macros.h

00001 //
00002 // macros.h
00003 //
00004 // Copyright (C) 2001 Edward Valeev
00005 //
00006 // Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>
00007 // Maintainer: EV
00008 //
00009 // This file is part of the SC Toolkit.
00010 //
00011 // The SC Toolkit is free software; you can redistribute it and/or modify
00012 // it under the terms of the GNU Library General Public License as published by
00013 // the Free Software Foundation; either version 2, or (at your option)
00014 // any later version.
00015 //
00016 // The SC Toolkit is distributed in the hope that it will be useful,
00017 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00018 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00019 // GNU Library General Public License for more details.
00020 //
00021 // You should have received a copy of the GNU Library General Public License
00022 // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
00023 // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
00024 //
00025 // The U.S. Government is granted a limited license as per AL 91-7.
00026 //
00027 
00028 /* True if the integral is nonzero. */
00029 #define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15))
00030 
00031 /* Computes an index to a Cartesian function within a shell given
00032  * am = total angular momentum
00033  * i = the exponent of x (i is used twice in the macro--beware side effects)
00034  * j = the exponent of y
00035  * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0
00036  * The following loop will generate indices in the proper order:
00037  *  cartindex = 0;
00038  *  for (i=am; i>=0; i--) {
00039  *    for (j=am-i; j>=0; j--) {
00040  *      do_it_with(cartindex);
00041  *      cartindex++;
00042  *      }
00043  *    }
00044  */
00045 #define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j)))
00046 
00047 /* This sets up the above loop over cartesian exponents as follows
00048  * FOR_CART(i,j,k,am)
00049  *   Stuff using i,j,k.
00050  *   END_FOR_CART
00051  */
00052 #define FOR_CART(i,j,k,am) for((i)=(am);(i)>=0;(i)--) {\
00053                            for((j)=(am)-(i);(j)>=0;(j)--) \
00054                            { (k) = (am) - (i) - (j);
00055 #define END_FOR_CART }}
00056 
00057 /* This sets up a loop over all of the generalized contractions
00058  * and all of the cartesian exponents.
00059  * gc is the number of the gen con
00060  * index is the index within the current gen con.
00061  * i,j,k are the angular momentum for x,y,z
00062  * sh is the shell pointer
00063  */
00064 #define FOR_GCCART(gc,index,i,j,k,sh)\
00065     for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
00066     (index)=0;\
00067     FOR_CART(i,j,k,(sh)->type[gc].am)
00068 
00069 #define FOR_GCCART_GS(gc,index,i,j,k,sh)\
00070     for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\
00071     (index)=0;\
00072     FOR_CART(i,j,k,(sh)->am(gc))
00073 
00074 #define END_FOR_GCCART(index)\
00075     (index)++;\
00076     END_FOR_CART\
00077     }
00078 
00079 #define END_FOR_GCCART_GS(index)\
00080     (index)++;\
00081     END_FOR_CART\
00082     }
00083 
00084 /* These are like the above except no index is kept track of. */
00085 #define FOR_GCCART2(gc,i,j,k,sh)\
00086     for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\
00087     FOR_CART(i,j,k,(sh)->type[gc].am)
00088 
00089 #define END_FOR_GCCART2\
00090     END_FOR_CART\
00091     }
00092 
00093 /* These are used to loop over shells, given the centers structure
00094  * and the center index, and shell index. */
00095 #define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\
00096                           for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {
00097 #define END_FOR_SHELLS }}
00098 
00099 /* Computes the number of Cartesian function in a shell given
00100  * am = total angular momentum
00101  * formula: (am*(am+1))/2 + am+1;
00102  */
00103 #define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)
00104 
00105 /* Like INT_NCART, but only for nonnegative arguments. */
00106 #define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)
00107 
00108 /* For a given ang. mom., am, with n cartesian functions, compute the
00109  * number of cartesian functions for am+1 or am-1
00110  */
00111 #define INT_NCART_DEC(am,n) ((n)-(am)-1)
00112 #define INT_NCART_INC(am,n) ((n)+(am)+2)
00113 
00114 /* Computes the number of pure angular momentum functions in a shell
00115  * given am = total angular momentum
00116  */
00117 #define INT_NPURE(am) (2*(am)+1)
00118 
00119 /* Computes the number of functions in a shell given
00120  * pu = pure angular momentum boolean
00121  * am = total angular momentum
00122  */
00123 #define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))
00124 
00125 /* Given a centers pointer and a shell number, this evaluates the
00126  * pointer to that shell. */
00127 #define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])
00128 
00129 /* Given a centers pointer and a shell number, get the angular momentum
00130  * of that shell. */
00131 #define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)
00132 
00133 /* Given a centers pointer and a shell number, get pure angular momentum
00134  * boolean for that shell. */
00135 #define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)
00136 
00137 /* Given a centers pointer, a center number, and a shell number,
00138  * get the angular momentum of that shell. */
00139 #define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)
00140 
00141 /* Given a centers pointer, a center number, and a shell number,
00142  * get pure angular momentum boolean for that shell. */
00143 #define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)
00144 
00145 /* Given a centers pointer and a shell number, compute the number
00146  * of functions in that shell. */
00147 /* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */
00148 #define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)
00149 
00150 /* These macros assist in looping over the unique integrals
00151  * in a shell quartet.  The exy variables are booleans giving
00152  * information about the equivalence between shells x and y.  The nx
00153  * variables give the number of functions in each shell, x. The
00154  * i,j,k are the current values of the looping indices for shells 1, 2, and 3.
00155  * The macros return the maximum index to be included in a summation
00156  * over indices 1, 2, 3, and 4.
00157  * These macros require canonical integrals.  This requirement comes
00158  * from the need that integrals of the shells (1 2|2 1) are not
00159  * used.  The integrals (1 2|1 2) must be used with these macros to
00160  * get the right nonredundant integrals.
00161  */
00162 #define INT_MAX1(n1) ((n1)-1)
00163 #define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))
00164 #define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))
00165 #define INT_MAX4(e13e24,e34,i,j,k,n4) \
00166   ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \
00167         :((e13e24)&&((k)==(i)))?(j):(n4)-1)
00168 /* A note on integral symmetries:
00169  *  There are 15 ways of having equivalent indices.
00170  *  There are 8 of these which are important for determining the
00171  *  nonredundant integrals (that is there are only 8 ways of counting
00172  *  the number of nonredundant integrals in a shell quartet)
00173  * Integral type   Integral    Counting Type
00174  *     1           (1 2|3 4)      1
00175  *     2           (1 1|3 4)      2
00176  *     3           (1 2|1 4)       ->1
00177  *     4           (1 2|3 1)       ->1
00178  *     5           (1 1|1 4)      3
00179  *     6           (1 1|3 1)       ->2
00180  *     7           (1 2|1 1)       ->5
00181  *     8           (1 1|1 1)      4
00182  *     9           (1 2|2 4)       ->1
00183  *    10           (1 2|3 2)       ->1
00184  *    11           (1 2|3 3)      5
00185  *    12           (1 1|3 3)      6
00186  *    13           (1 2|1 2)      7
00187  *    14           (1 2|2 1)      8    reduces to 7 thru canonicalization
00188  *    15           (1 2|2 2)       ->5
00189  */

Generated at Mon Dec 3 23:23:38 2007 for MPQC 2.3.1 using the documentation package Doxygen 1.5.2.