

Welcome

db4o is the native Java, .NET and Mono open source object database.

This documentation and tutorial is intended to get you started with db4o and to be a reliable companion while you develop
with db4o. Before you start, please make sure that you have downloaded the latest db4o distribution from the db4objects

website.

You are invited to join the db4o community in the public db4o forums to ask for help at any time. You may also find the

db4o knowledgebase helpful for keyword searches.

Java, .NET and Mono

db4o is available for Java, for .NET and for Mono. This tutorial was written for Mono . The structure of the other

distributions may be considerably different, so please use the tutorial for the version that you plan to experiment with first.

http://www.db4o.com
http://www.db4o.com
http://forums.db4o.com/forums/
http://www.db4o.com/community/ontheroad/solutionlibrary/

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Download Contents

The db4o Mono distribution is available from the db4o download center in 3 versions: db4o-5.0-mono.tar.gz (binary and

source tarball), db4o-5.0-mono.noarch.rpm (binary RPRM), db4o-5.0-mono.src.rpm (source RPM). The noarch RPM

can be built from the source RPM. After installing/unzipping you will find the following directory structure on your

machine:

db4o-5.0-mono.noarch.rpm

http://www.db4o.com/community/ontheroad/downloadcenter/

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db4o-5.0-mono.tar.gz

/usr/share/doc/packages/db4o/tutorial/index.html

The tutorial in HTML format. The Java and .NET db4o distributions also provide the HTML documentation with live

execution capabilities.

/usr/share/doc/packages/db4o/tutorial/db4o-5.x-tutorial.pdf

The PDF version of the tutorial allows best fulltext search capabilities.

./usr/share/doc/package/db4o/api/index.html

The API documentation for db4o is supplied as a set of HTML pages. While you read through this tutorial, it may be

helpful to look into the API documentation occasionaly.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

1. First Glance
Before diving straight into the first source code samples let's get you familiar with some basics.

1.1. The db4o engine...
The db4o object database engine consists of one single DLL. This is all that you need to program against. The version
supplied with the distribution can be found in /usr/lib/db4o/.

/usr/lib/db4o/db4o.dll
The standard db4o engine for the Mono environment.

1.2. Installation
To use db4o in a development project, you only need to add the above db4o.dll file to your project references.

Here is how to do this if you are using MonoDevelop:
- Right-click on "References" in the Solution Tab
- choose "Edit References"
- select the ".NET Assembly" tab and then "Browse"
- select /usr/lib/db4o/db4o.dll
- click "Open"
- click "OK"

1.3. db4o Object Manager

db4o Object Manager is a GUI tool to browse and query the contents of any db4o database file. Object Manager has to be

downloaded seperately from the main db4o distributions. Please visit the db4o Download Center and choose the

installation appropriate for your system. The following distributions are currently available:

- db4o ObjectManager for Windows IKVM (Java VM included)

- db4o ObjectManager for Windows no Java VM

- db4o ObjectManager for Linux

#ObjectManager
http://www.db4o.com/community/ontheroad/downloadcenter/

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

1.4. API Overview

Do not forget the API documentation while reading through this tutorial. It provides an organized view of the API,

looking from a namespace perspective and you may find related functionality to the theme you are currently reading up on.

For starters, the namespace com.db4o and com.db4o.query are all that you need to worry about.

com.db4o

The com.db4o namespace contains almost all of the functionality you will commonly need when using db4o. Two objects of

note are com.db4o.Db4o, and the com.db4o.ObjectContainer interface.

The com.db4o.Db4o factory is your starting point. Static methods in this class allow you to open a database file, start a

server, or connect to an existing server. It also lets you configure the db4o environment before opening a database.

The most important interface, and the one that you will be using 99% of the time is

com.db4o.ObjectContainer: This is your db4o database.

- An ObjectContainer can either be a database in single-user mode or a client connection to a db4o server.

- Every ObjectContainer owns one transaction. All work is transactional. When you open an ObjectContainer, you are in a

transaction, when you commit() or rollback(), the next transaction is started immediately.

- Every ObjectContainer maintains it's own references to stored and instantiated objects. In doing so, it manages object

identities, and is able to achieve a high level of performance.

- ObjectContainers are intended to be kept open as long as you work against them. When you close an ObjectContainer,

all database references to objects in RAM will be discarded.

com.db4o.ext

In case you wonder why you only see very few methods in an ObjectContainer, here is why: The db4o interface is supplied

in two steps in two namespaces , com.db4o and com.db4o.ext for the following reasons:

- It's easier to get started, because the important methods are emphasized.

- It will be easier for other products to copy the basic db4o interface.

- It is an example of how a lightweight version of db4o could look.

Every com.db4o.ObjectContainer object is also an com.db4o.ext.ExtObjectContainer. You can cast it to

ExtObjectContainer or you can use the to get to the advanced features.

com.db4o.config

The com.db4o.config namespace contains types and classes necessary to configure db4o. The objects and interfaces within

are discussed in the Configuration section.

com.db4o.query

#Configuration

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

The com.db4o.query namespace contains the Predicate class to construct Native Queries. The Native Query interface is

the primary db4o querying interface and should be preferred over the Query API.

#NativeQueries
#SODAQueryAPI

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.2. First Steps

Let's get started as simple as possible. We are going to demonstrate how to store, retrieve, update and delete instances of a

single class that only contains primitive and String members. In our example this will be a Formula One (F1) pilot whose

attributes are his name and the F1 points he has already gained this season.

First we create a class to hold our data. It looks like this:

namespace com.db4o.f1.chapter1

{

 public class Pilot

 {

 string _name;

 int _points;

 public Pilot(string name, int points)

 {

 _name = name;

 _points = points;

 }

 public string Name

 {

 get

 {

 return _name;

 }

 }

 public int Points

 {

 get

 {

 return _points;

 }

 }

 public void AddPoints(int points)

 {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 _points += points;

 }

 override public string ToString()

 {

 return _name + "/" + _points;

 }

 }

}

Notice that this class does not contain any db4o-related code.

2.1. Opening the database

To access a db4o database file or create a new one, call Db4o.openFile(), providing the path to your file as the parameter,

to obtain an ObjectContainer instance. ObjectContainer represents "The Database", and will be your primary interface to

db4o. Closing the container with the #.close() method will close the database file and release all resources associated with

it.

[accessDb4o]

ObjectContainer db=Db4o.openFile(Util.YapFileName);

 try

 {

 // do something with db4o

 }

 finally

 {

 db.close();

 }

For the following examples we will assume that our environment takes care of opening and closing the ObjectContainer

automagically, and stores the reference in a variable named 'db'.

2.2. Storing objects

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

To store an object, we simply call set() on our database, passing any object as a parameter.

[storeFirstPilot]

Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 db.set(pilot1);

 Console.WriteLine("Stored " + pilot1);

OUTPUT:

Stored Michael Schumacher/100

We'll need a second pilot, too.

[storeSecondPilot]

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 db.set(pilot2);

 Console.WriteLine("Stored " + pilot2);

OUTPUT:

Stored Rubens Barrichello/99

2.3. Retrieving objects

db4o supplies three different quering systems, Query by Example (QBE), Native Queries (NQ) and the SODA Query API

(SODA). In this first example we will introduce QBE. Once you are familiar with storing objects, we encourage you to use

Native Queries, the main db4o querying interface.

When using Query-By-Example, you create a prototypical object for db4o to use as an example of what you wish to

retrieve. db4o will retrieve all objects of the given type that contain the same (non-default) field values as the example. The

#NativeQueries

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

results will be returned as an ObjectSet instance. We will use a convenience method 'listResult' to display the contents of

our results:

public static void listResult(ObjectSet result)

 {

 Console.WriteLine(result.size());

 while (result.hasNext())

 {

 Console.WriteLine(result.next());

 }

 }

To retrieve all pilots from our database, we provide an 'empty' prototype:

[retrieveAllPilotQBE]

Pilot proto = new Pilot(null, 0);

 ObjectSet result = db.get(proto);

 listResult(result);

OUTPUT:

2

Michael Schumacher/100

Rubens Barrichello/99

Note that we specify 0 points, but our results were not constrained to only those Pilots with 0 points; 0 is the default value

for int fields.

db4o also supplies a shortcut to retrieve all instances of a class:

[retrieveAllPilots]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

ObjectSet result = db.get(typeof(Pilot));

 listResult(result);

OUTPUT:

2

Michael Schumacher/100

Rubens Barrichello/99

For there also is a generics shortcut, using the query method:

To query for a pilot by name:

[retrievePilotByName]

Pilot proto = new Pilot("Michael Schumacher", 0);

 ObjectSet result = db.get(proto);

 listResult(result);

OUTPUT:

1

Michael Schumacher/100

And to query for Pilots with a specific number of points:

[retrievePilotByExactPoints]

Pilot proto = new Pilot(null, 100);

 ObjectSet result = db.get(proto);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 listResult(result);

OUTPUT:

1

Michael Schumacher/100

Of course there's much more to db4o queries. They will be covered in more depth in later chapters.

2.4. Updating objects

Updating objects is just as easy as storing them. In fact, you use the same set() method to update your objects: just call

set() again after modifying any object.

[updatePilot]

ObjectSet result = db.get(new Pilot("Michael Schumacher", 0));

 Pilot found = (Pilot)result.next();

 found.AddPoints(11);

 db.set(found);

 Console.WriteLine("Added 11 points for " + found);

 retrieveAllPilots(db);

OUTPUT:

Added 11 points for Michael Schumacher/111

2

Michael Schumacher/111

Rubens Barrichello/99

Notice that we query for the object first. This is an importaint point. When you call set() to modify a stored object, if the

object is not 'known' (having been previously stored or retrieved during the current session), db4o will insert a new object.

db4o does this because it does not automatically match up objects to be stored, with objects previously stored. It assumes

you are inserting a second object which happens to have the same field values.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

To make sure you've updated the pilot, please return to any of the retrieval examples above and run them again.

2.5. Deleting objects

Objects are removed from the database using the delete() method.

[deleteFirstPilotByName]

ObjectSet result = db.get(new Pilot("Michael Schumacher", 0));

 Pilot found = (Pilot)result.next();

 db.delete(found);

 Console.WriteLine("Deleted " + found);

 retrieveAllPilots(db);

OUTPUT:

Deleted Michael Schumacher/111

1

Rubens Barrichello/99

Let's delete the other one, too.

[deleteSecondPilotByName]

ObjectSet result = db.get(new Pilot("Rubens Barrichello", 0));

 Pilot found = (Pilot)result.next();

 db.delete(found);

 Console.WriteLine("Deleted " + found);

 retrieveAllPilots(db);

OUTPUT:

Deleted Rubens Barrichello/99

0

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Please check the deletion with the retrieval examples above.

As with updating objects, the object to be deleted has to be 'known' to db4o. It is not sufficient to provide a prototype

object with the same field values.

2.6. Conclusion

That was easy, wasn't it? We have stored, retrieved, updated and deleted objects with a few lines of code. But what about

complex queries? Let's have a look at the restrictions of QBE and alternative approaches in the next chapter .

2.7. Full source

namespace com.db4o.f1.chapter1

{

 using System;

 using System.IO;

 using com.db4o;

 using com.db4o.f1;

 public class FirstStepsExample : Util

 {

 public static void Main(string[] args)

 {

 File.Delete(Util.YapFileName);

 accessDb4o();

 File.Delete(Util.YapFileName);

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 storeFirstPilot(db);

 storeSecondPilot(db);

 retrieveAllPilots(db);

 retrievePilotByName(db);

 retrievePilotByExactPoints(db);

 updatePilot(db);

 deleteFirstPilotByName(db);

 deleteSecondPilotByName(db);

 }

#Query

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 finally

 {

 db.close();

 }

 }

 public static void accessDb4o()

 {

 ObjectContainer db=Db4o.openFile(Util.YapFileName);

 try

 {

 // do something with db4o

 }

 finally

 {

 db.close();

 }

 }

 public static void storeFirstPilot(ObjectContainer db)

 {

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 db.set(pilot1);

 Console.WriteLine("Stored " + pilot1);

 }

 public static void storeSecondPilot(ObjectContainer db)

 {

 Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 db.set(pilot2);

 Console.WriteLine("Stored " + pilot2);

 }

 public static void retrieveAllPilotQBE(ObjectContainer db) {

 Pilot proto = new Pilot(null, 0);

 ObjectSet result = db.get(proto);

 listResult(result);

 }

 public static void retrieveAllPilots(ObjectContainer db) {

 ObjectSet result = db.get(typeof(Pilot));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 listResult(result);

 }

 public static void retrievePilotByName(ObjectContainer db)

 {

 Pilot proto = new Pilot("Michael Schumacher", 0);

 ObjectSet result = db.get(proto);

 listResult(result);

 }

 public static void retrievePilotByExactPoints(ObjectContainer

db)

 {

 Pilot proto = new Pilot(null, 100);

 ObjectSet result = db.get(proto);

 listResult(result);

 }

 public static void updatePilot(ObjectContainer db)

 {

 ObjectSet result = db.get(new Pilot("Michael Schumacher",

0));

 Pilot found = (Pilot)result.next();

 found.AddPoints(11);

 db.set(found);

 Console.WriteLine("Added 11 points for " + found);

 retrieveAllPilots(db);

 }

 public static void deleteFirstPilotByName(ObjectContainer db)

 {

 ObjectSet result = db.get(new Pilot("Michael Schumacher",

0));

 Pilot found = (Pilot)result.next();

 db.delete(found);

 Console.WriteLine("Deleted " + found);

 retrieveAllPilots(db);

 }

 public static void deleteSecondPilotByName(ObjectContainer

db)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 ObjectSet result = db.get(new Pilot("Rubens Barrichello",

0));

 Pilot found = (Pilot)result.next();

 db.delete(found);

 Console.WriteLine("Deleted " + found);

 retrieveAllPilots(db);

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.3. Querying

db4o supplies three querying systems, Query-By-Example (QBE) Native Queries (NQ), and the SODA API. In the

previous chapter, you were briefly introduced to Query By Example(QBE).

Query-By-Example (QBE) is appropriate as a quick start for users who are still acclimating to storing and retrieving

objects with db4o.

Native Queries (NQ) are the main db4o query interface, recommended for general use.

SODA is the underlying internal API. It is provided for backward compatibility and it can be useful for dynamic generation

 of queries, where NQ are too strongly typed.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.3.1. Query by Example (QBE)

When using Query By Example (QBE) you provide db4o with a template object. db4o will return all of the objects which

match all non-default field values. This is done via reflecting all of the fields and building a query expression where all non-

default-value fields are combined with AND expressions. Here's an example from the previous chapter:

[retrievePilotByName]

Pilot proto = new Pilot("Michael Schumacher", 0);

 ObjectSet result = db.get(proto);

 listResult(result);

Querying this way has some obvious limitations:

- db4o must reflect all members of your example object.

- You cannot perform advanced query expressions. (AND, OR, NOT, etc.)

- You cannot constrain on values like 0 (integers), "" (empty strings), or nulls (reference types) because they would be

interpreted as unconstrained.

- You need to be able to create objects without initialized fields. That means you can not initialize fields where they are

declared. You can not enforce contracts that objects of a class are only allowed in a well-defined initialized state.

- You need a constructor to create objects without initialized fields.

To get around all of these constraints, db4o provides the Native Query (NQ) system.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.3.2. Native Queries

Wouldn't it be nice to pose queries in the programming language that you are using? Wouldn't it be nice if all your query

code was 100% typesafe, 100% compile-time checked and 100% refactorable? Wouldn't it be nice if the full power of

object-orientation could be used by calling methods from within queries? Enter Native Queries.

Native queries are the main db4o query interface and they are the recommended way to query databases from your

application. Because native queries simply use the semantics of your programming language, they are perfectly

standardized and a safe choice for the future.

Native Queries are available for all platforms supported by db4o.

3.2.1. Concept

The concept of native queries is taken from the following two papers:

- Cook/Rosenberger, Native Queries for Persistent Objects, A Design White Paper

- Cook/Rai, Safe Query Objects: Statically Typed Objects as Remotely Executable Queries

3.2.2. Principle

Native Queries provide the ability to run one or more lines of code against all instances of a class. Native query expressions

should return true to mark specific instances as part of the result set. db4o will attempt to optimize native query

expressions and run them against indexes and without instantiating actual objects, where this is possible.

3.2.3. Simple Example

Let's look at how a simple native query will look like in some of the programming languages and dialects that db4o

supports:

C# .NET 2.0

IList <Pilot> pilots = db.Query <Pilot> (delegate(Pilot pilot) {

 return pilot.Points == 100;

});

Java JDK 5

List <Pilot> pilots = db.query(new Predicate<Pilot>() {

 public boolean match(Pilot pilot) {

 return pilot.getPoints() == 100;

http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-23-05.pdf
http://www.cs.utexas.edu/users/wcook/papers/SafeQuery/SafeQueryFinal.pdf

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

});

Java JDK 1.2 to 1.4

List pilots = db.query(new Predicate() {

 public boolean match(Pilot pilot) {

 return pilot.getPoints() == 100;

 }

});

Java JDK 1.1

ObjectSet pilots = db.query(new PilotHundredPoints());

public static class PilotHundredPoints extends Predicate {

 public boolean match(Pilot pilot) {

 return pilot.getPoints() == 100;

 }

}

C# .NET 1.1

IList pilots = db.Query(new PilotHundredPoints());

public class PilotHundredPoints : Predicate {

 public boolean Match(Pilot pilot) {

 return pilot.Points == 100;

 }

}

VB .NET 1.1

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Dim pilots As IList = db.Query(new PilotHundredPoints())

Public Class PilotHundredPoints

 Inherits Predicate

 Public Function Match (pilot As Pilot) as Boolean

 If pilot.Points = 100 Then

 Return True

 Else

 Return False

 End Function

End Class

A side note on the above syntax:

For all dialects without support for generics, Native Queries work by convention. A class that extends the

com.db4o.Predicate class is expected to have a boolean #match() or #Match() method with one parameter to describe the

 class extent:

When using native queries, don't forget that modern integrated development environments (IDEs) can do all the typing

work around the native query expression for you, if you use templates and autocompletion.

Here is how to configure a Native Query template with Eclipse 3.1:

From the menu, choose Window + Preferences + Java + Editor + Templates + New

As the name type "nq". Make sure that "java" is selected as the context on the right. Paste the following into the pattern

field:

List <${extent}> list = db.query(new Predicate <${extent}> () {

 public boolean match(${extent} candidate){

 return true;

 }

});

Now you can create a native query with three keys: n + q + Control-Space.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Similar features are available in most modern IDEs.

3.2.4. Advanced Example

For complex queries, the native syntax is very precise and quick to write. Let's compare to a SODA query that finds all

pilots with a given name or a score within a given range:

[storePilots]

db.set(new Pilot("Michael Schumacher", 100));

 db.set(new Pilot("Rubens Barrichello", 99));

[retrieveComplexSODA]

Query query=db.query();

 query.constrain(typeof(Pilot));

 Query pointQuery=query.descend("_points");

 query.descend("_name").constrain("Rubens Barrichello")

 .or(pointQuery.constrain(99).greater()

 .and(pointQuery.constrain(199).smaller()));

 ObjectSet result=query.execute();

 listResult(result);

OUTPUT:

2

Rubens Barrichello/99

Michael Schumacher/100

Here is how the same query will look like with native query syntax, fully accessible to autocompletion, refactoring and

other IDE features, fully checked at compile time:

C# .NET 2.0

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

IList <Pilot> result = db.Query<Pilot> (delegate(Pilot pilot) {

 return pilot.Points > 99

 && pilot.Points < 199

 || pilot.Name == "Rubens Barrichello";

});

Java JDK 5

List <Pilot> result = db.query(new Predicate<Pilot>() {

 public boolean match(Pilot pilot) {

 return pilot.getPoints() > 99

 && pilot.getPoints() < 199

 || pilot.getName().equals("Rubens Barrichello");

 }

});

3.2.5. Arbitrary Code

Basically that's all there is to know about native queries to be able to use them efficiently. In principle you can run arbitrary

code as native queries, you just have to be very careful with side effects - especially those that might affect persistent

objects.

Let's run an example that involves some more of the language features available.

3.2.6. Native Query Performance

One drawback of native queries has to be pointed out: Under the hood db4o tries to analyze native queries to convert

them to SODA. This is not possible for all queries. For some queries it is very difficult to analyze the flowgraph. In this

case db4o will have to instantiate some of the persistent objects to actually run the native query code. db4o will try to

analyze parts of native query expressions to keep object instantiation to the minimum.

The development of the native query optimization processor will be an ongoing process in a close dialog with the db4o

community. Feel free to contribute your results and your needs by providing feedback to our db4o forums.

With the current implementation, all above examples will run optimized, except for the "Arbitrary Code" example - we are

working on it.

http://forums.db4o.com/

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.2.7. Full source

namespace com.db4o.f1.chapter1

{

 using System;

 using com.db4o;

 using com.db4o.query;

 using com.db4o.f1;

 public class NQExample : Util

 {

 public static void Main(string[] args)

 {

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 storePilots(db);

 retrieveComplexSODA(db);

 retrieveComplexNQ(db);

 retrieveArbitraryCodeNQ(db);

 clearDatabase(db);

 }

 finally

 {

 db.close();

 }

 }

 public static void storePilots(ObjectContainer db)

 {

 db.set(new Pilot("Michael Schumacher", 100));

 db.set(new Pilot("Rubens Barrichello", 99));

 }

 public static void retrieveComplexSODA(ObjectContainer db)

 {

 Query query=db.query();

 query.constrain(typeof(Pilot));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 Query pointQuery=query.descend("_points");

 query.descend("_name").constrain("Rubens Barrichello")

 .or(pointQuery.constrain(99).greater()

 .and(pointQuery.constrain(199).smaller()));

 ObjectSet result=query.execute();

 listResult(result);

 }

 public static void retrieveComplexNQ(ObjectContainer db)

 {

 ObjectSet result=db.query(new ComplexQuery());

 listResult(result);

 }

 public static void retrieveArbitraryCodeNQ(ObjectContainer

db)

 {

 ObjectSet result=db.query(new ArbitraryQuery(new

int[]{1,100}));

 listResult(result);

 }

 public static void clearDatabase(ObjectContainer db)

 {

 ObjectSet result = db.get(typeof(Pilot));

 while (result.hasNext())

 {

 db.delete(result.next());

 }

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.3.3. SODA Query API

The SODA query API is db4o's low level querying API, allowing direct access to nodes of query graphs. Since SODA uses

strings to identify fields, it is neither perfectly typesafe nor compile-time checked and it also is quite verbose to write.

For most applications Native Queries will be the better querying interface.

However there can be applications where dynamic generation of queries is required, that's why SODA is explained here.

3.3.1. Simple queries

Let's see how our familiar QBE queries are expressed with SODA. A new Query object is created through the #query()

method of the ObjectContainer and we can add Constraint instances to it. To find all Pilot instances, we constrain the

query with the Pilot class object.

[retrieveAllPilots]

Query query = db.query();

 query.constrain(typeof(Pilot));

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

2

Rubens Barrichello/99

Michael Schumacher/100

Basically, we are exchanging our 'real' prototype for a meta description of the objects we'd like to hunt down: a query graph

 made up of query nodes and constraints. A query node is a placeholder for a candidate object, a constraint decides

whether to add or exclude candidates from the result.

Our first simple graph looks like this.

#NativeQueries

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We're just asking any candidate object (here: any object in the database) to be of type Pilot to aggregate our result.

To retrieve a pilot by name, we have to further constrain the candidate pilots by descending to their name field and

constraining this with the respective candidate String.

[retrievePilotByName]

Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_name").constrain("Michael Schumacher");

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

1

Michael Schumacher/100

What does 'descend' mean here? Well, just as we did in our 'real' prototypes, we can attach constraints to child members of

our candidates.

So a candidate needs to be of type Pilot and have a member named 'name' that is equal to the given String to be accepted

for the result.

Note that the class constraint is not required: If we left it out, we would query for all objects that contain a 'name' member

with the given value. In most cases this will not be the desired behavior, though.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Finding a pilot by exact points is analogous.

[retrievePilotByExactPoints]

Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_points").constrain(100);

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

1

Michael Schumacher/100

3.3.2. Advanced queries

Now there are occasions when we don't want to query for exact field values, but rather for value ranges, objects not

containing given member values, etc. This functionality is provided by the Constraint API.

First, let's negate a query to find all pilots who are not Michael Schumacher:

[retrieveByNegation]

Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_name").constrain("Michael Schumacher").not();

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

1

Rubens Barrichello/99

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Where there is negation, the other boolean operators can't be too far.

[retrieveByConjunction]

Query query = db.query();

 query.constrain(typeof(Pilot));

 Constraint constr = query.descend("_name")

 .constrain("Michael Schumacher");

 query.descend("_points")

 .constrain(99).and(constr);

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

0

[retrieveByDisjunction]

Query query = db.query();

 query.constrain(typeof(Pilot));

 Constraint constr = query.descend("_name")

 .constrain("Michael Schumacher");

 query.descend("_points")

 .constrain(99).or(constr);

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

2

Rubens Barrichello/99

Michael Schumacher/100

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We can also constrain to a comparison with a given value.

[retrieveByComparison]

Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_points")

 .constrain(99).greater();

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

1

Michael Schumacher/100

The query API also allows to query for field default values.

[retrieveByDefaultFieldValue]

Pilot somebody = new Pilot("Somebody else", 0);

 db.set(somebody);

 Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_points").constrain(0);

 ObjectSet result = query.execute();

 listResult(result);

 db.delete(somebody);

OUTPUT:

1

Somebody else/0

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

It is also possible to have db4o sort the results.

[retrieveSorted]

Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_name").orderAscending();

 ObjectSet result = query.execute();

 listResult(result);

 query.descend("_name").orderDescending();

 result = query.execute();

 listResult(result);

OUTPUT:

2

Michael Schumacher/100

Rubens Barrichello/99

2

Rubens Barrichello/99

Michael Schumacher/100

All these techniques can be combined arbitrarily, of course. Please try it out. There still may be cases left where the

predefined query API constraints may not be sufficient - don't worry, you can always let db4o run any arbitrary code that

you provide in an Evaluation. Evaluations will be discussed in a later chapter.

To prepare for the next chapter, let's clear the database.

[clearDatabase]

ObjectSet result = db.get(typeof(Pilot));

 while (result.hasNext())

 {

 db.delete(result.next());

 }

#Evaluations

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

OUTPUT:

3.3.3. Conclusion

Now you have been provided with three alternative approaches to query db4o databases: Query-By-Example, Native

Queries, SODA.

Which one is the best to use? Some hints:

- Native queries are targetted to be the primary interface for db4o, so they should be preferred.

- With the current state of the native query optimizer there may be queries that will execute faster in SODA style, so it can

be used to tune applications. SODA can also be more convenient for constructing dynamic queries at runtime.

- Query-By-Example is nice for simple one-liners, but restricted in functionality. If you like this approach, use it as long as

it suits your application's needs.

Of course you can mix these strategies as needed.

We have finished our walkthrough and seen the various ways db4o provides to pose queries. But our domain model is not

complex at all, consisting of one class only. Let's have a look at the way db4o handles object associations in the next chapter

 .

3.3.4. Full source

namespace com.db4o.f1.chapter1

{

 using System;

 using com.db4o;

 using com.db4o.query;

 using com.db4o.f1;

 public class QueryExample : Util

 {

 public static void Main(string[] args)

 {

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 storeFirstPilot(db);

#Structured

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 storeSecondPilot(db);

 retrieveAllPilots(db);

 retrievePilotByName(db);

 retrievePilotByExactPoints(db);

 retrieveByNegation(db);

 retrieveByConjunction(db);

 retrieveByDisjunction(db);

 retrieveByComparison(db);

 retrieveByDefaultFieldValue(db);

 retrieveSorted(db);

 clearDatabase(db);

 }

 finally

 {

 db.close();

 }

 }

 public static void storeFirstPilot(ObjectContainer db)

 {

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 db.set(pilot1);

 Console.WriteLine("Stored " + pilot1);

 }

 public static void storeSecondPilot(ObjectContainer db)

 {

 Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 db.set(pilot2);

 Console.WriteLine("Stored " + pilot2);

 }

 public static void retrieveAllPilots(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Pilot));

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void retrievePilotByName(ObjectContainer db)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_name").constrain("Michael Schumacher");

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void retrievePilotByExactPoints(ObjectContainer

db)

 {

 Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_points").constrain(100);

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void retrieveByNegation(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_name").constrain("Michael

Schumacher").not();

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void retrieveByConjunction(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Pilot));

 Constraint constr = query.descend("_name")

 .constrain("Michael Schumacher");

 query.descend("_points")

 .constrain(99).and(constr);

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void retrieveByDisjunction(ObjectContainer db)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 Query query = db.query();

 query.constrain(typeof(Pilot));

 Constraint constr = query.descend("_name")

 .constrain("Michael Schumacher");

 query.descend("_points")

 .constrain(99).or(constr);

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void retrieveByComparison(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_points")

 .constrain(99).greater();

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void

retrieveByDefaultFieldValue(ObjectContainer db)

 {

 Pilot somebody = new Pilot("Somebody else", 0);

 db.set(somebody);

 Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_points").constrain(0);

 ObjectSet result = query.execute();

 listResult(result);

 db.delete(somebody);

 }

 public static void retrieveSorted(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Pilot));

 query.descend("_name").orderAscending();

 ObjectSet result = query.execute();

 listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 query.descend("_name").orderDescending();

 result = query.execute();

 listResult(result);

 }

 public static void clearDatabase(ObjectContainer db)

 {

 ObjectSet result = db.get(typeof(Pilot));

 while (result.hasNext())

 {

 db.delete(result.next());

 }

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.4. Structured objects

It's time to extend our business domain with another class and see how db4o handles object interrelations. Let's give our

pilot a vehicle.

namespace com.db4o.f1.chapter2

{

 public class Car

 {

 string _model;

 Pilot _pilot;

 public Car(string model)

 {

 _model = model;

 _pilot = null;

 }

 public Pilot Pilot

 {

 get

 {

 return _pilot;

 }

 set

 {

 _pilot = value;

 }

 }

 public string Model

 {

 get

 {

 return _model;

 }

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 override public string ToString()

 {

 return _model + "[" + _pilot + "]";

 }

 }

}

4.1. Storing structured objects

To store a car with its pilot, we just call set() on our top level object, the car. The pilot will be stored implicitly.

[storeFirstCar]

Car car1 = new Car("Ferrari");

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 car1.Pilot = pilot1;

 db.set(car1);

Of course, we need some competition here. This time we explicitly store the pilot before entering the car - this makes no

difference.

[storeSecondCar]

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 db.set(pilot2);

 Car car2 = new Car("BMW");

 car2.Pilot = pilot2;

 db.set(car2);

4.2. Retrieving structured objects

4.2.1. QBE

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

To retrieve all cars, we simply provide a 'blank' prototype.

[retrieveAllCarsQBE]

Car proto = new Car(null);

 ObjectSet result = db.get(proto);

 listResult(result);

OUTPUT:

2

BMW[Rubens Barrichello/99]

Ferrari[Michael Schumacher/100]

We can also query for all pilots, of course.

[retrieveAllPilotsQBE]

Pilot proto = new Pilot(null, 0);

 ObjectSet result = db.get(proto);

 listResult(result);

OUTPUT:

2

Michael Schumacher/100

Rubens Barrichello/99

Now let's initialize our prototype to specify all cars driven by Rubens Barrichello.

[retrieveCarByPilotQBE]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Pilot pilotproto = new Pilot("Rubens Barrichello",0);

 Car carproto = new Car(null);

 carproto.Pilot = pilotproto;

 ObjectSet result = db.get(carproto);

 listResult(result);

OUTPUT:

1

BMW[Rubens Barrichello/99]

What about retrieving a pilot by car? We simply don't need that - if we already know the car, we can simply access the pilot

field directly.

4.2.2. Native Queries

Using native queries with constraints on deep structured objects is straightforward, you can do it just like you would in

plain other code.

Let's constrain our query to only those cars driven by a Pilot with a specific name:

[retrieveCarsByPilotNameNative]

string pilotName = "Rubens Barrichello";

 ObjectSet results = db.query(new

retrieveCarsByPilotNamePredicate(pilotName));

 listResult(results);

OUTPUT:

1

BMW[Rubens Barrichello/99]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4.2.3. SODA Query API

In order to use SODA for querying for a car given its pilot's name we have to descend two levels into our query.

[retrieveCarByPilotNameQuery]

Query query = db.query();

 query.constrain(typeof(Car));

 query.descend("_pilot").descend("_name")

 .constrain("Rubens Barrichello");

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

1

BMW[Rubens Barrichello/99]

We can also constrain the pilot field with a prototype to achieve the same result.

[retrieveCarByPilotProtoQuery]

Query query = db.query();

 query.constrain(typeof(Car));

 Pilot proto = new Pilot("Rubens Barrichello", 0);

 query.descend("_pilot").constrain(proto);

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

1

BMW[Rubens Barrichello/99]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We have seen that descending into a query provides us with another query. Starting out from a query root we can descend

in multiple directions. In practice this is the same as ascending from one child to a parent and descending to another child.

We can conclude that queries turn one-directional references in our objects into true relations. Here is an example that

queries for "a Pilot that is being referenced by a Car, where the Car model is 'Ferrari'":

[retrievePilotByCarModelQuery]

Query carquery=db.query();

 carquery.constrain(typeof(Car));

 carquery.descend("_model").constrain("Ferrari");

 Query pilotquery=carquery.descend("_pilot");

 ObjectSet result=pilotquery.execute();

 listResult(result);

OUTPUT:

1

Michael Schumacher/100

4.3. Updating structured objects

To update structured objects in db4o, we simply call set() on them again.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[updateCar]

ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 found.Pilot = new Pilot("Somebody else", 0);

 db.set(found);

 result = db.get(new Car("Ferrari"));

 listResult(result);

OUTPUT:

1

Ferrari[Somebody else/0]

Let's modify the pilot, too.

[updatePilotSingleSession]

ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 found.Pilot.AddPoints(1);

 db.set(found);

 result = db.get(new Car("Ferrari"));

 listResult(result);

OUTPUT:

1

Ferrari[Somebody else/1]

Nice and easy, isn't it? But wait, there's something evil lurking right behind the corner. Let's see what happens if we split

this task in two separate db4o sessions: In the first we modify our pilot and update his car:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[updatePilotSeparateSessionsPart1]

ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 found.Pilot.AddPoints(1);

 db.set(found);

And in the second, we'll double-check our modification:

[updatePilotSeparateSessionsPart2]

ObjectSet result = db.get(new Car("Ferrari"));

 listResult(result);

OUTPUT:

1

Ferrari[Somebody else/2]

Looks like we're in trouble: Why did the Pilot's points not change? What's happening here and what can we do to fix it?

4.3.1. Update depth

Imagine a complex object with many members that have many members themselves. When updating this object, db4o

would have to update all its children, grandchildren, etc. This poses a severe performance penalty and will not be necessary

in most cases - sometimes, however, it will.

So, in our previous update example, we were modifying the Pilot child of a Car object. When we saved the change, we told

db4o to save our Car object and asumed that the modified Pilot would be updated. But we were modifying and saving in

the same manner as we were in the first update sample, so why did it work before? The first time we made the

modification, db4o never actually had to retreive the modified Pilot it returned the same one that was still in memory that

we modified, but it never actually updated the database. The fact that we saw the modified value was, in fact, a bug.

Restarting the application would show that the value was unchanged.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

To be able to handle this dilemma as flexible as possible, db4o introduces the concept of update depth to control how deep

an object's member tree will be traversed on update. The default update depth for all objects is 1, meaning that only

primitive and String members will be updated, but changes in object members will not be reflected.

db4o provides means to control update depth with very fine granularity. For our current problem we'll advise db4o to

update the full graph for Car objects by setting cascadeOnUpdate() for this class accordingly.

[updatePilotSeparateSessionsImprovedPart1]

Db4o.configure().objectClass(typeof(Car))

 .cascadeOnUpdate(true);

[updatePilotSeparateSessionsImprovedPart2]

ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 found.Pilot.AddPoints(1);

 db.set(found);

[updatePilotSeparateSessionsImprovedPart3]

ObjectSet result = db.get(new Car("Ferrari"));

 listResult(result);

OUTPUT:

1

Ferrari[Somebody else/3]

This looks much better.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Note that container configuration must be set before the container is opened.

We'll cover update depth as well as other issues with complex object graphs and the respective db4o configuration options

in more detail in a later chapter.

4.4. Deleting structured objects

As we have already seen, we call delete() on objects to get rid of them.

[deleteFlat]

ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 db.delete(found);

 result = db.get(new Car(null));

 listResult(result);

OUTPUT:

1

BMW[Rubens Barrichello/99]

Fine, the car is gone. What about the pilots?

[retrieveAllPilotsQBE]

Pilot proto = new Pilot(null, 0);

 ObjectSet result = db.get(proto);

 listResult(result);

OUTPUT:

1

Rubens Barrichello/99

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Ok, this is no real surprise - we don't expect a pilot to vanish when his car is disposed of in real life, too. But what if we

want an object's children to be thrown away on deletion, too?

4.4.1. Recursive deletion

You may already suspect that the problem of recursive deletion (and perhaps its solution, too) is quite similar to our little

update problem, and you're right. Let's configure db4o to delete a car's pilot, too, when the car is deleted.

[deleteDeepPart1]

Db4o.configure().objectClass(typeof(Car))

 .cascadeOnDelete(true);

[deleteDeepPart2]

ObjectSet result = db.get(new Car("BMW"));

 Car found = (Car)result.next();

 db.delete(found);

 result = db.get(new Car(null));

 listResult(result);

OUTPUT:

0

Again: Note that all configuration must take place before the ObjectContainer is opened.

Let's have a look at our pilots again.

[retrieveAllPilots]

Pilot proto = new Pilot(null, 0);

 ObjectSet result = db.get(proto);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 listResult(result);

OUTPUT:

0

4.4.2. Recursive deletion revisited

But wait - what happens if the children of a removed object are still referenced by other objects?

[deleteDeepRevisited]

ObjectSet result = db.get(new Pilot("Michael Schumacher", 0));

 Pilot pilot = (Pilot)result.next();

 Car car1 = new Car("Ferrari");

 Car car2 = new Car("BMW");

 car1.Pilot = pilot;

 car2.Pilot = pilot;

 db.set(car1);

 db.set(car2);

 db.delete(car2);

 result = db.get(new Car(null));

 listResult(result);

OUTPUT:

1

Ferrari[null]

[retrieveAllPilots]

Pilot proto = new Pilot(null, 0);

 ObjectSet result = db.get(proto);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 listResult(result);

OUTPUT:

0

Houston, we have a problem - and there's no simple solution at hand. Currently db4o does not check whether objects to be

deleted are referenced anywhere else, so please be very careful when using this feature.

Let's clear our database for the next chapter.

[deleteAll]

ObjectSet result = db.get(typeof(Object));

 while(result.hasNext()){

 db.delete(result.next());

 }

4.5. Conclusion

So much for object associations: We can hook into a root object and climb down its reference graph to specify queries. But

what about multi-valued objects like arrays and collections? We will cover this in the next chapter .

4.6. Full source

namespace com.db4o.f1.chapter2

{

 using System;

 using System.IO;

 using com.db4o;

 using com.db4o.f1;

 using com.db4o.query;

 public class StructuredExample : Util

#Collections

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 public static void Main(String[] args)

 {

 File.Delete(Util.YapFileName);

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 storeFirstCar(db);

 storeSecondCar(db);

 retrieveAllCarsQBE(db);

 retrieveAllPilotsQBE(db);

 retrieveCarByPilotQBE(db);

 retrieveCarByPilotNameQuery(db);

 retrieveCarByPilotProtoQuery(db);

 retrievePilotByCarModelQuery(db);

 updateCar(db);

 updatePilotSingleSession(db);

 updatePilotSeparateSessionsPart1(db);

 db.close();

 db=Db4o.openFile(Util.YapFileName);

 updatePilotSeparateSessionsPart2(db);

 db.close();

 updatePilotSeparateSessionsImprovedPart1(db);

 db=Db4o.openFile(Util.YapFileName);

 updatePilotSeparateSessionsImprovedPart2(db);

 db.close();

 db=Db4o.openFile(Util.YapFileName);

 updatePilotSeparateSessionsImprovedPart3(db);

 deleteFlat(db);

 db.close();

 deleteDeepPart1(db);

 db=Db4o.openFile(Util.YapFileName);

 deleteDeepPart2(db);

 deleteDeepRevisited(db);

 }

 finally

 {

 db.close();

 }

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public static void storeFirstCar(ObjectContainer db)

 {

 Car car1 = new Car("Ferrari");

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 car1.Pilot = pilot1;

 db.set(car1);

 }

 public static void storeSecondCar(ObjectContainer db)

 {

 Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 db.set(pilot2);

 Car car2 = new Car("BMW");

 car2.Pilot = pilot2;

 db.set(car2);

 }

 public static void retrieveAllCarsQBE(ObjectContainer db)

 {

 Car proto = new Car(null);

 ObjectSet result = db.get(proto);

 listResult(result);

 }

 public static void retrieveAllPilotsQBE(ObjectContainer db)

 {

 Pilot proto = new Pilot(null, 0);

 ObjectSet result = db.get(proto);

 listResult(result);

 }

 public static void retrieveCarByPilotQBE(ObjectContainer db)

 {

 Pilot pilotproto = new Pilot("Rubens Barrichello",0);

 Car carproto = new Car(null);

 carproto.Pilot = pilotproto;

 ObjectSet result = db.get(carproto);

 listResult(result);

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public static void

retrieveCarByPilotNameQuery(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Car));

 query.descend("_pilot").descend("_name")

 .constrain("Rubens Barrichello");

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void

retrieveCarByPilotProtoQuery(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Car));

 Pilot proto = new Pilot("Rubens Barrichello", 0);

 query.descend("_pilot").constrain(proto);

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void

retrievePilotByCarModelQuery(ObjectContainer db)

 {

 Query carquery=db.query();

 carquery.constrain(typeof(Car));

 carquery.descend("_model").constrain("Ferrari");

 Query pilotquery=carquery.descend("_pilot");

 ObjectSet result=pilotquery.execute();

 listResult(result);

 }

 public static void retrieveAllPilots(ObjectContainer db) {

 ObjectSet results = db.get(typeof(Pilot));

 listResult(results);

 }

 public static void retrieveAllCars(ObjectContainer db) {

 ObjectSet results = db.get(typeof(Car));

 listResult(results);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 public class retrieveCarsByPilotNamePredicate : Predicate{

 readonly string pilotName;

 public retrieveCarsByPilotNamePredicate(string

pilotName){

 this.pilotName = pilotName;

 }

 public bool Match(Car candidate){

 return candidate.Pilot.Name == pilotName;

 }

 }

 public static void

retrieveCarsByPilotNameNative(ObjectContainer db) {

 string pilotName = "Rubens Barrichello";

 ObjectSet results = db.query(new

retrieveCarsByPilotNamePredicate(pilotName));

 listResult(results);

 }

 public static void updateCar(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 found.Pilot = new Pilot("Somebody else", 0);

 db.set(found);

 result = db.get(new Car("Ferrari"));

 listResult(result);

 }

 public static void updatePilotSingleSession(ObjectContainer

db)

 {

 ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 found.Pilot.AddPoints(1);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 db.set(found);

 result = db.get(new Car("Ferrari"));

 listResult(result);

 }

 public static void

updatePilotSeparateSessionsPart1(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 found.Pilot.AddPoints(1);

 db.set(found);

 }

 public static void

updatePilotSeparateSessionsPart2(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("Ferrari"));

 listResult(result);

 }

 public static void

updatePilotSeparateSessionsImprovedPart1(ObjectContainer db)

 {

 Db4o.configure().objectClass(typeof(Car))

 .cascadeOnUpdate(true);

 }

 public static void

updatePilotSeparateSessionsImprovedPart2(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 found.Pilot.AddPoints(1);

 db.set(found);

 }

 public static void

updatePilotSeparateSessionsImprovedPart3(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("Ferrari"));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 listResult(result);

 }

 public static void deleteFlat(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("Ferrari"));

 Car found = (Car)result.next();

 db.delete(found);

 result = db.get(new Car(null));

 listResult(result);

 }

 public static void deleteDeepPart1(ObjectContainer db)

 {

 Db4o.configure().objectClass(typeof(Car))

 .cascadeOnDelete(true);

 }

 public static void deleteDeepPart2(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("BMW"));

 Car found = (Car)result.next();

 db.delete(found);

 result = db.get(new Car(null));

 listResult(result);

 }

 public static void deleteDeepRevisited(ObjectContainer db)

 {

 ObjectSet result = db.get(new Pilot("Michael Schumacher",

0));

 Pilot pilot = (Pilot)result.next();

 Car car1 = new Car("Ferrari");

 Car car2 = new Car("BMW");

 car1.Pilot = pilot;

 car2.Pilot = pilot;

 db.set(car1);

 db.set(car2);

 db.delete(car2);

 result = db.get(new Car(null));

 listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.5. Collections and Arrays

We will slowly move towards real-time data processing now by installing sensors to our car and collecting their output.

namespace com.db4o.f1.chapter3

{

 using System;

 using System.Text;

 public class SensorReadout

 {

 double[] _values;

 DateTime _time;

 Car _car;

 public SensorReadout(double[] values, DateTime time, Car car)

 {

 _values = values;

 _time = time;

 _car = car;

 }

 public Car Car

 {

 get

 {

 return _car;

 }

 }

 public DateTime Time

 {

 get

 {

 return _time;

 }

 }

 public int NumValues

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 get

 {

 return _values.Length;

 }

 }

 public double[] Values

 {

 get

 {

 return _values;

 }

 }

 public double GetValue(int idx)

 {

 return _values[idx];

 }

 override public string ToString()

 {

 StringBuilder builder = new StringBuilder();

 builder.Append(_car);

 builder.Append(" : ");

 builder.Append(_time.TimeOfDay);

 builder.Append(" : ");

 for (int i=0; i<_values.Length; ++i)

 {

 if (i > 0)

 {

 builder.Append(", ");

 }

 builder.Append(_values[i]);

 }

 return builder.ToString();

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

A car may produce its current sensor readout when requested and keep a list of readouts collected during a race.

namespace com.db4o.f1.chapter3

{

 using System;

 using System.Collections;

 public class Car

 {

 string _model;

 Pilot _pilot;

 IList _history;

 public Car(string model) : this(model, new ArrayList())

 {

 }

 public Car(string model, IList history)

 {

 _model = model;

 _pilot = null;

 _history = history;

 }

 public Pilot Pilot

 {

 get

 {

 return _pilot;

 }

 set

 {

 _pilot = value;

 }

 }

 public string Model

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 get

 {

 return _model;

 }

 }

 public IList History

 {

 get

 {

 return _history;

 }

 }

 public void Snapshot()

 {

 _history.Add(new SensorReadout(Poll(), DateTime.Now,

this));

 }

 protected double[] Poll()

 {

 int factor = _history.Count + 1;

 return new double[] { 0.1d*factor, 0.2d*factor,

0.3d*factor };

 }

 override public string ToString()

 {

 return _model + "[" + _pilot + "]/" + _history.Count;

 }

 }

}

We will constrain ourselves to rather static data at the moment and add flexibility during the next chapters.

5.1. Storing

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

This should be familiar by now.

[storeFirstCar]

Car car1 = new Car("Ferrari");

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 car1.Pilot = pilot1;

 db.set(car1);

The second car will take two snapshots immediately at startup.

[storeSecondCar]

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 Car car2 = new Car("BMW");

 car2.Pilot = pilot2;

 car2.Snapshot();

 car2.Snapshot();

 db.set(car2);

5.2. Retrieving

5.2.1. QBE

First let us verify that we indeed have taken snapshots.

[retrieveAllSensorReadout]

ObjectSet result = db.get(typeof(SensorReadout));

 listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

OUTPUT:

2

BMW[Rubens Barrichello/99]/2 : 1138224140798 : 0.1,0.2,0.3

BMW[Rubens Barrichello/99]/2 : 1138224140798 : 0.2,0.4,0.6

As a prototype for an array, we provide an array of the same type, containing only the values we expect the result to

contain.

[retrieveSensorReadoutQBE]

SensorReadout proto = new SensorReadout(new double[] { 0.3, 0.1 },

DateTime.MinValue, null);

 ObjectSet result = db.get(proto);

 listResult(result);

OUTPUT:

1

BMW[Rubens Barrichello/99]/2 : 1138224140798 : 0.1,0.2,0.3

Note that the actual position of the given elements in the prototype array is irrelevant.

To retrieve a car by its stored sensor readouts, we install a history containing the sought-after values.

[retrieveCarQBE]

SensorReadout protoreadout = new SensorReadout(new double[] { 0.6,

0.2 }, DateTime.MinValue, null);

 IList protohistory = new ArrayList();

 protohistory.Add(protoreadout);

 Car protocar = new Car(null, protohistory);

 ObjectSet result = db.get(protocar);

 listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

OUTPUT:

1

BMW[Rubens Barrichello/99]/2

We can also query for the collections themselves, since they are first class objects.

[retrieveCollections]

ObjectSet result = db.get(new ArrayList());

 listResult(result);

OUTPUT:

2

[]

[BMW[Rubens Barrichello/99]/2 : 1138224140798 : 0.1,0.2,0.3,

BMW[Rubens Barrichello/99]/2 : 1138224140798 : 0.2,0.4,0.6]

This doesn't work with arrays, though.

[retrieveArrays]

ObjectSet result = db.get(new double[] { 0.6, 0.4 });

 listResult(result);

OUTPUT:

0

5.2.2. Native Queries

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

If we want to use Native Queries to find SensorReadouts with matching values, we simply write this as if we would check

every single instance:

[retrieveSensorReadoutNative]

ObjectSet results = db.query(new retrieveSensorReadoutPredicate());

 listResult(results);

OUTPUT:

0

And here's how we find Cars with matching readout values:

[retrieveCarNative]

ObjectSet results = db.query(new retrieveCarPredicate());

 listResult(results);

OUTPUT:

1

BMW[Rubens Barrichello/99]/2

5.2.3. Query API

Handling of arrays and collections is analogous to the previous example. First, lets retrieve only the SensorReadouts with

specific values:

[retrieveSensorReadoutQuery]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Query query = db.query();

 query.constrain(typeof(SensorReadout));

 Query valuequery = query.descend("_values");

 valuequery.constrain(0.3);

 valuequery.constrain(0.1);

 ObjectSet results = query.execute();

 listResult(results);

OUTPUT:

1

BMW[Rubens Barrichello/99]/2 : 1138224140798 : 0.1,0.2,0.3

Then let's get some Cars with matching Readout values:

[retrieveCarQuery]

Query query = db.query();

 query.constrain(typeof(Car));

 Query historyquery = query.descend("_history");

 historyquery.constrain(typeof(SensorReadout));

 Query valuequery = historyquery.descend("_values");

 valuequery.constrain(0.3);

 valuequery.constrain(0.1);

 ObjectSet results = query.execute();

 listResult(results);

OUTPUT:

1

BMW[Rubens Barrichello/99]/2

5.3. Updating and deleting

This should be familiar, we just have to remember to take care of the update depth.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[updateCarPart1]

Db4o.configure().objectClass(typeof(Car)).cascadeOnUpdate(true);

[updateCarPart2]

ObjectSet result = db.get(new Car("BMW", null));

 Car car = (Car)result.next();

 car.Snapshot();

 db.set(car);

 retrieveAllSensorReadouts(db);

OUTPUT:

3

BMW[Rubens Barrichello/99]/3 : 1138224140798 : 0.1,0.2,0.3

BMW[Rubens Barrichello/99]/3 : 1138224140798 : 0.2,0.4,0.6

BMW[Rubens Barrichello/99]/3 : 1138224141116 :

0.30000000000000004,0.6000000000000001,0.8999999999999999

There's nothing special about deleting arrays and collections, too.

Deleting an object from a collection is an update, too, of course.

[updateCollection]

Query query = db.query();

 query.constrain(typeof(Car));

 ObjectSet result = query.descend("_history").execute();

 IList coll = (IList)result.next();

 coll.RemoveAt(0);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 db.set(coll);

 Car proto = new Car(null, null);

 result = db.get(proto);

 while (result.hasNext())

 {

 Car car = (Car)result.next();

 foreach (object readout in car.History)

 {

 Console.WriteLine(readout);

 }

 }

OUTPUT:

BMW[Rubens Barrichello/99]/2 : 1138224140798 : 0.2,0.4,0.6

BMW[Rubens Barrichello/99]/2 : 1138224141116 :

0.30000000000000004,0.6000000000000001,0.8999999999999999

(This example also shows that with db4o it is quite easy to access object internals we were never meant to see. Please keep

this always in mind and be careful.)

We will delete all cars from the database again to prepare for the next chapter.

[deleteAllPart1]

Db4o.configure().objectClass(typeof(Car)).cascadeOnDelete(true);

[deleteAllPart2]

ObjectSet result = db.get(new Car(null, null));

 while (result.hasNext())

 {

 db.delete(result.next());

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 ObjectSet readouts = db.get(new SensorReadout(null,

DateTime.MinValue, null));

 while(readouts.hasNext())

 {

 db.delete(readouts.next());

 }

5.4. Conclusion

Ok, collections are just objects. But why did we have to specify the concrete ArrayList type all the way? Was that

necessary? How does db4o handle inheritance? We will cover that in the next chapter.

5.5. Full source

namespace com.db4o.f1.chapter3

{

 using System;

 using System.Collections;

 using System.IO;

 using com.db4o;

 using com.db4o.query;

 public class CollectionsExample : Util

 {

 public static void Main(string[] args)

 {

 File.Delete(Util.YapFileName);

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 storeFirstCar(db);

 storeSecondCar(db);

 retrieveAllSensorReadouts(db);

 retrieveSensorReadoutQBE(db);

 retrieveCarQBE(db);

 retrieveCollections(db);

 retrieveArrays(db);

#Inheritance

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 retrieveSensorReadoutQuery(db);

 retrieveCarQuery(db);

 db.close();

 updateCarPart1();

 db = Db4o.openFile(Util.YapFileName);

 updateCarPart2(db);

 updateCollection(db);

 db.close();

 deleteAllPart1();

 db=Db4o.openFile(Util.YapFileName);

 deleteAllPart2(db);

 retrieveAllSensorReadouts(db);

 }

 finally

 {

 db.close();

 }

 }

 public static void storeFirstCar(ObjectContainer db)

 {

 Car car1 = new Car("Ferrari");

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 car1.Pilot = pilot1;

 db.set(car1);

 }

 public static void storeSecondCar(ObjectContainer db)

 {

 Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 Car car2 = new Car("BMW");

 car2.Pilot = pilot2;

 car2.Snapshot();

 car2.Snapshot();

 db.set(car2);

 }

 public static void retrieveAllSensorReadouts(ObjectContainer

db)

 {

 ObjectSet result = db.get(typeof(SensorReadout));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 listResult(result);

 }

 public static void retrieveSensorReadoutQBE(ObjectContainer

db)

 {

 SensorReadout proto = new SensorReadout(new double[] {

0.3, 0.1 }, DateTime.MinValue, null);

 ObjectSet result = db.get(proto);

 listResult(result);

 }

 public static void retrieveCarQBE(ObjectContainer db)

 {

 SensorReadout protoreadout = new SensorReadout(new

double[] { 0.6, 0.2 }, DateTime.MinValue, null);

 IList protohistory = new ArrayList();

 protohistory.Add(protoreadout);

 Car protocar = new Car(null, protohistory);

 ObjectSet result = db.get(protocar);

 listResult(result);

 }

 public static void retrieveCollections(ObjectContainer db)

 {

 ObjectSet result = db.get(new ArrayList());

 listResult(result);

 }

 public static void retrieveArrays(ObjectContainer db)

 {

 ObjectSet result = db.get(new double[] { 0.6, 0.4 });

 listResult(result);

 }

 public static void retrieveSensorReadoutQuery(ObjectContainer

db)

 {

 Query query = db.query();

 query.constrain(typeof(SensorReadout));

 Query valuequery = query.descend("_values");

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 valuequery.constrain(0.3);

 valuequery.constrain(0.1);

 ObjectSet results = query.execute();

 listResult(results);

 }

 public static void retrieveCarQuery(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Car));

 Query historyquery = query.descend("_history");

 historyquery.constrain(typeof(SensorReadout));

 Query valuequery = historyquery.descend("_values");

 valuequery.constrain(0.3);

 valuequery.constrain(0.1);

 ObjectSet results = query.execute();

 listResult(results);

 }

 public class retrieveSensorReadoutPredicate : Predicate{

 public bool Match(SensorReadout candidate){

 return Array.IndexOf(candidate.Values, 0.3) > -1

 && Array.IndexOf(candidate.Values, 0.1) > -1;

 }

 }

 public static void

retrieveSensorReadoutNative(ObjectContainer db) {

 ObjectSet results = db.query(new

retrieveSensorReadoutPredicate());

 listResult(results);

 }

 public class retrieveCarPredicate : Predicate{

 public bool Match(Car car){

 foreach(SensorReadout sensor in car.History){

 if(Array.IndexOf(sensor.Values, 0.3) > -1 &&

 Array.IndexOf(sensor.Values, 0.1) > -1){

 return true;

 }

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 return false;

 }

 }

 public static void retrieveCarNative(ObjectContainer db){

 ObjectSet results = db.query(new

retrieveCarPredicate());

 listResult(results);

 }

 public static void updateCarPart1()

 {

Db4o.configure().objectClass(typeof(Car)).cascadeOnUpdate(true);

 }

 public static void updateCarPart2(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("BMW", null));

 Car car = (Car)result.next();

 car.Snapshot();

 db.set(car);

 retrieveAllSensorReadouts(db);

 }

 public static void updateCollection(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(Car));

 ObjectSet result = query.descend("_history").execute();

 IList coll = (IList)result.next();

 coll.RemoveAt(0);

 db.set(coll);

 Car proto = new Car(null, null);

 result = db.get(proto);

 while (result.hasNext())

 {

 Car car = (Car)result.next();

 foreach (object readout in car.History)

 {

 Console.WriteLine(readout);

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 }

 public static void deleteAllPart1()

 {

Db4o.configure().objectClass(typeof(Car)).cascadeOnDelete(true);

 }

 public static void deleteAllPart2(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car(null, null));

 while (result.hasNext())

 {

 db.delete(result.next());

 }

 ObjectSet readouts = db.get(new SensorReadout(null,

DateTime.MinValue, null));

 while(readouts.hasNext())

 {

 db.delete(readouts.next());

 }

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.6. Inheritance

So far we have always been working with the concrete (i.e. most specific type of an object. What about subclassing and

interfaces?

To explore this, we will differentiate between different kinds of sensors.

namespace com.db4o.f1.chapter4

{

 using System;

 public class SensorReadout

 {

 DateTime _time;

 Car _car;

 string _description;

 public SensorReadout(DateTime time, Car car, string

description)

 {

 _time = time;

 _car = car;

 _description = description;

 }

 public Car Car

 {

 get

 {

 return _car;

 }

 }

 public DateTime Time

 {

 get

 {

 return _time;

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 public string Description

 {

 get

 {

 return _description;

 }

 }

 override public string ToString()

 {

 return _car + ":" + _time + " : " + _description;

 }

 }

}

namespace com.db4o.f1.chapter4

{

 using System;

 public class TemperatureSensorReadout : SensorReadout

 {

 double _temperature;

 public TemperatureSensorReadout(DateTime time, Car car,

string description, double temperature)

 : base(time, car, description)

 {

 _temperature = temperature;

 }

 public double Temperature

 {

 get

 {

 return _temperature;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 }

 override public string ToString()

 {

 return base.ToString() + " temp: " + _temperature;

 }

 }

}

namespace com.db4o.f1.chapter4

{

 using System;

 public class PressureSensorReadout : SensorReadout

 {

 double _pressure;

 public PressureSensorReadout(DateTime time, Car car, string

description, double pressure)

 : base(time, car, description)

 {

 _pressure = pressure;

 }

 public double Pressure

 {

 get

 {

 return _pressure;

 }

 }

 override public string ToString()

 {

 return base.ToString() + " pressure : " + _pressure;

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

}

Our car's snapshot mechanism is changed accordingly.

namespace com.db4o.f1.chapter4

{

 using System;

 using System.Collections;

 public class Car

 {

 string _model;

 Pilot _pilot;

 IList _history;

 public Car(string model)

 {

 _model = model;

 _pilot = null;

 _history = new ArrayList();

 }

 public Pilot Pilot

 {

 get

 {

 return _pilot;

 }

 set

 {

 _pilot = value;

 }

 }

 public string Model

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 get

 {

 return _model;

 }

 }

 public SensorReadout[] GetHistory()

 {

 SensorReadout[] history = new

SensorReadout[_history.Count];

 _history.CopyTo(history, 0);

 return history;

 }

 public void Snapshot()

 {

 _history.Add(new TemperatureSensorReadout(DateTime.Now,

this, "oil", PollOilTemperature()));

 _history.Add(new TemperatureSensorReadout(DateTime.Now,

this, "water", PollWaterTemperature()));

 _history.Add(new PressureSensorReadout(DateTime.Now,

this, "oil", PollOilPressure()));

 }

 protected double PollOilTemperature()

 {

 return 0.1*_history.Count;

 }

 protected double PollWaterTemperature()

 {

 return 0.2*_history.Count;

 }

 protected double PollOilPressure()

 {

 return 0.3*_history.Count;

 }

 override public string ToString()

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 return _model + "[" + _pilot + "]/" + _history.Count;

 }

 }

}

6.1. Storing

Our setup code has not changed at all, just the internal workings of a snapshot.

[storeFirstCar]

Car car1 = new Car("Ferrari");

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 car1.Pilot = pilot1;

 db.set(car1);

[storeSecondCar]

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 Car car2 = new Car("BMW");

 car2.Pilot = pilot2;

 car2.Snapshot();

 car2.Snapshot();

 db.set(car2);

6.2. Retrieving

db4o will provide us with all objects of the given type. To collect all instances of a given class, no matter whether they are

subclass members or direct instances, we just provide a corresponding prototype.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[retrieveTemperatureReadoutsQBE]

SensorReadout proto = new TemperatureSensorReadout(DateTime.MinValue,

null, null, 0.0);

 ObjectSet result = db.get(proto);

 listResult(result);

OUTPUT:

4

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.2

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.0

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.8

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.30000000000000004

[retrieveAllSensorReadoutsQBE]

SensorReadout proto = new SensorReadout(DateTime.MinValue, null,

null);

 ObjectSet result = db.get(proto);

 listResult(result);

OUTPUT:

6

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.2

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.0

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 0.6

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 1.5

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.8

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.30000000000000004

This is one more situation where QBE might not be applicable: What if the given type is an interface or an abstract class?

Well, there's a little trick to keep in mind: Type objects receive special handling with QBE.

[retrieveAllSensorReadoutsQBEAlternative]

ObjectSet result = db.get(typeof(SensorReadout));

 listResult(result);

OUTPUT:

6

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.2

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.0

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 0.6

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 1.5

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.8

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.30000000000000004

And of course there's our SODA API:

[retrieveAllSensorReadoutsQuery]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Query query = db.query();

 query.constrain(typeof(SensorReadout));

 ObjectSet result = query.execute();

 listResult(result);

OUTPUT:

6

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.2

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.0

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 0.6

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 1.5

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.8

BMW[Rubens Barrichello/99]/6 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.30000000000000004

6.3. Updating and deleting

is just the same for all objects, no matter where they are situated in the inheritance tree.

Just like we retrieved all objects from the database above, we can delete all stored objects to prepare for the next chapter.

[deleteAll]

ObjectSet result = db.get(typeof(Object));

 while(result.hasNext()){

 db.delete(result.next());

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

6.4. Conclusion

Now we have covered all basic OO features and the way they are handled by db4o. We will complete the first part of our

db4o walkthrough in the next chapter by looking at deep object graphs, including recursive structures.

6.5. Full source

namespace com.db4o.f1.chapter4

{

 using System;

 using System.IO;

 using com.db4o;

 using com.db4o.f1;

 using com.db4o.query;

 public class InheritanceExample : Util

 {

 public static void Main(string[] args)

 {

 File.Delete(Util.YapFileName);

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 storeFirstCar(db);

 storeSecondCar(db);

 retrieveTemperatureReadoutsQBE(db);

 retrieveAllSensorReadoutsQBE(db);

 retrieveAllSensorReadoutsQBEAlternative(db);

 retrieveAllSensorReadoutsQuery(db);

 retrieveAllObjects(db);

 }

 finally

 {

 db.close();

 }

 }

 public static void storeFirstCar(ObjectContainer db)

 {

#Deep

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 Car car1 = new Car("Ferrari");

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 car1.Pilot = pilot1;

 db.set(car1);

 }

 public static void storeSecondCar(ObjectContainer db)

 {

 Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 Car car2 = new Car("BMW");

 car2.Pilot = pilot2;

 car2.Snapshot();

 car2.Snapshot();

 db.set(car2);

 }

 public static void

retrieveAllSensorReadoutsQBE(ObjectContainer db)

 {

 SensorReadout proto = new

SensorReadout(DateTime.MinValue, null, null);

 ObjectSet result = db.get(proto);

 listResult(result);

 }

 public static void

retrieveTemperatureReadoutsQBE(ObjectContainer db)

 {

 SensorReadout proto = new

TemperatureSensorReadout(DateTime.MinValue, null, null, 0.0);

 ObjectSet result = db.get(proto);

 listResult(result);

 }

 public static void

retrieveAllSensorReadoutsQBEAlternative(ObjectContainer db)

 {

 ObjectSet result = db.get(typeof(SensorReadout));

 listResult(result);

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public static void

retrieveAllSensorReadoutsQuery(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof(SensorReadout));

 ObjectSet result = query.execute();

 listResult(result);

 }

 public static void retrieveAllObjects(ObjectContainer db)

 {

 ObjectSet result = db.get(new object());

 listResult(result);

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.7. Deep graphs

We have already seen how db4o handles object associations, but our running example is still quite flat and simple,

compared to real-world domain models. In particular we haven't seen how db4o behaves in the presence of recursive

structures. We will emulate such a structure by replacing our history list with a linked list implicitely provided by the

SensorReadout class.

namespace com.db4o.f1.chapter5

{

 using System;

 public abstract class SensorReadout

 {

 DateTime _time;

 Car _car;

 string _description;

 SensorReadout _next;

 protected SensorReadout(DateTime time, Car car, string

description)

 {

 _time = time;

 _car = car;

 _description = description;

 _next = null;

 }

 public Car Car

 {

 get

 {

 return _car;

 }

 }

 public DateTime Time

 {

 get

 {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 return _time;

 }

 }

 public SensorReadout Next

 {

 get

 {

 return _next;

 }

 }

 public void Append(SensorReadout sensorReadout)

 {

 if (_next == null)

 {

 _next = sensorReadout;

 }

 else

 {

 _next.Append(sensorReadout);

 }

 }

 public int CountElements()

 {

 return (_next == null ? 1 : _next.CountElements() + 1);

 }

 override public string ToString()

 {

 return _car + " : " + _time + " : " + _description;

 }

 }

}

Our car only maintains an association to a 'head' sensor readout now.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

namespace com.db4o.f1.chapter5

{

 using System;

 public class Car

 {

 string _model;

 Pilot _pilot;

 SensorReadout _history;

 public Car(string model)

 {

 _model = model;

 _pilot = null;

 _history = null;

 }

 public Pilot Pilot

 {

 get

 {

 return _pilot;

 }

 set

 {

 _pilot = value;

 }

 }

 public string Model

 {

 get

 {

 return _model;

 }

 }

 public SensorReadout GetHistory()

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 return _history;

 }

 public void Snapshot()

 {

 AppendToHistory(new TemperatureSensorReadout(

 DateTime.Now, this, "oil", PollOilTemperature()));

 AppendToHistory(new TemperatureSensorReadout(

 DateTime.Now, this, "water",

PollWaterTemperature()));

 AppendToHistory(new PressureSensorReadout(

 DateTime.Now, this, "oil", PollOilPressure()));

 }

 protected double PollOilTemperature()

 {

 return 0.1*CountHistoryElements();

 }

 protected double PollWaterTemperature()

 {

 return 0.2*CountHistoryElements();

 }

 protected double PollOilPressure()

 {

 return 0.3*CountHistoryElements();

 }

 override public string ToString()

 {

 return _model + "[" + _pilot + "]/" +

CountHistoryElements();

 }

 private int CountHistoryElements()

 {

 return (_history == null ? 0 : _history.CountElements());

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 private void AppendToHistory(SensorReadout readout)

 {

 if (_history == null)

 {

 _history = readout;

 }

 else

 {

 _history.Append(readout);

 }

 }

 }

}

7.1. Storing and updating

No surprises here.

[storeCar]

Pilot pilot = new Pilot("Rubens Barrichello", 99);

 Car car = new Car("BMW");

 car.Pilot = pilot;

 db.set(car);

Now we would like to build a sensor readout chain. We already know about the update depth trap, so we configure this

first.

[setCascadeOnUpdate]

Db4o.configure().objectClass(typeof(Car)).cascadeOnUpdate(true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Let's collect a few sensor readouts.

[takeManySnapshots]

ObjectSet result = db.get(typeof(Car));

 Car car = (Car)result.next();

 for(int i=0; i<5; i++)

 {

 car.Snapshot();

 }

 db.set(car);

7.2. Retrieving

Now that we have a sufficiently deep structure, we'll retrieve it from the database and traverse it.

First let's verify that we indeed have taken lots of snapshots.

[retrieveAllSnapshots]

ObjectSet result = db.get(typeof(SensorReadout));

 while (result.hasNext())

 {

 Console.WriteLine(result.next());

 }

OUTPUT:

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 4.2

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 2.6

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 1.2000000000000002

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 3.3

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 2.0

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.9

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 2.4

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 1.4000000000000001

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.6000000000000001

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.0

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.30000000000000004

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 1.5

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.8

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.2

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 0.6

All these readouts belong to one linked list, so we should be able to access them all by just traversing our list structure.

[retrieveSnapshotsSequentially]

ObjectSet result = db.get(typeof(Car));

 Car car = (Car)result.next();

 SensorReadout readout = car.GetHistory();

 while (readout != null)

 {

 Console.WriteLine(readout);

 readout = readout.Next;

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

OUTPUT:

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.0

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.2

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 0.6

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.30000000000000004

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.8

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 1.5

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.6000000000000001

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 1.4000000000000001

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 2.4

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.9

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 2.0

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 3.3

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 1.2000000000000002

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 2.6

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 4.2

Ouch! What's happening here?

.7.2.1. Activation depth

Deja vu - this is just the other side of the update depth issue.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db4o cannot track when you are traversing references from objects retrieved from the database. So it would always have to

return 'complete' object graphs on retrieval - in the worst case this would boil down to pulling the whole database content

into memory for a single query.

This is absolutely undesirable in most situations, so db4o provides a mechanism to give the client fine-grained control over

how much he wants to pull out of the database when asking for an object. This mechanism is called activation depthand

works quite similar to our familiar update depth.

The default activation depth for any object is 5, so our example above runs into nulls after traversing 5 references.

We can dynamically ask objects to activate their member references. This allows us to retrieve each single sensor readout

in the list from the database just as needed.

[retrieveSnapshotsSequentiallyImproved]

ObjectSet result = db.get(typeof(Car));

 Car car = (Car)result.next();

 SensorReadout readout = car.GetHistory();

 while (readout != null)

 {

 db.activate(readout, 1);

 Console.WriteLine(readout);

 readout = readout.Next;

 }

OUTPUT:

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.0

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.2

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 0.6

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.30000000000000004

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.8

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

pressure : 1.5

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.6000000000000001

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 1.4000000000000001

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 2.4

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.9

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 2.0

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 3.3

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 1.2000000000000002

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 2.6

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 4.2

Note that 'cut' references may also influence the behavior of your objects: In this case the length of the list is calculated

dynamically, and therefor constrained by activation depth.

Instead of dynamically activating subgraph elements, you can configure activation depth statically, too. We can tell our

SensorReadout class objects to cascade activation automatically, for example.

[setActivationDepth]

Db4o.configure().objectClass(typeof(TemperatureSensorReadout))

 .cascadeOnActivate(true);

OUTPUT:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[retrieveSnapshotsSequentially]

ObjectSet result = db.get(typeof(Car));

 Car car = (Car)result.next();

 SensorReadout readout = car.GetHistory();

 while (readout != null)

 {

 Console.WriteLine(readout);

 readout = readout.Next;

 }

OUTPUT:

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.0

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.2

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 0.6

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.30000000000000004

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 0.8

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 1.5

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.6000000000000001

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 1.4000000000000001

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 2.4

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 0.9

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 2.0

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 3.3

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

temp : 1.2000000000000002

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : water

temp : 2.6

BMW[Rubens Barrichello/99]/15 : Wed Jan 25 22:22:21 CET 2006 : oil

pressure : 4.2

You have to be very careful, though. Activation issues are tricky. Db4o provides a wide range of configuration features to

control activation depth at a very fine-grained level. You'll find those triggers in com.db4o.config.Configuration and the

associated ObjectClass and ObjectField classes.

Don't forget to clean up the database.

[deleteAll]

ObjectSet result = db.get(typeof(Object));

 while(result.hasNext()){

 db.delete(result.next());

 }

7.3. Conclusion

Now we should have the tools at hand to work with arbitrarily complex object graphs. But so far we have only been

working forward, hoping that the changes we apply to our precious data pool are correct. What if we have to roll back to a

previous state due to some failure? In the next chapter we will introduce the db4o transaction concept.

7.4. Full source

namespace com.db4o.f1.chapter5

{

 using System;

 using System.IO;

 using com.db4o;

 public class DeepExample : Util

 {

#Transactions

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public static void Main(string[] args)

 {

 File.Delete(Util.YapFileName);

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 storeCar(db);

 db.close();

 setCascadeOnUpdate();

 db = Db4o.openFile(Util.YapFileName);

 takeManySnapshots(db);

 db.close();

 db = Db4o.openFile(Util.YapFileName);

 retrieveAllSnapshots(db);

 db.close();

 db = Db4o.openFile(Util.YapFileName);

 retrieveSnapshotsSequentially(db);

 retrieveSnapshotsSequentiallyImproved(db);

 db.close();

 setActivationDepth();

 db = Db4o.openFile(Util.YapFileName);

 retrieveSnapshotsSequentially(db);

 }

 finally

 {

 db.close();

 }

 }

 public static void storeCar(ObjectContainer db)

 {

 Pilot pilot = new Pilot("Rubens Barrichello", 99);

 Car car = new Car("BMW");

 car.Pilot = pilot;

 db.set(car);

 }

 public static void setCascadeOnUpdate()

 {

Db4o.configure().objectClass(typeof(Car)).cascadeOnUpdate(true);

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public static void takeManySnapshots(ObjectContainer db)

 {

 ObjectSet result = db.get(typeof(Car));

 Car car = (Car)result.next();

 for(int i=0; i<5; i++)

 {

 car.Snapshot();

 }

 db.set(car);

 }

 public static void retrieveAllSnapshots(ObjectContainer db)

 {

 ObjectSet result = db.get(typeof(SensorReadout));

 while (result.hasNext())

 {

 Console.WriteLine(result.next());

 }

 }

 public static void

retrieveSnapshotsSequentially(ObjectContainer db)

 {

 ObjectSet result = db.get(typeof(Car));

 Car car = (Car)result.next();

 SensorReadout readout = car.GetHistory();

 while (readout != null)

 {

 Console.WriteLine(readout);

 readout = readout.Next;

 }

 }

 public static void

retrieveSnapshotsSequentiallyImproved(ObjectContainer db)

 {

 ObjectSet result = db.get(typeof(Car));

 Car car = (Car)result.next();

 SensorReadout readout = car.GetHistory();

 while (readout != null)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 db.activate(readout, 1);

 Console.WriteLine(readout);

 readout = readout.Next;

 }

 }

 public static void setActivationDepth()

 {

Db4o.configure().objectClass(typeof(TemperatureSensorReadout))

 .cascadeOnActivate(true);

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.8. Transactions

Probably you have already wondered how db4o handles concurrent access to a single database. Just as any other DBMS,

db4o provides a transaction mechanism. Before we take a look at multiple, perhaps even remote, clients accessing a db4o

instance in parallel, we will introduce db4o transaction concepts in isolation.

8.1. Commit and rollback

You may not have noticed it, but we have already been working with transactions from the first chapter on. By definition,

you are always working inside a transaction when interacting with db4o. A transaction is implicitly started when you open a

container, and the current transaction is implicitly committed when you close it again. So the following code snippet to

store a car is semantically identical to the ones we have seen before; it just makes the commit explicit.

[storeCarCommit]

Pilot pilot = new Pilot("Rubens Barrichello", 99);

 Car car = new Car("BMW");

 car.Pilot = pilot;

 db.set(car);

 db.commit();

[listAllCars]

ObjectSet result = db.get(typeof(Car));

 listResult(result);

OUTPUT:

1

BMW[Rubens Barrichello/99]/0

However, we can also rollback the current transaction, resetting the state of our database to the last commit point.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[storeCarRollback]

Pilot pilot = new Pilot("Michael Schumacher", 100);

 Car car = new Car("Ferrari");

 car.Pilot = pilot;

 db.set(car);

 db.rollback();

[listAllCars]

ObjectSet result = db.get(typeof(Car));

 listResult(result);

OUTPUT:

1

BMW[Rubens Barrichello/99]/0

8.2. Refresh live objects

There's one problem, though: We can roll back our database, but this cannot automagically trigger a rollback for our live

objects.

[carSnapshotRollback]

ObjectSet result = db.get(new Car("BMW"));

 Car car = (Car)result.next();

 car.Snapshot();

 db.set(car);

 db.rollback();

 Console.WriteLine(car);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

OUTPUT:

BMW[Rubens Barrichello/99]/3

We will have to explicitly refresh our live objects when we suspect they may have participated in a rollback transaction.

[carSnapshotRollbackRefresh]

ObjectSet result=db.get(new Car("BMW"));

 Car car=(Car)result.next();

 car.Snapshot();

 db.set(car);

 db.rollback();

 db.ext().refresh(car, int.MaxValue);

 Console.WriteLine(car);

OUTPUT:

BMW[Rubens Barrichello/99]/0

What is this ExtObjectContainer construct good for? Well, it provides some functionality that is in itself stable, but the

API may still be subject to change. As soon as we are confident that no more changes will occur, ext functionality will be

transferred to the common ObjectContainer API. We will cover extended functionality in more detail in a later chapter.

Finally, we clean up again.

[deleteAll]

ObjectSet result = db.get(typeof(Object));

 while(result.hasNext()){

 db.delete(result.next());

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

8.3. Conclusion

We have seen how transactions work for a single client. In the next chapter we will see how the transaction concept

extends to multiple clients, whether they are located within the same VM or on a remote machine.

8.4. Full source

namespace com.db4o.f1.chapter5

{

 using System;

 using System.IO;

 using com.db4o;

 using com.db4o.f1;

 public class TransactionExample : Util

 {

 public static void Main(string[] args)

 {

 File.Delete(Util.YapFileName);

 ObjectContainer db=Db4o.openFile(Util.YapFileName);

 try

 {

 storeCarCommit(db);

 db.close();

 db = Db4o.openFile(Util.YapFileName);

 listAllCars(db);

 storeCarRollback(db);

 db.close();

 db = Db4o.openFile(Util.YapFileName);

 listAllCars(db);

 carSnapshotRollback(db);

 carSnapshotRollbackRefresh(db);

 }

 finally

 {

 db.close();

 }

 }

#ClientServer

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public static void storeCarCommit(ObjectContainer db)

 {

 Pilot pilot = new Pilot("Rubens Barrichello", 99);

 Car car = new Car("BMW");

 car.Pilot = pilot;

 db.set(car);

 db.commit();

 }

 public static void listAllCars(ObjectContainer db)

 {

 ObjectSet result = db.get(typeof(Car));

 listResult(result);

 }

 public static void storeCarRollback(ObjectContainer db)

 {

 Pilot pilot = new Pilot("Michael Schumacher", 100);

 Car car = new Car("Ferrari");

 car.Pilot = pilot;

 db.set(car);

 db.rollback();

 }

 public static void carSnapshotRollback(ObjectContainer db)

 {

 ObjectSet result = db.get(new Car("BMW"));

 Car car = (Car)result.next();

 car.Snapshot();

 db.set(car);

 db.rollback();

 Console.WriteLine(car);

 }

 public static void carSnapshotRollbackRefresh(ObjectContainer

db)

 {

 ObjectSet result=db.get(new Car("BMW"));

 Car car=(Car)result.next();

 car.Snapshot();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 db.set(car);

 db.rollback();

 db.ext().refresh(car, int.MaxValue);

 Console.WriteLine(car);

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.9. Client/Server

Now that we have seen how transactions work in db4o conceptually, we are prepared to tackle concurrently executing

transactions.

We start by preparing our database in the familiar way.

[setFirstCar]

Pilot pilot = new Pilot("Rubens Barrichello", 99);

 Car car = new Car("BMW");

 car.Pilot = pilot;

 db.set(car);

[setSecondCar]

Pilot pilot = new Pilot("Michael Schumacher", 100);

 Car car = new Car("Ferrari");

 car.Pilot = pilot;

 db.set(car);

9.1. Embedded server

From the API side, there's no real difference between transactions executing concurrently within the same VM and

transactions executed against a remote server. To use concurrent transactions within a single VM, we just open a db4o

server on our database file, directing it to run on port 0, thereby declaring that no networking will take place.

[accessLocalServer]

ObjectServer server = Db4o.openServer(Util.YapFileName, 0);

 try

 {

 ObjectContainer client = server.openClient();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 // Do something with this client, or open more clients

 client.close();

 }

 finally

 {

 server.close();

 }

Again, we will delegate opening and closing the server to our environment to focus on client interactions.

[queryLocalServer]

ObjectContainer client = server.openClient();

 listResult(client.get(new Car(null)));

 client.close();

OUTPUT:

2

BMW[Rubens Barrichello/99]/0

Ferrari[Michael Schumacher/100]/0

[db4o 5.0.018 2006-01-25 22:22:22]

 Connection closed by client %.

[db4o 5.0.018 2006-01-25 22:22:22]

 '/tmp/formula149559.yap' close request

[db4o 5.0.018 2006-01-25 22:22:22]

 '/tmp/formula149559.yap' closed

The transaction level in db4o is read committed . However, each client container maintains its own weak reference cache

of already known objects. To make all changes committed by other clients immediately, we have to explicitly refresh known

objects from the server. We will delegate this task to a specialized version of our listResult() method.

public static void listRefreshedResult(ObjectContainer container,

ObjectSet items, int depth)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 Console.WriteLine(items.size());

 while (items.hasNext())

 {

 object item = items.next();

 container.ext().refresh(item, depth);

 Console.WriteLine(item);

 }

 }

[demonstrateLocalReadCommitted]

ObjectContainer client1 =server.openClient();

 ObjectContainer client2 =server.openClient();

 Pilot pilot = new Pilot("David Coulthard", 98);

 ObjectSet result = client1.get(new Car("BMW"));

 Car car = (Car)result.next();

 car.Pilot = pilot;

 client1.set(car);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.commit();

 listResult(client1.get(typeof(Car)));

 listRefreshedResult(client2, client2.get(typeof(Car)), 2);

 client1.close();

 client2.close();

OUTPUT:

2

BMW[David Coulthard/98]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[Rubens Barrichello/99]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[David Coulthard/98]/0

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Ferrari[Michael Schumacher/100]/0

2

BMW[David Coulthard/98]/0

Ferrari[Michael Schumacher/100]/0

[db4o 5.0.018 2006-01-25 22:22:22]

 Connection closed by client %.

[db4o 5.0.018 2006-01-25 22:22:22]

 Connection closed by client %.

[db4o 5.0.018 2006-01-25 22:22:22]

 '/tmp/formula149559.yap' close request

[db4o 5.0.018 2006-01-25 22:22:22]

 '/tmp/formula149559.yap' closed

Simple rollbacks just work as you might expect now.

[demonstrateLocalRollback]

ObjectContainer client1 = server.openClient();

 ObjectContainer client2 = server.openClient();

 ObjectSet result = client1.get(new Car("BMW"));

 Car car = (Car)result.next();

 car.Pilot = new Pilot("Someone else", 0);

 client1.set(car);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.rollback();

 client1.ext().refresh(car, 2);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.close();

 client2.close();

OUTPUT:

2

BMW[Someone else/0]/0

Ferrari[Michael Schumacher/100]/0

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

2

BMW[David Coulthard/98]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[David Coulthard/98]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[David Coulthard/98]/0

Ferrari[Michael Schumacher/100]/0

[db4o 5.0.018 2006-01-25 22:22:22]

 Connection closed by client %.

[db4o 5.0.018 2006-01-25 22:22:22]

 Connection closed by client %.

[db4o 5.0.018 2006-01-25 22:22:23]

 '/tmp/formula149559.yap' close request

[db4o 5.0.018 2006-01-25 22:22:23]

 '/tmp/formula149559.yap' closed

9.2. Networking

From here it's only a small step towards operating db4o over a TCP/IP network. We just specify a port number greater

than zero and set up one or more accounts for our client(s).

[accessRemoteServer]

ObjectServer server = Db4o.openServer(Util.YapFileName, ServerPort);

 server.grantAccess(ServerUser, ServerPassword);

 try

 {

 ObjectContainer client = Db4o.openClient("localhost",

ServerPort, ServerUser, ServerPassword);

 // Do something with this client, or open more clients

 client.close();

 }

 finally

 {

 server.close();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

The client connects providing host, port, user name and password.

[queryRemoteServer]

ObjectContainer client = Db4o.openClient("localhost", port, user,

password);

 listResult(client.get(new Car(null)));

 client.close();

OUTPUT:

[db4o 5.0.018 2006-01-25 22:22:23]

 Server listening on port: '56128'

[db4o 5.0.018 2006-01-25 22:22:23]

 Client 'user' connected.

2

BMW[David Coulthard/98]/0

Ferrari[Michael Schumacher/100]/0

[db4o 5.0.018 2006-01-25 22:22:23]

 Connection closed by client 'user'.

[db4o 5.0.018 2006-01-25 22:22:23]

 '/tmp/formula149559.yap' close request

[db4o 5.0.018 2006-01-25 22:22:23]

 '/tmp/formula149559.yap' closed

Everything else is absolutely identical to the local server examples above.

[demonstrateRemoteReadCommitted]

ObjectContainer client1 = Db4o.openClient("localhost", port, user,

password);

 ObjectContainer client2 = Db4o.openClient("localhost", port,

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

user, password);

 Pilot pilot = new Pilot("Jenson Button", 97);

 ObjectSet result = client1.get(new Car(null));

 Car car = (Car)result.next();

 car.Pilot = pilot;

 client1.set(car);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.commit();

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.close();

 client2.close();

OUTPUT:

[db4o 5.0.018 2006-01-25 22:22:23]

 Server listening on port: '56128'

[db4o 5.0.018 2006-01-25 22:22:23]

 Client 'user' connected.

[db4o 5.0.018 2006-01-25 22:22:23]

 Client 'user' connected.

2

BMW[Jenson Button/97]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[David Coulthard/98]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[Jenson Button/97]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[Jenson Button/97]/0

Ferrari[Michael Schumacher/100]/0

[db4o 5.0.018 2006-01-25 22:22:23]

 Connection closed by client 'user'.

[db4o 5.0.018 2006-01-25 22:22:23]

 Connection closed by client 'user'.

[db4o 5.0.018 2006-01-25 22:22:23]

 '/tmp/formula149559.yap' close request

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[db4o 5.0.018 2006-01-25 22:22:23]

 '/tmp/formula149559.yap' closed

[demonstrateRemoteRollback]

ObjectContainer client1 = Db4o.openClient("localhost", port, user,

password);

 ObjectContainer client2 = Db4o.openClient("localhost", port,

user, password);

 ObjectSet result = client1.get(new Car(null));

 Car car = (Car)result.next();

 car.Pilot = new Pilot("Someone else", 0);

 client1.set(car);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.rollback();

 client1.ext().refresh(car,2);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.close();

 client2.close();

OUTPUT:

[db4o 5.0.018 2006-01-25 22:22:23]

 Server listening on port: '56128'

[db4o 5.0.018 2006-01-25 22:22:23]

 Client 'user' connected.

[db4o 5.0.018 2006-01-25 22:22:23]

 Client 'user' connected.

2

BMW[Someone else/0]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[Jenson Button/97]/0

Ferrari[Michael Schumacher/100]/0

2

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

BMW[Jenson Button/97]/0

Ferrari[Michael Schumacher/100]/0

2

BMW[Jenson Button/97]/0

Ferrari[Michael Schumacher/100]/0

[db4o 5.0.018 2006-01-25 22:22:24]

 Connection closed by client 'user'.

[db4o 5.0.018 2006-01-25 22:22:24]

 Connection closed by client 'user'.

[db4o 5.0.018 2006-01-25 22:22:24]

 '/tmp/formula149559.yap' close request

[db4o 5.0.018 2006-01-25 22:22:24]

 '/tmp/formula149559.yap' closed

9.3. Out-of-band signalling

Sometimes a client needs to send a special message to a server in order to tell the server to do something. The server may

need to be signalled to perform a defragment or it may need to be signalled to shut itself down gracefully.

This is configured by calling setMessageRecipient(), passing the object that will process client-initiated messages.

public void runServer()

 {

 lock(this)

 {

 ObjectServer db4oServer = Db4o.openServer(FILE, PORT);

 db4oServer.grantAccess(USER, PASS);

 // Using the messaging functionality to redirect all

 // messages to this.processMessage

 db4oServer.ext().configure().setMessageRecipient(this);

 try

 {

 if (! stop)

 {

 // wait forever for notify() from close()

 Monitor.Wait(this);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e.ToString());

 }

 db4oServer.close();

 }

 }

The message is received and processed by a processMessage() method:

public void processMessage(ObjectContainer con, object message)

 {

 if (message is StopServer)

 {

 close();

 }

 }

Db4o allows a client to send an arbitrary signal or message to a server by sending a plain Java object to the server. The

server will receive a callback message, including the object that came from the client. The server can interpret this message

however it wants.

public static void Main(string[] args)

 {

 ObjectContainer objectContainer = null;

 try

 {

 // connect to the server

 objectContainer = Db4o.openClient(HOST, PORT, USER,

PASS);

 }

 catch (Exception e)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 Console.WriteLine(e.ToString());

 }

 if (objectContainer != null)

 {

 // get the messageSender for the ObjectContainer

 MessageSender messageSender = objectContainer.ext()

 .configure().getMessageSender();

 // send an instance of a StopServer object

 messageSender.send(new StopServer());

 // close the ObjectContainer

 objectContainer.close();

 }

 }

9.4. Putting it all together: a simple but complete db4o server

Let's put all of this information together now to implement a simple standalone db4o server with a special client that can

tell the server to shut itself down gracefully on demand.

First, both the client and the server need some shared configuration information. We will provide this using an interface:

namespace com.db4o.f1.chapter5

{

 /// <summary>

 /// Configuration used for StartServer and StopServer.

 /// </summary>

 public class ServerConfiguration

 {

 /// <summary>

 /// the host to be used.

 /// If you want to run the client server examples on two

computers,

 /// enter the computer name of the one that you want to use

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

as server.

 /// </summary>

 public const string HOST = "localhost";

 /// <summary>

 /// the database file to be used by the server.

 /// </summary>

 public const string FILE = "formula1.yap";

 /// <summary>

 /// the port to be used by the server.

 /// </summary>

 public const int PORT = 4488;

 /// <summary>

 /// the user name for access control.

 /// </summary>

 public const string USER = "db4o";

 /// <summary>

 /// the pasword for access control.

 /// </summary>

 public const string PASS = "db4o";

 }

}

Now we'll create the server:

using System;

using System.Threading;

using com.db4o;

using com.db4o.messaging;

using j4o.lang;

namespace com.db4o.f1.chapter5

{

 /// <summary>

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 /// starts a db4o server with the settings from

ServerConfiguration.

 /// This is a typical setup for a long running server.

 /// The Server may be stopped from a remote location by running

 /// StopServer. The StartServer instance is used as a

MessageRecipient

 /// and reacts to receiving an instance of a StopServer object.

 /// Note that all user classes need to be present on the server

side

 /// and that all possible Db4o.configure() calls to alter the

db4o

 /// configuration need to be executed on the client and on the

server.

 /// </summary>

 public class StartServer : ServerConfiguration, MessageRecipient

 {

 /// <summary>

 /// setting the value to true denotes that the server should

be closed

 /// </summary>

 private bool stop = false;

 /// <summary>

 /// starts a db4o server using the configuration from

 /// ServerConfiguration.

 /// </summary>

 public static void Main(string[] arguments)

 {

 new StartServer().runServer();

 }

 /// <summary>

 /// opens the ObjectServer, and waits forever until close()

is called

 /// or a StopServer message is being received.

 /// </summary>

 public void runServer()

 {

 lock(this)

 {

 ObjectServer db4oServer = Db4o.openServer(FILE,

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

PORT);

 db4oServer.grantAccess(USER, PASS);

 // Using the messaging functionality to redirect all

 // messages to this.processMessage

db4oServer.ext().configure().setMessageRecipient(this);

 try

 {

 if (! stop)

 {

 // wait forever for notify() from close()

 Monitor.Wait(this);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e.ToString());

 }

 db4oServer.close();

 }

 }

 /// <summary>

 /// messaging callback

 /// see com.db4o.messaging.MessageRecipient#processMessage()

 /// </summary>

 public void processMessage(ObjectContainer con, object

message)

 {

 if (message is StopServer)

 {

 close();

 }

 }

 /// <summary>

 /// closes this server.

 /// </summary>

 public void close()

 {

 lock(this)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 stop = true;

 Monitor.PulseAll(this);

 }

 }

 }

}

And last but not least, the client that stops the server.

using System;

using com.db4o;

using com.db4o.messaging;

namespace com.db4o.f1.chapter5

{

 /// <summary>

 /// stops the db4o Server started with StartServer.

 /// This is done by opening a client connection

 /// to the server and by sending a StopServer object as

 /// a message. StartServer will react in it's

 /// processMessage method.

 /// </summary>

 public class StopServer : ServerConfiguration

 {

 /// <summary>

 /// stops a db4o Server started with StartServer.

 /// </summary>

 /// <exception cref="Exception" />

 public static void Main(string[] args)

 {

 ObjectContainer objectContainer = null;

 try

 {

 // connect to the server

 objectContainer = Db4o.openClient(HOST, PORT, USER,

PASS);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 catch (Exception e)

 {

 Console.WriteLine(e.ToString());

 }

 if (objectContainer != null)

 {

 // get the messageSender for the ObjectContainer

 MessageSender messageSender = objectContainer.ext()

 .configure().getMessageSender();

 // send an instance of a StopServer object

 messageSender.send(new StopServer());

 // close the ObjectContainer

 objectContainer.close();

 }

 }

 }

}

9.5. Conclusion

That's it, folks. No, of course it isn't. There's much more to db4o we haven't covered yet: schema evolution, custom

persistence for your classes, writing your own query objects, etc. The following, more loosely coupled chapters will look

into more advanced db4o features.

This tutorial is work in progress. We will successively add chapters and incorporate feedback from the community into the

existing chapters.

We hope that this tutorial has helped to get you started with db4o. How should you continue now?

- Browse the remaining chapters.

-(Interactive version only)While this tutorial is basically sequential in nature, try to switch back and forth between the

chapters and execute the sample snippets in arbitrary order. You will be working with the same database throughout;

sometimes you may just get stuck or even induce exceptions, but you can always reset the database via the console window.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

- The examples we've worked through are included in your db4o distribution in full source code. Feel free to experiment

with it.

- I you're stuck, see if the FAQ can solve your problem, browse the information on our web site, check if your problem is

submitted to Bugzilla or visit our forums at http://forums.db4o.com/forums/.

9.6. Full source

namespace com.db4o.f1.chapter5

{

 using System;

 using System.IO;

 using com.db4o;

 using com.db4o.f1;

 public class ClientServerExample : Util

 {

 public static void Main(string[] args)

 {

 File.Delete(Util.YapFileName);

 accessLocalServer();

 File.Delete(Util.YapFileName);

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 setFirstCar(db);

 setSecondCar(db);

 }

 finally

 {

 db.close();

 }

 configureDb4o();

 ObjectServer server = Db4o.openServer(Util.YapFileName,

0);

 try

 {

http://www.db4o.com/
http://www.db4odev.com/bugzilla
http://forums.db4o.com/forums/

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 queryLocalServer(server);

 demonstrateLocalReadCommitted(server);

 demonstrateLocalRollback(server);

 }

 finally

 {

 server.close();

 }

 accessRemoteServer();

 server = Db4o.openServer(Util.YapFileName, ServerPort);

 server.grantAccess(ServerUser, ServerPassword);

 try

 {

 queryRemoteServer(ServerPort, ServerUser,

ServerPassword);

 demonstrateRemoteReadCommitted(ServerPort,

ServerUser, ServerPassword);

 demonstrateRemoteRollback(ServerPort, ServerUser,

ServerPassword);

 }

 finally

 {

 server.close();

 }

 }

 public static void setFirstCar(ObjectContainer db)

 {

 Pilot pilot = new Pilot("Rubens Barrichello", 99);

 Car car = new Car("BMW");

 car.Pilot = pilot;

 db.set(car);

 }

 public static void setSecondCar(ObjectContainer db)

 {

 Pilot pilot = new Pilot("Michael Schumacher", 100);

 Car car = new Car("Ferrari");

 car.Pilot = pilot;

 db.set(car);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 public static void accessLocalServer()

 {

 ObjectServer server = Db4o.openServer(Util.YapFileName,

0);

 try

 {

 ObjectContainer client = server.openClient();

 // Do something with this client, or open more

clients

 client.close();

 }

 finally

 {

 server.close();

 }

 }

 public static void queryLocalServer(ObjectServer server)

 {

 ObjectContainer client = server.openClient();

 listResult(client.get(new Car(null)));

 client.close();

 }

 public static void configureDb4o()

 {

 Db4o.configure().objectClass(typeof(Car)).updateDepth(3);

 }

 public static void demonstrateLocalReadCommitted(ObjectServer

server)

 {

 ObjectContainer client1 =server.openClient();

 ObjectContainer client2 =server.openClient();

 Pilot pilot = new Pilot("David Coulthard", 98);

 ObjectSet result = client1.get(new Car("BMW"));

 Car car = (Car)result.next();

 car.Pilot = pilot;

 client1.set(car);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.commit();

 listResult(client1.get(typeof(Car)));

 listRefreshedResult(client2, client2.get(typeof(Car)),

2);

 client1.close();

 client2.close();

 }

 public static void demonstrateLocalRollback(ObjectServer

server)

 {

 ObjectContainer client1 = server.openClient();

 ObjectContainer client2 = server.openClient();

 ObjectSet result = client1.get(new Car("BMW"));

 Car car = (Car)result.next();

 car.Pilot = new Pilot("Someone else", 0);

 client1.set(car);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.rollback();

 client1.ext().refresh(car, 2);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.close();

 client2.close();

 }

 public static void accessRemoteServer()

 {

 ObjectServer server = Db4o.openServer(Util.YapFileName,

ServerPort);

 server.grantAccess(ServerUser, ServerPassword);

 try

 {

 ObjectContainer client = Db4o.openClient("localhost",

ServerPort, ServerUser, ServerPassword);

 // Do something with this client, or open more

clients

 client.close();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 finally

 {

 server.close();

 }

 }

 public static void queryRemoteServer(int port, string user,

string password)

 {

 ObjectContainer client = Db4o.openClient("localhost",

port, user, password);

 listResult(client.get(new Car(null)));

 client.close();

 }

 public static void demonstrateRemoteReadCommitted(int port,

string user, string password)

 {

 ObjectContainer client1 = Db4o.openClient("localhost",

port, user, password);

 ObjectContainer client2 = Db4o.openClient("localhost",

port, user, password);

 Pilot pilot = new Pilot("Jenson Button", 97);

 ObjectSet result = client1.get(new Car(null));

 Car car = (Car)result.next();

 car.Pilot = pilot;

 client1.set(car);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.commit();

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.close();

 client2.close();

 }

 public static void demonstrateRemoteRollback(int port, string

user, string password)

 {

 ObjectContainer client1 = Db4o.openClient("localhost",

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

port, user, password);

 ObjectContainer client2 = Db4o.openClient("localhost",

port, user, password);

 ObjectSet result = client1.get(new Car(null));

 Car car = (Car)result.next();

 car.Pilot = new Pilot("Someone else", 0);

 client1.set(car);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.rollback();

 client1.ext().refresh(car,2);

 listResult(client1.get(new Car(null)));

 listResult(client2.get(new Car(null)));

 client1.close();

 client2.close();

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.10. SODA Evaluations

In the SODA API chapter we already mentioned Evaluations as a means of providing user-defined custom constraints and

as a means to run any arbitrary code in a SODA query. Let's have a closer look.

10.1. Evaluation API

The evaluation API consists of two interfaces, Evaluation and Candidate . Evaluation implementations are implemented

by the user and injected into a query. During a query, they will be called from db4o with a candidate instance in order to

decide whether to include it into the current (sub-)result.

The Evaluation interface contains a single method only:

public void evaluate(Candidate candidate);

This will be called by db4o to check whether the object encapsulated by this candidate should be included into the current

candidate set.

The Candidate interface provides three methods:

public Object getObject();

public void include(boolean flag);

public ObjectContainer objectContainer();

An Evaluation implementation may call getObject() to retrieve the actual object instance to be evaluated, it may call

include() to instruct db4o whether or not to include this object in the current candidate set, and finally it may access the

current database directly by calling objectContainer().

10.2. Example

For a simple example, let's go back to our Pilot/Car implementation from the Collections chapter. Back then, we kept a

#SODAQueryAPI
#Collections

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

history of SensorReadout instances in a List member inside the car. Now imagine that we wanted to retrieve all cars that

have assembled an even number of history entries. A quite contrived and seemingly trivial example, however, it gets us into

trouble: Collections are transparent to the query API, it just 'looks through' them at their respective members.

So how can we get this done? Let's implement an Evaluation that expects the objects passed in to be instances of type Car

and checks their history size.

using com.db4o.f1.chapter3;

using com.db4o.query;

namespace com.db4o.f1.chapter6

{

 public class EvenHistoryEvaluation : Evaluation

 {

 public void evaluate(Candidate candidate)

 {

 Car car=(Car)candidate.getObject();

 candidate.include(car.History.Count % 2 == 0);

 }

 }

}

To test it, let's add two cars with history sizes of one, respectively two:

[storeCars]

Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 Car car1 = new Car("Ferrari");

 car1.Pilot = pilot1;

 car1.Snapshot();

 db.set(car1);

 Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 Car car2 = new Car("BMW");

 car2.Pilot = pilot2;

 car2.Snapshot();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 car2.Snapshot();

 db.set(car2);

and run our evaluation against them:

[queryWithEvaluation]

Query query = db.query();

 query.constrain(typeof (Car));

 query.constrain(new EvenHistoryEvaluation());

 ObjectSet result = query.execute();

 Util.listResult(result);

OUTPUT:

1

BMW[Rubens Barrichello/99]/2

10.3. Drawbacks

While evaluations offer you another degree of freedom for assembling queries, they come at a certain cost: As you may

already have noticed from the example, evaluations work on the fully instantiated objects, while 'normal' queries peek into

the database file directly. So there's a certain performance penalty for the object instantiation, which is wasted if the object

is not included into the candidate set.

Another restriction is that, while 'normal' queries can bypass encapsulation and access candidates' private members

directly, evaluations are bound to use their external API, just as in the language itself.

One last hint for Javaists: Evaluations are expected to be serializable for client/server operation. So be careful when

implementing them as (anonymous) inner classes and keep in mind that those will carry an implicit reference to their

surrounding class and everything that belongs to it. Best practice is to always implement evaluations as normal top level or

static inner classes.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

10.4. Conclusion

With the introduction of evaluations we finally completed our query toolbox. Evaluations provide a simple way of assemble

arbitrary custom query building blocks, however, they come at a price.

10.5. Full source

using System.IO;

using com.db4o.f1.chapter3;

using com.db4o.query;

namespace com.db4o.f1.chapter6

{

 public class EvaluationExample : Util

 {

 public static void Main(string[] args)

 {

 File.Delete(Util.YapFileName);

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 storeCars(db);

 queryWithEvaluation(db);

 }

 finally

 {

 db.close();

 }

 }

 public static void storeCars(ObjectContainer db)

 {

 Pilot pilot1 = new Pilot("Michael Schumacher", 100);

 Car car1 = new Car("Ferrari");

 car1.Pilot = pilot1;

 car1.Snapshot();

 db.set(car1);

 Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

 Car car2 = new Car("BMW");

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 car2.Pilot = pilot2;

 car2.Snapshot();

 car2.Snapshot();

 db.set(car2);

 }

 public static void queryWithEvaluation(ObjectContainer db)

 {

 Query query = db.query();

 query.constrain(typeof (Car));

 query.constrain(new EvenHistoryEvaluation());

 ObjectSet result = query.execute();

 Util.listResult(result);

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.11. Constructors

Sometimes you may find that db4o refuses to store instances of certain classes, or appears to store them, but delivers

incomplete instances on queries. To understand the problem and the alternative solutions at hand, we'll have to take a look

at the way db4o "instantiates" objects when retrieving them from the database.

11.1. Instantiating objects

Db4o currently knows three ways of creating and populating an object from the database. The approach to be used can be

configured globally and on a per-class basis.

11.1.1. Using a constructor

The most obvious way is to call an appropriate constructor. Db4o does not require a public or no-args constructor. It can

use any constructor that accepts default (null/0) values for all of its arguments without throwing an exception. Db4o will

test all available constructors on the class (including private ones) until it finds a suitable one.

What if no such constructor exists?

11.1.2. Bypassing the constructor

Db4o can also bypass the constructors declared for this class using platform-specific mechanisms. (For Java, this option is

only available on JREs >= 1.4.) This mode allows reinstantiating objects whose class doesn't provide a suitable

constructor, However, it will (silently) break classes that rely on the constructor to be executed, for example in order to

populate transient members.

If this option is available in the current runtime environment, it will be the default setting.

11.1.3. Using a translator

If none of the two approaches above is suitable, db4o provides a way to specify in detail how instances of a class should be

stored and reinstantiated by implementing the Translator interface and registering this implementation for the offending

class.

We'll cover translators in detail in the next chapter .

11.2. Configuration

The instantiation mode can be configured globally or on a per class basis.

#Translators

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Db4o.configure().callConstructors(true);

This will configure db4o to use constructors to reinstantiate any object from the database. (The default isfalse).

Db4o.configure().objectClass(Foo.class).callConstructor(true);

This will configure db4o to use constructor calls for this class and all its subclasses.

11.3. Troubleshooting

At least for development code, it is always a good idea to instruct db4o to check for available constructors at storage time.

(If you've configured db4o to use constructors at all.)

Db4o.configure().exceptionsOnNotStorable(true);

If this setting triggers exceptions in your code, or if instances of a class seem to lose members during storage, check the

involved classes (especially their constructors) for problems similar to the ones shown in the following section.

11.4. Examples

class C1 {

 private String s;

 private C1(String s) {

 this.s=s;

 }

 public String toString() {

 return s;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

}

The above class is fine for use with and without callConstructors set.

class C2 {

 private transient String x;

 private String s;

 private C2(String s) {

 this.s=s;

 this.x="x";

 }

 public String toString() {

 return s+x.length();

 }

}

The above C2 class needs to have callConstructors set to true. Otherwise, since transient members are not stored and the

constructor code is not executed, toString() will potentially run into a NullPointerException on x.length().

class C3 {

 private String s;

 private int i;

 private C3(String s) {

 this.s=s;

 this.i=s.length();

 }

 public String toString() {

 return s+i;

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

}

The above C3 class needs to have callConstructors set to false (the default), since the (only) constructor will throw a

NullPointerException when called with a null value.

class C4 {

 private String s;

 private transient int i;

 private C4(String s) {

 this.s=s;

 this.i=s.length();

 }

 public String toString() {

 return s+i;

 }

}

This class cannot be cleanly reinstantiated by db4o: Both approaches will fail, so one has to resort to configuring a

translator.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.12. Translators

In the last chapter we have covered the alternative configurations db4o offers for object reinstantiation. What's left to see

is how we can store objects of a class that can't be cleanly stored with either of these approaches.

12.1. An example class

For this example we'll be using a hypothetical LocalizedItemList class which binds together culture information with a list

of items.

System.Globalization.CultureInfo is particularly interesting because it internally holds a native pointer to a system

structure which in turn cannot be cleanly stored by db4o.

namespace com.db4o.f1.chapter6

{

 using System.Globalization;

 /// <summary>

 /// A CultureInfo aware list of objects.

 /// CultureInfo objects hold a native pointer to

 /// a system structure.

 /// </summary>

 public class LocalizedItemList

 {

 CultureInfo _culture;

 string[] _items;

 public LocalizedItemList(CultureInfo culture, string[] items)

 {

 _culture = culture;

 _items = items;

 }

 override public string ToString()

 {

 return string.Join(_culture.TextInfo.ListSeparator + " ",

_items);

 }

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

}

We'll be using this code to store and retrieve and instance of this class with different configuration settings:

public static void tryStoreAndRetrieve()

 {

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 string[] champs = new string[] { "Ayrton Senna", "Nelson

Piquet" };

 LocalizedItemList LocalizedItemList = new

LocalizedItemList(CultureInfo.CreateSpecificCulture("pt-BR"),

champs);

 System.Console.WriteLine("ORIGINAL: {0}",

LocalizedItemList);

 db.set(LocalizedItemList);

 }

 catch (Exception x)

 {

 System.Console.WriteLine(x);

 return;

 }

 finally

 {

 db.close();

 }

 db = Db4o.openFile(Util.YapFileName);

 try

 {

 ObjectSet result = db.get(typeof(LocalizedItemList));

 while (result.hasNext())

 {

 LocalizedItemList LocalizedItemList =

(LocalizedItemList)result.next();

 System.Console.WriteLine("RETRIEVED: {0}",

LocalizedItemList);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 db.delete(LocalizedItemList);

 }

 }

 finally

 {

 db.close();

 }

 }

Let's verify that both approaches to object reinstantiation will fail for this class.

12.1.1. Using the constructor

[tryStoreWithCallConstructors]

Db4o.configure().exceptionsOnNotStorable(true);

 Db4o.configure().objectClass(typeof(CultureInfo))

 .callConstructor(true);

 tryStoreAndRetrieve();

At storage time, db4o tests the only available constructor with null arguments and runs into a NullPointerException, so it

refuses to accept our object.

(Note that this test only occurs when configured with exceptionsOnNotStorable - otherwise db4o will silently fail when

trying to reinstantiate the object.)

12.1.2. Bypassing the constructor

[tryStoreWithoutCallConstructors]

Db4o.configure().objectClass(typeof(CultureInfo))

 .callConstructor(false);

 // trying to store objects that hold onto

 // system resources can be pretty nasty

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 // uncomment the following line to see

 // how nasty it can be

 //tryStoreAndRetrieve();

This still does not work for our case because the native pointer will definetely be invalid. In fact this example crashes the

Common Language Runtime.

12.2. The Translator API

So how do we get our object into the database, now that everything seems to fail? Db4o provides a way to specify a custom

way of storing and retrieving objects through the ObjectTranslator and ObjectConstructor interfaces.

12.2.1. ObjectTranslator

The ObjectTranslator API looks like this:

public Object onStore(ObjectContainer container,

 Object applicationObject);

public void onActivate(ObjectContainer container,

 Object applicationObject,

 Object storedObject);

public Class storedClass ();

The usage is quite simple: When a translator is configured for a class, db4o will call its onStore method with a reference to

the database and the instance to be stored as a parameter and will store the object returned. This object's type has to be

primitive from a db4o point of view and it has to match the type specification returned by storedClass().

On retrieval, db4o will create a blank object of the target class (using the configured instantiation method) and then pass it

on to onActivate() along with the stored object to be set up accordingly.

12.2.2. ObjectConstructor

However, this will only work if the application object's class provides some way to recreate its state from the information

contained in the stored object, which is not the case for CultureInfo.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

For these cases db4o provides an extension to the ObjectTranslator interface, ObjectConstructor, which declares one

additional method:

public Object onInstantiate(ObjectContainer container,

 Object storedObject);

If db4o detects a configured translator to be an ObjectConstructor implementation, it will pass the stored class instance to

the onInstantiate() method and use the result as a blank application object to be processed by onActivate().

Note that, while in general configured translators are applied to subclasses, too, ObjectConstructor application object

instantiation will not be used for subclasses (which wouldn't make much sense, anyway), so ObjectConstructors have to be

configured for the concrete classes.

12.3. A translator implementation

To translate CultureInfo instances, we will store only their name since this is enough to recreate them later. Note that we

don't have to do any work in onActivate(), since object reinstantiation is already fully completed in onInstantiate().

namespace com.db4o.f1.chapter6

{

 using System.Globalization;

 using com.db4o;

 using com.db4o.config;

 public class CultureInfoTranslator : ObjectConstructor

 {

 public object onStore(ObjectContainer container, object

applicationObject)

 {

 System.Console.WriteLine("onStore for {0}",

applicationObject);

 return ((CultureInfo)applicationObject).Name;

 }

 public object onInstantiate(ObjectContainer container, object

storedObject)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 System.Console.WriteLine("onInstantiate for {0}",

storedObject);

 string name = (string)storedObject;

 return CultureInfo.CreateSpecificCulture(name);

 }

 public void onActivate(ObjectContainer container, object

applicationObject, object storedObject)

 {

 System.Console.WriteLine("onActivate for {0}/{1}",

applicationObject, storedObject);

 }

 public j4o.lang.Class storedClass()

 {

 return j4o.lang.Class.getClassForType(typeof(string));

 }

 }

}

Let's try it out:

[storeWithTranslator]

Db4o.configure().objectClass(typeof(CultureInfo))

 .translate(new CultureInfoTranslator());

 tryStoreAndRetrieve();

 Db4o.configure().objectClass(typeof(CultureInfo))

 .translate(null);

OUTPUT:

ORIGINAL: 42/Test: 4

onStore for 42/Test: 4

onInstantiate for [Ljava.lang.Object;@511533be

onActivate for 42/Test: 4 / [Ljava.lang.Object;@126db04e

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

RETRIEVED: 42/Test: 4

12.4. Conclusion

For classes that cannot cleanly be stored and retrieved with db4o's standard object instantiation mechanisms, db4o

provides an API to specify custom reinstantiation strategies. These also come in two flavors: ObjectTranslators let you

reconfigure the state of a 'blank' application object reinstantiated by db4o, ObjectConstructors also take care of

instantiating the application object itself.

12.5. Full source

namespace com.db4o.f1.chapter6

{

 using System;

 using System.Globalization;

 using com.db4o;

 using com.db4o.f1;

 public class TranslatorExample : Util

 {

 public static void Main(string[] args)

 {

 tryStoreWithCallConstructors();

 tryStoreWithoutCallConstructors();

 storeWithTranslator();

 }

 public static void tryStoreWithCallConstructors()

 {

 Db4o.configure().exceptionsOnNotStorable(true);

 Db4o.configure().objectClass(typeof(CultureInfo))

 .callConstructor(true);

 tryStoreAndRetrieve();

 }

 public static void tryStoreWithoutCallConstructors()

 {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 Db4o.configure().objectClass(typeof(CultureInfo))

 .callConstructor(false);

 // trying to store objects that hold onto

 // system resources can be pretty nasty

 // uncomment the following line to see

 // how nasty it can be

 //tryStoreAndRetrieve();

 }

 public static void storeWithTranslator()

 {

 Db4o.configure().objectClass(typeof(CultureInfo))

 .translate(new CultureInfoTranslator());

 tryStoreAndRetrieve();

 Db4o.configure().objectClass(typeof(CultureInfo))

 .translate(null);

 }

 public static void tryStoreAndRetrieve()

 {

 ObjectContainer db = Db4o.openFile(Util.YapFileName);

 try

 {

 string[] champs = new string[] { "Ayrton Senna",

"Nelson Piquet" };

 LocalizedItemList LocalizedItemList = new

LocalizedItemList(CultureInfo.CreateSpecificCulture("pt-BR"),

champs);

 System.Console.WriteLine("ORIGINAL: {0}",

LocalizedItemList);

 db.set(LocalizedItemList);

 }

 catch (Exception x)

 {

 System.Console.WriteLine(x);

 return;

 }

 finally

 {

 db.close();

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 db = Db4o.openFile(Util.YapFileName);

 try

 {

 ObjectSet result = db.get(typeof(LocalizedItemList));

 while (result.hasNext())

 {

 LocalizedItemList LocalizedItemList =

(LocalizedItemList)result.next();

 System.Console.WriteLine("RETRIEVED: {0}",

LocalizedItemList);

 db.delete(LocalizedItemList);

 }

 }

 finally

 {

 db.close();

 }

 }

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.13. Configuration

db4o provides a wide range of configuration methods to request special behaviour. For a complete list of all available

methods see the API documentation for the com.db4o.config package/namespace.

Some hints around using configuration calls:

13.1. Scope

Configuration calls can be issued to a global VM-wide configuration context with

Db4o.configure()

and to an open ObjectContainer/ObjectServer with

objectContainer.ext().configure() objectServer.ext().configure()

When an ObjectContainer/ObjectServer is opened, the global configuration context is cloned and copied into the newly

opened ObjectContainer/ObjectServer. Subsequent calls against the global context with Db4o.configure() have no effect

on open ObjectContainers/ObjectServers.

13.2. Calling Methods

Many configuration methods have to be called before an ObjectContainer/ObjectServer is opened and will be ignored if

they are called against open ObjectContainers/ObjectServers. Some examples:

Configuration conf = Db4o.configure();

conf.objectClass(Foo.class).objectField("bar").indexed(true);

conf.objectClass(Foo.class).cascadeOnUpdate();

conf.objectClass(Foo.class).cascadeOnDelete();

conf.objectClass(typeof(System.Drawing.Image))

 .translate(new TSerializable());

conf.generateUUIDs(Integer.MAX_VALUE);

conf.generateVersionNumbers(Integer.MAX_VALUE);

conf.automaticShutDown(false);

conf.lockDatabaseFile(false);

conf.singleThreadedClient(true);

conf.weakReferences(false);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Configurations that influence the database file format will have to take place, before a database is created, before the first

#openXXX() call. Some examples:

Configuration conf = Db4o.configure();

conf.blockSize(8);

conf.encrypt(true);

conf.password("yourEncryptionPasswordHere");

conf.unicode(false);

Configuration settings are not stored in db4o database files. Accordingly all configuration methods have to be called every

time before an ObjectContainer/ObjectServer is opened. For using db4o in client/server mode it is recommended to use

the same global configuration on the server and on the client. To set this up nicely it makes sense to create one application

class with one method that does all the db4o configuration and to deploy this class both to the server and to all clients.

Further reading

Some configuration switches are discussed in more detail in the following chapters:

-Tuning

-Indexes

-Encryption

#Tuning
#Indexes
#Encryption

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.14. Indexes

db4o allows to index fields to provide maximum querying performance. To request an index to be created, you would issue

the following API method call in your global db4o configuration method before you open an

ObjectContainer/ObjectServer:

// assuming

class Foo{

 String bar;

}

Db4o.configure().objectClass(Foo.class).objectField("bar").indexed(tr

ue);

If the configuration is set in this way, an index on the Foo#bar field will be created (if not present already) the next time

you open an

ObjectContainer/ObjectServer and you use the Foo class the first time

in your applcation.

Contrary to all other configuration calls indexes - once created - will remain in a database even if the index configuration

call is not issued before opening an ObjectContainer/ObjectServer.

To drop an index you would also issue a configuration call in your db4o configuration method:

Db4o.configure().objectClass(Foo.class).objectField("bar").indexed(fa

lse);

Actually dropping the index will take place the next time the respective class is used.

db4o will tell you when it creates and drops indexes, if you choose a message level of 1 or higher:

Db4o.configure().messageLevel(1);

For creating and dropping indexes on large amounts of objects there are two possible strategies:

#Configuration
#Configuration

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

(1) Import all objects with indexing off, configure the index and reopen the ObjectContainer/ObjectServer.

(2) Import all objects with indexing turned on and commit regularly for a fixed amount of objects (~10,000).

(1) will be faster.

(2) will keep memory consumption lower.

Further reading

To improve performance even further, consider reading about some of the Tuning options discussed elsewhere in this

tutorial.

#Tuning

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.15. IDs

The db4o team recommends, not to use object IDs where this is not necessary. db4o keeps track of object identities in a

transparent way, by identifying "known" objects on updates. The reference system also makes sure that every persistent

object is instantiated only once, when a graph of objects is retrieved from the database, no matter which access path is

chosen. If an object is accessed by multiple queries or by multiple navigation access paths, db4o will always return the one

single object, helping you to put your object graph together exactly the same way as it was when it was stored, without

having to use IDs.

The use of IDs does make sense when object and database are disconnected, for instance in stateless applications.

db4o provides two types of ID systems.

15.1. Internal IDs

The internal db4o ID is a physical pointer into the database with only one indirection in the file to the actual object so it is

the fastest external access to an object db4o provides. The internal ID of an object is available with

objectContainer.ext().getID(object);

To get an object for an internal ID use

objectContainer.ext().getByID(id);

Note that #getByID() does not activate objects. If you want to work with objects that you get with #getByID(), your code

would have to make sure the object is activated by calling

objectContainer.activate(object, depth);

db4o assigns internal IDs to any stored first class object. These internal IDs are guaranteed to be unique within one

ObjectContainer/ObjectServer and they will stay the same for every object when an ObjectContainer/ObjectServer is

closed and reopened. Internal IDs will change when an object is moved from one ObjectContainer to another, as it

happens during Defragment .

15.2. Unique Universal IDs (UUIDs)

For long term external references and to identify an object even after it has been copied or moved to another

ObjectContainer, db4o supplies UUIDs. These UUIDs are not generated by default, since they occupy some space and

consume some performance for maintaining their index. UUIDs can be turned on globally or for individual classes:

#Activation
#Defragment

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Db4o.configure().generateUUIDs(Integer.MAX_VALUE);

Db4o.configure().objectClass(typeof(Foo)).generateUUIDs(true);

The respective methods for working with UUIDs are:

ExtObjectContainer#getObjectInfo(Object)

ObjectInfo#getUUID();

ExtObjectContainer#getByUUID(Db4oUUID);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.16. Callbacks

Callback methods are automatically called on persistent objects by db4o during certain database events.

For a complete list of the signatures of all available methods see the com.db4o.ext.ObjectCallbacks interface.

You do not have to implement this interface. db4o recognizes the presence of individual methods by their signature, using

reflection. You can simply add one or more of the methods to your persistent classes and they will be called.

Returning false to the #objectCanXxxx() methods will prevent the current action from being taken.

In a client/server environment callback methods will be called on the client with two exceptions:

objectOnDelete(), objectCanDelete()

Some possible usecases for callback methods:

- setting default values after refactorings

- checking object integrity before storing objects

- setting transient fields

- restoring connected state (of GUI, files, connections)

- cascading activation

- cascading updates

- creating special indexes

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.17. Classloader issues

Db4o needs to know its own classes, of course, and it needs to know the class definitions of the objects it stores. (In

Client/Server mode, both the server and the clients need access to the class definitions.) While this usually is a non-issue

with self-contained standalone applications, it can become tricky to ensure this condition when working with plugin

frameworks, where one might want to deploy db4o as a shared library for multiple plugins, for example.

17.1. Classloader basics

Classloaders are organized in a tree structure, where classloaders deeper down the tree (usually) delegate requests to their

parent classloaders and thereby 'share' their parent's knowledge.

A typical situation might look like this:

An in-depth explanation of the workings of classloaders is beyond the scope of this tutorial, of course. Starting points

might be found here:

http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html

http://java.sun.com/developer/technicalArticles/Networking/classloaders/

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

17.2. Configuration

Db4o can be configured to use a user-defined classloader.

Db4o.configure().reflectWith(new JdkReflector(classloader));

http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html
http://java.sun.com/developer/technicalArticles/Networking/classloaders/
http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

This line will configure db4o to use the provided classloader. Note that, as with most db4o configuration options, this

configuration will have to occur before the respective database has been opened.

The usual ways of getting a classloader reference are:

- Using the classloader the class containing the currently executed code was loaded from. (this.getClass().getClassLoader()

)

- Using the classloader db4o was loaded from. (Db4o.class.getClassLoader())

- Using the classloader your domain classes were loaded from. (SomeDomainClass.class.getClassLoader())

- Using the context classloader that may have been arbitrarily set by the execution environment. (

Thread.currentThread().getContextClassLoader()).

To choose the right classloader to use, you have to be aware of the classloader hierarchy of your specific execution

environment. As a rule of thumb, one should configure db4o to use a classloader as deep/specialized in the tree as possible.

In the above example this would be the classloader of the plugin db4o is supposed to work with.

17.3. Typical Environments

In your average standalone program you'll probably never have to face these problems, but there are standard framework

classics that'll force you to think about these issues.

17.3.1. Servlet container

In a typical servlet container, there will be one or more classloader responsible for internal container classes and shared

libraries, and one dedicated classloader per deployed web application. If you deploy db4o within your web application,

there should be no problem at all. When used as a shared library db4o has to be configured to use the dedicated web

application classloader. This can be done by assigning the classloader of a class that's present in the web application only,

or by using the context classloader, since all servlet container implementations we are aware of will set it accordingly.

You will find more detailed information on classloader handling in Tomcat, the reference servlet container

implementation, here:

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/class-loader-howto.html

17.3.2. Eclipse

Eclipse uses the system classloader to retrieve its core classes. There is one dedicated classloader per plugin, and the

classloader delegation tree will resemble the plugin dependency tree. The context classloader will usually be the system

classloader that knows nothing about db4o and your business classes. So the best candidate is the classloader for one of

your domain classes within the plugin.

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/class-loader-howto.html

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

17.4. Running without classes

Recently db4o has started to learn to cope with missing class definitions. This is a by-product of the work on our object

manager application. However, this feature is still quite restricted (read-only mode, etc.), incomplete and is under heavy

development. If you like to play with this feature and help us with your feedback to enhance it, you are welcome, but we

strongly recommend not to try to use this for production code of any kind.

#ObjectManager
#ObjectManager

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.18. Servlets

Running db4o as the persistence layer of a Java web application is easy. There is no installation procedure - db4o is just

another library in your application. There are only two issues that make web applications distinct from standalone

programs from a db4o point of view. One is the more complex classloader environment - db4o needs to know itself (of

course) and the classes to be persisted. Please refer to the classloader chapter for more information.

The other issue is configuring, starting and shutting down the db4o server correctly. This can be done at the servlet API

layer or within the web application framework you are using.

On the servlet API layer, you could bind db4o server handling to the servlet context via an appropriate listener. A very

basic sketch might look like this:

 public class Db4oServletContextListener

 implements ServletContextListener {

 public static final String KEY_DB4O_FILE_NAME = "db4oFileName";

 public static final String KEY_DB4O_SERVER = "db4oServer";

 private ObjectServer server=null;

 public void contextInitialized(ServletContextEvent event) {

 close();

 ServletContext context=event.getServletContext();

 String filePath=context.getRealPath(

 "WEB-INF/db/"+context.getInitParameter(KEY_DB4O_FILE_NAME));

 server=Db4o.openServer(filePath,0);

 context.setAttribute(KEY_DB4O_SERVER,server);

 context.log("db4o startup on "+filePath);

 }

 public void contextDestroyed(ServletContextEvent event) {

 ServletContext context = event.getServletContext();

 context.removeAttribute(KEY_DB4O_SERVER);

 close();

 context.log("db4o shutdown");

 }

#Classloader

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 private void close() {

 if(server!=null) {

 server.close();

 }

 server=null;

 }

}

This listener just has to be registered in the web.xml.

<context-param>

 <param-name>db4oFileName</param-name>

 <param-value>db4oweb.yap</param-value>

</context-param>

<listener>

 <listener-class>

 com.db4o.sample.web.Db4oServletContextListener

 </listener-class>

</listener>

Now db4o should be available to your application classes.

 ObjectServer server=

 (ObjectServer)context.getAttribute("db4oServer");

A more complex and 'old school' example without using context listeners comes with the samples section of the db4o3

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

distribution that's still available from our web site.

However, We strongly suggest that you use the features provided by your framework and that you consider not exposing

db4o directly to your application logic. (There is nothing db4o-specific about these recommendentations, we would vote

for this in the presence of any persistence layer.)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.19. Encryption

db4o provides built-in encryption functionality. This feature is easy to turn on or off, and must be configured before

opening a database file.

db4o currently provides two different encryption algorithms, in in addition to providing the ability for you to plug in your

own encrypting IO Adapters.

19.1. eXtended Tiny Encryption Algorithm

The first included encryption algorithm is XTEA (eXtended Tiny Encryption Algorithm). We have choosen XTEA

because this block cipher operates on a 64-bit block size with a 128-bit key. This is an extremely tiny but very fast (with

cycles less than 32 rounds) encryption algorithm. It is supposed to be as secure as DES or IDEA. Since cryptography is

beyond the scope of this tutorial you can find further information about XTEA here:

http://en.wikipedia.org/wiki/XTEA

In order to encipher your data just perform the following steps:

1) Ensure you have downloaded at least db4o Version 5.1. This is the first version which includes the

XTeaEncryptionFileAdapter (the encryption IoAdapter plug-in for db4o file IO that realizes XTEA).

2) Configure db4o to add this encryption mechanism:

Db4o.configure ().io(new XTeaEncryptionFileAdapter(password));

This is the simplest way to add the encryption adapter. But the XTEAEncryptionFileAdapter can also wrap other custom

IoAdapters to use:

Db4o.configure ().io(new XTeaEncryptionFileAdapter(new

myIoAdapter(),"password"));

3) Choose your own password and number of cycles. The security of XTEA can be enhanced by increasing the number of

iterations. There are four possible values:

- 8 rounds guarantee highest speed of db4o and lowest security (iterations = XTEA.ITERATIONS8).

- 16 rounds assure high speed of db4o and sufficient security in the same time (iterations = XTEA.ITERATIONS16).

- 32 rounds are ample for most applications, this is the default value (iterations = XTEA.ITERATIONS32).

http://en.wikipedia.org/wiki/XTEA

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

- 64 rounds achieve the best security but db4o will be about 20 per cent slower then without encryption (iterations =

XTEA.ITERATIONS64).

Db4o.configure ().io(new XTeaEncryptionFileAdapter(password,

iteraions));

Or, if you wish to use your own IoAdapter:

Db4o.configure ().io(new XTeaEncryptionFileAdapter(new myIoAdapter(),

password, iteraions));

Keep in mind that all configurations must be set before opening the ObjectContainer.

Note that there are some limitations you should keep in mind:

There is no possibility of changing the password on an existing file. You will not be able to access your data if you lose the

password. Thus please keep your key! And make sure that you always use the same password when subsequently opening

your encrypted files. You can, however open a new file with a different password and replicate (ordefragment) your

objects from one database to the other.

Feel free to use XTeaEncryptionFileAdapter for your own purposes. You may modify the class XTEA (which implement

the XTEA encryption algorithm) and KeyGenerator (for key generation), and replace them with other algorithms if you

like. Feel free to post your own IoAdapters to thedb4o Community Fourm.

19.2. Built-In Simple Encryption

The other encryption methods built-into db4o, is called simple encryption. To use it, the following two methods have to be

called, before a database file is created:

Db4o.configure().encrypt(true);

Db4o.configure().password("yourEncryptionPasswordHere");

The security standard of the built-in encryption functionality is not very high, not much more advanced than "substract 5

from every byte". This is great for systems with limited resources, or where the encryption needs to be done as quickly as

possible.

#Replication
#Defragment
http://forums.db4o.com/forums

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

19.3. Custom Encryption Adapters

db4o still provides a solution for high-security encryption by allowing any user to choose his own encryption mechanism

that he thinks he needs. The db4o file IO mechanism is pluggable and any fixed-length encryption mechanism can be

added. All that needs to be done is to write an IoAdapter plugin for db4o file IO.

This is a lot easier than it sounds. Simply:

- take the sources of com.db4o.io.RandomAccessFileAdapter as an example

- write your own IoAdapter implementation that delegates raw file access to another adapter using the GoF decorator

pattern.

- Implement the #read() and #write() methods to encrypt and decrypt when bytes are being exchanged with the file

- plug your adapter into db4o with the following method:

Db4o.configure().io(new MyEncryptionAdapter());

However, you'll have to keep in mind that db4o will write partial udates. For example, it may write a full object and then

only modify one field entry later one. Therefore it is not sufficient to en-/decrypt each access in isolation. You'll rather

have to make up a tiling structure that defines the data chunks that have to be en-/decrypted together.

Another method to inject encryption capabilities into db4o for instances of specific classes only is to implement and

configure an en-/decrypting translator.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.20. Refactoring and "Schema Evolution"

20.1. Introduction

By Refactoring, we mean anything that will change the shape of the class as it is stored on the disk. In the context of other

databases (where the database structure is said to be a "Schema"), refactoring is also called Schema Evolution.

20.2. What db4objects does today automatically or easily

Db4o automaticaly handles the most common refactoring or schema evolution changes for you.

- Changing the interface or API to a class

- Adding a field

- Removing a field

In addition, Db4o can rename classes and fields simply:

- Db4o.configure().objectClass("package.class").rename("newPackage.newClass");

- Db4o.configure().objectClass("package.class").objectField("oldField").rename("newField");

If you modify a field's type, db4o will internally create a new field of the same name, but with the new type. The values of

the old typed field will still be present, but be hidden. If you change the type back to the old type the old values will still be

there.

20.3. What is not yet automated

If you want to move a class to a new place in the inheritence hierarchy, you will need to follow the following procedure:

- Create the new class in the proper location using a temporary name

- Write manual code to create objects of the new class from the old ones

- Delete the old objects

- Run Defragment

- Rename the temporary class name back to the correct name

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.21. Tuning

The following is an overview over possible tuning switches that can be set when working with db4o. Users that do not care

about performance may like to read this chapter also because it provides a side glance at db4o features with Alternate

Strategies and some insight on how db4o works.

21.1. Enable Field Indexes

The fastest way to improve the performance of your queries is to enable indexing on some of your class's key fields.

Indexing is discussedelsewherein this tutorial.

21.2. Discarding Free Space

Db4o.configure().discardFreeSpace(byteCount);

Recommended settings for byteCount:

- Integer.MAX_VALUE will turn freespace management off

- Moderate range: 10 to 50

- Default built-in setting: 0

Advantage

will reduce the RAM memory overhead and the speed loss from maintaining the freespace lists.

Effect

When objects are updated or deleted, the space previously occupied in the database file is marked as "free", so it can be

reused. db4o maintains two lists in RAM, sorted by address and by size. Adjacent entries are merged. After a large number

of updates or deletes have been executed, the lists can become large, causing RAM consumption and performance loss for

maintenance. With this method you can specify an upper bound for the byte slot size to discard.

Alternate Strategies

Regular defragment will also keep the number of free space slots small. See:

com.db4o.tools.Defragment

(supplied as source code insrc/com/db4o/tools)

If defragment can be frequently run, it will also reclaim lost space and decrease the database file to the minimum size.

Therefore #discardFreeSpace() may be a good tuning mechanism for setups with frequent defragment runs.

#Indexes

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

21.3. Calling constructors

Db4o.configure().callConstructors(true);

Advantage

will configure db4o to use constructors to instantiate objects.

Effect

On VMs where this is supported (Sun Java VM > 1.4, .NET, Mono) db4o tries to create instances of objects without

calling a constructor. On Java VMs db4o is using reflection for this feature so this may be considerably slower than using a

constructor. For the best performance on Java it is recommended to add a public zero-parameter constructor to every

persistent class and to turn constructors on. Benchmarks on .NET have shown that the default

setting (#callConstructors(false)) is faster.

Alternate Strategies

Constructors can also be turned on for individual classes only with

Db4o.configure().objectClass(Foo.class).callConstructor(true);

There are some classes (e.g. java.util.Calendar) that require a constructor to be called to work. Further details can be

found in the chapter on Constructors.

21.4. Turning Off Weak References

Db4o.configure().weakReferences(false);

Advantage

will configure db4o to use hard direct references instead of weak references to control instantiated and stored objects.

Effect

A db4o database keeps a reference to all persistent objects that are currently held in RAM, whether they were stored to

the database in this session or instantiated from the database in this session. This is how db4o can "know" than an object is

to be updated: Any "known" object must be an update, any "unknown" object will be stored as "new". (Note that the

reference system will only be in place as long as an ObjectContainer is open. Closing and reopening an ObjectContainer

will clean the references system of the ObjectContainer and all objects in RAM will be treated as "new" afterwards.) In the

default configuration db4o uses weak references and a dedicated thread to clean them up after objects have been garbage

collected by the VM. Weak references need extra ressources and the cleanup thread will have a considerable impact on

performance since it has to be synchronized with the normal operations within the ObjectContainer. Turning off weak

#Constructors

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

references will improve speed.

The downside: To prevent memory consumption from growing consistantly, the application has to take care of removing

unused objects from the db4o reference system by itself. This can be done by calling

ExtObjectContainer.purge(object);

Alternate Strategies

ExtObjectContainer.purge(object);

can also be called in normal weak reference operation mode to remove an object from the reference cache. This will help

to keep the reference tree as small as possible. After calling #purge(object) an object will be unknown to the

ObjectContainer so this feature is also suitable for batch inserts.

21.5. Defragment

new Defragment().run("db.yap", delete);

Advantage

It is recommended to run Defragment frequently to reduce the database file size and to remove unused fields and

freespace slots.

Effect

db4o does not discard fields from the database file that are no longer being used. Within the database file quite a lot of

space is used for transactional processing. Objects are always written to a new slot when they are modified. Deleted objects

continue to occupy 8 bytes until the next Defragment run. Defragment cleans all this up by writing all objects to a

completely new database file. The resulting file will be smaller and faster.

Alternate Strategies

Instead of deleting objects it can be an option to mark objects as deleted with a "deleted" boolean field and to clean them

out (by not copying them to the new database file) during the Defragment run. Two advantages: (1) Deleted objects can be

restored. (2) In case there are multiple references to a deleted object, none of them would point to null. To clean out

objects during the Defragment run, the Defragment source code would have to be modified. com.db4o.tools.Defragment is

only supplied as source code to encourage embedding maintenance tasks.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

21.6. No Shutdown Thread

Db4o.configure().automaticShutDown(false);

Advantage

can prevent the creation of a shutdown thread on some platforms.

Effect

On some platforms db4o uses a ShutDownHook to cleanly close all database files upon system termination. If a system is

terminated without calling ObjectContainer#close() for all open ObjectContainers, these ObjectContainers will still be

usable but they will not be able to write back their freespace management system back to the database file. Accordingly

database files will be observed to grow.

Alternate Strategies

Database files can be reduced to their minimal size with

com.db4o.tools.Defragment

(supplied as source code in /src/com/db4o/tools)

21.7. No callbacks

Db4o.configure().callbacks(false);

Advantage

will prevent db4o from looking for callback methods in all persistent classes on system startup.

Effect

Upon system startup, db4o will scan all persistent classes for methods with the same signature as the methods defined in

com.db4o.ext.ObjectCallbacks, even if the interface is not implemented. db4o uses reflection to do so and on constrained

environments this can consume quite a bit of time. If callback methods are not used by the application, callbacks can be

turned off safely.

Alternate Strategies

Class configuration features are a good alternative to callbacks. The most recommended mechanism to cascade updates is:

Db4o.configure().objectClass("yourPackage.yourClass").cascadeOnUpdate

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

(true);

21.8. No schema changes

Db4o.configure().detectSchemaChanges(false);

Advantage

will prevent db4o from analysing the class structure upon opening a database file.

Effect

Upon system startup, db4o will use reflection to scan the structure of all persistent classes. This process can take some

time, if a large number of classes are present in the database file. For the best possible startup performance on "warm"

database files (all classes already analyzed in a previous startup), this feature can be turned off.

Alternate Strategies

Instead of using one database file to store a huge and complex class structure, a system may be more flexible and faster, if

multiple database files are used. In a client/server setup, database files can also be switched from the client side with

((ExtClient)objectContainer).switchToFile(databaseFile);

21.9. No lock file thread

Db4o.configure().lockDatabaseFile(false);

Advantage

will prevent the creation of a lock file thread on Java platforms without NIO (< JDK 1.4.1).

Effect

If file locking is not available on the system, db4o will regularily write a timestamp lock information to the database file, to

prevent other VM sessions from accessing the database file at the same time. Uncontrolled concurrent access would

inevitably lead to corruption of the database file. If the application ensures that it can not be started multiple times against

the database file, db4o file locking may not be necessary.

Alternate Strategies

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Database files can safely be opened from multiple sessions in readonly

mode. Use:

Db4o.configure().readOnly(true)

21.10. No test instances

Db4o.configure().testConstructors(false);

Advantage

will prevent db4o from creating a test instance of persistent classes upon opening a database file.

Effect

Upon system startup, db4o attempts to create a test instance of all persistent classes, to ensure that a public zero-

parameter constructor is present. This process can take some time, if a large number of classes are present in the database

file. For the best possible startup performance this feature can be turned off.

Alternate Strategies

In any case it's always good practice to create a zero-parameter constructor. If this is not possible because a class from a

third party is used, it may be a good idea to write a translator that translates the third party class to one's own class. The

dowload comes with the source code of the preconfigured translators in

src/com/db4o/samples/translators.

The default configuration can be found in the above folder in the file

Default.java/Default.cs

Take a look at the way the built-in translators work to get an idea how to write a translator. It just requires implementing 3

(4 for ObjectConstructors) methods and configuring db4o to use a translator on startup with

Db4o.configure().objectClass("yourPackage.yourClass").translate()

21.11. Increasing the maximum database file size

Db4o.configure().blockSize(newBlockSize); Defragment.main(new

String[] {"mydb.yap"});

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Advantage

Increasing the block size from the default of 1 to a higher value permits you to store more data in a db4o database.

Effect

By default db4o databases can have a maximum size of 2GB. By increasing the block size that db4o should internally use,

the upper limit for database files sizes can be raised to multiples of 2GB. Any value between 1 byte (2GB) to 127 bytes

(254GB) can be chosen as the block size.

Because of possible padding for objects that are not exact multiples in length of the block size, database files will naturally

tend to be bigger if a higher value is chosen. Because of less file access cache hits a higher value will also have a negative

effect on performance.

A very good choice for this value is 8 bytes, because that corresponds to the slot length of the pointers (address + length)

that db4o internally uses.

Alternate Strategies

It can also be very efficient to use multiple ObjectContainers instead of one big one. Objects can be freely moved, copied

and replicated between Objectcontainers.

#Replication

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.22. Maintenance

db4o is designed to minimize maintenance tasks to the absolute minimum. The stored class schema adapts to the

application automatically as it is being developed. db4o "understands" the addition and removal of fields which allows it to

continue to work against modified classes without having to reorganize the database file. Internally db4o works with a

superset of all class versions previously used.

However there are two recommended maintenance tasks, that can both be fully automated remotely with API calls:

.22.1. Defragment

Defragment creates a new database file and copies all objects from the current database file to the new database file. All

indexes are recreated. The resulting database file will be smaller and faster.

com.db4o.tools.Defragment is only supplied as source code to encourage embedding custom maintenance tasks on

objects.

22.2. Backup

db4o supplies hot backup functionality to backup single-user databases and client-server databases while they are running.

The respective API calls for backups are:

objectContainer.ext().backup(String path)

objectServer.ext().backup(String path)

The methods can be called while an ObjectContainer/ObjectServer is open and they will execute with low priority in a

dedicated thread, with as little impact on processing performance as possible.

It is recommended to backup the current development state of an application (ideally source code and bytecode) along

with the database files since the old code can make it easier to work with the old data.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.23. Replication

db4o provides replication functionality to periodically synchronize databases that work disconnected from eachother, such

as remote autonomous servers or handheld devices synchronizing with central servers.

In order to use replication, the following configuration settings have to be called before a database file is created or

opened:

Db4o.configure().generateUUIDs(Integer.MAX_VALUE);

Db4o.configure().generateVersionNumbers(Integer.MAX_VALUE);

(See the section below on how to enable replication for existing databases)

Both settings can also be configured on a per-class basis:

Db4o.configure().objectClass(Foo.class).generateUUIDs(true);

Db4o.configure().objectClass(Foo.class).generateVersionNumbers(true);

Now suppose we have opened two ObjectContainers from two different databases called "handheld" and "desktop", that we

want to replicate. This is how we do it:

ReplicationProcess replication =

 desktop.ext().replicationBegin(handheld, new

ReplicationConflictHandler() {

 public Object resolveConflict(

 ReplicationProcess replicationProcess,

 Object a,

 Object b) {

 return a;

 }});

replication.setDirection(desktop, handheld);

For conflict resolution the ObjectContainer on which replicationBegin() was called, is treated as container "A", the other

one is container "B". Both ObjectContainers are treated equally in all other respects.

#ReplicatingExisting

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db4o replication is bi-directional by default. The setDirection() call above is used to ensure that changes will only be

replicated from the "desktop" to the "handheld". In that case, replication is said to be "directed".

A conflict occurs when an object to be replicated has been modified in both ObjectContainers. db4o cannot arbitrarily pick

one side, so the ReplicationConflictHandler we passed is called to resolve the conflict. If the ReplicationConflictHandler

returns null, no changes are replicated. In the case of directed replication, such as our example above, a conflict also occurs

when an object has been modified only in the destination container. In our example, the ReplicationConflictHandler

always determines that the object from container "A" (desktop) will "win" the conflict, thus overriding any changes made in

container "B" (handheld).

Do all objects always get replicated? No. How do we decide which objects get replicated? Like this:

Query q = desktop.query();

 replication.whereModified(q);

 ObjectSet replicationSet = q.execute();

 while (replicationSet.hasNext()) {

 replication.replicate(replicationSet.next());

 }

 replication.commit();

That's all there is to it.

We are using a query that will return all objects but we could use any query we like to constrain the objects we want.

Calling whereModified() will add a constraint to the query so that it only returns the objects that have actually been

modified since the last replication between both the containers in question.

After replication commit, all modified objects (INCLUDING THE ONES THAT WERE NOT REPLICATED) are

considered to be "in sync" and will not show up in future "where modified" queries, unless they are modified again.

23.1. Under the Hood

Let's take a look at the necessary configuration calls to tell db4o to generate version numbers and UUIDs:

(1) An object's version number indicates the last time an object was modified. It is the database version at the moment of

the modification. The database version starts at zero and is incremented every time a transaction is commited.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

(2) UUIDs are object IDs that are unique across all databases created with db4o. That is achieved by having the database's

creation timestamp as part of its objects' UUIDs. Manually copying db4o database files can produce duplicate UUIDs, of

course.

When the replication process is commited, the lowest database version number among both databases is set to be equal to

the highest. After replication commit, therefore, both databases have the same version number and are "in sync".

.23.2. Replicating Existing Data Files

As we learned in the last sections, Db4o.configure().generateUUIDs() and Db4o.configure().generateVersionNumbers()

(or its objectClass counterparts) must be called before storing any objects to a data file because db4o replication needs

object versions and UUIDs to work. This implies that objects in existing data files stored without the correct settings can't

be replicated.

Fortunately enabling replication for existing data files is a very simple process:

We just need to use the Defragment tool in com.db4o.tools (source code only) after enabling replication:

Db4o.configure().objectClass(Task.class).enableReplication(true);

new Defragment().run(currentFileName(), true);

After a successful defragmentation our data files are ready for replication.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.24. Semaphores

db4o Semaphores are named flags that can only be owned by one client/transaction at one time. They are supplied to be

used as locks for exclusive access to code blocks in applications and to signal states from one client to the server and to all

other clients.

The naming of semaphores is up to the application. Any string can be used.

Semaphores are freed automatically when a client disconnects correctly or when a clients presence is no longer detected by

 the server, that constantly monitors all client connections.

Semaphores can be set and released with the following two methods:

ExtObjectContainer#setSemaphore(String name, int waitMilliSeconds);

ExtObjectContainer#releaseSemaphore(String name);

The concept of db4o semaphores is very similar to the concept of synchronization in OO programming languages:

Java

synchronized(monitorObject){

 // exclusive code block here

}

C#

lock(monitorObject){

 // exclusive code block here

}

db4o semaphore

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

if(objectContainer.ext().setSemaphore(semaphoreName, 1000){

 // exclusive code block here

 objectContainer.ext().releaseSemaphore(semaphoreName);

}

Although the principle of semaphores is very simple they are powerful enough for a wide range of usecases:

24.1. Locking objects

import com.db4o.*;

import com.db4o.ext.*;

/**

 * This class demonstrates a very rudimentary implementation

 * of virtual "locks" on objects with db4o. All code that is

 * intended to obey these locks will have to call lock() and

 * unlock().

 */

public class LockManager {

 private final String SEMAPHORE_NAME = "locked: ";

 private final int WAIT_FOR_AVAILABILITY = 300; // 300

milliseconds

 private final ExtObjectContainer _objectContainer;

 public LockManager(ObjectContainer objectContainer){

 _objectContainer = objectContainer.ext();

 }

 public boolean lock(Object obj){

 long id = _objectContainer.getID(obj);

 return _objectContainer.setSemaphore(SEMAPHORE_NAME + id,

WAIT_FOR_AVAILABILITY);

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public void unlock(Object obj){

 long id = _objectContainer.getID(obj);

 _objectContainer.releaseSemaphore(SEMAPHORE_NAME + id);

 }

}

24.2. Ensuring Singletons

import com.db4o.*;

import com.db4o.query.*;

/**

 * This class demonstrates the use of a semaphore to ensure that only

 * one instance of a certain class is stored to an ObjectContainer.

 *

 * Caution !!! The getSingleton method contains a commit() call.

 */

public class Singleton {

 /**

 * returns a singleton object of one class for an

ObjectContainer.

 *
Caution !!! This method contains a commit() call.

 */

 public static Object getSingleton(ObjectContainer

objectContainer, Class clazz) {

 Object obj = queryForSingletonClass(objectContainer, clazz);

 if (obj != null) {

 return obj;

 }

 String semaphore = "Singleton#getSingleton_" +

clazz.getName();

 if (!objectContainer.ext().setSemaphore(semaphore, 10000)) {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 throw new RuntimeException("Blocked semaphore " +

semaphore);

 }

 obj = queryForSingletonClass(objectContainer, clazz);

 if (obj == null) {

 try {

 obj = clazz.newInstance();

 } catch (InstantiationException e) {

 e.printStackTrace();

 } catch (IllegalAccessException e) {

 e.printStackTrace();

 }

 objectContainer.set(obj);

 /* !!! CAUTION !!!

 * There is a commit call here.

 *

 * The commit call is necessary, so other transactions

 * can see the new inserted object.

 */

 objectContainer.commit();

 }

 objectContainer.ext().releaseSemaphore(semaphore);

 return obj;

 }

 private static Object queryForSingletonClass(ObjectContainer

objectContainer, Class clazz) {

 Query q = objectContainer.query();

 q.constrain(clazz);

 ObjectSet objectSet = q.execute();

 if (objectSet.size() == 1) {

 return objectSet.next();

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 if (objectSet.size() > 1) {

 throw new RuntimeException(

 "Singleton problem. Multiple instances of: " +

clazz.getName());

 }

 return null;

 }

}

24.3. Limiting the number of users

import java.io.*;

import com.db4o.*;

/**

 * This class demonstrates the use of semaphores to limit the

 * number of logins to a server.

 */

public class LimitLogins {

 static final String HOST = "localhost";

 static final int PORT = 4455;

 static final String USER = "db4o";

 static final String PASSWORD = "db4o";

 static final int MAXIMUM_USERS = 10;

 public static ObjectContainer login(){

 ObjectContainer objectContainer;

 try {

 objectContainer = Db4o.openClient(HOST, PORT, USER,

PASSWORD);

 } catch (IOException e) {

 return null;

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 boolean allowedToLogin = false;

 for (int i = 0; i < MAXIMUM_USERS; i++) {

 if(objectContainer.ext().setSemaphore("max_user_check_" +

i, 0)){

 allowedToLogin = true;

 break;

 }

 }

 if(! allowedToLogin){

 objectContainer.close();

 return null;

 }

 return objectContainer;

 }

}

24.4. Controlling log-in information

import java.util.*;

import com.db4o.*;

import com.db4o.config.*;

import com.db4o.ext.*;

import com.db4o.query.*;

/**

 * This class demonstrates how semaphores can be used

 * to rule out race conditions when providing exact and

 * up-to-date information about all connected clients

 * on a server. The class also can be used to make sure

 * that only one login is possible with a give user name

 * and ipAddress combination.

 */

public class ConnectedUser {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 static final String SEMAPHORE_CONNECTED = "ConnectedUser_";

 static final String SEMAPHORE_LOCK_ACCESS =

"ConnectedUser_Lock_";

 static final int TIMEOUT = 10000; // concurrent access timeout

10 seconds

 String userName;

 String ipAddress;

 public ConnectedUser(String userName, String ipAddress){

 this.userName = userName;

 this.ipAddress = ipAddress;

 }

 // make sure to call this on the server before opening the

database

 // to improve querying speed

 public static void configure(){

 ObjectClass objectClass =

Db4o.configure().objectClass(ConnectedUser.class);

 objectClass.objectField("userName").indexed(true);

 objectClass.objectField("ipAddress").indexed(true);

 }

 // call this on the client to ensure to have a ConnectedUser

record

 // in the database file and the semaphore set

 public static void login(ObjectContainer client, String userName,

String ipAddress){

 if(! client.ext().setSemaphore(SEMAPHORE_LOCK_ACCESS,

TIMEOUT)){

 throw new RuntimeException("Timeout trying to get access

to ConnectedUser lock");

 }

 Query q = client.query();

 q.constrain(ConnectedUser.class);

 q.descend("userName").constrain(userName);

 q.descend("ipAddress").constrain(ipAddress);

 if(q.execute().size() == 0){

 client.set(new ConnectedUser(userName, ipAddress));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 client.commit();

 }

 String connectedSemaphoreName = SEMAPHORE_CONNECTED +

userName + ipAddress;

 boolean unique =

client.ext().setSemaphore(connectedSemaphoreName, 0);

 client.ext().releaseSemaphore(SEMAPHORE_LOCK_ACCESS);

 if(! unique){

 throw new RuntimeException("Two clients with same

userName and ipAddress");

 }

 }

 // here is your list of all connected users, callable on the

server

 public static List connectedUsers(ObjectServer server){

 ExtObjectContainer serverObjectContainer =

server.ext().objectContainer().ext();

 if(serverObjectContainer.setSemaphore(SEMAPHORE_LOCK_ACCESS,

TIMEOUT)){

 throw new RuntimeException("Timeout trying to get access

to ConnectedUser lock");

 }

 List list = new ArrayList();

 Query q = serverObjectContainer.query();

 q.constrain(ConnectedUser.class);

 ObjectSet objectSet = q.execute();

 while(objectSet.hasNext()){

 ConnectedUser connectedUser =

(ConnectedUser)objectSet.next();

 String connectedSemaphoreName =

 SEMAPHORE_CONNECTED +

 connectedUser.userName +

 connectedUser.ipAddress;

if(serverObjectContainer.setSemaphore(connectedSemaphoreName, TIMEOUT

)){

 serverObjectContainer.delete(connectedUser);

 }else{

 list.add(connectedUser);

 }

 }

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 serverObjectContainer.commit();

serverObjectContainer.releaseSemaphore(SEMAPHORE_LOCK_ACCESS);

 return list;

 }

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.25. Messaging

In client/server mode the TCP connection between the client and the server can also be used to send messages from the

client to the server.

Possible usecases could be:

- shutting down and restarting the server

- triggering server backup

- using a customized login strategy to restrict the number of allowed client connections

Here is some example code how this can be done.

First we need to decide on a class that we want to use as the message. Any object that is storable in db4o can be used as a

message, but strings and other simple types will not be carried (as they are not storable in db4o on their own). Let's create

a dedicated class:

class MyClientServerMessage {

 private String info;

 public MyClientServerMessage(String info){

 this.info = info;

 }

 public Strint toString(){

 return "MyClientServerMessage: " + info;

 }

}

Now we have to add some code to the server to react to arriving messages. This can be done by configuring a

MessageRecipient object on the server. Let's simply print out all objects that arrive as messages. For the following we

assume that we already have an ObjectServer object, opened with Db4o.openServer() .

objectServer.ext().configure().setMessageRecipient(

 new MessageRecipient() {

#ClientServer

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public void processMessage(

 ObjectContainer objectContainer,

 Object message) {

 // message objects will arrive in this code block

 System.out.println(message);

 }

 });

Here is what we would do on the client to send the message:

MessageSender sender =

 clientObjectContainer.ext().configure().getMessageSender();

sender.send(new MyClientServerMessage("Hello from client.");

The MessageSender object on the client can be reused to send multiple messages.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.26. Data Binding

One common question we get from our users is:

Can I still take advantage of data aware control mechanisms with my objects?

The answer is quite simply yes. .NET data binding also works with plain objects.

This is also to say that using db4o is completely orthogonal to the use of data binding.

The usual pattern would be something like the following:

* the code asks db4o to retrieve the objects that must be presented to the user;

* the UI controls are bound to the objects (no interaction with db4o here);

* the user interacts with the objects through the controls (no interaction with db4o here);

* when the user is done interacting with the objects or by his request, the application will ask db4o to persist his changes;

Let's take a very simple example that illustrates the points above.

Our business class:

namespace CSDataBinding

{

 /// <summary>

 /// A simple business class.

 /// </summary>

 public class Customer

 {

 string _name;

 string _phoneNumber;

 public Customer(string name, string phoneNumber)

 {

 _name = name;

 _phoneNumber = phoneNumber;

 }

 public string Name

 {

 get

 {

 return _name;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 }

 set

 {

 _name = value;

 }

 }

 public string PhoneNumber

 {

 get

 {

 return _phoneNumber;

 }

 set

 {

 _phoneNumber = value;

 }

 }

 }

}

The Form class:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.IO;

using System.Windows.Forms;

using com.db4o;

namespace CSDataBinding

{

 /// <summary>

 /// DataBinding form example

 /// </summary>

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 public class MainForm : System.Windows.Forms.Form

 {

 internal System.Windows.Forms.TextBox _txtPhoneNumber;

 internal System.Windows.Forms.ComboBox _cmbCustomers;

 /// <summary>

 /// Required designer variable.

 /// </summary>

 private System.ComponentModel.Container components = null;

 internal System.Windows.Forms.Label _labelPhone;

 internal System.Windows.Forms.Label _labelName;

 private ObjectContainer _container = null;

 private ArrayList _customers = new ArrayList();

 public MainForm()

 {

 //

 // Required for Windows Form Designer support

 //

 InitializeComponent();

 OpenDataFile();

 SetUpDataBindings();

 }

 void OpenDataFile()

 {

 string dataFile =

Path.Combine(Application.UserAppDataPath, "data.yap");

 _container = Db4o.openFile(dataFile);

 }

 void SetUpDataBindings()

 {

 ObjectSet os = _container.get(typeof(Customer));

 if (0 == os.size())

 {

 // Generate some initial data

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 _customers.Add(new Customer("John Cleese", "55-

98763333"));

 _customers.Add(new Customer("Herman Hesse","32-

33335555"));

 _customers.Add(new Customer("Douglas Adams", "42-

42424242"));

 }

 else

 {

 while (os.hasNext())

 {

 _customers.Add(os.next());

 }

 }

 _cmbCustomers.DisplayMember = "Name";

 _cmbCustomers.DataSource = _customers;

 _txtPhoneNumber.DataBindings.Add("Text", _customers,

"PhoneNumber");

 }

 void PersistChanges()

 {

 foreach (Customer customer in _customers)

 {

 _container.set(customer);

 }

 }

 protected override void OnClosing(CancelEventArgs e)

 {

 PersistChanges();

 _container.close();

 base.OnClosing (e);

 }

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 protected override void Dispose(bool disposing)

 {

 if(disposing)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 {

 if (components != null)

 {

 components.Dispose();

 }

 }

 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this._labelPhone = new System.Windows.Forms.Label();

 this._txtPhoneNumber = new

System.Windows.Forms.TextBox();

 this._labelName = new System.Windows.Forms.Label();

 this._cmbCustomers = new System.Windows.Forms.ComboBox();

 this.SuspendLayout();

 //

 // _labelPhone

 //

 this._labelPhone.Location = new System.Drawing.Point(8,

48);

 this._labelPhone.Name = "_labelPhone";

 this._labelPhone.Size = new System.Drawing.Size(72, 16);

 this._labelPhone.TabIndex = 9;

 this._labelPhone.Text = "Phone#:";

 //

 // _txtPhoneNumber

 //

 this._txtPhoneNumber.Location = new

System.Drawing.Point(96, 48);

 this._txtPhoneNumber.Name = "_txtPhoneNumber";

 this._txtPhoneNumber.Size = new System.Drawing.Size(184,

20);

 this._txtPhoneNumber.TabIndex = 8;

 this._txtPhoneNumber.Text = "";

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 //

 // _labelName

 //

 this._labelName.Location = new System.Drawing.Point(8,

16);

 this._labelName.Name = "_labelName";

 this._labelName.Size = new System.Drawing.Size(72, 16);

 this._labelName.TabIndex = 7;

 this._labelName.Text = "Customer:";

 //

 // _cmbCustomers

 //

 this._cmbCustomers.Anchor =

((System.Windows.Forms.AnchorStyles)(((System.Windows.Forms.AnchorSty

les.Top | System.Windows.Forms.AnchorStyles.Left)

 | System.Windows.Forms.AnchorStyles.Right)));

 this._cmbCustomers.DropDownStyle =

System.Windows.Forms.ComboBoxStyle.DropDownList;

 this._cmbCustomers.Location = new

System.Drawing.Point(96, 16);

 this._cmbCustomers.Name = "_cmbCustomers";

 this._cmbCustomers.Size = new System.Drawing.Size(186,

21);

 this._cmbCustomers.TabIndex = 6;

 //

 // MainForm

 //

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

 this.ClientSize = new System.Drawing.Size(290, 79);

 this.Controls.Add(this._labelPhone);

 this.Controls.Add(this._txtPhoneNumber);

 this.Controls.Add(this._labelName);

 this.Controls.Add(this._cmbCustomers);

 this.FormBorderStyle =

System.Windows.Forms.FormBorderStyle.FixedSingle;

 this.Name = "MainForm";

 this.Text = "Db4o Data Binding";

 this.ResumeLayout(false);

 }

 #endregion

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.Run(new MainForm());

 }

 }

}

There are also some good tutorials on the

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

 the use of Forms data binding [1], unfortunately most of them are focused only on binding controls to relational

databases.

We - the software development community - still suffer from database atrophy[2] after all.

We - the db4o team along with the object oriented community - are working to change that so we can finally move on to

the next level.

[1] http://samples.gotdotnet.com/quickstart/winforms/doc/winformsdata.aspx

[2] http://www.people4objects.org/Klaus/2005/01/database-atrophy.html

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.27. Object Manager

The db4o Object Manager is a GUI tool to browse and query the contents of any db4o database file. Object Manager

currently provides the following features:

- Open either a local database file or a db4o database server

- Browse objects in a database

- Query for objects using a simple graphical query by example.

27.1. Installation

Object Manager has to be downloaded seperately from the main db4o distributions. Please visit the db4o Download

Center and choose the installation appropriate for your system. The following distributions are currently available:

- db4o ObjectManager for Windows IKVM (Java VM included)

- db4o ObjectManager for Windows no Java VM

- db4o ObjectManager for Linux

Once you have downloaded the appropriate Object Manager build, create a folder called Object Manager in any location

of your choice and unpack the downloaded zip file there.

27.1.1. Running

27.1.1.1. Windows IKVM

Object Manager for Windows IKVM includes the open-source IKVM Java virtual machine in the download. Simply

double-click the objectmanager.bat file to start Object Manager.

27.1.1.2. Windows no Java VM

This build assumes that your computer already has a Sun Java Virtual Machine version 1.3 or later installed and that your

operating system path already lists the directory containing your java.exe file. If this is true, you can simply double-click

the objectmanager.bat file to start Object Manager. Otherwise, you will need to edit objectmanager.bat and specify the full

 path and file name for your java.exe file on the first line.

27.1.1.3. Linux

This build assumes that your computer already has a Sun Java Virtual Machine version 1.3 or later installed and that your

PATH variable already lists the directory containing the java binary. If this is not the case, you will

need to edit the objectmanager.sh file and specify the full path and file name of the Java binary on the "export VMEXE"

line". Since the zip archive does not preserve the executable permissions for objectmanager.sh, you will need

to 'chmod +x objectmanager.sh'. Once this is complete, running objectmanager.sh will start Object Manager.

27.1.1.4. Mac OS X

Currently there is no dedicated ObjectManager build for Mac OS X. To prepare the Linux or Windows NoVM build to

run on OS X, you'll have to copy the respective native SWT files from an OS X Eclipse install to ObjectManager's lib

directory. This list might look like this (but may vary depending on the Eclipse/SWT version):

http://www.db4o.com/community/ontheroad/downloadcenter/
http://www.db4o.com/community/ontheroad/downloadcenter/

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

- java_swt

- libswt-carbon-xxxx.jnilib

- libswt-pi-carbon-xxxx.jnilib

- libswt-webkit-carbon-xxxx.jnilib

- swt-pi.jar

- swt.jar

The startup script has to be modified to include the correct library path and the OS X specific jars on the classpath. If

ObjectManager seems to hang on startup, you may also have to provide the VM parameter '-XstartOnFirstThread'.

27.2. Object Manager Tour

Upon opening, the Object Manager will look like the following:

At this point, you can either

- Open a db4o database file

- Open a connection to a db4o database server

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

In order to open a db4o database file, simply choose "File | Open..." and choose the db4o database file to open.

In order to open a connection to a db4o database server, choose "File | Connect to server...", then enter a host name, port

number, username, and password into the resulting dialog box.

When the database is open, the Object Manager will list all classes stored in the database in the left-hand tree pane.

Expanding a tree item will show instances of objects in the class, then fields within the instance, etc. The right-hand pane

will show the next level of detail for the item that is currently selected in the tree.

For example, loading the formula1 database created by chapter 4 of this tutorial produces the following:

27.2.1. Generic reflector versus the JDK reflector

You will notice in the screen shot that all objects have (G) in front of them. This is because the Object Manager does not

know the correct classpath in order to load the actual Java classes that these objects represent, so it is displaying them

generically (using the generic reflector).

The Object Manager can display some data types more naturally if it has the class definitions available, so it provides a way

to extend its classpath at runtime so that it can find the Java or .NET class definitions. This is done through the

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

preferences dialog, accessed through "File | Preferences..."

Let's add the classpath of the db4o chapter 4 tutorial classes:

- Choose "File | Preferences..."

- Select the "Classpath" page of the preferences dialog box

- Choose the "Add directory..."

- Select the directory you have selected as your output directory for compiling the db4o tutorial files and click OK.

(You can add a Jar or zip file similarly.)

Your preferences dialog should look something like the following when you are done:

Click OK to close the Preferences dialog box. Now your tree will be refreshed, and you will notice that all of the (G)'s are

gone. All of your preference settings, including your preferred classpath, are stored in a db4o database called

.objectmanager.yap in your home directory.

27.2.2. Querying for objects

You may now want to query your object database for objects based on some criteria. This will work using either the

generic or the JDK reflector.

You can open a query editor using any of the following methods:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

- Double-click a class name in the tree view.

- Click the query button at the right side of the tool bar.

- Choose "File | Query..." from the menu.

If you choose either of the latter two options, you will then be presented with a dialog box allowing you to choose a class to

query. Select a class and click OK to proceed. Your new query will open in a new tab.

Let's query for Car objects in our formula1.yap file. Open a query editor using your favorite of the methods listed above.

By default it will look like the following:

You may now query for a model name, or you can descend on the "pilot" field by clicking the button next to the pilot field

to expand the query editor to include a Pilot object. If you accidentally expand a class that you didn't intend to expand,

that isn't a problem. Just leave all of the fields blank and they will be ignored.

At this point, you can query for any combination of field values simply by filling appropriate values into each field. You

can change the constraint type using the combo boxes next to each field. And you can run the query using the green "run"

button at the top-left of the tool bar.

27.3. Known bugs and limitations

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

The following are known bugs and limitations in Object Manager and their workarounds:

- Object Manager currently operates in read-only mode only.

- If a database includes fields that have been renamed, Object Manager correctly browses both the old and new versions of

the fields. However, queries on fields that have been refactored will randomly select the old or the new version of the

field. The workaround is to browse a backup or defragmented database.

- The Generic Reflector still has trouble expanding certain types of objects. Currently, we recommend running Object

Manager with all classes available at all times by using the Classpath preference page to set an appropriate classpath.

If something goes wrong when using Object Manager, there almost certainly will be detailed error messages in the Object

Manager log file. This file is named .objectmanager.log and is stored in your user's home directory. If you post a question

on the db4o newsgroups concerning a crash or failure in Object Manager, please also attach a copy of your Object

Manager log file, so that we can efficiently diagnose the problem. This file is overwritten each time you run Object

Manager, so please make a copy of it after an error occurs so that this diagnostic information is not lost.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.28. RegressionTests

28.1. The built-in db4o regression tests

Db4o includes a fairly comprehensive suite of regression tests to help prevent errors from creeping into the code over time.

 Since no regression test suite is perfect, we are documenting how to work with our tests in the hope that customers will

benefit from seeing the test suite improve.

28.2. Running the regression tests

The easiest way to run the regression tests for Mono is to download the .tar.gz distribution of db4o. After untarring the

tarball, simply change into the created directory and run "make".

The Makefile will automatically compile db4o and run the test suite.

28.3. Switching individual tests on or off

Individual tests may be turned on or off by commenting or uncommenting lines corresponding to each individual test in the

suite. The test suite is defined by classes beginning with com.db4o.test.AllTestsConf*. Each test class is listed in an array

returned by the tests() method in the *Conf* class.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.29. License

db4objects Inc. supplies the object database engine db4o under a dual licensing regime:

29.1. General Public License (GPL)

db4o is free to be used:

- for development,

- in-house as long as no deployment to third parties takes place,

- together with works that are placed under the GPL themselves.

You should have received a copy of the GPL in the file db4o.license.txt together with the db4o distribution.

If you have questions about when a commercial license is required, please

read our GPL Interpretation policy for further detail, available at:

http://www.db4o.com/about/company/legalpolicies/gplinterpretation.aspx

29.2. Commercial License

For incorporation into own commercial products and for use together with redistributed software that is not placed under

the GPL, db4o is also available under a commercial license.

Visit the purchasing area on the db4o website or contact db4o sales for licensing terms and pricing.

29.3. Bundled 3rd Party Licenses

The db4o distribution comes with the following 3rd party libraries:

-Apache Ant(Apache Software License)

Files: lib/ant.jar, lib/ant.license.txt

Ant can be used as a make tool for class file based optimization of native

queries at compile time.

This product includes software developed by the Apache Software Foundation

(http://www.apache.org/).

-BLOAT(GNU LGPL)

Files: lib/bloat-1.0.jar, lib/bloat.license.txt

http://www.db4o.com
http://www.db4o.com
mailto:sales@db4o.com
http://ant.apache.org/
http://www.cs.purdue.edu/s3/projects/bloat/

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Bloat is used for bytecode analysis during native queries optimization. It

needs to be on the classpath during runtime at load time or query execution

time for just-in-time optimization. Preoptimized class files are not dependent

on BLOAT at runtime.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

.30. Contacting db4objects Inc.

db4objects Inc.

1900 South Norfolk Street

Suite 350

San Mateo, CA, 94403

USA

Phone

+1 (650) 577-2340

Fax

+1 (650) 577-2341

General Enquiriesinfo@db4o.com

Salesfill out our sales contact form on the db4o website

or

sales@db4o.com

Careerscareer@db4o.com

Partneringpartner@db4o.com

Supportsupport@db4o.com

or post to our online forums

http://forums.db4o.com/forums

mailto:info@db4o.com
http://www.db4o.com/commercial/purchase/enquiry.aspx
mailto:sales@db4o.com
mailto:career@db4o.com
mailto:partner@db4o.com
mailto:support@db4o.com
http://forums.db4o.com/forums/

	Welcome
	Download Contents
	1. First Glance
	1.1. The db4o engine...
	1.2. Installation
	1.3. db4o Object Manager
	1.4. API Overview

	2. First Steps
	2.1. Opening the database
	2.2. Storing objects
	2.3. Retrieving objects
	2.4. Updating objects
	2.5. Deleting objects
	2.6. Conclusion
	2.7. Full source

	3. Querying
	3.1. Query by Example (QBE)
	3.2. Native Queries
	3.2.1. Concept
	3.2.2. Principle
	3.2.3. Simple Example
	3.2.4. Advanced Example
	3.2.5. Arbitrary Code
	3.2.6. Native Query Performance
	3.2.7. Full source

	3.3. SODA Query API
	3.3.1. Simple queries
	3.3.2. Advanced queries
	3.3.3. Conclusion
	3.3.4. Full source

	4. Structured objects
	4.1. Storing structured objects
	4.2. Retrieving structured objects
	4.2.1. QBE
	4.2.2. Native Queries
	4.2.3. SODA Query API

	4.3. Updating structured objects
	4.3.1. Update depth

	4.4. Deleting structured objects
	4.4.1. Recursive deletion
	4.4.2. Recursive deletion revisited

	4.5. Conclusion
	4.6. Full source

	5. Collections and Arrays
	5.1. Storing
	5.2. Retrieving
	5.2.1. QBE
	5.2.2. Native Queries
	5.2.3. Query API

	5.3. Updating and deleting
	5.4. Conclusion
	5.5. Full source

	6. Inheritance
	6.1. Storing
	6.2. Retrieving
	6.3. Updating and deleting
	6.4. Conclusion
	6.5. Full source

	7. Deep graphs
	7.1. Storing and updating
	7.2. Retrieving
	7.2.1. Activation depth

	7.3. Conclusion
	7.4. Full source

	8. Transactions
	8.1. Commit and rollback
	8.2. Refresh live objects
	8.3. Conclusion
	8.4. Full source

	9. Client/Server
	9.1. Embedded server
	9.2. Networking
	9.3. Out-of-band signalling
	9.4. Putting it all together: a simple but complete db4o server
	9.5. Conclusion
	9.6. Full source

	10. SODA Evaluations
	10.1. Evaluation API
	10.2. Example
	10.3. Drawbacks
	10.4. Conclusion
	10.5. Full source

	11. Constructors
	11.1. Instantiating objects
	11.1.1. Using a constructor
	11.1.2. Bypassing the constructor
	11.1.3. Using a translator

	11.2. Configuration
	11.3. Troubleshooting
	11.4. Examples

	12. Translators
	12.1. An example class
	12.1.1. Using the constructor
	12.1.2. Bypassing the constructor

	12.2. The Translator API
	12.2.1. ObjectTranslator
	12.2.2. ObjectConstructor

	12.3. A translator implementation
	12.4. Conclusion
	12.5. Full source

	13. Configuration
	13.1. Scope
	13.2. Calling Methods

	14. Indexes
	15. IDs
	15.1. Internal IDs
	15.2. Unique Universal IDs (UUIDs)

	16. Callbacks
	17. Classloader issues
	17.1. Classloader basics
	17.2. Configuration
	17.3. Typical Environments
	17.3.1. Servlet container
	17.3.2. Eclipse

	17.4. Running without classes

	18. Servlets
	19. Encryption
	19.1. eXtended Tiny Encryption Algorithm
	19.2. Built-In Simple Encryption
	19.3. Custom Encryption Adapters

	20. Refactoring and "Schema Evolution"
	20.1. Introduction
	20.2. What db4objects does today automatically or easily
	20.3. What is not yet automated

	21. Tuning
	21.1. Enable Field Indexes
	21.2. Discarding Free Space
	21.3. Calling constructors
	21.4. Turning Off Weak References
	21.5. Defragment
	21.6. No Shutdown Thread
	21.7. No callbacks
	21.8. No schema changes
	21.9. No lock file thread
	21.10. No test instances
	21.11. Increasing the maximum database file size

	22. Maintenance
	22.1. Defragment
	22.2. Backup

	23. Replication
	23.1. Under the Hood
	23.2. Replicating Existing Data Files

	24. Semaphores
	24.1. Locking objects
	24.2. Ensuring Singletons
	24.3. Limiting the number of users
	24.4. Controlling log-in information

	25. Messaging
	26. Data Binding
	27. Object Manager
	27.1. Installation
	27.1.1. Running
	27.1.1.1. Windows IKVM
	27.1.1.2. Windows no Java VM
	27.1.1.3. Linux
	27.1.1.4. Mac OS X

	27.2. Object Manager Tour
	27.2.1. Generic reflector versus the JDK reflector
	27.2.2. Querying for objects

	27.3. Known bugs and limitations

	28. RegressionTests
	28.1. The built-in db4o regression tests
	28.2. Running the regression tests
	28.3. Switching individual tests on or off

	29. License
	29.1. General Public License (GPL)
	29.2. Commercial License
	29.3. Bundled 3rd Party Licenses

	30. Contacting db4objects Inc.

