
Algorithm 8xx: AMD, an approximate minimum degree
ordering algorithm

Patrick R. Amestoy∗ Timothy A. Davis† Iain S. Duff‡

May 6, 2003

Abstract

AMD is a set of routines for permuting sparse matrices prior to numerical factoriza-
tion, using the approximate minimum degree ordering algorithm. There are versions
written in both C and Fortran 77. A MATLAB interface is included.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Al-
gebra – linear systems (direct methods), sparse and very large systems G.4 [Mathematics of
Computing]: Mathematical Software – algorithm analysis, efficiency

General terms: Algorithms, Experimentation, Performance.
Keywords: sparse matrices, linear equations, ordering methods, minimum degree

1 Overview

AMD is a set of routines for preordering a sparse matrix prior to numerical factorization. It
uses an approximate minimum degree ordering algorithm to find a permutation matrix P so
that the Cholesky factorization PAPT = LLT has fewer (often much fewer) nonzero entries
than the Cholesky factorization of A.

In the C version of AMD, the elimination phase is followed by an elimination tree post-
ordering. This has no effect on the number of nonzeros in L, but reorganizes the ordering so
that the subsequent numerical factorization is more efficient. It also includes a pre-processing
phase in which it handles “dense” rows and columns with many nonzeros. If it is given an

∗ENSEEIHT-IRIT, 2 rue Camichel 31017 Toulouse, France. email: amestoy@enseeiht.fr.
http://www.enseeiht.fr/∼amestoy.

†Dept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL, USA.
email: davis@cise.ufl.edu. http://www.cise.ufl.edu/∼davis. This work was supported by the National Science
Foundation, under grants ASC-9111263, DMS-9223088, and DMS-0203270. Portions of the work were done
while on sabbatical at Stanford University and Lawrence Berkeley National Laboratory (with funding from
Stanford University and the SciDAC program).

‡Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England. email: i.s.duff@rl.ac.uk.
http://www.numerical.rl.ac.uk/people/isd/isd.html. This work was supported by the the EPSRC under
grant GR/R46441.

1

unsymmetric matrix, it operates on the symmetric nonzero pattern formed from the Boolean
summation of A with AT.

The two Fortran versions of AMD are identical to two versions of the AMD algorithm
discussed in an earlier paper [1] (approximate minimum external degree, both with and
without aggressive absorption). Details of the method used in AMD can be found in that
paper. For a discussion of the long history of the minimum degree algorithm, see [2].

2 Availability

In addition to appearing as a Collected Algorithm of the ACM, AMD Version 1.0 is available
at http://www.cise.ufl.edu/research/sparse. The Fortran version is available as the routine
MC47 in HSL (formerly the Harwell Subroutine Library) [3].

3 Using AMD in MATLAB

The simplest way to use AMD is within MATLAB. Once the AMD mexFunction is compiled
and installed, the MATLAB statement p = amd (A) computes a permutation vector p so
that the Cholesky factorization chol(A(p,p)) is typically sparser than chol(A).

An optional input argument can be used to modify the control parameters for AMD
(aggressive absorption and dense row/column handling). An optional output argument pro-
vides statistics on the ordering, including an analysis of the fill-in and floating-point opera-
tion count of a subsequent factorization. AMD will print these statistics if you turn on the
MATLAB sparse matrix monitor flag with spparms (’spumoni’,1).

4 Using AMD in a C program

The C-callable AMD library consists of four user-callable routines and one include file. There
are two versions of each of the routines, with int and long integers.

• amd order (long version: amd l order)

Computes the approximate minimum degree ordering of an n-by-n matrix A. Returns
a permutation vector P of size n, where P [k] = i if row and column i are the kth
row and column in the permuted matrix. This routine allocates its own memory, and
requires O(|A|) space, where |A| is the number of nonzero entries in the matrix. It
computes statistics about the matrix A, such as the symmetry of its nonzero pattern,
the number of nonzeros in L, and the floating-point operations required for Cholesky
and LU factorizations. The user’s input matrix is not modified.

• amd defaults (long version: amd l defaults)

Sets the default control parameters in the Control array. These can then be modified
as desired before passing the array to the other AMD routines.

2

• amd control (long version: amd l control)

Prints the control parameters.

• amd info (long version: amd l info)

Prints the statistics computed by AMD.

The nonzero pattern of the matrix A is represented in compressed column form, which
is identical to the sparse matrix representation used by MATLAB. It consists of two arrays,
where the matrix is n-by-n, with nz entries. For the int version of AMD, the two arrays are
defined as:

int Ap [n+1] ;
int Ai [nz] ;

The row indices of entries in column j are stored in Ai[Ap[j] . . . Ap[j+1]-1]. No
duplicate row indices may be present, and the row indices in any given column must be
sorted in ascending order. The first entry Ap[0] must be zero. The total number of entries
in the matrix is thus nz = Ap[n]. The matrix must be square, but it does not need to be
symmetric. The diagonal entries may be present, but are ignored. AMD checks the input
matrix and returns an error code if it is invalid. The follow program illustrates the basic
usage of AMD.

#include <stdio.h>
#include "amd.h"

int n = 5 ;
int Ap [] = { 0, 2, 6, 10, 12, 14} ;
int Ai [] = { 0,1, 0,1,2,4, 1,2,3,4, 2,3, 1,4 } ;
int P [5] ;

int main (void)
{

int k ;
(void) amd_order (n, Ap, Ai, P, (double *) NULL, (double *) NULL) ;
for (k = 0 ; k < n ; k++) printf ("P [%d] = %d\n", k, P [k]) ;
return (0) ;

}

The Ap and Ai arrays represent the binary matrix

A =


1 1 0 0 0
1 1 1 0 1
0 1 1 1 0
0 0 1 1 0
0 1 1 0 1

 .

AMD constructs the pattern of A + AT, and returns a permutation vector of (0, 3, 1, 4, 2).
More example programs are included with the AMD package.

3

5 Using AMD in a Fortran program

Two Fortran versions of AMD are provided. The AMD routine computes the approximate
minimum degree ordering, using aggressive absorption. The AMDBAR routine is identical,
except that it does not perform aggressive absorption. The AMD routine is essentially identical
to the HSL routine MC47B/BD.

The Fortran versions differ from the C routines. The AMD algorithms were originally
coded in Fortran and so are identical to the routines used in the experimental results in [1].
The internal routines require a symmetric nonzero pattern, with no diagonal entries present
although the MC47A/AD wrapper in HSL allows duplicates, ignores out-of-range entries, and
only uses entries from the upper triangular part of the matrix. Although we have an experi-
mental Fortran code for treating “dense” rows, the Fortran codes in this release do not treat
“dense” rows and columns of A differently, and thus their run time can be high if there are
a few dense rows and columns in the matrix. They do not perform a post-ordering of the
elimination tree, compute statistics on the ordering, or check the validity of their input ar-
guments. These functions are provided by the HSL routines MA57L/LD and MC47A/AD, which
are not part of this release. However, details on an assembly tree that respects the AMD
ordering are returned from the calls to the Fortran codes. Only one integer version of each
routine is provided. Both Fortran versions overwrite the user’s input matrix, in contrast to
the C version. The two Fortran versions have the same calling sequence, and only differ in
the name of the routine.

INTEGER N, IWLEN, PFREE, NCMPA, IW (IWLEN), PE (N), DEGREE (N), NV (N),
$ NEXT (N), LAST (N), HEAD (N), ELEN (N), W (N), LEN (N)

CALL AMD (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT,
$ LAST, HEAD, ELEN, DEGREE, NCMPA, W)

The input matrix is provided to AMD and AMDBAR in three arrays, PE, of size N, LEN, of
size N, and IW, of size IWLEN. The size of IW must be at least NZ+N. The recommended size
is 1.2*NZ + N. On input, the indices of nonzero entries in row I are stored in IW. PE (I)

is the index in IW of the start of row I. LEN (I) is the number of entries in row I. The
matrix is 1-based, with row and column indices in the range 1 to N. Row I is contained in
IW (PE (I) . . . PE (I) + LEN (I) - 1). The diagonal entries must not be present. The
indices within each row must not contain any duplicates, but they need not be sorted. The
rows themselves need not be in any particular order, and there may be empty space between
the rows. If LEN (I) is zero, then there are no off-diagonal entries in row I, and PE (I) is
ignored. The integer PFREE defines what part of IW contains the user’s input matrix, which
is held in IW (1 . . . PFREE-1). The contents of IW and LEN are undefined on output, and PE

is modified to contain information about the ordering.
As the algorithm proceeds, it modifies the IW array, placing the pattern of the partially

eliminated matrix in IW (PFREE . . . IWLEN). If this space is exhausted, the space is com-
pressed. The number of compressions performed on the IW array is returned in the scalar
NCMPA. The value of PFREE on output is the length of IW required for no compressions to be
needed.

4

The output permutation is returned in the array LAST, of size N. If I = LAST (K), then
I is the Kth row in the permuted matrix. The inverse permutation is returned in the array
ELEN, where K = ELEN (I) if I is the Kth row in the permuted matrix.

On output, the PE and NV arrays hold the assembly tree, a supernodal elimination tree
that represents the relationship between columns of the Cholesky factor L. If NV (I) > 0,
then I is a node in the assembly tree, and the parent of I is -PE (I). If I is a root of the
tree, then PE (I) is zero. The value of NV (I) is the number of entries in the corresponding
column of L, including the diagonal. If NV (I) is zero, then I is a non-principal node that
is not in the assembly tree. Node -PE (I) is the parent of node I in a subtree, the root of
which is a node in the assembly tree. All nodes in one subtree belong to the same supernode
in the assembly tree.

The other size N arrays (DEGREE, HEAD, NEXT, and W) are used as workspace, and are not
defined on input or output.

The follow program illustrates the basic usage of the Fortran version of AMD. The AP

and AI arrays represent the binary matrix

A =


1 1 0 0 0
1 1 1 0 1
0 1 1 1 1
0 0 1 1 0
0 1 1 0 1


in a conventional 1-based column-oriented form, except that the diagonal entries are not
present. The matrix is the same as nonzero pattern of A + AT in the C program, in
Section 4. The output permutation is (4, 1, 3, 5, 2).

INTEGER N, NZ, J, K, P, IWLEN, PFREE, NCMPA
PARAMETER (N = 5, NZ = 10, IWLEN = 17)
INTEGER AP (N+1), AI (NZ), LAST (N), PE (N), LEN (N), ELEN (N),

$ IW (IWLEN), DEGREE (N), NV (N), NEXT (N), HEAD (N), W (N)
DATA AP / 1, 2, 5, 8, 9, 11/
DATA AI / 2, 1,3,5, 2,4,5, 3, 2,3 /

C load the matrix into the AMD workspace
DO 10 J = 1,N

PE (J) = AP (J)
LEN (J) = AP (J+1) - AP (J)

10 CONTINUE
DO 20 P = 1,NZ

IW (P) = AI (P)
20 CONTINUE

PFREE = NZ + 1
C order the matrix (destroys the copy of A in IW, PE, and LEN)

CALL AMD (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, LAST, HEAD,
$ ELEN, DEGREE, NCMPA, W)

DO 60 K = 1, N
PRINT 50, K, LAST (K)

50 FORMAT (’P (’,I2,’) = ’, I2)
60 CONTINUE

END

5

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Applic., 17(4):886–905, 1996.

[2] A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm.
SIAM Review, 31(1):1–19, 1989.

[3] HSL. HSL 2002: A collection of Fortran codes for large scale scientific computation,
2002. www.cse.clrc.ac.uk/nag/hsl.

6

