category-extras-0.53.5: Various modules and constructs inspired by category theory
Source code
Contents
Index
Control.Morphism.Para
Portability
non-portable (rank-2 polymorphism)
Stability
experimental
Maintainer
Edward Kmett <ekmett@gmail.com>
Description
Synopsis
type
Para
f =
(,)
(
FixF
f)
type
ParaT
w f =
CoreaderT
w (
FixF
f)
distParaT
:: (
Functor
f,
Comonad
w) =>
Dist
f w ->
Dist
f (
ParaT
w f)
para
::
Functor
f =>
GAlgebra
f (
Para
f) a ->
FixF
f -> a
g_para
:: (
Functor
f,
Comonad
w) =>
Dist
f w ->
GAlgebra
f (
ParaT
w f) a ->
FixF
f -> a
prepro_para
::
Functor
f =>
GAlgebra
f (
Para
f) a -> (f
:~>
f) ->
FixF
f -> a
g_prepro_para
:: (
Functor
f,
Comonad
w) =>
Dist
f w ->
GAlgebra
f (
ParaT
w f) a -> (f
:~>
f) ->
FixF
f -> a
Documentation
type
Para
f =
(,)
(
FixF
f)
Source
type
ParaT
w f =
CoreaderT
w (
FixF
f)
Source
distParaT
:: (
Functor
f,
Comonad
w) =>
Dist
f w ->
Dist
f (
ParaT
w f)
Source
para
::
Functor
f =>
GAlgebra
f (
Para
f) a ->
FixF
f -> a
Source
g_para
:: (
Functor
f,
Comonad
w) =>
Dist
f w ->
GAlgebra
f (
ParaT
w f) a ->
FixF
f -> a
Source
Generalized paramorphisms using a comonad reader transformer to carry the primitive recursive state
prepro_para
::
Functor
f =>
GAlgebra
f (
Para
f) a -> (f
:~>
f) ->
FixF
f -> a
Source
A paramorphic prepromorphism
g_prepro_para
:: (
Functor
f,
Comonad
w) =>
Dist
f w ->
GAlgebra
f (
ParaT
w f) a -> (f
:~>
f) ->
FixF
f -> a
Source
A generalized paramorphic prepromorphism
Produced by
Haddock
version 2.4.2