00001 // 00002 // macros.h 00003 // 00004 // Copyright (C) 2001 Edward Valeev 00005 // 00006 // Author: Edward Valeev <edward.valeev@chemistry.gatech.edu> 00007 // Maintainer: EV 00008 // 00009 // This file is part of the SC Toolkit. 00010 // 00011 // The SC Toolkit is free software; you can redistribute it and/or modify 00012 // it under the terms of the GNU Library General Public License as published by 00013 // the Free Software Foundation; either version 2, or (at your option) 00014 // any later version. 00015 // 00016 // The SC Toolkit is distributed in the hope that it will be useful, 00017 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00018 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00019 // GNU Library General Public License for more details. 00020 // 00021 // You should have received a copy of the GNU Library General Public License 00022 // along with the SC Toolkit; see the file COPYING.LIB. If not, write to 00023 // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 00024 // 00025 // The U.S. Government is granted a limited license as per AL 91-7. 00026 // 00027 00028 /* True if the integral is nonzero. */ 00029 #define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15)) 00030 00031 /* Computes an index to a Cartesian function within a shell given 00032 * am = total angular momentum 00033 * i = the exponent of x (i is used twice in the macro--beware side effects) 00034 * j = the exponent of y 00035 * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0 00036 * The following loop will generate indices in the proper order: 00037 * cartindex = 0; 00038 * for (i=am; i>=0; i--) { 00039 * for (j=am-i; j>=0; j--) { 00040 * do_it_with(cartindex); 00041 * cartindex++; 00042 * } 00043 * } 00044 */ 00045 #define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j))) 00046 00047 /* This sets up the above loop over cartesian exponents as follows 00048 * FOR_CART(i,j,k,am) 00049 * Stuff using i,j,k. 00050 * END_FOR_CART 00051 */ 00052 #define FOR_CART(i,j,k,am) for((i)=(am);(i)>=0;(i)--) {\ 00053 for((j)=(am)-(i);(j)>=0;(j)--) \ 00054 { (k) = (am) - (i) - (j); 00055 #define END_FOR_CART }} 00056 00057 /* This sets up a loop over all of the generalized contractions 00058 * and all of the cartesian exponents. 00059 * gc is the number of the gen con 00060 * index is the index within the current gen con. 00061 * i,j,k are the angular momentum for x,y,z 00062 * sh is the shell pointer 00063 */ 00064 #define FOR_GCCART(gc,index,i,j,k,sh)\ 00065 for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\ 00066 (index)=0;\ 00067 FOR_CART(i,j,k,(sh)->type[gc].am) 00068 00069 #define FOR_GCCART_GS(gc,index,i,j,k,sh)\ 00070 for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\ 00071 (index)=0;\ 00072 FOR_CART(i,j,k,(sh)->am(gc)) 00073 00074 #define END_FOR_GCCART(index)\ 00075 (index)++;\ 00076 END_FOR_CART\ 00077 } 00078 00079 #define END_FOR_GCCART_GS(index)\ 00080 (index)++;\ 00081 END_FOR_CART\ 00082 } 00083 00084 /* These are like the above except no index is kept track of. */ 00085 #define FOR_GCCART2(gc,i,j,k,sh)\ 00086 for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\ 00087 FOR_CART(i,j,k,(sh)->type[gc].am) 00088 00089 #define END_FOR_GCCART2\ 00090 END_FOR_CART\ 00091 } 00092 00093 /* These are used to loop over shells, given the centers structure 00094 * and the center index, and shell index. */ 00095 #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\ 00096 for((j)=0;(j)<(c)->center[(i)].basis.n;j++) { 00097 #define END_FOR_SHELLS }} 00098 00099 /* Computes the number of Cartesian function in a shell given 00100 * am = total angular momentum 00101 * formula: (am*(am+1))/2 + am+1; 00102 */ 00103 #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0) 00104 00105 /* Like INT_NCART, but only for nonnegative arguments. */ 00106 #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1) 00107 00108 /* For a given ang. mom., am, with n cartesian functions, compute the 00109 * number of cartesian functions for am+1 or am-1 00110 */ 00111 #define INT_NCART_DEC(am,n) ((n)-(am)-1) 00112 #define INT_NCART_INC(am,n) ((n)+(am)+2) 00113 00114 /* Computes the number of pure angular momentum functions in a shell 00115 * given am = total angular momentum 00116 */ 00117 #define INT_NPURE(am) (2*(am)+1) 00118 00119 /* Computes the number of functions in a shell given 00120 * pu = pure angular momentum boolean 00121 * am = total angular momentum 00122 */ 00123 #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am)) 00124 00125 /* Given a centers pointer and a shell number, this evaluates the 00126 * pointer to that shell. */ 00127 #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]]) 00128 00129 /* Given a centers pointer and a shell number, get the angular momentum 00130 * of that shell. */ 00131 #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am) 00132 00133 /* Given a centers pointer and a shell number, get pure angular momentum 00134 * boolean for that shell. */ 00135 #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream) 00136 00137 /* Given a centers pointer, a center number, and a shell number, 00138 * get the angular momentum of that shell. */ 00139 #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am) 00140 00141 /* Given a centers pointer, a center number, and a shell number, 00142 * get pure angular momentum boolean for that shell. */ 00143 #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream) 00144 00145 /* Given a centers pointer and a shell number, compute the number 00146 * of functions in that shell. */ 00147 /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */ 00148 #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc) 00149 00150 /* These macros assist in looping over the unique integrals 00151 * in a shell quartet. The exy variables are booleans giving 00152 * information about the equivalence between shells x and y. The nx 00153 * variables give the number of functions in each shell, x. The 00154 * i,j,k are the current values of the looping indices for shells 1, 2, and 3. 00155 * The macros return the maximum index to be included in a summation 00156 * over indices 1, 2, 3, and 4. 00157 * These macros require canonical integrals. This requirement comes 00158 * from the need that integrals of the shells (1 2|2 1) are not 00159 * used. The integrals (1 2|1 2) must be used with these macros to 00160 * get the right nonredundant integrals. 00161 */ 00162 #define INT_MAX1(n1) ((n1)-1) 00163 #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1)) 00164 #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1)) 00165 #define INT_MAX4(e13e24,e34,i,j,k,n4) \ 00166 ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \ 00167 :((e13e24)&&((k)==(i)))?(j):(n4)-1) 00168 /* A note on integral symmetries: 00169 * There are 15 ways of having equivalent indices. 00170 * There are 8 of these which are important for determining the 00171 * nonredundant integrals (that is there are only 8 ways of counting 00172 * the number of nonredundant integrals in a shell quartet) 00173 * Integral type Integral Counting Type 00174 * 1 (1 2|3 4) 1 00175 * 2 (1 1|3 4) 2 00176 * 3 (1 2|1 4) ->1 00177 * 4 (1 2|3 1) ->1 00178 * 5 (1 1|1 4) 3 00179 * 6 (1 1|3 1) ->2 00180 * 7 (1 2|1 1) ->5 00181 * 8 (1 1|1 1) 4 00182 * 9 (1 2|2 4) ->1 00183 * 10 (1 2|3 2) ->1 00184 * 11 (1 2|3 3) 5 00185 * 12 (1 1|3 3) 6 00186 * 13 (1 2|1 2) 7 00187 * 14 (1 2|2 1) 8 reduces to 7 thru canonicalization 00188 * 15 (1 2|2 2) ->5 00189 */