quit)

hat-observe>

In comparison with hat-trail, there is more emphasis on command-lines in hat-
observe, and the main user interface is a prompt-request-response cycle. Re-
quests are of two kinds. Some are observation queries in the form of application
patterns: the simplest observation query is just the name of a top-level function.
Others are command-lines, starting with a colon, similar to those of hat-trail.
A basic repertoire of command-line requests is

:info list the names of functions and other defined values that can be
observed, with application counts
:quit finish this hat-observe session

Again it is enough to give the initial letters, :i or :q.

Some Insort observations

A common way to begin a hat-observe session is with an :info request, followed
by initial observation of central functions.

hat-observe> :info

19 <= 21 insert 1 main 1 putStrLn 1 sort
hat-observe> sort

1 sort "program" = "agmoprr"

2 sort "rogram" = "agmorr"

3 sort "ogram" = "agmor"

4 sort "gram" = "agmr"

5 sort "ram" = "amr"

6 sort "am" = "am"

7 sort "m" = "m"

8 sort [1 =[]

Here the number of observations is small. Larger collections of obervations are
presented in blocks of ten (by default).

hat-observe> <=

’a’ <= 'm’ = True
’r’ <= ’3a’ = False
’g’ <= ’a’ = False
0’ <= ’a’ = False
’p’ <= ’a’ = False
’r’ <= ’m’ = False
’g’ <= ’m’ = True
0’ <= ’g’ = False
’r’ <= ’g’ = False
10 ’p’ <= ’g’ = False
—--more—-->

© 00 N O WN -

Keying return in response to ——more--> requests the next block of observations.
Alternatively, requests in the colon-command family can be given. Any other
line of input cuts short the list of reported observations in favour of a fresh
hat-observe> prompt.

—--more--> n
hat-observe>

Observing restricted patterns of applications

Viewing a block at a time is not the only way of handling what may be a large
number of applications. Obervations can also be restricted to applications in
which specific patterns of values occur as arguments or result, or to applications
in a specific context. The full syntax for obervation queries is

identifier pattern* [= pattern] [in identifier]

where the * indicates that there can be zero or more occurrences of an argument
pattern and the [...] indicate that the result pattern and context are optional.
Patterns in observation queries are simplified versions of constructor patterns
with _ as the only variable. Some examples for the Insort computation:

hat-observe> insert ’g’

1 insert ’g’ "amr" = "agmr"
2 insert ’g’ "mr" = "gmr"
hat-observe> insert _ _ = [_]
1 insert ’m’ [] = "m"

2 insert ’r’ [] = "r"
hat-observe> sort in main

1 sort "program" = "agmoprr"
hat-observe> sort in sort

1 sort "rogram" = "agmorr"

2 sort "ogram" = "agmor"

3 sort "gram" = "agmr"

4 sort "ram" = "amr"

5 sort "am" = "am"

6 SOI‘t llmll = Ilmll

7 sort [1 = []

Enough on hat-observe for now.

hat-observe> :quit

5 Tracing Faulty Programs

We have seen so far some of the ways in which Hat tools can be used to trace a
correctly working program. But a common and intended use for Hat is to trace
a faulty program with the aim of locating the source of the faults. A faulty
computation has one of three outcomes:

1. termination with a run-time error, or
2. termination with incorrect output, or
3. non-termination.

A variant of Insort given® in Figure 2 has three faults, each of which alone
would cause a different outcome, as indicated by comments. In the following
sections we shall apply the Hat tools to examine the faulty program, as if we
didn’t know in advance where the faults were.

6The program may also be found in the file BadInsort.hs.

sort :: Ord a => [a] -> [a]
-- FAULT (1): missing equation for [] argument

sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [al
insert x [] = [x]

insert x (y:ys) if x <=y

-— FAULT (2): y missing from result
then x : ys

-- FAULT (3): recursive call is same
else y : insert x (y:ys)

main = putStrLn (sort "program")

Figure 2: A faulty version of the insertion-sort program.

5.1 Tracing a Run-time Error
We compile the faulty program for tracing, then run it:
$ hmake -hat BadInsort
$ BadInsort
No match in pattern.
Two questions prompted by this error message are:
e What was the application that didn’t match?

e Where did that application come from?

Using hat-trail

Both questions can be answered by using hat-trail to trace the derivation of the
error.

$ hat-trail BadInsort

Error: ---------—--—- -
No match in pattern.

Keying return once to see the erroneous application, then again to see its parent
application:

Trail: -———--———-——-——--——- BadInsort.hs line: 3 col: 25 —-—————-

o [sore O
< [soze ']

This information can be supplemented by reference to the source program. With
sort [] selected, the :source command shows the site of the offending appli-
cation in the recursive equation for sort. If necessary the ancestry of the []
argument or the sort application could be traced back further”.

7In general, when tracing the origins of an application there are five choices: trace the
ancestry of the function, or of an argument, or of the application itself; alternatively look at

Using hat-observe

Although hat-trail is usually the first resort for tracing run-time errors, it is
instructive to see what happens if instead we try using hat-observe.

$ hat-observe BadInsort
hat-observe 2.00 (:h for help, :q to quit)

hat-observe> :info
7+0 insert 1 main 1 putStrLn 1+7 sort

What do the M+N counts for insert and sort mean? M is the number of ap-
plications that never got beyond a pattern-matching stage involving evaluation
of arguments; it N is the number of applications that were actually reduced to
an instance of the function body. Applications are only counted at all if their
results were demanded during the computation. Where a count is shown as a
single number, it is a count of applications actually reduced.

In the BadInsort computation, we see there are fewer obervations of insert
than there were in the correct Insort computation, and no observations at all
of <=. How can that be? What is happening to ordered insertion?

hat-observe> insert

insert ’p’ _|_ = _|_
insert ’r’ _|_ =
insert o’ _|_ =
insert ’g’ _|_ =
insert ’a’ _|_ =
insert ’m’ _|_ = _|_

O WN -

The symbol _|_ here indicates an undefined value. Reading the character ar-
guments vertically "program" seems to be misspelt: is there an observation
missing between 4 and 57 There are in fact two separate applications insert
’r? _|_ = _I|_, but duplicate observations are not listed (by default).

The insert observations explain the fall in application counts. In all the ob-
served applications, the list arguments are undefined. So neither of the defining
equations for insert is ever matched, there are no <= comparisons (as these oc-
cur only in the right-hand side of the second equation) and of course no recursive
calls.

Why are the insert arguments undefined? They should be the results of
sort applications.

hat-observe> sort

1 sort "program" = _|_
2 sort "rogram" = _|_
3 sort "ogram" = _|_
4 sort "gram" = _|_

5 sort "ram" = _|_

6 sort "am" = _|_

7 sort "m" = _|_

8 sort [1 = _I|_

the source context of the application, or at the source definition of the function

Observations 1 to 7 show applications of sort that reduced to applications of
insert, with the _| _ results already observed®. Observation 8 is the application
that does not reduce.

In short, the story so far from hat-observe is quite simple: everything is
undefined! What about the other two items in the info list, putStrLn and
main?

hat-observe> putStrLn
1 putStrln _|_ = {IO0}
hat-observe> main

1 main = {IO}

Hat uses symbols enclosed in braces, such as {I0} here, to indicate values that
cannot be shown more explicitly. These observations only confirm that the
program does compute an I/O action, but the output string is undefined.

5.2 Tracing a Non-terminating Computation
Suppose we correct the first fault, by restoring the equation

sort [] = []

and recompile. Now the result of running BadInsort is a non-terminating
computation, with an infinite string aaaaaaa... as output. It seems that
BadInsort has entered an infinite loop. The computation can be interrupted®
by keying control-C.

$ BadInsort
Program interrupted. (°C)
aaa$

Questions this time include:
e What parts of the program does the infinite loop involve?

e How did it come about in the first place?

Using hat-trail
The initial hat-trail display is:

Error: - ----------\-------\- --»\ . - - - - - - - 8 -\ - - .- -
Program interrupted. (°C)

DULPUL: ————————m
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa. . .

8This insight requires independent knowledge of the program, however, as hat-observe,
unlike hat-trail, is not concerned with relationships between applications.

9When non-termination is suspected, interrupt as quickly as possible to avoid working with
very large traces.

We have a choice: we can follow the trail back either from the point of interrup-
tion (the initial selection) or from the output (reached by down-arrow). In this
case, it makes little difference'?; either way we end up examining the endless
list of >a’s. Let’s select the output:

Output: ————
| aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa. . . |

Trail: --—-=————=——————- BadInsort.hs line: 7 col: 19 ——--——--—-
<- putStrLn I "aaaaaaaa..." |

<- ‘insert p’ (Ca’:l) | if False‘

Notice two further features of expression display:

e the ellipsis ... in the string argument to putStrLn indicates the tail-end
of a long string that has been pruned from the display '*;

e the symbol _ in the list argument to insert indicates an expression that
was never evaluated.

The parent application insert ’p’ (’a’:_) | if False gives several impor-
tant clues. It tells us that in the else-branch of the recursive case in the definition
of insert the argument’s head (here ’a’) is duplicated endlessly to generate
the result without ever demanding the argument’s tail (shown only as _). This
should be enough explanation to discover the fault if we didn’t already know it.

Using hat-observe

Once again, let’s also see what happens if we use hat-observe.

hat-observe> :info
78 <= 1+83 insert 1 main 1 putStrLln 8 sort

All the expected items are listed as observable. The abnormal counts for <=
and insert already give a strong clue where to look. But let’s first consider the
other functions. We know well enough from the overall output what main and
putStrLn are doing, but what about sort? Its application count is perfect, but
what can we glean from details of the arguments and results?

hat-observe> sort

1 sort "program" = "aaaaaaaaaa..."
2 sort "rogram" = ’a’:_

3 sort "ogram" = ’a’:_

4 sort "gram" = ’a’:_

5 sort "ram" = ’a’:_

6 sort "am" = "a"

7 sort "m" = "m"

8 sort [] = []

10However, the trace from point of interruption depends on the timing of the interrupt.
H1n other contexts where large expressions have to be pruned the symbol Bis used as a
place-holder for components.

10

Observations 1 to 5 tell a similar story to hat-trail: the tails of the recursively
computed lists are never demanded; at the outermost level, the head is repeated
endlessly. Observation 6 points to a problem other than non-termination, but
we shall ignore that for now. Observations 7 and 8 do not point to a problem
at all.

There is one further clue in these observations: the arguments decrease just
as expected, confirming that the recursive loop must be in insert.

hat-observe> insert

1 insert ’p’ (’a’:_) = "aaaaaaaaaa..."
2 insert ’r’ (Pa’:_) = ’a’:_

3 inmsert ‘o’ (’a’:.) = ’a’:_

4 insert ’g’ (Pa’:_) = ’a’:_

5 lnsert Ja) Ilmll = llall

6 insert ’m’ [] = "m"

searching ... (°C to interrupt)
{Interrupted}

Many more observations would eventually be reported because hat-observe lists
each observation that is distinct from those listed previously. When the compu-
tation is interrupted there are many different applications of the form insert
’p’ (’a’:_) in progress, each with results evaluated to a different extent.

But observation 1 is enough. As the tail of the argument is unevaluated,
the result would be the same whatever the tail. For example, it could be []; so
we know insert ’p’ "a" = "aaaa...". This specific and simple failing case
directs us to the fault in the definition of insert.

5.3 Tracing Wrong Output

Let’s now correct the recursive call from insert x (y:ys) to insert x ys,
recompile, then execute.

$ BadInsort
agop

Using hat-observe

Once again, we could reach first for hat-trail to trace the fault, but the availabil-
ity of a well-defined (but wrong) result also suggests a possible starting point
in hat-observe:

hat-observe> insert = "agop"

1 insert ’p’ "agor" = "agop"

Somehow, insertion loses the final element ’r’. Perhaps we’d like to see more
details of how this result is obtained — the relevant recursive calls, for example:

hat-observe> insert ’p’ _ in insert
1 lnsert Jp) Ilgorll = llgopll

2 insert ’p’ "
3 insert ’p’

or" = "Op"

Ilrll = Ilpll

Observation 3 makes it easy to discover the fault by inspection.

11

Using hat-trail

If we instead use hat-trail, the same application could be reached as follows. We
first request the parent of the output; unsurprisingly it is putStrLn "agop". We
then request the parent of the string argument "agop":

Qutput: ---—-----————————

Trail: - ——————————————- BadInsort.hs line: 10 col: 26 —-—————-
< putstrin
<- ‘insert ’p’ "agor" | if False‘

As in hat-observe, we see the insert application that loses the character *r’.

(To be continued.)

12

