category-extras-0.53.5: Various modules and constructs inspired by category theorySource codeContentsIndex
Control.Morphism.Zygo
Portabilitynon-portable (rank-2 polymorphism)
Stabilityexperimental
MaintainerEdward Kmett <ekmett@gmail.com>
Description
Synopsis
type Zygo = (,)
type ZygoT = CoreaderT
distZygo :: Functor f => Algebra f b -> Dist f (Zygo b)
distZygoT :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> Dist f (ZygoT w b)
zygo :: Functor f => Algebra f b -> GAlgebra f (Zygo b) a -> FixF f -> a
g_zygo :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> GAlgebra f (ZygoT w b) a -> FixF f -> a
prepro_zygo :: Functor f => Algebra f b -> GAlgebra f (Zygo b) a -> (f :~> f) -> FixF f -> a
g_prepro_zygo :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> GAlgebra f (ZygoT w b) a -> (f :~> f) -> FixF f -> a
Documentation
type Zygo = (,)Source
type ZygoT = CoreaderTSource
distZygo :: Functor f => Algebra f b -> Dist f (Zygo b)Source
distZygoT :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> Dist f (ZygoT w b)Source
zygo :: Functor f => Algebra f b -> GAlgebra f (Zygo b) a -> FixF f -> aSource
g_zygo :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> GAlgebra f (ZygoT w b) a -> FixF f -> aSource
prepro_zygo :: Functor f => Algebra f b -> GAlgebra f (Zygo b) a -> (f :~> f) -> FixF f -> aSource
a zygomorphic prepromorphism
g_prepro_zygo :: (Functor f, Comonad w) => GAlgebra f w b -> Dist f w -> GAlgebra f (ZygoT w b) a -> (f :~> f) -> FixF f -> aSource
a generalized zygomorphic prepromorphism
Produced by Haddock version 2.4.2