Alex: A Lex for Haskell Programmers

Chris Dornan

29th September 1997

1 Introduction

The Alex package, like Lex, takes a description of tokens based on regular
expressions and generates a program module for scanning text efficiently. The
difference is that Alex generates Haskell modules rather than C/Ratfor source
files. Although Alex takes after Lex, it is intended for Haskell programmers and
so departs quite radically from Lex in some respects.

A sample specification is given in Figure 1. The first few lines between the %{
and %} provide a code scrap (some inlined Haskell code) to be placed in the
output. All such code fragments will be placed in order at the head of the
module with the Alex-generated tables appearing at the end.

The next two lines define the ~d and ~1 macros for use in the token definitions.

The "tokens_1x"/"tokens_acts":- line starts the definition of a scanner. It
is generated in two parts: the main tables being placed in token_1x and the
actions for each token being bound to tokens_acts.

The scanner is specified as a series of token definitions where each token speci-
fication takes the form of

<token-id> ::= rexp

If token-id is omitted then the token will be discarded (this is done for the first
two white-space and comment token definitions), otherwise a corresponding
action function for constructing the token must be given somewhere in the
script. In this case the action functions are given in the code scraps to the right
of the token definition but they could be specified anywhere. Here Alex differs
from Lex; while each action must be named in a code scrap, the programmer
has more flexibility in laying out the script. Like comments, code scraps may
be placed anywhere in the module.

hi

module Tokens where

import Alex

h}
{~d = 0-9 } -- digits
{ "1 = [a-zA-Z] } -- alphabetic characters

"tokens_1x"/"tokens_acts":-

<> 1= Twt -- white space
<> =TTk —-- comments
<let’> ::= let %{ let’ p s = Let p %}
<in’> ::= in %#{ in> ps=1In p %}
<int> ::= “d+ %{ int p s = Int p (read s) %}
<sym> ::= ‘=+-%/()’ %{ sym p s = Sym p (head s) %}
<var> ::= “"1["1°d"_"’]* %{ var ps =Var p s %}
/3t
data Token =
Let Posn
In Posn

Sym Posn Char

Var Posn String
Int Posn Int

Err Posn

deriving (Eq,Text)

tokens:: String -> [Token]
tokens inp = scan tokens_scan inp

tokens_scan:: Scan Token
tokens_scan = load_scan (tokens_acts,stop_act) tokens_lx

where
stop_act p "" = []
stop_act p inp = [Err p]

h}

Figure 1: A simple Alex specification.

The action function for each token takes the text matched and its position and
generates a token suitable for the parser, of type Token in this case.

The remaining lines define the Token data type and the scanner in two parts,
tokens_scan which uses load_scan for amalgamating the token actions, stop
action (for stopping the scanner) and token specification tables into a Scan
structure, and tokens, the scanner, which simply passes the Scan structure to
scan. load_scan, Scan and scan were imported from the Scan module that
comes with the Alex distribution.

While delegating the task of assembling the scanner to the programmer may
seem a bit bothersome, the effort is rewarded with a flexible and modular scheme
for generating scanners.

With this specification in Tokens.x, Alex can be used to generate Tokens.hs:
alex Tokens.x

If the module needed to be placed in different file, tkns.hs for example, then a
second file-name can be specified on the command line:

alex Tokens.x tkns.hs

The resulting module is Haskell 1.2 and Haskell 1.3 compatible. It can also be
readily used with a Happy parser, with the catch that the Err token must be
declared.

If the script were written with literate conventions then the .1x extension would
be used instead of .x. (Literate scripts will be described in Section 2.5 on lexical
syntax.)

2 Syntax

The syntax in this section is described with an extended BNF in which optional
phrases are enclosed in square brackets ([...]) and repeated phrases in braces
({---}). The terminal symbols ide, tkn, ch, ech, cch smac, rmac and quot are are
defined in Section 2.5 on lexical syntax.

2.1 Scripts, Macros and Scanners

Alex scripts contain a list of scanner specifications, optionally preceded by some
global macro definitions. Each scanner consists of a header with the Haskell
identifiers to be bound in the output module, a list of macro definitions and a

list of token definitions. Macros may also be specified on the right-hand-side of
token definitions.

alex — { macdef } { scanner }

macdef — { smac = set | rmac = rexp }
scanner — ide [/ ide] := { macdef } { def }
def — tkn ::={ macdef } ctx

ctz = {sc: } [set \] rexp [/ rexp]

sc — "O" | ide

Macros come in two flavours: regular expression macros and character set
macros. A regular expression is more powerful than a character set but it can
be used in less contexts. Regular expressions and character sets are described
below.

Macros obey a static scoping discipline with each macro scoping over the con-
struction it precedes. Thus macros at the head of the script scope over the
whole script, macros preceding a scanner scope over the scanner and those on
the right-hand-side of a token definition will only be effective for the token def-
inition. Because they are statically scoped any macros mentioned in the body
of a macro must be defined in its defining environment and its meaning is then
fixed at the point of definition. For example, the definitions

{"g="a }

{ "a = [a-zA-Z] }

will bind ~g to the contents of the ~a macro (which must be defined) and rebind
~a to match the alphabetic characters. After both definitions, ~g will be bound
to the original value of the ~a macro.

The header line of a macro will usually give two identifiers: the first one for
binding the tables containing the token specifications and the second for binding
the action list. If the second identifier is omitted then the action list will not
be generated and the programmer need not specify action functions for each
named token; however, to get a useful scanner with load_scan, a hand-built
action list will have to be supplied.

Leading context, trailing context and start codes may be specified with the
:, \, / operators. These features will be described in Section 3.5 on context
specifications.

A token identifier may be bound to more than one specification with the result

that all the definitions will be handled by the same action function.

2.2 Regular Expressions

reTp
rexpe
reTp
repeat
reTP(

1Ll il

digit -
|

rexpe { | rezpg }

rexp; { rexp; }

rexpg [* | + | 7 | repeat]
{ digit [, [digit]] }

$ | rmac | set | (rezp)

0]1]2]3]4
5|6|7]8]9

The regular expression syntax is similar to that of Lex, with the addition of $
for €, matching the empty string, and the %(letter) syntax for regular-expression

macros.

Here are some of the ways of repeating as.

"example_rexps":-

<a_star>
<a_plus>

<a_quest> Hi-

<a_3>
<a_3_5>
<a_3_>

=¢ | at -- = a%, zero or more as
1:= aax -- = a+, one or more as

=8| a -- = a?, zero or one as

= a{3} -- = aaa

= a{3,5} -- = a{3}a7a?

= a{3,} -- = a{3}ax*

2.3 Sets of Characters

A set is a special form of regular expression that matches strings of length one.
Here Alex differs markedly from Lex.

set — sety [# setp]
sety — 7 sety

| chr [- chr]

| smac

| [{set}]

| quot
chr — ch| ech| cch

The simplest set, chr, contains a single character. The letters and digits rep-
resent themselves while symbolic characters can be escaped with a ~. Any
character can be generated with a ~ followed by its decimal code, though this
is not portable.

A range of characters can be expressed by separating the characters with a -; all
the characters with codes in the given range are included in the set. Character
ranges can also be non-portable.

The union of a number of sets may be taken by enumerating them in square
brackets ([...]), the complement of a set can be taken with ~ and the difference
of two sets can be taken with the # operator. Finding a good use for [] is left
as an exercise for the devious reader.

A quoted set of characters can be expressed by enclosing it in quotes (‘...).
Note that the quoted set starts with a back-quote and finishes with a single-
quote. A ’ character may not be included in such sets.

A set macro is expressed by a . or by a ~ followed by a letter. The standard
macros are listed in Figure 3. Most of them consist of bindings for the Haskell
\(letter) character escape codes. The ~“w and ~p correspond to the prelude
isSpace and isPrint prelude functions.

"example_sets":-

<1lls> 1= a-z -— little letters

<not_11s> = Ta-z -- anything but little letters

<ls_ds> = [a-zA-Z0-9] -- letters and digits

<sym> = ‘1e#$’ -- the symbols !, @, # and $

<sym_q_nl> ::= [“!#@$’"~’"n] -- the above symbols with ’ and newline
<quotable> ::= "“p#~’ -- any graphic character except ’

 = "127 -— ASCII DEL

{"a="7 } -- alarm

{"b="8 } -- back space

{"t="9 } -- form feed

{"n="10 } -- newline

{wv="1 } -- vertical tab

{°f="12 } -- form feed

{"r="-13 } -- carriage return
{w=["tnvEfr]} -- white space

{ "p = "32-"126 } -- printable/graphic characters
{. =70-"256# "n } -- non-newline characters

Figure 2: The standard macros (for Unix sytems).

2.4 The Scanner’s Alphabet

The characters accepted by a scanner are precisely those permitted by the reg-
ular expressions and the macro definitions. This is usually determined by the
settings of the . macro. By default, . includes every character except newline
but it could be redefined, for example, to exclude all the eight bit codes:

{.="0-"127 # "n }

This works because set complement, ~(set) is defined to mean [. n]#(set) so
complemented sets would also exclude eight-bit characters.

Note that the above restriction of the . macro is unlikely to reduce the size of
the tables used by Alex or speed up the scanners generated by it, in fact, the
contrary, as the table formats were designed with the default configuration in
mind.

2.5 Lexical Syntax

Alex supports the Haskell literate script convention as described in the Haskell
report (version 1.2). See Figure 5 for an example literate script. If the name of
the file containing the scripts ends in .1x then the lines that make up the script
start with a >; the script is preprocessed by stripping out all the other lines and
replacing the initial > at the start of each line with a space. This process is
formalised in Section 3.3 where the scanner used to preprocess Alex scripts is
given.

All white space appearing in the script is ignored, except where a space is quoted
with ~ or ¢...’. Haskell-style line comments are introduced with -- and code

{ s ="w
{ 0-
{ a-
{ A = A-
{ = [
{ [

"alex_1x"

<>
<>

<code> ::
m%n

<zero> ::=

<ide>
<tkn>
<bnd>
<prd>
<spe>
<ch>

<ech>
<cch>

<rmac> :

<quot> ::

#°
9
z
Z
a”
1-d

n } --
} _

} _

} _

Al } --
a"_"1 3 --
~u+ __

= “T=-"-_% -
{ C#%1"%.#73)x ~)~ % --

“%o{sxn ((C#7%.0)7 7% C#7}.x)?)Tn)* "%} --
“%~{"s*"n --

(CC#™ o7 C#%.x77 “hC#7F.%)7) ") *--

A -
~noQg ~n _
“notgtik TN _
< (Catix)? ~> -

L=X:\/I*+7,$OQ#[1-’ -
[~1-d] __
~~ ~p#[~1°d] __

1:= 77 ~d4{1,3} -—
<smac> ::

o= ~n “1 | “- —_
=~y 1 -

= ~¢ Ap#h,+ ~) __

Figure 3: The Alex scanner.

scraps are enclosed in %{ ...%} brackets. Otherwise,

ide
tkn
ch
ech
cch
smac
rmac
quot

e

s a Haskell identifier in quotes ("...").

[Erpa—

s a letter or digit.

s a ~ followed by a symbolic character.

s a ~ followed by a character code.

s either a . or a ~ followed by a letter.

s a % followed by a letter.

is a sequence of non-’ characters in quotes (‘...).

e e e e

The lexical syntax is formalised by the Alex script in Figure 3.

s an optional Haskell identifier in angle brackets (<...>).

spaces + tabs, etc
digits

lower-case alphas
upper-case alphas
alpha characters
identifier trailer

white space
comments
code scraps:
single-line scraps
multi-line scraps
multi-line scraps
(literate
scripts)
"0" start code
function identifier
token identifier

specials

letter or digit
escaped symbols
character codes
set macros

rexp macros
quoted sets

As can be seen from the <code> token, code scraps come in two varieties: those
that start and end with a newline and those that are contained on one line. If
the code scrap starts with a newline then it must finish with the %} at the start
of the line. (In fact, it may have a single space between the newline and the
%}; this is to accomodate literate scripts where the > between the newline and
the %} is converted to a space.) This means that the %} sequence may be used
anywhere in the code scrap except at the start of the line and that the text from
the first newline to the last newline can be copied without alteration into the
output module.

The code in multi-line code scraps must follow the same layout conventions used
for the tables generated by Alex, namely that all top-level defintions start in
the left-hand column for ordinary scripts, column two for literate scripts.

Line code scraps may not contain the %} sequence anywhere in them. They will
appear in the output in the left hand column for ordinary scripts, at column
two for literate scripts.

3 General Scanners

3.1 The Alex Module

The Alex module contains the run-time interface. It is self-contained so only
Alex and the Alex generated modules need to be added to programs using a
Alex scanner.

The Posn data type is the first product of the Alex module. It provides a
standard means of positioning tokens in the input stream.

data Posn = Pn Int Int Int deriving (Eq,Text)

start_pos:: Posn
start_pos = Pn 0 1 1

eof_pos:: Posn
eof _pos = Pn (-1) (-1) (-1)

Pn addr 1ln col represents the location of a token found addr characters into
the file on line 1n and column col. In calculating the column position, it will be
assumed that tab characters use eight-character tab stops. The first character
of the file is located at start_pos and eof_pos, by convention, will represent
the end of file.

The Alex module provides two packages for generating scanners from the tables

generated by Alex: the basic Scan/load_scan/scan package used for the Token
module of Figure 1, and a more flexible GScan/load_gscan/gscan package.

The scan package generates simple scanners that convert input text to streams
of tokens. The scanners are stateless as each token generated is a function of
its textual content and location.

The token actions take the form of an association list associating each token
name with an action function that constructs the token from the text matched
and its location. The stop action is invoked when no more input can be to-
kenised; it takes the residual input and its position and generates the remaining
stream of tokens, usually the empty list or an end-of-file token if the empty
string is passed, an error token otherwise.

type Actions t = ([(String,TokenAction t)], StopAction t)
type TokenAction t = Posn -> String -> t
type StopAction t = Posn -> String -> [t]

load_scan combines the actions with the dump generated by Alex to produce
a Scan structure that can be passed to scan. scan takes the scanner and the
input text and generates a stream of tokens. It assumes that the text is at the
start of the input with the position set to start_pos (see above) and sets the
last character read to newline (the last character read is used to resolve leading
context specifications); scan’ can be used to override these defaults.

load_scan:: Actions t -> DFADump -> Scan t
scan:: Scan t -> String -> [t]
scan’:: Scan t -> Posn -> Char -> String -> [t]

The gscan package generates general-purpose scanners for converting input text
into a return type determined by the application. Access to the scanner’s inter-
nal state, start codes and some application-specific state is provided.

The token actions take the form of an association list associating each token
name with an action function that constructs the result from the length of the
token, the scanner’s state (including the remaining input from the start of the
token) and a continuation function that scans the remaining input.

More specifically, each token action takes as arguments the position of the to-
ken, the last character read before the token (used to resolve leading context),
the whole input from the start of the token, the length of the token, the con-
tinuation function and the visible state (as distinct from the scanner’s internal
state) including the current start code and the application specific state. The
stop action is invoked when no more input can be scanned; it takes the same
parameters as the token actions without the token length and the continuation

10

function.
type GScan s r = (DFA (GTokenAction s r), GStopAction s r)
type GActions s r = ([(String, GTokenAction s r)], GStopAction s r)

type GTokenAction s r =
Posn -> Char -> String -> Int ->
((StartCode,s)->r) -> (StartCode,s) -> r

type GStopAction s r = Posn -> Char -> String -> (StartCode,s) -> r

load_gscan combines the actions with the dump generated by Alex to produce
a GScan structure that can be passed to gscan. gscan takes the scanner, the
application-specific state and the input text as parameters. It assumes that the
text is at the start of the input with the position set to start_pos (see above)
and sets the last character read to newline and the start code to 0; gscan’ can
be used to override these defaults.

load_gscan:: GActions s r —-> DFADump -> GScan s r
gscan:: GScan s r -> s -> String > r
gscan’:: GScan s r -> Posn -> Char -> String -> (StartCode,s) -> r

Note that a token action can ignore its continuation function and call up gscan’
with a different scanner to tokenise the rest of the input. This offers a more
efficient alternative to start codes (see Section 3.5 on context specifications) for
invoking alternate scanners on segments of the input.

3.2 Stateful Scanners

Some parsing constructions are best handled by making the scanner stateful,
allowing the action functions to read and alter some state. A stateful scanner
will instantiate the s parameter of GScan with the state type needed by the
application and will make use of the (StartCode,s) argument of the action
functions. (The StartCode component of the scanner’s state will be dealt with
in Section 3.5 on context specifications.)

Consider the problem of collecting the code scraps from a Alex script. The code
scraps could have been included in the grammar, forcing them to appear at
certain points in the script and complicating the grammar and parser. Instead,
they are ignored by the parser and collected in the scanner’s state, being passed
back to the parser in an explicit end-of-file token.

A simple scanner illustrating this technique is given in Figure 4. It returns
a stream of identifiers terminated with an end-of-file token containing all the

11

/3t

import Alex

h}

"state_lx"/"state_acts":-

<> i= Tt
<code> ::= "%7{ ("% | “%T"H)* U}
<ide> = [A-Za-z]+
/At
code _ _ inp len cont (sc,frags) = cont (sc,frag:frags)
where

frag = take (len-4) (drop 2 inp)

ide _ inp len cont st = Ide (take len inp):cont st

data Token = Ide String | Eof String | Err
tokens:: String -> [Token]
tokens inp = gscan state_scan [] inp

state_scan:: GScan [String] [Token]
state_scan = load_gscan (state_acts,stop_act) state_1x

where
stop_act _ _ "" (_,frags) = [Eof (unlines(reverse frags))]
stop_act _ _ _ _ = [Err]

h}

Figure 4: A stateful scanner.

accumulated code scraps on the input.

The idea for this technique, and another potential application of it, came from
the Brisk scanner which constructs the symbol table, returning integer handles
in the token stream and the symbol table in the end-of-file token.

3.3 Literate Scripts

The scan package only provides for actions that return a single token as part
of a list of such tokens. Sometimes a more flexible format is required, such as a
preprocessor that generates another stream of characters.

12

Alex itself uses such a preprocessor to deal with literate scripts. Recall that
each line in a (Haskell) literate scripts is either a blank line, a code scrap line
starting with a > or a comment line, and that comment lines and scrap lines
must be separated by one or more blank lines. The script in Figure 5 defines
three macros, %b, %s and %c, for recognising blank, scrap and comment lines
(where each line starts with a newline character). Figure 5 is itself a literate
script, of course.

If two newline characters are added to the front of the input then a valid literate
script could be considered as a series of scraps and comments in which a scrap
consists of a blank line followed by one or more scrap lines and a comment
consists of a blank line followed by zero or more comment lines. Note that the
initial lines in a series of blank lines will each be considered comments in this
scheme.

The action for the <scrap> token replaces each of the > in column one with
a space, appending the continuation onto the result. The <comment> action
strips out everything except the newlines, appending its continuation. (The
newlines from the comment scraps are retained in order to keep the line numbers
synchronised with the original input.)

To construct the literate scanner, of type String -> String, we must re-
member to insert the dummy newlines onto the input, and to remove them
again afterwards.

3.4 A Simple Preprocessor

A general scanner need not return a list at all. The scanner of Figure 6 is a
schematic version of the C preprocessor that only supports #include "foo"
preprocessor lines. The return type of the scanner, and therefore the continu-
ation passed to the action functions, is I0 (), which it combines with the >>
and >>= operators rather than the : and ++ operators for the list generating
scanners.

3.5 Context Specifications

Alex retains the facilities of Lex for restricting token specifications to given con-
texts, albeit in a modified form. Leading context is specified with the \ operator,
with its left operand being restricted to a set specification. The character to the
left of the token must be matched by the specification but it is not included in
the token.

13

>%{ import Alex %}

> "1it_1x"/"1lit_acts":-

>{ "s = “w#"n }

> { %b = "n"sx* }

> { %s = "n">.x% }

> { Yec = "nC "> wl. x| s+ w. %) }

> <scrap> = %bhs+

> <comment> ::= %blcx*

>4

> scrap _ _ inp len cont st = strip len inp

> where

> strip 0 _ = cont st

> strip (n+1) (c:rst) =

> if c==’\n’

> then ’\n’:strip_nl n rst

> else c:strip n rst

>

> strip_nl (n+1) (’>’:rst) = ’ ’:strip n rst
> strip_nl n rst = strip n rst

> comment _ _ inp len cont st = strip len inp
> where

> strip 0 _ = cont st

> strip (n+1) (c:rst) = if c==’\n’ then c:strip n rst else strip n rst
> literate:: String -> String

\2

literate inp

= drop 2 (gscan lit_scan () (’\n’:’\n’:inp))

> lit_scan:: GScan () String

> lit_scan = load_gscan (lit_acts,stop_act) lit_lx

> where

> stop_act p _ "" st = []

> stop_act p _ _ _ = error (msg ++ loc p ++ "\n")

>

> msg = "literate preprocessing error at "

>

> loc (Pn _ 1 ¢) = "line " ++ show(1-2) ++ ", column " ++ show c
>h}

Figure 5: A preprocessor for literate scripts.

14

hi

import Alex

h}

pr_lxll/llpp_actsll =

{ "s = “w#"n } -- spaces and tabs, etc.
{~f = [A-Za-z0-9‘"%-_.,/’1 } -- file-name character
<inc> ::= “#include"s+"""f+"""s*x"n
<txt> ::= .*"n
W

inc p ¢ inp len cont st = pp fn >> cont st
where
fn = (takeWhile (°"’/=) . tail . dropWhile isSpace . drop 8) inp

txt p ¢ inp len cont st = putStr (take len inp) >> cont st

pp:: String -> I0 ()
pp fn = readFile fn >>= \cts -> gscan pp_scan () cts

pp_scan:: GScan () (I0 ())

pp_scan = load_gscan (pp_acts,stop_act) pp_lx
where
stop_act _ _ = return Q)

h}
Figure 6: A scanner capable of I/0.

15

Trailing context is specified with a /, where the expression to the right can be a
fully-fledged regular expression. Again, the input to the right of the token must
match the regular expression but it is not included in the token.

Note that unlike Lex, the leading and trailing context do not contribute to the
length of the token when choosing from a number of matching tokens. The only
effect of the context specifications is to eliminate tokens that would otherwise
match the input.

A token may be restricted to given ‘start codes’ by prefixing the token specifica-
tion (to the right of the ::=) with a "foo": where foo is the name of the start
code; to restrict a definition to the 0 start code, prefix it with "0":; if several
start codes are given then the scanner may be in any one of start codes for the
token to be selected.

Each start code, "foo", mentioned in the script will result in a definition like
foo =1

being added to the output (where the integer is positive and distinct from those
assigned to other start codes) so each start code must be a Haskell function
identifier that is not otherwise bound in the output module.

By default, the scanner starts in start code 0. To change to a different start code,
an action function has only to call its continuation function with the StartCode
component of its state argument set to a different value; this will immediately
eliminate token definitions annotated with start codes that do not include the
new start code.

Figure 7 gives a rather contrived scanner that illustrates several aspects of con-
text specifications.

The first four tokens specifications match the same text, only differing in their
context. <only_ide> will be selected if it is the only alphabetic string on the
line, <start_ide> if it is at the start of the line, <end_ide> if it is at the end of
a line, otherwise <ide>. Note that there is no question of the leading or trailing
context elongating any of the tokens and interfering with their priority.

The <tricky> definition would not work properly in Lex, the final x in the
specification being included in the token. Alex does not suffer from this problem.

The <dot> token is restricted to start code 0 so dot characters will be initially
recognised, but they will be ignored after a (token has been read, as it changes
the start code to op. Once a) has been read, the start code will revert to 0
and the dots will resume. On the other hand commas are restricted to the op
start code so they will be initially disabled, appearing between open and close

16

Wi

import Alex

h}
{ A =A-Z }
{ % =1[" “t]*"n }

"ctx_1x"/"ctx_acts":-

<only_ide> = “n\"A+/%t %{ only_ide = tkn O %}
<start_ide> ::= "n\"A+ %{ start_ide = tkn 1 %}
<end_ide> 1i= “A+/%t %{ end_ide = tkn 2 %}
<ide> 1i= “A+ %{ ide = tkn 3 %}
<tricky> 1= x*/x %{ tricky = tkn 4 %
<dot> = QM. %{ dot = tkn 5 %}
<open> 1= ~(%{ open = start op %}
<comma> 1:= "op":~, %{ comma = tkn 6 %}
<close> 1:= ") %{ close = start 0 %}
<> 1= [."n]

W

tkn n _ _ inp len cont st = Ide n (take len inp):cont st

start sc _ _ _ _ cont (_,s) = cont (sc,s)

data Tkn = Ide Int String

tokens:: String -> [Tkn]
tokens inp = gscan ctx_scan () inp

ctx_scan:: GScan () [Tknl
ctx_scan = load_gscan (ctx_acts,stop_act) ctx_lx

where
stop_act _ _ "" _ =[]
stop_act _ _ _ _ = error "tokens"

h}
Figure 7: Specifying context in Alex.

17

brackets.

Acknowledgements

I would like to thank Tom Alardice for providing the original motivation for
writing Alex, Henk Muller for suggestions and encouragement, Ian Holyer for the
various discussions that have helped to shape it and Alastair Reid for feedback
and suggestions.

18

