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Abstract

A new method for sparse LU factorization is presented that combines a column
pre-ordering strategy with a right-looking unsymmetric-pattern multifrontal numerical
factorization. The column ordering is selected to give a good a priori upper bound on
fill-in and then refined during numerical factorization (while preserving the bound).
Pivot rows are selected to maintain numerical stability and to preserve sparsity. The
method analyzes the matrix and automatically selects one of three pre-ordering and
pivoting strategies. The number of nonzeros in the LU factors computed by the method
is typically less than or equal to those found by a wide range of unsymmetric sparse LU
factorization methods, including left-looking methods and prior multifrontal methods.
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1 Introduction

This paper considers the direct solution of systems of linear equations, Ax = b, where A is
sparse and unsymmetric. The pre-ordering and symbolic analysis of the method presented
here is similar to that used by left-looking methods such as SuperLU [21] or LU [42, 43] in
MATLAB (prior to version 6.5). In these methods, the column pre-ordering Q is selected
to provide a good upper bound on fill-in, no matter how the row ordering P is chosen
during numerical factorization. However, existing left-looking methods do not select the row
ordering to preserve sparsity. MA38 can select both the row and column ordering to preserve
sparsity, but it lacks an analysis phase that gives good a priori bounds on fill-in. It can thus
experience unacceptable fill-in for some matrices. In contrast to both of these strategies, the
numerical factorization in the method described here has the same a priori upper bound on
fill-in as left-looking methods (something that MA38 lacks), and the new method can select
the row ordering P based on sparsity preserving criteria (something that existing left-looking
methods do not do).

UMFPACK factorizes the matrix PAQ, PRAQ, or PR 'AQ into the product LU,
where L and U are lower and upper triangular, respectively, P and Q are permutation
matrices, and R is a diagonal matrix of row scaling factors. Both P and Q are chosen
to reduce fill-in (new nonzeros in L and U that are not present in A). The permutation
P has the dual role of reducing fill-in and maintaining numerical accuracy (via relaxed
partial pivoting). UMFPACK analyzes the matrix, and then automatically selects one of
three strategies for pre-ordering the rows and columns: unsymmetric, 2-by-2, and symmetric.
Equipped with these three strategies, the number of nonzeros in the LU factors computed by
UMFPACK is typically less than or equal to that computed by left-looking methods [21, 42,
43], the symmetric-pattern multifrontal method MA41 [4, 25, 31, 32], and the asymmetrized
version of MA41 [7]. UMFPACK nearly always uses less memory than these other methods
as well.

Section 2 provides a background of the new method: column pre-orderings, a priori upper
bounds on fill-in, left-looking methods, and right-looking multifrontal methods. Section 3
describes the new algorithm. Performance results are given in Section 4, and qualitative
observations about these results are made in Section 5. A few concluding remarks and
information on the availability of the code are given in Section 6.

2 Background

The new method is related to left-looking methods, since it uses a column pre-ordering that
gives the same a priori bounds on fill-in. The numerical factorization phase is based on the
right-looking multifrontal method, guided by the supernodal column elimination tree. These
related methods are described below.

2.1 Column pre-orderings

Fill-in is the introduction of new nonzero entries in L and U whose corresponding entries in
A are zero. The row and column orderings, P and Q, determine the amount of fill-in that



occurs. Finding the best ordering is an NP-complete problem [59], and thus heuristics are
used.

Suppose the column ordering Q is fixed, and let C = AQ. Sparse Gaussian elimination
selects P via standard partial pivoting with row interchanges, and factorizes PC into LU.
If C has a zero-free diagonal the nonzero pattern of U is a subset of the nonzero pattern of
the Cholesky factor Lo of CTC [37]. The entries in each column of L can be rearranged so
that their nonzero pattern is a subset of the nonzero pattern of L. This subset relationship
holds no matter how P is chosen during Gaussian elimination on C.

This observation leads to a useful method for finding an ordering Q that gives a good
upper bound on the fill-in in the LU factors of C = AQ. Simply use for Q an ordering that
reduces fill-in in the Cholesky factorization of (AQ)TAQ [35, 37, 38]. The COLMMD [42]
and COLAMD [19, 20, 50] routines in MATLAB find an ordering Q without constructing
the nonzero pattern of ATA.

For unsymmetric matrices with substantial entries on the diagonal (or diagonally dom-
inant) and a mostly symmetric nonzero pattern, it is often better to use a strategy that
finds a fill-reducing ordering Q that minimizes the fill-in in the Cholesky factorization of a
matrix whose nonzero pattern is the same as the matrix Q' (A + AT)Q. This pre-ordering
assumes that the diagonal entry can typically be selected as a pivot. This method is used
in the right-looking multifrontal method MA41 [4, 25, 31, 32] and its asymmetrized version
[7]. If this Q is used as a column pre-ordering for sparse Gaussian elimination with standard
partial pivoting, the upper bound on fill-in can be high, but the actual fill-in is similar to
the related Cholesky factorization.

2.2 Left-looking methods

Left-looking methods such as Gilbert and Peierls’ LU organize their computation with the
column elimination tree (the elimination tree of CTC [52]). SuperLU uses the supernodal
column elimination tree to reduce execution time by exploiting dense matrix kernels (the
BLAS [22]) in the computation of each super-column (a group of columns of L with the same
upper bound on their nonzero pattern). MA48 in the Harwell Subroutine Library is another
example of a left-looking method [33]. It differs from LU and SuperLU by using a partial
right-looking numerical factorization as its pre-ordering strategy (the matrix is numerically
factorized up to but not including a switch to a dense matrix factorization method).

At the kth step of factorization of an n-by-n matrix A, the kth column of U is computed.
The pivot entry is chosen in the kth column, permuted to the diagonal, and the £th column
of L is computed. Columns k£ + 1 to n of A are neither accessed nor modified in the kth
step. The advantage of this approach is that it can be implemented in time proportional to
the number of floating-point operations [43]. This is not known to be true of right-looking
methods such as the multifrontal method. However, the disadvantage is that the kth pivot
row cannot be selected on the basis of sparsity, since the nonzero patterns of the candidate
pivot rows are unknown. The pre-ordering Q is found by assuming that all candidate pivot
rows at the kth step have the same upper bound nonzero pattern. The pivot row is selected
solely on the basis of maintaining numerical accuracy. Only a right-looking method (one
that modifies the columns k£ + 1 through n at the kth step of factorization) has access to the
true nonzero patterns of candidate pivot rows at the kth step of factorization.



It would be possible for a left-looking method to maintain a right-looking representation
of the Schur complement in order to select rows based on sparsity-preserving criteria and
to rearrange columns within each super-column. No existing left-looking method maintains
this representation, however, since it is not needed to compute the kth column of L and U
at the kth step of factorization. It would be used only for pivot row selection, which existing
methods do solely for numerical accuracy and not to reduce fill-in. The result would be a
hybrid algorithm, one that does its numerical computations in a left-looking manner, but
maintains the pattern of the Schur complement in a right-looking manner.

2.3 Right-looking multifrontal methods

The multifrontal method is one example of a right-looking method. Once the kth pivot row
and column are found, the elimination is performed and the outer-product is applied to the
remaining (n — k)-by-(n — k) submatrix that has yet to be factorized.

The factorization is performed in a sequence of frontal matrices. Each frontal matrix is
a small dense submatrix that holds one or more pivot rows and their corresponding pivot
columns. Consider the first frontal matrix. The original entries in the corresponding rows
and columns of A are assembled into the frontal matrix. The corresponding eliminations are
performed, and the contribution block (a Schur complement) is computed. This contribution
block is placed on a stack for use in a later frontal matrix. The factorization of subsequent
frontal matrices is the same, except that it is preceded by an assembly step in which prior
contribution blocks (or portions of them) are assembled (added) into the current frontal
matrix. After the assembly step, the current frontal matrix has a complete representation
of a set of pivot rows and columns. In all multifrontal methods, more than one pivot row
and column can be held in a frontal matrix. Multiple elimination steps are done within the
frontal matrix, which allows the the Schur complement to be computed with a dense matrix-
matrix multiplication (DGEMM [22]), an operation that can obtain near-peak performance
on high-performance computers.

Many approaches have been taken to apply the multifrontal method to different classes
of matrices:

1. symmetric positive definite matrices [9, 53],
2. symmetric indefinite matrices (MA27, MA47, and MA57) [29, 30, 26],

3. unsymmetric matrices with actual or implied symmetric nonzero pattern (MA37 and
MAA41) [4, 25, 31, 32|,

4. unsymmetric matrices where the unsymmetric nonzero pattern is partially preserved

(MA41u) [7],

5. unsymmetric matrices where the unsymmetric nonzero pattern is fully preserved (MA38
and WSMP) [17, 18, 45],

6. and QR factorization of rectangular matrices [6, 54].



There are significant differences among these various approaches. For the first four ap-
proaches, the frontal matrices are related to one another by the elimination tree of A, or
the elimination tree of A + AT if A is unsymmetric [52, 53]. The elimination tree has n
nodes; each node corresponds to one pivot row and column. The parent of node & is node p,
where p is the smallest row index of nonzero entries below the diagonal in the kth column
of L. A frontal matrix corresponds to a path in the elimination tree whose columns of L
have similar or identical nonzero pattern; the tree with one node per frontal matrix is called
the assembly tree [27] or the supernodal elimination tree. Each frontal matrix is designed so
that it can fully accommodate the contribution blocks of each of its children in the assembly
tree. Thus, the assembly step adds the contribution blocks of each child into the current
frontal matrix. For symmetric positive definite matrices, all of the pivots originally assigned
to a frontal matrix by the symbolic analysis phase are numerically factorized within that
frontal matrix. For other classes of matrices, some pivots might not be eliminated, and the
contribution block can be larger than predicted. The uneliminated pivot is delayed, and its
elimination is attempted in the parent instead.

In the first three approaches, the frontal matrices are square. In a recent approach
by Amestoy and Puglisi [7] (approach #4 in the list above), it was noted that rows and
columns in the frontal matrix that contain only zero entries can be detected during numerical
factorization and removed from the frontal matrix. The frontal matrix may be rectangular,
but the assembly tree is still used.

The first four approaches precede the numerical factorization with a symmetric reordering
of A or A + AT, typically with a minimum degree [1, 36] or nested-dissection ordering
[10, 35, 48, 49] as part of a symbolic analysis phase.

MA38 (UMFPACK Version 2.2.1) is based on the fifth approach. It does not use a pre-
ordering or symbolic analysis phase. Rectangular frontal matrices are constructed during
numerical factorization, using an approximate Markowitz ordering. The first pivot within a
frontal matrix defines the pivot row and column pattern and the size of the frontal matrix.
Extra room is added to accommodate subsequent pivot rows and columns. Subsequent pivots
are then sought that can be factorized using the same frontal matrix, allowing the use of
dense matrix kernels. The frontal matrices are related to one another via a directed acyclic
graph (DAG) rather than an elimination tree. WSMP differs from MA38 in that it computes
the DAG in a symbolic analysis phase.

The last approach, multifrontal QR factorization [6, 54], is based on the column elimi-
nation tree of A.

3 The algorithm

An overview of the new algorithm (UMFPACK Version 4.1, or simply UMFPACK4) is given
below, followed by details of its implementation.

3.1 Overview

UMFPACKA first finds a column pre-ordering that reduces fill-in. It scales and analyzes the
matrix, and then automatically selects one of three strategies for pre-ordering the rows and



columns: unsymmetric, 2-by-2, and symmetric. These strategies are described below.

First, all pivots with zero Markowitz cost are eliminated and placed in the LU factors.
These are pivots whose pivot row or column (or both) have only one nonzero entry, and can
thus be eliminated without causing any fill-in in the remaining submatrix. A permutation to
block triangular form [23] would also reveal these pivots, but UMFPACK4 does not perform
this permutation.

The remaining submatrix S is then analyzed. If the nonzero pattern of the matrix S is
very unsymmetric, the unsymmetric strategy is used. If the pattern is nearly symmetric and
the matrix has a zero-free diagonal, the symmetric strategy is used. Otherwise, the 2-by-2
strategy is attempted. The 2-by-2 strategy finds a row permutation Py which attempts to
reduce the number of small diagonal entries of P,S. If s;; is numerically small, the method
attempts to swap two rows 7 and j such that both s;; and sj; are large. Once these rows
are swapped they remain in place. The four entries s;, s;;, sj;, and s;; are analogous to
the 2-by-2 pivoting strategy used for symmetric indefinite matrices [13] and have similar
fill-in properties. This permutation is not guaranteed to result in a zero-free diagonal, but
it tends to preserve symmetry better than a complete zero-free matching [24, 28]. If the
nonzero pattern of P,S is sufficiently symmetric, and its diagonal is mostly zero-free, the
2-by-2 strategy is used. Otherwise, the unsymmetric strategy is used.

Each strategy is described below:

o unsymmetric: The column pre-ordering of S is computed by a modified version of
COLAMD [19, 20, 50]. The method finds a symmetric permutation Q of the matrix
STS (without forming STS explicitly). This is a good choice for Q, since the Cholesky
factors of (SQ)T(SQ) are an upper bound (in terms of nonzero pattern) of the factor
U for the unsymmetric LU factorization (PSQ = LU) regardless of the choice of P
[37, 38, 39]. This modified version of COLAMD also computes the column elimination
tree and post-orders the tree. It finds the upper bound on the number of nonzeros in
L and U. It also has a different threshold for determining dense rows and columns.
During factorization, the column pre-ordering can be modified. Columns within a
single super-column can be reshuffled, to reduce fill-in. Threshold partial pivoting is
used with no preference given to the diagonal entry. Within a given pivot column j,
an entry a;; can be chosen if |a;;| > 0.1 max |a,;|. Among those numerically acceptable
entries, the sparsest row ¢ is chosen as the pivot row.

e symmetric: The column ordering is computed from AMD [1], applied to the pattern
of S + ST followed by a post-ordering of the supernodal elimination tree of S + ST.
No modification of the column pre-ordering is made during numerical factorization.
Threshold partial pivoting is used, with a strong preference given to the diagonal
entry. The diagonal entry is chosen if a;; > 0.001 max |a,;|. Otherwise, a sparse row is
selected, using the same method used by the unsymmetric strategy (find the sparsest
pivot row, using a threshold of 0.1).

e 2-by-2: The symmetric strategy is applied to the matrix P,S, rather than S.

Once the strategy is selected, the factorization of the matrix A is broken down into
the factorization of a sequence of dense rectangular frontal matrices. The frontal matrices



are related to each other by a supernodal column elimination tree, in which each node in
the tree represents one frontal matrix (the symmetric and 2-by-2 strategies thus use both
the elimination tree and the column elimination tree). This analysis phase also determines
upper bounds on the memory usage, the floating-point operation count, and the number of
nonzeros in the LU factors.

UMFPACKA4 factorizes each chain of frontal matrices in a single working array, similar
to how the unifrontal method [34] factorizes the whole matrix. A chain of frontal matrices is
a sequence of fronts where the parent of front 7 is 4+1 in the supernodal column elimination
tree. For the nonsingular matrices factorized with the unsymmetric strategy, there are
exactly the same number of chains as there are leaves in the supernodal column elimination
tree. UMFPACK4 is an outer-product based, right-looking method. At the k-th step of
Gaussian elimination, it represents the updated submatrix Ay as an implicit summation of
a set of dense sub-matrices (referred to as elements, borrowing a phrase from finite-element
methods) that arise when the frontal matrices are factorized and their pivot rows and columns
eliminated.

Each frontal matrix represents the elimination of one or more columns; each column of A
will be eliminated in a specific frontal matrix, and which frontal matrix will be used for each
column is determined by the pre-analysis phase. This is in contrast to prior multifrontal
methods for unsymmetric or symmetric indefinite matrices, in which pivots can be delayed
to the parent frontal matrix (and further up the tree as well). It differs from MA38, which
has no symbolic analysis at all. With UMFPACK4’s unsymmetric strategy, the pivot rows
are not known ahead of time as they are for the multifrontal method for symmetric positive
definite matrices, however.

The pre-analysis phase also determines the worst-case size of each frontal matrix so that
they can hold any candidate pivot column and any candidate pivot row. The set of candidate
pivot columns for a single frontal matrix forms a single super-column. From the perspective
of the analysis phase, any candidate pivot column in the frontal matrix is identical (in terms
of nonzero pattern), and so is any row. Existing left-looking numerical factorization methods
do not have any additional information. They do not keep track of the nonzero pattern of
the Schur complement. In terms of reducing fill-in, they cannot decide between candidate
pivot columns in the same super-column, nor can they decide between candidate pivot rows.

In contrast, the right-looking numerical factorization phase of UMFPACK4 has more
information than its analysis phase. It uses this information to reorder the columns within
each frontal matrix to reduce fill-in. UMFPACKA4 reorders only those columns within a single
super-column, so no change is made in the upper bounds found in the symbolic ordering and
analysis phase. Since the number of nonzeros in each row and column are maintained (more
precisely, COLMMD-style approximate degrees [42]), a pivot row can be selected based on
sparsity-preserving criteria as well as numerical considerations (relaxed threshold partial
pivoting).

Thus, the numerical factorization refines the column ordering Q by reordering the pivot
columns within each front, and it computes the row ordering P, which has the dual role of
reducing fill-in and maintaining numerical accuracy (via relaxed partial pivoting and row
interchanges). When the symmetric or 2-by-2 strategies are used, the column preordering is
not refined during numeric factorization. Row pivoting for sparsity and numerical accuracy
is performed only if the diagonal entry is too small.
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3.2 Column pre-ordering and symbolic analysis

When the unsymmetric strategy is used, the column pre-ordering is found with a slightly
modified version of COLAMD [19, 20, 50]. COLAMD finds a symmetric permutation Q of the
matrix ATA (without forming ATA explicitly), and is based on an approximate minimum
degree method [1]. The modified COLAMD routine used in UMFPACK4 constructs the
supernodal column elimination tree, and determines the upper bound of the size of each
frontal matrix. It then post-orders the tree, with the largest child of each node being ordered
just before its parent. Next, each frontal matrix is assigned to a unifrontal chain. After the
post-ordering, two frontal matrices ¢ and 7 + 1 are in the same chain if 4 4+ 1 is the parent
of 7. The largest frontal matrix in each chain is found; this determines the size of the work
array to be used to factorize the chain. In the numerical factorization phase, the unifrontal
method will be applied to each chain, with as few as a single contribution block being stacked
per chain (more may be created if this results in too large of a contribution block with too
many explicitly zero entries). A frontal matrix ¢ + 1 in the middle of a chain can have more
than one child. With a column post-ordering, each chain starts as a leaf in the tree, and
there are exactly as many chains in the tree as there are leaves in the tree. There can be
more chains than leaves if a post-ordering of the column elimination tree is not performed.
The symbolic phase determines upper bounds on the memory usage, the upper bound on
the number of nonzeros in each column of L and each row of U, and the upper bound on
the floating-point operation count. This entire phase, including the ordering, is computed
in space proportional to number of nonzeros in A.

For the symmetric strategy, the column pre-ordering is found via a symmetric permuta-
tion of the matrix A+ AT, using the approximate minimum degree algorithm [1, 2], followed
by a post-ordering of the elimination tree of A + AT. Next, the analysis phase finds the
column elimination tree and the frontal matrix chains in that tree. No post-ordering of the
column elimination tree is computed, since it does not preserve the fill-in of the Cholesky
factorization of A + AT.

The COLAMD routine available in MATLAB (version 6.0 and later) performs the column
ordering, and then does a post-order of the tree via the COLETREE function (sparsfun
(’coletree’, ...)). It does not consider the size of the frontal matrices when post-ordering
the tree, so the post-ordering is different than the modified version of COLAMD used in
UMFPACKA4. It does not do a symbolic analysis of the LU factorization. The upper bound
on fill-in is identical and its ordering quality is essentially the same as the modified COLAMD
routine, however.

MA38 attempts to find unifrontal chains on the fly. The post-ordering of UMFPACKA4
finds much longer unifrontal chains, which is why it is able to achieve much higher perfor-
mance than MA38. Post-ordering the tree also reduces memory usage of the contribution
block stack. Performance results are discussed in more detail in Sections 4 and Sections 5.

The supernodal column elimination tree also captures the potential pivot row ordering
that will be performed during numerical factorization [51]. After the column ordering is
applied, suppose that the nonzero a;; is the “leftmost” nonzero in row 4. That is, j is the
smallest column index such that a;; is nonzero. Consider the frontal matrix f to which
column j is assigned. This frontal matrix corresponds to one node in the supernodal column
elimination tree. Column j will be factorized at this node, but row ¢ might not be. Row ¢



will be first considered as a candidate row at this node f. If it is not selected here, it will be
considered at the parent of node f, and so on. Row 7 will be chosen as a pivot row at some
node on the path from f to the root of the supernodal column elimination tree.

3.3 Numerical factorization

This section presents a detailed overview of the numerical factorization method used in
UMFPACKA4. A small example is given in the following section.

The numerical factorization phase starts by allocating several temporary data structures.
During numerical factorization, the active submatrix Ay is held as a collection of rectangular
elements, one for each non-pivotal column of A and one for each contribution block created
during numerical factorization. To facilitate the scanning of rows and columns, element
lists [17] for each row and column hold the list of elements that contribute to that row and
column. These are also used to compute the COLMMD-style approximate degrees used
during numerical factorization.

Let C; denote the set of |C;| candidate pivot columns in the ith frontal matrix. The set of
non-pivotal columns that can appear in the ith frontal matrix is V;. Let R; denote the set of
|R;| candidate pivot rows for the ith frontal matrix. The sum of |C;| for all i is equal to n for
an n-by-n matrix A; this is not the case for R;. The upper bound on the size of the frontal
matrix is |R;|-by-(|C;| + |N;|). If the matrix is structurally nonsingular, |R;| > |C;| for all
1 will hold. The parent of node 7 is the smallest numbered node that contains a column in
N; as one of its own candidate pivot columns. The Algorithm 1 is an outline of the method
(np is a parameter, 32 by default). The frontal matrix holds up to np prior pivot rows and
columns. When the updates for these pivots are computed, the corresponding columns of L
and U are saved in a separate data structure for the LU factors.

Figure 1 shows the (n — k)-by-(n — k) active submatrix Ay being factorized, and the
portion of that matrix that may be held in the work array (the shaded region, which is
the upper-bound of the current frontal matrix). The current frontal matrix occupies only
part of the work array, shown as the two dark shaded regions. During factorization within
this frontal matrix, some of the candidate rows in R; will appear in the frontal matrix, and
some may not (some of these may never appear). Likewise, some of the columns in C; will
appear in the front and some will not yet appear (but they are all guaranteed to appear
by the time the frontal matrix is fully factorized). Finally, some of the columns in N; will
currently be in the front, but some will not (and like R;, some may never appear). These
rows and columns may not appear in the actual frontal matrix, since they are determined
in the symbolic analysis phase. That phase finds an upper bound on the size of each frontal
matrix, which is | R;|-by-|C;| +|V;|. This will be further illustrated in an example in the next
section.

The frontal matrix has been permuted in this perspective so that the candidate pivot
columns C; are placed first followed by the non-pivotal columns in the set N;. Note that
the work array is large enough to hold all candidate pivot rows (R;), and all candidate pivot
columns (C;); the part of these rows and columns outside the work array is zero in the active
submatrix Ay. The (k — 1)st and prior pivots are not shown, but some of these are held in
the frontal matrix as well and are removed when their pending updates are applied to the
contribution block. These outer-product updates are applied via level-3 BLAS operations: a



Algorithm 1: UMFPACK4 numerical factorization

initializations
k=0
1=0

for each chain:
current frontal matrix is empty
for each frontal matrix in the chain:
1=1+1
for |C;| iterations:
k=k+1
find the kth pivot row and column
apply pending updates to just the kth pivot column
if too many zero entries in new frontal matrix (or new LU part)
(*) apply all pending updates
copy pivot rows and columns into LU data structure
end if
if too many zero entries in new frontal matrix
(**) create new contribution block and place on stack
start a new frontal matrix
else
(¥*%) extend the frontal matrix
end if
assemble contribution blocks into current frontal matrix
scale pivot column
if # pivots in current frontal matrix > ng
apply all pending updates
copy pivot rows and columns into LU data structure
end if
end for |C;| iterations
end for each frontal matrix in the chain
apply all pending updates
copy pivot rows and columns into LU data structure
create new contribution block and place on stack
end for each chain

(****)
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dense lower-triangular solve (DTRSM) to compute the rows of U, and dense matrix-matrix
multiply (DGEMM) to compute the Schur complement.

The search for the kth pivot row and column is limited, but it is this step that allows the
method to typically obtain orderings that are better than existing left-looking methods. This
step is where the column pre-ordering is refined, and where the row ordering is determined.
Up to two candidate pivot columns are examined: the column of least approximate degree in
C; in the current front, and the one of least approximate degree in C; but not in the current
front. In each of these two columns, up to two candidate pivot entries are sought. Among
those pivot entries that are numerically acceptable, the candidate row of least approximate
degree in the current front and the row of least approximate degree not in the current front are
found. The default numerical test requires a candidate pivot entry to have an absolute value
greater than or equal to 0.1 times the absolute value of the largest entry in the candidate pivot
column. For the symmetric strategy, a relative threshold of 0.001 is used for the diagonal
entry, and 0.1 is used for all off-diagonal pivot candidates. The row and column degrees are
not exact; COLMMD-style approximate degrees are used, which are simply the sum of the
sizes of the contribution blocks in each row and column. Tighter approximations were tried
(as in COLAMD and AMD), but this was not found to improve the ordering quality. Since
the tighter AMD-style approximation requires a second pass over the element lists of the
rows and columns in the current frontal matrix, the simpler COLMMD-style approximation
was used instead. The tighter AMD-style degree approximation is used only by the column
pre-ordering in the symbolic analysis phase

The candidate pivot entries are shown as four dots in Figure 1. Anywhere from one to
four of these candidates may exist. The exact degrees of these candidate pivot columns and
pivot rows are then computed, and any pending updates to the pivot column candidate in
the front are applied (via level-2 BLAS operations, DTRSV and DGEMV). The metric used
to select among these four candidates is a form of approximate minimum fill-in [55, 56]; the
pivot entry that causes the least growth in the size of the actual frontal matrix is chosen
as the kth pivot. If there is a tie, preference is given to pivot rows and columns that are
already in the current frontal matrix.

Each of the one to four candidate pivots resides in the upper bound frontal matrix
determined during the symbolic analysis. The column refinement is only done within the
candidate columns C;. As far as the symbolic analysis, each of these columns in C; has
identical upper bound nonzero pattern, and thus they can be rearranged in any order within
this front during numerical factorization. Likewise, all of the candidate pivots reside in the
candidate pivot rows that were considered during symbolic analysis. This local pivot search
strategy of considering one to four pivot candidates, in at most two columns and four rows,
is a trade-off between quality and efficiency. We already know a good upper bound on the
fill-in, regardless of how what local strategy is used. For a small amount of additional search,
based on the known approximate pivot row and column degrees, a better ordering can be
typically be obtained.

To summarize, a mix of pivot strategies is used in UMFPACK4. The method starts
with a good column pre-ordering, from COLAMD or AMD. Each of these methods uses
a high-quality approximate minimum degree metric. Existing left-looking methods stop
here. UMFPACK4 refines this choice by evaluating up to four pivot candidates within the
existing frontal matrix, which are considered identical as far as the column-preordering is
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concerned. These four are selected based on a low-quality but cheap-to-compute approximate
minimum degree strategy (COLMMD-style). Then, with these four candidates, exact degrees
are computed. With these exact degrees and the size of the current frontal matrix, an
approximation on upper bound on fill-in is computed, and the best of the four is selected
based on this metric.

Increasing the size of the current frontal matrix to include the new pivot row and column
may create new zero entries in the frontal matrix, in either the pending pivot rows and
columns, or the contribution block, or both. Pending updates are applied if the number of
zero entries in the pending pivot rows and columns (not shown in Figure 1) increase beyond
a threshold, or if the next pivot candidate is not in the current frontal matrix. The updates
are also applied, and the current contribution block stacked, if too many zero entries would
be included in the contribution block; in this case a new frontal matrix is started. The latter
step also occurs at the end of a chain. The end of each chain is known from the analysis
phase.

The test for “too many” zero entries is controlled by a relazed amalgamation heuristic
similar to those used in other multifrontal methods [30, 32]. The heuristic tries to balance the
trade-off between extra floating-point operations and efficient use of dense matrix kernels.
If no extra zero entries are allowed, then there are more dense matrix multiplications with
smaller inner dimension of the two matrices being multiplied. If extra zeros are allowed,
then fewer dense matrix multiplications are performed, each with a higher inner dimension®.
The result is faster performance in terms of floating-point operations per second, but more
floating-point operations are being performed. The heuristic has been optimized by testing
on a wide range of sparse matrices from real applications. The performance of UMFPACK4
is fairly insensitive to the parameter settings as long as they are within a reasonable range.

After the pivot search and possible update and/or extension of the frontal matrix, prior
contribution blocks are assembled into the current frontal matrix. These are found by scan-
ning the element lists, in the same manner as MA38. The assembly DAG used by MA38 is
neither used nor computed in UMFPACKA4; its role is replaced by the simpler supernodal
column elimination tree computed in the analysis phase. The DAG does describe the data
flow between frontal matrices in UMFPACK4, however. The pivot row and column remain
in the current frontal matrix as pending updates, unless sufficient work has accumulated.
Pivot rows and columns are copied into a separate compressed-index data structure for L
and U and removed from the frontal matrix only when their pending updates have been
applied to the contribution block.

The data structure for L and U is independent of the relaxed amalgamation heuristic,
or how many zeros are included in the frontal matrices. The nonzero pattern of column &
of L is stored in one of two ways: it can be derived from the £ — 1st column of L, or it can
be stored independently. The method that leads to the smallest memory usage for the kth
column is selected. This is a local greedy heuristic since the £+ 1st column is not yet known.

Consider the k£ — 1st column of L (for ¥ > 1). The kth column will often have very
similar nonzero pattern as this prior column, minus the kth pivot row index itself. If we
assume that the k£ — 1st column of L pattern is a subset of the kth column, we can store the

1A matrix multiply C = C + A * B has an inner dimension, or “rank,” corresponding to the number of
columns of A and the number of rows of B.
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location of the kth pivot row index in the prior pattern (if it exists) and the nonzero indices
of rows in the kth column but not in the £ — 1st column. Extra zero entries will appear if the
subset relationship does not hold, but this still may save space as compared to storing the
entire pattern of the kth column of L. Columns £ — 1 and k£ do not need to be part of the
same frontal matrix nor even part of the same chain to exploit this strategy (although if this
strategy is exploited it is likely that they are). A similar strategy is used to store each row
of U. The storage scheme is selected independent of both the frontal matrix relationships
and the supernodal column elimination tree.

3.4 Example numerical factorization

A small example matrix is shown in Figure 2. For simplicity, no pivoting is done in either
the column pre-ordering and symbolic analysis phase or in the numerical factorization phase.
The example shows the nonzero pattern of an 8-by-8 sparse matrix A, its LU factorization,
and its supernodal column elimination tree. The nodes of the supernodal column elimination
tree are labeled with the columns that are pivotal at each node. The example continues in
Figure 3, which shows the nonzero pattern of each frontal matrix in place of its corresponding
node in the supernodal column elimination tree. There are three frontal matrix chains in
the graph: node 1, nodes 2, 3, and 4, and the two nodes {5,6} and {7,8}. Nonzero values
are shown as small black circles. A box represents the upper bound nonzero pattern of each
frontal matrix, with the sides of each box labeled with row and column indices. Figure 4
shows the upper bound pattern of the LU factors. At each step of symbolic factorization, the
upper bound on the pivot row pattern is the union of all candidate pivot rows. This pivot row
then causes fill-in so that all candidate pivot rows take on the same nonzero pattern. Figure 5
shows the actual LU factorization, assuming no pivoting during numerical factorization.

Numerical factorization proceeds as follows. To simplify this example, no relaxed amalga-
mation is permitted (no extra zero entries are allowed in the frontal matrices). UMFPACK4
does perform relaxed amalgamation, however.

1. Original entries from the matrix A are assembled into the 2-by-3 frontal matrix 1. It
is factorized, and the 1-by-2 contribution block is placed on the stack (see the line
marked (****) in Algorithm 1). This node is the end of a chain.

2. A working array of size 4-by-5 is sufficient for the next chain (nodes 2, 3, and 4).
For any frontal matrix in this chain, the array can hold the frontal matrix and all
of the prior pivot rows and columns from this chain. The worst case size occurs at
node 4, where the frontal matrix is at most 2-by-3, and at most 2 prior pivot rows
and columns need to be held in the array. No more than ng = 32 prior pivots are
permitted in the current working array, but this parameter does not have any effect in
this small example. Frontal matrix 2 is assembled into a 2-by-3 array inside the 4-by-5
working array. The updates for the second pivot are not yet applied, and the second
contribution block is not yet stacked. Note that column 8 was determined to be a
non-candidate column in N, that might appear in the second frontal matrix. It would
have appeared if row 7 were picked as the second pivot row, instead of row 2. The
upper bound on the second frontal matrix is 2-by-4, but the actual size found during
numerical factorization is 2-by-3.
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Figure 2: Example numerical factorization: matrices and tree
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Figure 4: Upper bound pattern of LU factorization
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3. The factorization of frontal matrix 3 starts with the 2-by-3 frontal matrix from the prior
pivot. Extending the second frontal matrix to include the third pivot would create zero
entries (line (*) in Algorithm 1) so the pending updates from pivot 2 are applied, and
the 1-by-2 contribution block is placed on the stack (line (**)). The current working
array is now empty, and the third frontal matrix is constructed, of size 2-by-2. The
entry a%) is assembled from the prior contribution block into the current front. Node
2 is a Uson of its Uparent node 3 in the DAG, because one or more columns of node 2
can be completely removed from the contribution block of node 2 and assembled into
node 3, but not every column can be assembled [46]. The frontal matrix at node 2
makes a contribution to the pivot column of node 3, but not to the pivot row. Node
2 is a Uson of node 3 because uo3 is nonzero and I3 is zero. All other edges in the
DAG are between LUsons and LUparents. The updates for the third pivot are not
yet applied, and the third contribution block (the 1-by-1 matrix holding just the entry
a%)) is not yet stacked.

4. The fourth step of factorization starts with the prior 2-by-2 frontal matrix in the
current working array. Since the fourth pivot is not in the current front, the pending
update from the third pivot is applied (line (*)). The remaining 1-by-1 contribution
block is extended to hold the current 2-by-2 frontal matrix. Since this is the end of
the chain, the pending updates (from the fourth pivot) are applied, and the remaining
1-by-1 entry a'? is stacked as the fourth contribution block (line (****)). Note that
the third contribution block was never stacked, but was assembled in place into the
fourth frontal matrix. Node 3 is an LUson of node 4, because its entire contribution
block can be assembled into node 4, even though l43 is zero.

5. The fifth frontal matrix is used to factorize columns 5 and 6. First, a 3-by-2 frontal
matrix (columns 5 and 6, and rows 5, 6, and 8) is constructed in a 4-by-4 working
array. If the sixth pivot row and column are included in this frontal matrix prior to
applying the pending update from pivot row and column 5, then a single zero entry
would be present (usg) in the frontal matrix. A single matrix-matrix multiply could
be used to apply the pending updates for steps 5 and 6, but this would lead to extra
computations with this zero entry. Since no explicit zeros are allowed in this small
example, the update for the fifth pivot row and column are applied. No contribution
block is stacked, however. The frontal matrix is then extended (see line (***)) and
the sixth pivot row and column is constructed in a 2-by-2 frontal matrix. The sixth
contribution block is not stacked, and the pending updates for the sixth pivot is not
yet applied.

6. Since the seventh pivot entry agb;) does not reside in the current frontal matrix, the

pending update for the sixth pivot row and column is applied (line (*)). The frontal
matrix is then extended in size from 1-by-1 to 2-by-2 (line (***)), and the seventh pivot
row and column are assembled. The eighth pivot row and column are then found. The
chain ends at this frontal matrix, and the factorization is complete.

The example would change with fully relaxed amalgamation. Only two contribution
blocks would be stacked, one for the first frontal matrix, and one for the fourth frontal
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matrix. A rank-2 update would be applied for the {5,6} frontal matrix, rather than two
separate rank-1 updates.

4 Experimental results

In this section the experimental design and its results are presented. Qualitative observations
about these results are made in the subsequent section.

The new method, UMFPACK v4.1, is compared with LU, SuperLU, MA38, and the latest
“unsymmetric” version of MA41 [7], referred to here as MA4lu. Each method was tested
on a Dell Latitude C840 with a 2 GHz Pentium 4M processor, 1 GB of main memory, and
512 KB of cache. The BLAS by Goto and Van de Geijn was used for all methods [44]. This
BLAS increases the performance of UMFPACK4 by about 50% for large sparse matrices on
this computer, as compared with the ATLAS 3.4.1 BLAS [58]. Gilbert and Peierls’ sparse
LU was used within MATLAB Version 6.5. It does not make use of the BLAS. MATLAB 6.5
includes UMFPACK v4.0, which does not have the symmetric or 2-by-2 strategies, and takes
less advantage of level-3 BLAS. It is not included in these comparisons since the two versions
are otherwise very similar. UMFPACK v4.1 is nearly always as fast or faster than v4.0, and
uses the same amount or less memory. The difference is quite large for symmetric-patterned
matrices, such as those arising from finite-element problems.

With the exception of MA38 and LU, all methods used their default parameter settings
and ordering methods. MA38 can permute a matrix to block triangular form [14, 24, 27]
and then factorize each irreducible diagonal block. This can improve performance for some
matrices. The other methods do not include this option, but can be easily adapted to do so
via a short MATLAB script. This was tested, and the overall relative results presented here
do not change very much. For LU with the unsymmetric strategy, we used the COLAMD
pre-ordering, and scaled the rows of A the same way that UMFPACK4 performs its default
scaling. Row scaling typically leads to a sparser and more accurate LU factorization. The
unsymmetric strategy is as follows:

= size (A, 1) ;
= colamd (A) ;
=A (1,9 ;

n
q
C
R = spdiags (full (sum (abs (C), 2)), O, n, n) ;

[L,U,P] = 1u (R\C) ;

In collaboration with Sherry Li, we introduced the symmetric strategy into SuperLU,
using AMD on A + AT as the pre-ordering, followed by a post-ordering of the elimination
tree of A + AT, rather than a post-ordering of the column elimination tree. Results from
both the original SuperLU (which is better for unsymmetric-patterned matrices) and the
modified SuperLU (which is better for matrices with mostly symmetric nonzero pattern) are
included here. We also applied the same strategy to Gilbert and Peierls’ LU. We did not
evaluate an automatic selection strategy for SuperLLU or LU. Thus, for any given matrix, the
strategy that gives the best result for SuperLU or LU is presented. The symmetric strategy
applied to LU is as follows, where amd (A) computes the AMD ordering on A + AT and
then post-orders the elimination tree:
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n = size (A, 1) ;
q = amd (4) ;

C =4 (q,9) ;
R

L

spdiags (full (sum (abs (C), 2)), 0, n, n) ;
L,U,P] = 1u (R\C, 0.001) ;

The March 2003 release of the UF sparse matrix collection [15] includes 389 real, square,
unsymmetric sparse matrices. Fifteen singular matrices were excluded. Ten large matrices
which could not be factorized on this computer were also excluded?. Hollinger’s economic
modeling matrices were tested, and then excluded from the comparisons. They demonstrate
an extreme sensitivity to minor tie-breaking decisions in COLAMD and AMD. Making a
minor change in how the degree lists are initialized in AMD, for example, cut UMFPACK’s
total run time in half for one matrix, and increased it by a factor of four for a very similar
matrix in the set. The only other matrix in the collection with such sensitivity is the
FINAND12 matrix from Mulvey and Rothberg. It is also an economic modeling matrix.
Berger et al. [11] have shown that the FINAN512 matrix requires a specialized tree-dissection
ordering, and that the minimum degree algorithm (either approximate or exact) finds a
very poor ordering. Since all of the methods here were tested with variants of the minimum
degree algorithm, it is likely that none of them found good orderings for Hollinger’s matrices.
They are thus excluded from the comparisons (the results are not unlike the results for
unsymmetric-patterned matrices presented below, however).

Statistics gathered for each method included:

e The CPU time for the pre-ordering and symbolic analysis phase, and the numerical
factorization phase. The total run time is the sum of these two times. The CPU time
is indirectly related to the floating-point operation count, as discussed below.

e The “canonical” floating-point operation count. This was computed based solely on
the nonzero pattern of L and U,

S 2L Up + ) Ly
k=1 k=1

where Lj is the number of off-diagonal nonzeros in column k of L, and Uy is the
number of off-diagonal nonzeros in row k£ of U. Both L; and Uy exclude explicitly
stored entries that are numerically zero. The flop count is a function of the quality
of the pivot ordering found by the method (P and Q), and not a function of how
the factorization is actually computed. A method may perform extra floating-point
operations to get better performance in the dense matrix kernels. The time it takes to
perform a single floating-point operation can vary widely, even within the same code.
The best measure for computational efficiency is thus the actual CPU time, not the
floating-point operation count. Also, some of the methods compared here do not return
an actual floating-point operation count.

e The total memory usage, excluding the space required to hold A, x, and b. This
statistic includes all memory used by the method, not just the amount of memory

2APPU, LI, CAGE11 through CAGE15, PRE2, XENON2, and TORSO3.
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required to hold the LU factors. For example, it includes the space for the frontal
matrix stack for the multifrontal methods. LU’s memory usage when A is real and
square is 12 bytes per nonzero in L + U plus 53n bytes for P, Q, the rest of the
data structures for L and U, and temporary work space [40]. Any method requires
eight bytes to hold the numerical value of each entry L or U itself. An integer row or
column index takes four bytes. The bytes-per-entry ratio cannot be less than 8, but
it can be less than 12 since most methods do not require a companion integer index
for each floating-point value in L and U. The total amount of memory required by
each method is thus a function of two things: the ordering quality, and the overhead
required by the data structures.

e The number of nonzeros in L + U. This excludes the zero entries that most methods
explicitly store in their data structures for L and U. It also excludes the unit diagonal
of L, which does not need to be explicitly stored. This is a measure of ordering quality,
and only indirectly a measure of memory efficiency. Each method uses a different
storage scheme, and some store explicit zero entries to either save space (the pattern
is simpler) or to save time (dense matrix kernels can be used in the forward and back
solves).

e The norm of the residual, ||[Ax —b||w. All methods except LU use iterative refinement
with sparse backward error [8] in their forward /backward solve step. UMFPACK4 was
found to be just as accurate as LU on the matrices in this test set, or more accurate
in many cases.

The test set is split into three sets of matrices, depending on which of the three strategies
UMFPACK automatically selected for each matrix (unsymmetric, 2-by-2, or symmetric).
Tables 1 through 3 list the largest matrices in the three sets. The “size” of a matrix in
this sense reflects the smallest floating-point operation count for each of the five methods
reported here. The matrices are sorted in increasing size. Matrices for which all methods
report nearly identical results as other matrices in the tables were excluded®. Each table lists
the matrix group, name, dimension, number of nonzeros, and the symmetry of the nonzero
pattern. The symmetry of the pattern a sparse matrix is defined as the number of matched
off-diagonal entries over the total number of off-diagonal entries. An entry a;; is matched if
© # j and aj; is also an entry. A matrix with a symmetric pattern has a symmetry of one; a
completely asymmetric pattern has a symmetry of zero.

Most matrices in the “unsymmetric” set include matrices from chemical process simu-
lation, frequency-domain circuit simulation, and computational fluid dynamics. Nearly all
matrices in the “2-by-2” set are computational fluid dynamics problems with fluid-structure
interaction. Some include chemistry or heat transfer. Most matrices in the “symmetric” set
come from computational fluid dynamics, structural analysis, and electromagnetic problems.

Results for these matrices are given in Tables 4 through 8, which list the run time in
seconds (including the symbolic analysis and ordering phase), the canonical floating-point
operation count (in millions), the number of nonzeros in L + U (in thousands; this count
excludes the unit diagonal of L), the total amount of memory used (in megabytes), and the

3HEART3, PSMIGR_3, VENKAT25, VENKAT50, AND WANG3
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Table 1: Matrix statistics: unsymmetric set

Group Name n nonzeros | sym. | description
(in 1000’s)
MALLYA  LHRI14cC 14270 307.9 | 0.007 | light hydrocarbon recovery
MALLYA  LHRI1T7C 17576 382.0 | 0.002 | light hydrocarbon recovery
AT&T ONETONE2 | 36057 222.6 | 0.116 | harmonic balance method
GRAHAM GRAHAMI1 9035 335.5 | 0.718 | Navier-Stokes, finite-element
MALLYA  LHR34C 35152 764.0 | 0.002 | light hydrocarbon recovery
SHEN E40R0100 17281 553.6 | 0.308
MALLYA  LHRT71C 70304 1528.1 | 0.002 | light hydrocarbon recovery
FIDAP  Ex40 7740 456.2 | 1.000 | Navier-Stokes, finite-element (3D)
AT&T ONETONEL | 36057 335.6 | 0.076 | harmonic balance method
VAvAasiS  Av41092 41092 1683.9 | 0.001 | unstructured finite-element
AT&T TWOTONE | 120750 1206.3 | 0.246 | harmonic balance method
HB PSMIGR_2 3140 540.0 | 0.479 | population migration
STMON BBMAT 38744 1771.7 | 0.529 | 2D airfoil, turbulence
Table 2: Matrix statistics: 2-by-2 set
Group Name n nonzeros | sym. | description
(in 1000’s)
GOODWIN CGOODWIN | 7320 324.8 | 0.635 | fluid mechanics, finite-element
AVEROUS  EPB2 25228 175.0 | 0.670 | plate-fin heat exchanger
GARON GARON2 13535 373.2 | 0.999 | 2D finite-element, Navier-Stokes
GOODWIN RIM 22560 1015.0 | 0.639 | fluid mechanics, finite-element
NORRIS HEART2 2339 680.3 | 1.000 | quasi-static FEM, human heart
AVEROUS  EPB3 84617 463.6 | 0.667 | plate-fin heat exchanger
Bova RMA10 46835 2329.1 | 1.000 | 3D model of Charleston Harbor
NORRIS HEART1 3557 1385.3 | 1.000 | quasi-static FEM, human heart
HB PSMIGR-1 | 3140 543.2 | 0.479 | population migration
Table 3: Matrix statistics: symmetric set
Group Name n nonzeros | sym. | description
(in 1000’s)
NORRIS TORSO2 115967 1033.5 | 0.992 | 2D human torso, electro-phys., finite-diff.
SIMON OLAFU 16146 1015.2 | 1.000 | structure problem
SIMON VENKATO1 | 62424 1717.8 | 1.000 | unstructured 2D Euler problem
Ba1 AF23560 23560 460.6 | 0.944 | airfoil
SIMON RAEFSKY3 21200 1488.8 | 1.000 | fluid-structure, turbulence
ZHAO ZHAO1 33861 166.5 | 0.922 | electromagnetics
ZHAO ZHAO2 33861 166.5 | 0.922 | electromagnetics
FIDAP EX11 16614 1096.9 | 1.000 | 3D fluid flow, cylinder and plate
SIMON RAEFSKY4 19779 1316.8 | 1.000 | container buckling problem
WaNG WANG4 26068 177.2 | 1.000 | 3D MOSFET semiconductor
Ronis XENON1 48600 1181.1 | 1.000 | zeolite, sodalite crystals
VANHEUKELUM CAGE10 11397 150.6 | 1.000 | DNA electrophoresis
NORRIS STOMACH | 213360 3021.6 | 0.848 | 3D electro-physical, human duodenum
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total memory used (in bytes) divided by the number of nonzero entries in L + U. Results
within 25% of the best result for a particular matrix are shown in bold. The last part of
each table lists the median ratios relative to UMFPACK4, and the median number of bytes
per nonzero entry. These results are also plotted in Figures 6 through 8. Each of the three
logarithmic plots depicts the relative results of one method as compared to UMFPACKA4.
Each circle on the plot is a single matrix listed in one of the tables Tables 4 through 8. A
circle in the upper right quadrant depicts a matrix for which the specific method requires
more time and memory than UMFPACK4. The four dashed lines represent relative results
similar to UMFPACK4 (0.8 and 1.25). The solid lines represent the median relative results.

For matrices in the unsymmetric set, SuperLU and LU typically used the unsymmetric
strategy. The exception for both methods was the PSMIGR_2 matrix. SuperLU and LU
typically used the symmetric strategy for matrices in the two other tables, with the exception
of HEART2 for LU, ZHAO2 for SuperLU, and rRIM for both SuperLU and LU. LU and MA38
ran out of memory for the STOMACH matrix.

The full results for all three of UMFPACKA4’s strategies is not reported here, since the
automatic strategy selection nearly always selects the best strategy for these matrices. The
worst-case exception is the RMA10 matrix. LU and SuperLU use the symmetric strategy for
this matrix, since they do not have the 2-by-2 strategy and the unsymmetric strategy leads
to too much fill-in. UMFPACK4 selects its 2-by-2 strategy, but the symmetric strategy is
better. UMFPACK4 with its symmetric strategy finds an ordering with the identical fill-in
and floating point operation count as LU, as reported in Table 6. The memory usage drops
to 75.8 MB (9.1 bytes per nonzero entry in L and U). The run time is 3.3 seconds, which is
the same as SuperLU.

The peak performance of each method for these matrices is 214 Mflops for LU, 690 Mflops
for SuperLU, 1.65 Gflops for UMFPACK4, 1.21 Gflops for MA38, and 1.96 Gflops for MA41u.
The theoretical peak performance of the computer used in this experiment is 4 Gflops. Goto
and van de Geijn’s DGEMM routine has a peak performance of 3.3 Gflops. This is obtained
on relatively small dense matrices, of the size that are typically used in multifrontal methods
(3.2 Gflops for C = C' + A x B, where A is 100-by-32 and B is 32-by-100, for example).

5 Experimental comparisons

The above results must be interpreted with caution; the test set is not a statistical sample
of all sparse matrices encountered in practice, and the run time results can differ depending
on the computer used. SuperLLU and MA41u both have parallel versions. LU, UMFPACKA4,
and MA38 do not. UMFPACK4 is based on the supernodal column elimination tree, which
could be used to guide a parallel version of UMFPACK, however. MA38 has no such tree,
although a parallel re-factorize algorithm based on the elimination DAG found in a prior
sequential numerical factorization has been developed [3, 46, 47]. With this caveat in mind,
a few observations on the results can be made.

The left-looking methods LU and SuperLU typically find nearly identical orderings be-
cause they use the same pre-ordering and pivoting strategy. In terms of fill-in and floating-
point operation count, UMFPACK4 behaves most similarly to the left-looking methods. This
is to be expected, since all three methods use the same column pre-ordering, are based on
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Table 4: Results for unsymmetric set

Matrix LU | SuperLU | UMFPACK4 | MA38 | MA41lu
MALLYA time: 1.4 0.6 0.6 0.8 0.9
LHR14C flop: 83.3 85.1 58.1 85.1 82.1

nz LU: 1372.1 1381.3 1144.7 | 1309.6 | 1331.2
mem: 16.4 17.6 11.4 15.9 25.3
mem/nz: 12.6 13.3 10.5 12.8 20.0
MALLYA time: 1.8 0.7 0.7 1.1 1.4
LHR17C flop: 105.1 110.3 79.5 130.6 123.6
nz LU: 1666.6 1703.4 1427.0 | 1700.8 | 1731.0
mem: 20.0 21.5 14.2 20.8 33.2
mem/nz: 12.6 13.3 10.4 12.8 20.1
AT&T time: 1.3 0.7 0.7 2.3 0.7
ONETONE2 flop: 93.8 94.0 87.0 705.9 245.3
nz LU: 1032.1 1049.8 903.4 | 1914.3 | 1379.1
mem: 13.6 18.8 12.0 31.7 29.0
mem/nz: 13.9 18.8 13.9 174 22.0
GRAHAM time: 8.1 3.3 2.0 5.9 0.2
GRAHAM1  flop: 1151.0 1395.5 5494 | 2567.4 109.3
nz LU: 4568.3 4936.3 2858.8 | 5406.8 | 1091.2
mem: 52.7 53.9 31.8 60.5 17.3
mem/nz: 12.1 11.4 11.7 11.7 16.6
MALLYA time: 4.7 1.7 1.5 8.8 10.2
LHR34C flop: 221.9 238.0 167.8 393.4 231.2
nz LU: 3421.0 3529.6 2915.8 | 3871.7 | 3400.6
mem: 40.9 44.4 28.5 44.7 64.5
mem/nz: 12.5 13.2 10.2 12.1 19.9
SHEN time: 9.0 2.8 1.3 5.5 0.9
E40R0100 flop: 1236.9 1029.3 518.6 | 2589.0 284.9
nz LU: 5614.4 5080.7 3769.2 | 6453.5 | 2186.6
mem: 65.1 54.9 37.1 71.1 30.3
mem/nz: 12.2 11.3 10.3 11.6 14.5
MALLYA time: 9.4 3.5 3.0 14.1 19.8
LHR71C flop: 469.3 498.4 343.0 823.9 501.9
nz LU: 6953.4 7165.1 5828.4 | 7933.8 | 6981.1
mem: 83.1 89.9 56.4 89.9 128.9
mem/nz: 12.5 13.2 10.1 11.9 194
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Table 5: Results for unsymmetric set, continued

Matrix LU | SuperLU | UMFPACKA4 MA38 MA41lu

FIDAP time: 7.5 2.5 1.2 10.8 1.0
EX40 flop: 1053.2 856.9 419.4 6062.6 1140.7
nz LU: 4249.6 3723.5 2553.5 8498.4 3553.9

mem: 49.0 40.0 22.9 115.8 38.7

mem /nz: 12.1 11.3 9.4 14.3 11.4

AT&T time: 17.2 9.1 2.5 5.9 1.8
ONETONEL flop: 2561.8 2555.7 1951.3 2270.4 1140.3
nz LU: 4466.9 4476.2 3637.4 4269.7 2947.7

mem: 52.9 54.1 46.5 69.5 64.9

mem/nz: 12.4 12.7 13.4 17.1 23.1

VAVASIS time: 318.1 145.5 43.3 56.0 11.4
AvV41092 flop: 65520.2 74016.0 28126.0 | 42612.7 3264.1
nz LU: 38670.4 42795.4 33862.5 | 33418.1 8796.7

mem: 444.6 436.7 340.2 358.8 161.3

mem/nz: 12.1 10.7 10.5 11.3 19.2

AT&T time: 41.1 40.5 5.2 34.6 13.2
TWOTONE flop: 5746.1 5798.6 3633.4 17395.3 8307.9
nz LU: 13055.9 13551.0 7048.5 15573.3 | 10921.2

mem: 155.5 223.0 91.5 223.9 315.0

mem/nz: 12.5 17.3 13.6 15.1 30.2

HB time: 56.6 30.2 8.6 12.3 7.4
PSMIGR_2 flop: 11877.0 13079.3 10256.1 7416.7 9895.2
nz LU: 7518.0 7980.8 6718.3 5371.6 6394.3

mem: 86.2 80.9 100.7 160.4 194.1

mem /nz: 12.0 10.6 15.7 31.3 31.8

SIMON time: 204.8 81.6 32.6 242.7 26.8
BBMAT flop: 40489.4 | 41479.3 33325.7 | 247934.7 | 38714.1
nz LU: 46729.8 | 47302.6 41911.9 | 110391.9 | 43670.3

mem: 536.7 489.6 356.4 1196.0 455.0

mem/nz: 12.0 10.9 8.9 11.4 10.9

median ratios time: 6.09 2.07 1.00 3.33 0.86
flop: 1.37 1.45 1.00 2.40 1.38

nz LU: 1.19 1.23 1.00 1.36 1.16

mem: 1.44 1.54 1.00 1.60 1.93

median mem /nz: 12.43 12.66 10.46 12.76 19.87
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Table 6: Results for 2-by-2 set

Matrix LU | SuperLU | UMFPACKA4 MA38 | MA4lu
GOODWIN time: 12.0 6.4 0.6 2.0 0.2
GOODWIN flop: 2177.9 2466.9 131.9 843.1 120.3

nz LU: 4281.1 4776.8 1104.8 | 3054.3 | 1048.5
mem: 49.4 49.7 11.0 32.9 16.5
mem /nz: 12.1 10.9 10.4 11.3 16.5
AVEROUS time: 2.4 0.9 1.0 3.7 0.4
EPB2 flop: 277.7 277.7 302.9 | 1671.5 304.8
nz LU: 1905.4 1905.4 1917.7 4503.3 | 2002.2
mem: 23.1 23.7 21.5 50.7 29.2
mem/nz: 12.7 13.0 11.7 11.8 15.3
GARON time: 4.1 1.6 1.1 1.5 0.4
GARON2 flop: 543.7 572.6 504.5 586.0 292.2
nz LU: 2842.1 2931.4 2737.0 | 2878.2 | 2103.5
mem: 33.2 30.9 24.4 34.5 26.0
mem /nz: 12.3 11.1 9.3 12.6 13.0
GOODWIN time: 30.8 13.6 2.6 13.2 0.8
RIM flop: 4732.2 6204.4 911.3 | 6432.6 420.3
nz LU: 15219.4 17688.1 4910.0 | 14953.1 | 3423.9
mem: 175.3 190.6 45.2 151.7 51.0
mem /nz: 12.1 11.3 9.7 10.6 15.6
NORRIS time: 6.4 2.0 0.8 2.9 0.8
HEART2 flop: 1138.1 1149.3 430.2 1589.7 746.6
nz LU: 2196.4 2166.9 1329.1 | 2679.5 | 1717.0
mem: 25.3 22.8 17.8 41.6 30.4
mem /nz: 12.1 11.0 14.1 16.3 18.6
AVEROUS time: 5.0 2.3 2.6 16.0 1.2
EPB3 flop: 562.6 562.6 562.6 7721.9 1011.2
nz LU: 4401.0 4401.0 4401.0 | 15759.0 5797.1
mem: 54.6 60.5 48.5 178.1 78.9
mem /nz: 13.0 14.4 11.5 11.8 14.3
Bova time: 12.2 3.3 4.2 27.7 1.9
RMA10 flop: 1416.5 1417.2 1961.3 | 18038.9 | 1465.8
nz LU: 8739.9 8750.6 10477.7 | 28362.4 | 8918.9
mem: 102.4 92.7 90.0 334.3 116.8
mem/nz: 12.3 11.1 9.0 12.4 13.7
NORRIS time: 24.7 7.5 2.1 5.7 2.3
HEART1 flop: 4812.7 5148.1 1646.9 | 3335.7 | 3108.9
nz LU: 5140.1 5414.4 3154.3 | 4523.7 | 4229.5
mem: 59.0 514 39.0 82.3 75.2
mem /nz: 12.0 9.9 13.0 19.1 18.7
HB time: 41.1 15.2 8.0 15.4 6.7
PSMIGR._1 flop: 8577.7 8577.7 8578.9 | 9305.1 | 8613.9
nz LU: 5820.7 5820.7 5821.7 | 6124.2 | 5856.9
mem: 66.8 56.8 131.1 173.1 165.5
mem /nz: 12.0 10.2 23.6 29.6 29.6
median ratios time: 5.15 1.90 1.00 3.70 0.45
flop: 1.08 1.14 1.00 5.52 1.00
nz LU: 1.04 1.07 1.00 2.35 1.01
mem: 1.36 1.27 1.00 2.36 1.36
median mem /nz: 12.09 11.05 11.55 12.36 15.62
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Table 7: Results for symmetric set

Matrix LU | SuperLU | UMFPACK4 | MA38 | MA4lu
NORRIS time: 19.0 4.8 4.1 168.1 25.6
TORSO2 flop: 1336.7 1332.5 1331.4 | 8538.3 1453.9

nz LU: 9742.7 9737.4 9736.1 | 21619.7 | 10421.6
mem: 117.4 119.0 94.6 227.8 124.3
mem /nz: 12.6 12.8 10.2 11.1 12.5
SIMON time: 13.9 4.3 2.8 7.2 1.7
OLAFU flop: 2362.7 2701.8 2573.7 | 45314 1958.0
nz LU: 6391.8 6732.3 6624.4 | 8762.5 5846.7
mem: 74.0 66.9 67.1 106.4 72.1
mem/nz: 12.1 10.4 10.6 12.7 12.9
SIMON time: 16.2 5.1 3.8 9.3 2.3
VENKATO01 flop: 2194.2 2194.2 2194.2 | 5582.9 2178.6
nz LU: 11539.6 | 11539.6 11539.6 | 16051.6 | 11607.4
mem: 135.2 122.8 101.3 174.2 133.0
mem/nz: 12.3 11.2 9.2 11.4 12.0
BAl time: 16.4 4.6 3.5 28.8 2.4
AF23560 flop: 2675.9 2675.9 2675.9 | 21293.3 2688.2
nz LU: 8317.9 8317.9 8317.9 | 23421.3 8391.7
mem: 96.4 85.2 75.2 270.6 86.3
mem/nz: 12.2 10.7 9.5 12.1 10.8
SIMON time: 17.3 4.6 3.0 8.7 2.2
RAEFSKY3 flop: 2814.3 2814.3 2814.3 | 6751.1 2904.6
nz LU: 8333.6 8333.6 8333.6 | 12468.5 8435.3
mem: 96.4 83.1 76.5 141.2 102.3
mem/nz: 12.1 10.5 9.6 11.9 12.7
ZHAO time: 19.8 8.7 4.2 24.3 2.7
ZHAO1 flop: 3646.5 3646.5 3646.5 | 20100.3 3659.8
nz LU: 6949.5 6949.5 6949.5 | 16525.0 7150.9
mem: 81.2 73.7 69.1 181.5 79.4
mem/nz: 12.3 11.1 10.4 11.5 11.6
ZHAO time: 24.0 53.4 4.8 40.2 2.6
ZHAO02 flop: 4404.1 12148.7 4145.4 | 29223.9 3659.8
nz LU: 8106.1 17633.9 7849.8 | 24248.2 7149.6
mem: 94.5 194.2 81.6 269.8 79.4
mem/nz: 12.2 11.5 10.9 11.7 11.6
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Table 8:

Results for symmetric set, continued

Matrix LU | SuperLU | UMFPACK4 MA38 MA41u

FIDAP time: 32.5 17.5 5.4 81.3 4.7
EX11 flop: 6001.2 11797.4 6001.2 | 88326.4 6660.4
nz LU: 11392.0 14527.8 11392.0 | 37810.4 11900.3

mem: 131.2 143.2 107.1 536.5 1314

mem /nz: 12.1 10.3 9.9 14.9 11.6

SIMON time: 66.7 19.7 9.9 31.7 5.2
RAEFSKY4 flop: 13387.7 13575.2 12899.0 | 30515.0 8543.1
nz LU: 16009.0 16110.2 15751.6 | 24447.9 13474.4

mem: 184.2 159.7 170.9 285.0 152.3

mem/nz: 12.1 10.4 11.4 12.2 11.9

WANG time: 45.7 20.1 7.4 34.7 6.0
WANG4 flop: 9073.2 9073.2 9073.2 34284.4 10472.2
nz LU: 10537.8 10537.8 10537.8 | 22904.2 11473.1

mem: 121.9 106.4 106.5 276.4 136.0

mem /nz: 12.1 10.6 10.6 12.7 12.4

RoONIS time: 105.4 35.3 16.1 103.7 15.0
XENON1 flop: 21124.2 21124.2 21124.2 | 125373.1 26790.6
nz LU: 27131.9 27131.9 27131.9 | 62683.6 30118.5

mem: 313.0 269.1 247.8 626.6 314.2

mem /nz: 12.1 10.4 9.6 10.5 10.9

VANHEUKELUM time: 130.9 52.3 16.9 51.0 13.7
CAGE10 flop: 27968.1 27968.1 27968.1 53933.9 26859.6
nz LU: 15895.5 15895.5 15895.5 | 22375.5 15735.4

mem: 182.5 154.3 222.1 293.3 222.3

mem /nz: 12.0 10.2 14.7 13.7 14.8

NORRIS time: 162.2 72.4 47.2
STOMACH flop: 87040.3 87040.3 92290.0
nz LU: 107262.5 107262.5 112364.6

mem: 1069.7 878.1 1062.7

mem /nz: 10.5 8.6 9.9

median ratios time: 5.02 2.05 1.00 4.71 0.66
flop: 1.00 1.00 1.00 3.78 1.00

nz LU: 1.00 1.00 1.00 2.17 1.01

mem: 1.17 1.09 1.00 2.41 1.21

median mem /nz: 12.13 10.46 10.19 11.88 11.86
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the column elimination tree, and exploit the same worst-case upper bound on fill-in. Because
UMFPACKA4 can further refine the row and column ordering based on the row and column
degrees available during factorization, it is typically able to find a better pivot ordering than
LU and SuperLU, leading to fewer floating-point operations, fewer nonzeros in L. and U, and
less memory usage. UMFPACKA4 is typically faster than LU and SuperLU in this particular
environment for these matrices.

UMFPACK4 makes more efficient use of memory than all other methods in terms of bytes
per nonzero entry in L and U. Because it often finds better orderings than LU and SuperLU,
and because its integer overhead for the nonzero patterns is typically lower, it nearly always
uses less memory than either method. It typically finds orderings with as good a quality, or
better, than MA41u.

UMFPACKA4 is much faster than MA38, finds better orderings, and uses less memory for
nearly all matrices, primarily because of its column pre-ordering strategies.

For matrices with unsymmetric nonzero pattern, UMFPACK4 typically uses almost half
as much memory as MA41lu and typically finds better orderings. In terms of run time,
MA41u and UMFPACK4 are roughly split, in terms of which method is fastest on which
particular unsymmetric matrix.

For matrices in the 2-by-2 set and symmetric set, MA41lu is typically the fastest method
of those considered here. UMFPACK4 is rarely more than twice as slow as MA41u, however,
and almost always uses less memory than MA41u. With a few exceptions, LU, SuperLU,
UMFPACK4, and MA41u find comparable orderings for matrices in the symmetric set, since
all four are using the same pre-ordering method (AMD). Differences in scaling and pivoting
strategies result in some variations. The symmetric strategy cannot be applied to MA38
since it lacks a pre-ordering and analysis phase.

With its symmetric strategy, and assuming no pivoting during numerical factorization,
UMFPACK4 finds the same ordering as MA41u, and will construct nearly the same sequence
of frontal matrices. They differ in their symbolic pre-analysis phase. With its symmetric
strategy, UMFPACK follows its AMD ordering with an analysis of the upper bound fill-in
and operation count, based on the Cholesky factorization of ATA. It uses a method similar
to COLAMD, except without reordering the columns. This is slower than a recent method
based on the union-find data structure for finding row and column counts for sparse QR or
LU factorizations [41]. Also, UMFPACK4’s numerical factorization phase is somewhat slower
because of its unifrontal-style strategy of shifting pivot rows in and out of the current frontal
matrix. This reduces memory usage, but swapping rows leads to non-stride-1 access, which
has a significant performance penalty on the Pentium 4M. Finally, UMFPACK4 maintains
element lists in case off-diagonal pivoting is needed. MA41 and MA41u do not use element
lists. These three factors account for most of the difference in run time between UMFPACK4
and MA41u on matrices with symmetric nonzero pattern.

Brainman and Toledo [12] use a nested dissection dissection method (recursive graph
partitioning) for finding good orderings for left-looking methods. Their method partitions
ATA without forming AT A explicitly, using wide separators of A+AT. It is particularly well
suited to matrices arising in 2D and 3D problems, finding better orderings than COLAMD for
those matrices. Many of the matrices reported here fall in this category. Since UMFPACK4
exploits the same upper bound on fill-in as left-looking methods, and since UMFPACK4 can
accept any given column pre-ordering instead of its default COLAMD or AMD orderings,
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their method can be applied to UMFPACK4 to improve its performance on 2D and 3D
problems. The other solvers discussed here (except MA38) can also significantly benefit
from the use of a nested dissection based ordering of A + AT [5] or ATA.

The BBMAT matrix obtained from Horst Simon has an interesting history [57]. In 1988
it took about 1000 seconds and slightly over 1 GB of memory to factorize on a Cray-2
using a bandwidth reducing ordering and a banded solver. The matrix represents a 2D
torus, with structural asymmetry along the grid lines that run from the center to the outside
(representing turbulence). The band reducing ordering was constructed manually, based on
the knowledge of the mesh. Unsymmetric sparse LU factorization codes available to Simon
and his colleagues at that time were unable to factorize the matrix. In 2003, all 5 of the
methods presented here can easily factorize the matrix, most with much less memory. In 15
years, the run time has been cut to about 30 seconds, and the memory requirement has been
reduced by a factor of 3. The Dell Latitude laptop used in these experiments is about twice
as fast as a single processor of the Cray-2, and has the same amount of memory available to
a single process (1 GB). The memory savings and an additional factor of 15 improvement in
run-time are purely due to algorithmic improvements.

6 Summary

The new method presented here, UMFPACK4, tends to perform better than left-looking
methods (LU and SuperLU) on a wide range of matrices. It typically uses less memory and
finds better orderings, or comparable orderings for symmetric structured matrices. Based on
the same criteria, it always outperforms its predecessor, MA38. Compared with MA41u, it
typically finds an ordering that results in fewer nonzeros in L and U for unsymmetric struc-
tured problems, and identical fill-in for symmetric structured matrices. It uses significantly
less memory than MA41u.

UMFPACK Version 4.1 (and earlier versions), COLAMD, and AMD are available at
www.cise.ufl.edu/research /sparse, and as Collected Algorithms of the ACM [2, 16, 19]. UMF-
PACK Version 4.0, which includes only the unsymmetric strategy and takes less advantage of
the level-3 BLAS, appears as a built-in routine in MATLAB 6.5, as the LU and the forward
and backslash matrix operator (x = A\b).*
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