
Secure Socket Layer

version 2.3

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 SSL User’s Guide 1

1.1 Erlang Distribution Using SSL . 1

1.1.1 Introduction . 1

1.1.2 Building boot scripts including the SSL application 2

1.1.3 Specifying distribution module for net kernel 3

1.1.4 Specifying security options and other SSL options 3

1.1.5 Setting up environment to always use SSL . 4

1.2 SSL Release Notes . 4

1.2.1 SSL 2.3.6 . 5

1.2.2 SSL 2.3.5 . 5

1.2.3 SSL 2.3.4 . 5

1.2.4 SSL 2.3.3 . 6

1.2.5 SSL 2.3.2 . 6

1.2.6 SSL 2.3.1 . 6

1.2.7 SSL 2.3 . 6

1.2.8 SSL 2.2.1 . 6

1.2.9 SSL 2.2 . 7

1.2.10 SSL 2.1 . 7

1.2.11 SSL 2.0 . 8

2 SSL Reference Manual 9

2.1 ssl . 11

2.2 ssl . 13

2.3 ssl socket . 19

iiiSecure Socket Layer

iv Secure Socket Layer

Chapter 1

SSL User’s Guide

The SSL application provides secure communication over sockets.

1.1 Erlang Distribution Using SSL

This chapter describes how the Erlang distribution can use SSL to get additional verification and
security

1.1.1 Introduction

The Erlang distribution can in theory use almost any connection based protocol as bearer. A module
that implements the protocol specific parts of connection setup is however needed. The default
distribution module is inet tcp dist which is included in the Kernel application. When starting an
Erlang node distributed, net kernel uses this module to setup listen ports and connections.

In the SSL application there is an additional distribution module, inet ssl dist which can be used as
an alternative. All distribution connections will be using SSL and all participating Erlang nodes in a
distributed system must use this distribution module.

The security depends on how the connections are set up, one can use key files or certificates to just get a
crypted connection. One can also make the SSL package verify the certificates of other nodes to get
additional security. Cookies are however always used as they can be used to differentiate between two
different Erlang networks.

Setting up Erlang distribution over SSL involves some simple but necessary steps:

� Building boot scripts including the SSL application

� Specifying the distribution module for net kernel

� Specifying security options and other SSL options

The rest of this chapter describes the above mentioned steps in more detail.

1Secure Socket Layer

Chapter 1: SSL User’s Guide

1.1.2 Building boot scripts including the SSL application

Boot scripts are built using the systools utility in the SASL application. Refer to the SASL
documentations for more information on systools. This is only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is
located in the Erlang distributions bin directory. The source for the script can be found under the
Erlang installation top directory under releases/<OTP version>start clean.rel. Copy that script
to another location (and preferably another name) and add the SSL application with its current version
number after the STDLIB application.

An example .rel file with SSL added may look like this:

{release, {"OTP APN 181 01","P7A"}, {erts, "5.0"},
[{kernel,"2.5"},
{stdlib,"1.8.1"},
{ssl,"2.2.1"}]}.

Note that the version numbers surely will differ in your system. Whenever one of the applications
included in the script is upgraded, the script has to be changed.

Assuming the above .rel file is stored in a file start ssl.rel in the current directory, a boot script can
be built like this:

1> systools:make_script("start_ssl",[]).

There will now be a file start ssl.boot in the current directory. To test the boot script, start Erlang
with the -boot command line parameter specifying this boot script (with its full path but without the
.boot suffix), in Unix it could look like this:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> whereis(ssl_server).
<0.32.0>

The whereis function call verifies that the SSL application is really started.

As an alternative to building a bootscript, one can explicitly add the path to the ssl ebin directory on
the command line. This is done with the command line option -pa. This works as the ssl application
really need not be started for the distribution to come up, a primitive version of the ssl server is started
by the distribution module itself, so as long as the primitive code server can reach the code, the
distribution will start. The -pa method is only recommended for testing purpouses.

2 Secure Socket Layer

1.1: Erlang Distribution Using SSL

1.1.3 Specifying distribution module for net kernel

The distribution module for SSL is named inet ssl dist and is specified on the command line whit
the -proto dist option. The argument to -proto dist should be the module name without the dist
suffix, so this distribution module is specified with -proto dist inet ssl on the command line.

Extending the command line from above gives us the following:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl

For the distribution to actually be started, we need to give the emulator a name as well:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

Note however that a node started in this way will refuse to talk to other nodes, as no certificates or key
files are supplied (see below).

When the SSL distribution starts, the OTP system is in its early boot stage, why neither application
nor code are usable. As SSL needs to start a port program in this early stage, it tries to determine the
path to that program from the primitive code loaders code path. If this fails, one need to specify the
directory where the port program resides. This can be done either with an environment variable
ERL SSL PORTPROGRAM DIR or with the command line option -ssl portprogram dir. The value should
be the directory where the ssl esock port program is located. Note that this option is never needed in
a normal Erlang installation.

1.1.4 Specifying security options and other SSL options

For SSL to work, you either need certificate files or a key file. Certificate files can be specified both
when working as client and as server (connecting or accepting).

On the erl command line one can specify options that the ssl distribution will add when creation a
socket. It is mandatory to specify at least a key file or client and server certificates. One can specify any
SSL option on the command line, but must not specify any socket options (like packet size and such).
The SSL options are listed in the Reference Manual. The only difference between the options in the
reference manual and the ones that can be specified to the distribution on the command line is that
certfile can (and usually needs to) be specified as client certfile and server certfile. The
client certfile is used when the distribution initiates a connection to another node and the
server cerfile is used when accepting a connection from a remote node.

The command line argument for specifying the SSL options is named -ssl dist opt and should be
followed by an even number of SSL options/option values. The -ssl dist opt argument can be
repeated any number of times.

An example command line would now look something like this (line breaks in the command are for
readability, they should not be there when typed):

3Secure Socket Layer

Chapter 1: SSL User’s Guide

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl
-ssl_dist_opt client_certfile "/home/me/ssl/erlclient.pem"
-ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem"
-ssl_dist_opt verify 1 depth 1
-sname ssl_test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

A node started in this way will be fully functional, using SSL as the distribution protocol.

1.1.5 Setting up environment to always use SSL

A convenient way to specify arguments to Erlang is to use the ERL FLAGS environment variable. All the
flags needed to use SSL distribution can be specified in that variable and will then be interpreted as
command line arguments for all subsequent invocations of Erlang.

In a Unix (Bourne) shell it could look like this (line breaks for readability):

$ ERL_FLAGS="-boot \"/home/me/ssl/start_ssl\" -proto_dist inet_ssl
-ssl_dist_opt client_certfile \"/home/me/ssl/erlclient.pem\"
-ssl_dist_opt server_certfile \"/home/me/ssl/erlserver.pem\"
-ssl_dist_opt verify 1 -ssl_dist_opt depth 1"

$ export ERL_FLAGS
$ erl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
{progname,["erl "]},
{sname,["ssl_test"]},
{boot,["/home/me/ssl/start_ssl"]},
{proto_dist,["inet_ssl"]},
{ssl_dist_opt,["client_certfile","/home/me/ssl/erlclient.pem"]},
{ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
{ssl_dist_opt,["verify","1"]},
{ssl_dist_opt,["depth","1"]},
{home,["/home/me"]}]

The init:get arguments() call verifies that the correct arguments are supplied to the emulator.

1.2 SSL Release Notes

This document describes the changes made to the SSL application.

4 Secure Socket Layer

1.2: SSL Release Notes

1.2.1 SSL 2.3.6

Fixed Bugs and Malfunctions

� There was a synchronization error at closing, which could result in that an SSL socket was
removed prematurely, resulting in that a user process referring to it received an unexpected exit.
OwnId: OTP-4435
Aux Id: seq7600

Known Bugs and Problems

See SSL 2.2 .

1.2.2 SSL 2.3.5

Fixed Bugs and Malfunctions

� Setting of the option ‘nodelay’ caused the SSL port program to dump core.
OwnId: OTP-4380
Aux Id: -

� Setting of the option ’factive, onceg’ in setopts was wrong, causing a correct socket message to
be regarded as erroneous.
OwnId: OTP-4380
Aux Id: -

� A self-signed peer certificate was always rejected with the error ‘eselfsignedcert’, irrespective of
the ‘depth’ value.
OwnId: OTP-4374
Aux Id: seq7417

Known Bugs and Problems

See SSL 2.2 .

1.2.3 SSL 2.3.4

Improvements and New Features

� All TCP options allowed in gen tcp, are now also allowed in SSL, except the option freuseaddr,
Booleang. A new function getopts has been added to the SSL interface module ssl.
OwnId: OTP-4305, OTP-4159

5Secure Socket Layer

Chapter 1: SSL User’s Guide

1.2.4 SSL 2.3.3

Fixed Bugs and Malfunctions

� The roles of the SSLeay and OpenSSL packages has been clarified in the ssl(6) application manual
page. Also the URLs from which to download SSLeay has been updated.
OwnId: OTP-4002
Aux Id: seq5269

� A call to ssl:listen(Port, Options) with Options = [] resulted in the cryptic ferror,
ebadfg return value. The return value has been changed to ferror, enooptionsg, and the
behaviour has been documented in the listen/2 function.
OwnId: OTP-4016
Aux Id: seq7006

� Use of the option fnodelay, boolean()g crashed the ssl server.
OwnId: OTP-4070
Aux Id:

� A bug caused the Erlang distribution over ssl to fail. This bug has now been fixed.
OwnId: OTP-4072
Aux Id:

� On Windows when the SSL port program encountered an error code not anticipated it crashed.
OwnId: OTP-4132
Aux Id:

1.2.5 SSL 2.3.2

Fixed Bugs and Malfunctions

� The ssl:accept/1-2 function sometimes returned ferror, fWhat, Wheregg instead of ferror,
Whatg, where What is an atom.
OwnId: OTP-3775
Aux Id: seq4991

1.2.6 SSL 2.3.1

Fixed Bugs and Malfunctions

� Sometimes the SSL portprogram would loop in an accept loop, without terminating even when
the SSL application was stopped..
OwnId: OTP-3691

1.2.7 SSL 2.3

Functions have been added to SSL to experimentally support Erlang distribution.

1.2.8 SSL 2.2.1

The 2.2.1 version of SSL provides code replacement in runtime by upgrading from, or downgrading to,
versions 2.1 and 2.2.

6 Secure Socket Layer

1.2: SSL Release Notes

1.2.9 SSL 2.2

Improvements and New Features

� The restriction that only the creator of an SSL socket can read from and write to the socket has
been lifted.
OwnId: OTP-3301

� The option fpacket, cdrg for SSL sockets has been added, which means that SSL sockets also
supports CDR encoded packets.
OwnId: OTP-3302

Known Bugs and Problems

� Setting of a CA certificate file with the cacertfile option (in calls to ssl:accept/1/2 or
ssl:connect/3/4) does not work due to weaknesses in the SSLeay package.
A work-around is to set the OS environment variable SSL CERT FILE before SSL is started.
However, then the CA certificate file will be global for all connections.
OwnId: OTP-3146

� When changing controlling process of an SSL socket, a temporary process is started, which is not
gen server compliant.
OwnId: OTP-3146

� Although there is a cache timeout option, it is silently ignored.
OwnId: OTP-3146

� There is currently no way to restrict the cipher sizes.
OwnId: OTP-3146

1.2.10 SSL 2.1

Improvements and New Features

� The set of possible error reasons has been extended to contain diagnostics on erronous certificates
and failures to verify certificates.
OwnId: OTP-3145

� The maximum number of simultaneous SSL connections on Windows has been increased from 31
to 127.
OwnId: OTP-3145

Fixed Bugs and Malfunctions

� A dead-lock occuring when write queues are not empty has been removed.
OwnId: OTP-3145

� Error reasons have been unified and changed.
(** POTENTIAL INCOMPATIBILITY **)
OwnId: OTP-3145

� On Windows a check of the existence of the environment variable ERLSRV SERVICE NAME has
been added. If that variable is defined, the port program of the SSL application will not
terminated when a user logs off.
OwnId: OTP-3145

7Secure Socket Layer

Chapter 1: SSL User’s Guide

� An error in the setting of the nodelay option has been corrected.
OwnId: OTP-3145

� The confounded notions of verify mode and verify depth has been corrected. The option
verifydepth has been removed, and the two separate options verify and depth has been added.
(** POTENTIAL INCOMPATIBILITY **)
OwnId: OTP-3145

Known Bugs and Problems

� Setting of a CA certificate file with the cacertfile option (in calls to ssl:accept/1/2 or
ssl:connect/3/4) does not work due to weaknesses in the SSLeay package.
A work-around is to set the OS environment variable SSL CERT FILE before SSL is started.
However, then the CA certificate file will be global for all connections.
OwnId: OTP-3146

� When changing controlling process of an SSL socket, a temporary process is started, which is not
gen server compliant.
OwnId: OTP-3146

� Although there is a cache timeout option, it is silently ignored.
OwnId: OTP-3146

� There is currently no way to restrict the cipher sizes.
OwnId: OTP-3146

1.2.11 SSL 2.0

A complete new version of SSL with separate I/O channels for all connections with non-blocking I/O
multiplexing.

8 Secure Socket Layer

SSL Reference Manual

Short Summaries

� Application ssl [page 11] – The SSL Application

� Erlang Module ssl [page 13] – Interface Functions for Secure Socket Layer

� Erlang Module ssl socket [page 19] – Old interface to Secure Socket Layer

ssl

No functions are exported.

ssl

The following functions are exported:

� accept(ListenSocket) -> fok, Socketg | ferror, Reasong
[page 15] Accept an incoming connection request.

� accept(ListenSocket, Timeout) -> fok, Socketg | ferror, Reasong
[page 15] Accept an incoming connection request.

� close(Socket) -> ok | ferror, Reasong
[page 15] Close a socket returned by accept/1/2, connect/3/4, or listen/2.

� connect(Address, Port, Options) -> fok, Socketg | ferror, Reasong
[page 15] Connect to Port at Address.

� connect(Address, Port, Options, Timeout) -> fok, Socketg | ferror,
Reasong
[page 15] Connect to Port at Address.

� controlling process(Socket, NewOwner) -> ok | ferror, Reasong
[page 15] Assign a new controlling process to the socket.

� format error(ErrorCode) -> string()
[page 15] Return an error string.

� getopts(Socket, OptionsTags) -> fok, Optionsg | ferror, Reasong
[page 16] Get options set for socket

� listen(Port, Options) -> fok, ListenSocketg | ferror, Reasong
[page 16] Set up a socket to listen on a port on the local host.

� peername(Socket) -> fok, fAddress, Portgg | ferror, Reasong
[page 16] Return peer address and port.

9Secure Socket Layer

SSL Reference Manual

� pid(Socket) -> pid()
[page 16] Return the pid of the socket process.

� port(Socket) -> fok, Portg
[page 16] Return local port number of socket.

� recv(Socket, Length) -> fok, Datag | ferror, Reasong
[page 17] Receive data on socket.

� recv(Socket, Length, Timeout) -> fok, Datag | ferror, Reasong
[page 17] Receive data on socket.

� send(Socket, Data) -> ok | ferror, Reasong
[page 17] Write data to a socket.

� setopts(Socket, Options) -> ok | ferror, Reasong
[page 17] Set socket options.

� sockname(Socket) -> fok, fAddress, Portgg | ferror, Reasong
[page 17] Return the local address and port.

ssl socket

The following functions are exported:

� listen(Protocol, Family, Address, Mode)
[page 19] Set up a server listening to Address

� accept(ListenSocket, SSLFlags)
[page 20] Accept an incoming connection

� client(Protocol, Family, Address, Mode, SSLFlags)
[page 23] Set up a SSL client connection

� controlling process(Socket, Pid)
[page 24] Switch controlling process for a socket

� peername(Socket)
[page 24] Return the name of the other end of a socket

� resolve()
[page 24] Return the official name of the current host.

� resolve(IPAddress)
[page 24] Return the official name of the host with a certain address

� close(Socket)
[page 24] Close a socket

� start()
[page 25] Start the socket server

� stop()
[page 25] Stop the socket server

10 Secure Socket Layer

SSL Reference Manual ssl

ssl
Application

The Secure Socket Layer (SSL) application provides secure socket communication over
TCP/IP.

Environment

The following environment configuration parameters are defined for the SSL
application. Refer to application(3) for more information about configuration
parameters.

debug = true | false <optional> Causes debug information to be written to
standard output. Default is false.

debugdir = path() | false <optional> Causes debug information output
controlled by debug and msgdebug to be printed to a file named
ssl esock.<pid>.log in the directory specified by debugdir, where <pid> is
the operating system specific textual representation of the process indentifier of
the external port program of the SSL application. Default is false, i.e. no log file
is produced.

msgdebug = true | false <optional> Sets debug = true and causes also the
contents of low level messages to be printed to standard output. Default is false.

port program = string() | false <optional> Name of port program. The
default is ssl esock.

pproxylsport = integer() | false <optional> Define the port number of the
listen port of the SSL port program. Almost never is this option needed.

pproxylsbacklog = integer() | false <optional> Set the listen queue size of
the listen port of the SSL port program. The default is 5.

SSL libraries

The current implementation of the SSL application is based on the SSLeay package
version 0.9.0. It can be downloaded from several of the mirror sites listed at the site
http://www.openssl.org1. For the relation between SSLeay and OpenSSL, see below.

The user has to fetch the SSLeay package, compile and install the libraries
libcrypto.so and libssl.so (UNIX), or the libraries libeay32.dll and
ssleay32.dll (WIN32). The WIN32 libraries must be compiled and linked with
WinSock2.

In order to build SSLeay-0.9.0 for WinSock2 on Windows NT 4.0 do as follows:
1URL: http://www.openssl.org

11Secure Socket Layer

ssl SSL Reference Manual

1. In crypto/bio/b sock.c:int BIO sock init() remove the call to
WSACancelBlockingCall().

2. In crypto/bn/bn.h replace #define BN ULLONG unsigned int64 by #define
BN ULLONG unsigned int64.

3. In crypto/bn/bn mulw.c:bn add words() replace return(ll&BN MASK2); by
return (BN ULONG)(ll&BN MASK2);.

4. In apps/s socket.c:sock cleanup() remove call to WSACancelBlockingCall().

5. In Configure replace "VC-WIN32","cl:::BN LLONG RC4 INDEX
".$x86 gcc opts.":::" by "VC-WIN32","cl:::RC4 INDEX
".$x86 gcc opts.":::".

6. In mf-ddl.nt replace wsock32.lib by ws2 32.lib.

The ssl esock port program has to be built by linking object files and libraries. An
example Makefile is provided in the ssl-X.Y/priv/obj directory, where also the
object files are found.

SSLeay and OpenSSL

The last version of the SSLeay package was 0.9.0b. It was continued by the open source
project OpenSSL, and its first release was 0.9.1c.

There should be no problems in using an OpenSSL release instead of the SSLeay 0.9.0
release on Unix (that has however not been tested). For WIN32 there are problems
(even if you follow the procedure above). The OpenSSL support for WIN32 seems not
to be whole-hearted; in particular the implimenation still relies on the now obsolete
Winsock 1.1 interface.

Other SSL packages

There are also commercially available SSL libraries, e.g. C/SSL from Baltimore
Technologies Ltd2, and SSL-C from RSA Data Security Australia Pty Ltd3, which may
be supported by the SSL application in the future.

Restrictions

Users must be aware of export restrictions and patent rights concerning cryptographic
software.

SEE ALSO

application(3)

2URL: http://www.baltimoretechnologies.com/
3URL: http://www.rsasecurity.com.au/

12 Secure Socket Layer

SSL Reference Manual ssl

ssl
Erlang Module

This module contains interface functions to the Secure Socket Layer. New
implementations shall use this module, and not the old ssl socket module, which is
obsolete.

Common data types

The following datatypes are used in the functions below:

� options() = [option()]

� option() = socketoption() | ssloption()

� socketoption() = fmode, listg | fmode, binaryg | binary | fpacket,
packettype()g | fheader, integer()g | fnodelay, boolean()g |
factive, activetype()g | fbacklog, integer()g | fip, ipaddress()g

� ssloption() = fverify, code()g | fdepth, depth()g | fcertfile,
path()g | fkeyfile, path()g | fpassword, string()g | fcacertfile,
path()g | fciphers, string()g | fcachetimeout, integer()g

� packettype() (see inet(3))

� activetype() (see inet(3))

� reason() = atom() | fatom(), string()g

� bytes() = [byte()]

� string() = [byte()]

� byte() = 0 | 1 | 2 | ... | 255

� code() = 0 | 1 | 2

� depth() = byte()

� address() = hostname() | ipstring() | ipaddress()

� ipaddress() = ipstring() | iptuple()

� hostname() = string()

� ipstring() = string()

� iptuple() = fbyte(), byte(), byte(), byte()g

� sslsocket()

�

13Secure Socket Layer

ssl SSL Reference Manual

The socket options fbacklog, integer()g and fip, ipaddressg are for listen/2
only.

The following socket options are set by default: fmode, listg, fpacket, 0g, fheader,
0g, fnodelay, falseg, factive, trueg, fbacklog, 5g, and fip, f0,0,0,0gg.

Note that the options fmode, binaryg and binary are equivalent. Similarly fmode,
list and the absence of option binary are equivalent.

The ssl options are for setting specific SSL parameters as follows:

� fverify, code()g Specifies type of verification: 0 = do not verify peer; 1 = verify
peer, verify client once, 2 = verify peer, verify client once, fail if no peer certificate.
The default value is 0.

� fdepth, depth()g Specifies verification depth, i.e. how far in a chain of
certificates the verification process shall proceed before the verification is
considered successful. The default value is 1.

� fcertfile, path()g Path to a file containing a chain of PEM encoded certificates.

� fkeyfile, path()g Path to file containing user’s private PEM encoded key.

� fpassword, string()g String containing the user’s password. Only used if the
private keyfile is password protected.

� fcacertfile, path()g Path to file containing PEM encoded CA certificates.

� fciphers, string()g String of ciphers as a colon separated list of ciphers.

� fcachetimeout, integer()g Session cache timeout in seconds.

The type sslsocket() is opaque to the user.

The owner of a socket is the one that created it by a call to accept/1, connect/3/4/, or
listen/2.

When a socket is in active mode (the default), data from the socket is delivered to the
owner of the socket in the form of messages:

� fssl, Socket, Datag

� fssl closed, Socketg

� fssl error, Socket, Reasong

A Timeout argument specifies a timeout in milliseconds. The default value for a
Timeout argument is infinity.

Functions listed below may return the value ferror, closedg, which only indicates
that the SSL socket is considered closed for the operation in question. It is for instance
possible to have ferror, closedg returned from an call to send/2, and a subsequent
call to recv/3 returning fok, Datag.

Hence a return value of ferror, closedg must not be interpreted as if the socket was
completely closed. On the contrary, in order to free all resources occupied by an SSL
socket, close/1 must be called, or else the process owning the socket has to terminate.

For each SSL socket there is an Erlang process representing the socket. When a socket is
opened, that process links to the calling client process. Implementations that want to
detect abnormal exits from the socket process by receiving f’EXIT’, Pid, Reasong
messages, should use the function pid/1 to retreive the process identifier from the
socket, in order to be able to match exit messages properly.

14 Secure Socket Layer

SSL Reference Manual ssl

Exports

accept(ListenSocket) -> fok, Socketg | ferror, Reasong

accept(ListenSocket, Timeout) -> fok, Socketg | ferror, Reasong

Types:

� ListenSocket = Socket = sslsocket()
� Timeout = integer()

Accepts an incoming connection request on a listen socket. ListenSocket must be a
socket returned from listen/2.

The accepted socket inherits the options set for ListenSocket in listen/2.

The default value for Timeout is infinity. If Timeout is specified, and no connection is
accepted within the given time, ferror, timeoutg is returned.

close(Socket) -> ok | ferror, Reasong

Types:

� Socket = sslsocket()

Closes a socket returned by accept/1/2, connect/3/4, or listen/2

connect(Address, Port, Options) -> fok, Socketg | ferror, Reasong

connect(Address, Port, Options, Timeout) -> fok, Socketg | ferror, Reasong

Types:

� Address = address()
� Port = integer()
� Options = [connect option()]
� connect option() = fmode, listg | fmode, binaryg | binary | fpacket, packettype()g
| fheader, integer()g | fnodelay, boolean()g | factive, activetype()g | fverify,
code()g | fdepth, depth()g | fcertfile, path()g | fkeyfile, path()g | fpassword,
string()g | fcacertfile, path()g | fciphers, string()g | fcachetimeout, integer()g

� Timeout = integer()
� Socket = sslsocket()

Connects to Port at Address. If the optional Timeout argument is specified, and a
connection could not be established within the given time, ferror, timeoutg is
returned. The default value for Timeout is infinity.

controlling process(Socket, NewOwner) -> ok | ferror, Reasong

Types:

� Socket = sslsocket()
� NewOwner = pid()

Assigns a new controlling process to Socket. A controlling process is the owner of a
socket, and receives all messages from the socket.

format error(ErrorCode) -> string()

Types:

15Secure Socket Layer

ssl SSL Reference Manual

� ErrorCode = term()

Returns a diagnostic string describing an error.

getopts(Socket, OptionsTags) -> fok, Optionsg | ferror, Reasong

Types:

� Socket = sslsocket()
� OptionTags = [optiontag()]()

Returns the options the tags of which are OptionTags for for the socket Socket.

listen(Port, Options) -> fok, ListenSocketg | ferror, Reasong

Types:

� Port = integer()
� Options = [listen option()]
� listen option() = fmode, listg | fmode, binaryg | binary | fpacket, packettype()g |
fheader, integer()g | factive, activetype()g | fbacklog, integer()g | fip, ipaddress()g
| fverify, code()g | fdepth, depth()g | fcertfile, path()g | fkeyfile, path()g |
fpassword, string()g | fcacertfile, path()g | fciphers, string()g | fcachetimeout,
integer()g

� ListenSocket = sslsocket()

Sets up a socket to listen on port Port at the local host. If Port is zero, listen/2 picks
an available port number (use port/1 to retreive it).

The listen queue size defaults to 5. If a different value is wanted, the option fbacklog,
Sizeg should be added to the list of options.

An empty Options list is considered an error, and ferror, enooptionsg is returned.

The returned ListenSocket can only be used in calls to accept/1/2.

peername(Socket) -> fok, fAddress, Portgg | ferror, Reasong

Types:

� Socket = sslsocket()
� Address = ipaddress()
� Port = integer()

Returns the address and port number of the peer.

pid(Socket) -> pid()

Types:

� Socket = sslsocket()

Returns the pid of the socket process. The returned pid should only be used for
receiving exit messages.

port(Socket) -> fok, Portg

Types:

� Socket = sslsocket()
� Port = integer()

16 Secure Socket Layer

SSL Reference Manual ssl

Returns the local port number of socket Socket.

recv(Socket, Length) -> fok, Datag | ferror, Reasong

recv(Socket, Length, Timeout) -> fok, Datag | ferror, Reasong

Types:

� Socket = sslsocket()
� Length = integer() >= 0
� Timeout = integer()
� Data = bytes() | binary()

Receives data on socket Socket when the socket is in passive mode, i.e. when the
option factive, falseg has been specified.

A notable return value is ferror, closedg which indicates that the socket is closed.

A positive value of the Length argument is only valid when the socket is in raw mode
(option fpacket, 0g is set, and the option binary is not set); otherwise it should be set
to 0, whence all available bytes are returned.

If the optional Timeout parameter is specified, and no data was available within the
given time, ferror, timeoutg is returned. The default value for Timeout is infinity.

send(Socket, Data) -> ok | ferror, Reasong

Types:

� Socket = sslsocket()
� Data = iolist() | binary()

Writes Data to Socket.

A notable return value is ferror, closedg indicating that the socket is closed.

setopts(Socket, Options) -> ok | ferror, Reasong

Types:

� Socket = sslsocket()
� Options = [socketoption]()

Sets options according to Options for the socket Socket.

sockname(Socket) -> fok, fAddress, Portgg | ferror, Reasong

Types:

� Socket = sslsocket()
� Address = ipaddress()
� Port = integer()

Returns the local address and port number of the socket Socket.

17Secure Socket Layer

ssl SSL Reference Manual

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by
format error/1 are either the same as those defined in the inet(3) reference manual,
or as follows:

closed Connection closed for the operation in question.

ebadsocket Connection not found (internal error).

ebadstate Connection not in connect state (internal error).

ebrokertype Wrong broker type (internal error).

ecacertfile Own CA certificate file is invalid.

ecertfile Own certificate file is invalid.

echaintoolong The chain of certificates provided by peer is too long.

ecipher Own list of specified ciphers is invalid.

ekeyfile Own private key file is invalid.

ekeymismatch Own private key does not match own certificate.

enoissuercert Cannot find certificate of issuer of certificate provided by peer.

enoservercert Attempt to do accept without having set own certificate.

enotlistener Attempt to accept on a non-listening socket.

enoproxysocket No proxy socket found (internal error).

enooptions The list of options is empty.

eoptions Invalid list of options.

epeercert Certificate provided by peer is in error.

epeercertexpired Certificate provided by peer has expired.

epeercertinvalid Certificate provided by peer is invalid.

eselfsignedcert Certificate provided by peer is self signed.

esslaccept Server SSL handshake procedure between client and server failed.

esslconnect Client SSL handshake procedure between client and server failed.

esslerrssl SSL protocol failure. Typically because of a fatal alert from peer.

ewantconnect Protocol wants to connect, which is not supported in this version of the
SSL application.

ex509lookup Protocol wants X.509 lookup, which is not supported in this version of
the SSL application.

fbadcall, Callg Call not recognized for current mode (active or passive) and state of
socket.

fbadcast, Castg Call not recognized for current mode (active or passive) and state of
socket.

fbadinfo, Infog Call not recognized for current mode (active or passive) and state of
socket.

SEE ALSO

gen tcp(3), inet(3)

18 Secure Socket Layer

SSL Reference Manual ssl socket

ssl socket
Erlang Module

This manual describes the old interface to Secure Socket Layer. It should not be used
for new development.

The information in this manual is not up-to-date, and will not be updated in the future.
However, the following applies for the SSL 2.0 version: Windows and UNIX are
supported; the “-log ” option in SSLFlags is not supported anymore.

SSL Sockets are the secure BSD UNIX interface to communication protocols based on
SSLeay library written by Eric Young (eay@mincom.oz.au).

Users of the SSL sockets must be aware of the patent rights and export restrictions of
cryprographic algorithms in Europe and USA. Please see the Requirements [page
26]section and the SSLeay documentations on the legal aspects on algorithm use.

Only the AF INET protocol family and the STREAM protocols are supported.

A socket is a full duplex communications channel between two UNIX processes, either
over a network to a remote machine, or locally between processes running on the same
machine. A socket connects two parties, the initiator and the connector. The initiator is
the UNIX process which first opens the socket. It issues a series of system calls to set up
the socket and then waits for another process to create a connection to the socket.
When the connector starts, it also issues a series of system calls to set up the socket.
Then both processes continue running and the communications channel is bound to a
file descriptor which both processes use for reading and writing.

Exports

listen(Protocol, Family, Address, Mode)

Sets up a socket listening to Address. It also binds the name specified by Address to the
socket. Protocol must be the atom STREAM (connection-oriented). Family must be
AF INET.

The UNIX process that is to connect to the socket can run on any other accessible
machine on the Internet. The Address is an integer specifying what port number is to
be listened to. This port number uniquely identifies the socket on the machine. If port
number 0 is chosen, a free port number is automatically chosen by the UNIX kernel.
Note: These port numbers are not to be confused with Erlang ports; they are
UNIX-socket ports. Socket ports are used with a host name to create an end point for a
socket connection. listen/4 with Protocol=STREAM returns the tuple
fFiledescriptor, Portnumberg. Filedescriptor is an integer specifying the file
descriptor assigned to the socket which is being listened to. Portnumber is an integer
specifying the port number assigned to the socket. If Address is not zero in the call to
listen, the returned port number is equal to Address.

Mode must be one of:

19Secure Socket Layer

ssl socket SSL Reference Manual

fpacket, Ng
fbinary packet, Ng
raw == fpacket, 0g
onebyte == fpacket, 1g
twobytes == fpacket, 2g
fourbytes == fpacket, 4g
asn1

where valid values for N are 0, 1, 2 and 4. This parameter specifies the way to read or
write to the socket. If Mode is fpacket, Ng, then each series of bytes written to the
socket will be prepended with N bytes indicating the length of the string. These N bytes
are in binary format, with the most significant byte first. In this way it can be checked
that all bytes that were written also are read. For this reason no partitioned messages
will ever be delivered.

If Mode is fbinary packet, Ng, the socket is in binary mode, and binary data will be
prepended with a bytes header of N. When data is delivered to a socket in binary mode,
the data will be delivered as a binary (instead of being unpacked as a byte list.) If N is 0,
nothing will be prepended. If Mode is asn1, the receiving side of the connection will
assume that BER-coded ASN.1 messages are sent on the socket. The header of the
ASN.1 message will then be checked to find out the total length of the ASN.1 message.
That number of bytes will then be read from the socket and only one message at a time
delivered to the Erlang runtime system. Note! the asn1 mode will only work if all BER
encoded data uses the definite length form. If the indefinite length form is used (the
sender’s decision), only the tag and length bytes will be received and then the
connection will be broken. If the indefinite length form can occur (received by the
Erlang runtime system) the raw or fpacket,0g mode should be used.

For this reason if the options fpacket, Ng, fbinary packet, Ng (N > 0) or asn1 are
set on the socket, all that is written at the sender side will be read (in one chunk) on the
reader side. This can be very convenient as this is not guaranteed in TCP. In TCP the
messages may be divided partition in unpredictable ways. With TCP a STREAM of
bytes is delivered; it is not a datagram protocol.

Example:

ListenSocket = ssl socket:listen(’STREAM’, ’AF INET’, 3000,
fpacket, 2g).

ListenSocket may be bound to f3, 3000g, where 3 is a file descriptor and 3000 is the
port listened to. If not successful the process evaluating listen evaluates
exit(flisten, syncerrorg). This happens if, for example, Portnumber is set to a
number which is already occupied on the machine.

accept(ListenSocket, SSLFlags)

After a listen, the incoming requests to connect for a connection oriented (STREAM)
socket may be accepted. This is done with the call accept. The parameter
ListenSocket is the tuple returned from the previous call to listen. The call to
accept suspends the caller until a connection has been established from outside. A
process identifier is returned to the caller. This process is located between the user and
the actual socket. All communication with the socket is through this process, which
understands a series of messages and also sends a series of messages to the process that
initiated the call to accept.

20 Secure Socket Layer

SSL Reference Manual ssl socket

SSLFlags is an ASCII list which contains a combination of the following options
separated by space/s:

-cert ARG specify the certificate file to use. File should be in PEM format. Server
must always have a certificate.

-key ARG specify the private key file to use. File should be in PEM format. If
certificate file contains private key then there is no need to specify private key file.

-cipher ARG specify the list of ciphers to use, list of the following: NULL-MD5
RC4-MD5 EXP-RC4-MD5 IDEA-CBC-MD5 RC2-CBC-MD5 EXP-RC2-CBC-MD
DES-CBC-MD5 DES-CBC-SHA DES-CBC3-MD5 DES-CBC3-SHA DES-CFB-M1,
separated by ’:’. If this option is not specified then the value of environment variable
SSL CIPHER will be used.

-verify ARG specify the certificate verification level. ARG could be one of: 0 - server
does not ask for a client certificate; client does not check the server certificate but uses it
for establishing a SSL connection 1 - server asks for client certificate; both do a
certificate check; if it fails because of unknown issuer certificate the connection still gets
established 2 - server asks for client certificate; both do a certificate check; SSL
connection gets established only if the certificate check is successful. Note: default level
of verification is 0.

-log ARG specify the log file

Example:

Socket = ssl socket:accept(ListenSocket,
"-cert server cert.pem -key server key.pem")

After the statement above it is possible to communicate with the socket. The messages,
which may be sent to the socket are:

Socket ! fself(), fdeliver, ByteListgg.

or

Socket ! fself(), fdeliver, Binarygg.

Causes Binary/ByteList to be written to the socket.

Socket ! fself(), closeg.

Closes the socket down in an orderly way. If the socket is not closed in this way, it will
be automatically closed when the process terminates. The messages that can be received
from the socket are best explained by an example:

receive
fSocket, fsocket closed, normalgg ->

ok; %% socket closed by foreign host
fSocket, fsocket closed, Errorgg ->

notok; %% something has happened to the socket
fSocket, ffromsocket, Bytesgg ->

fbytes, Bytesg
end.

21Secure Socket Layer

ssl socket SSL Reference Manual

Two messages may be sent to the socket, i.e. deliver and close. The socket can send
three messages back: two error messages and one message indicating the arrival of new
data. All of these are shown below.

Input to the socket:

- fself(), fdeliver, ByteListgg
- fself(), fdeliver, Binarygg
- fself(), closeg

Output from the socket:

- fSocket, fsocket closed, normalgg
- fSocket, fsocket closed, Errorgg
- fSocket, ffromsocket, ByteListgg
- fSocket, ffromsocket, Binarygg

It may sometimes be convenient to listen to several sockets at the same time. This is
most easily achieved by having one Erlang process for each port number for listening.

Another common situation in network programming is when a server is listening to one
or more ports waiting for a connect message from the network. Once it arrives, a
separate process is spawned to specifically handle the connection. It returns and
continues waiting for new connections from the network.

The code for this could be similar to the following:

top(Port) ->
Listen = ssl socket:listen(’STREAM’, ’AF INET’, Port,

fpacket, 2g),
loop(Listen).

loop(Listen) ->
Pid = spawn(mymod, connection, [Listen, self()]),
receive

fPid, okg ->
loop(Listen)

end.

connection(Listen, Father) ->
Socket = ssl socket:accept(Listen, "-cert ssl server.pem"),
Father ! fself(), okg,
Socket ! fself(), fdeliver, "Hello there"gg,
.....
....

This code first spawns a process, and lets the new process be suspended while waiting
for the connection from the network. Once the new process is connected, the original
process is informed about it by the fself(), okg message. That process then spawns
another, etc.

If there is a listening function to a port and accept/2 has been evaluated, the process is
suspended and cannot be aborted. In order to stop accepting input, the process making
the call receives an EXIT signal. The accept call will then terminate and no more
connections will be accepted until a new accept call is made to the same ListenSocket.
To achieve this, loop(Listen) can be modified in the following way:

22 Secure Socket Layer

SSL Reference Manual ssl socket

loop(Listen) ->
Pid = spawn(mymod, connection, [Listen, self()]),
loop(Pid, Listen).

loop(Pid, Listen) ->
receive

fPid, okg ->
loop(Listen);

stop ->
exit(Pid, abort),
exit(normal)

end.

After the code above has received the stop message and exited, there is no error in the
Listen socket. It is still intact and can be used again in a new call to loop/1.

Another common situation in socket programming is wanting to listen to an address for
connections, and then having all the connections handled by a single special process
(that reads and writes several sockets simultaneously). The code for that would be
similar to the following example:

my accept(ListenFd, User) ->
S = ssl socket:accept(ListenFd, "-cert ssl server.pem"),
ssl socket:controlling process(S, User),
my accept(ListenFd, User).

The process User runs code that is similar to the following:

run(Sockets) when list(Sockets) ->
receive

fFrom, ffromsocket, Bytesgg ->
case lists:member(From, Sockets) of

true -> %% old socket
handle input(Bytes),
run(Sockets);

false -> %% new connection
handle input(Bytes),
run([From|Sockets])

end;
.......... etc.

client(Protocol, Family, Address, Mode, SSLFlags)

If another UNIX process is already listening to a socket, the socket on the client side
may be opened with this call. As before, Protocol must be the atom STREAM and
Family must be AF INET. Address must be a tuple of the type fIPAddress,
Portnumberg. It may be argued that users should not have to know port numbers, only
names of services as in the BSD library routine getservbyname(). However, this idea
has not been implemented in this package, so when a client is to be connected to a
socket over the Internet, the port number has to be specified. Examples:

23Secure Socket Layer

ssl socket SSL Reference Manual

Socket1 =
ssl socket:client(’STREAM’, ’AF INET’,

f’gin.eua.ericsson.se’, 1000g, raw,
"-cert client cert.pem -cert client key.pem"),

Socket2 =
ssl socket:client(’STREAM’, ’AF INET’,

f’134.138.99.53’, 1002g, asn1,
"-cert ssl client.pem"),

Socket3 =
ssl socket:client(’STREAM’, ’AF INET’,

f’gin’, 1003g, fbinary packet, 4g, ""),

As can be seen in the examples above, several formats are allowed for Address. The
Mode variable in the call to client is the same as in the calls to listen. The SSLFlags
variable is the same as in the calls to accept, with one exception it is recommended for
client to have a certificate but it is not necessary.

client returns a process identifier of a process with the same characteristics as the
process described for the accept call above.

controlling process(Socket, Pid)

When a value has been returned from the call to accept or the call to client, the Pid
of the process which performed the initiation is known by the socket. All output from
the socket is sent to this process. All input to the socket must also be wrapped with the
Pid of the original process.

If the controlling process is to be changed, the socket must be informed. This is similar
to the way an Erlang port needs to know the Pid of the process which opened it. The
socket (and the port) must know where to send messages. The function above assigns a
new controlling process to the socket. Thus, this function ensures that all output from
the socket is sent to a process other than the process which created the socket. It also
ensures that no messages from the socket are lost while the switch takes place.

peername(Socket)

Returns the name of the peer to Socket.

If AF UNIX is used peername returns the filename used as address of a string. If
AF INET is used peername returns the tuple fPortnumber, IPAddressg.

resolve()

Returns the official name of the current host.

resolve(IPAddress)

Returns the official name of the host with the address IPAddress.

close(Socket)

Closes the socket. This is equivalent to sending a fself(), closeg message to the
process controlling the socket. It also operates on sockets returned by the listen call.
This is the method to stop the listening to a socket.

24 Secure Socket Layer

SSL Reference Manual ssl socket

start()

Starts the socket server.

stop()

Stops the socket server, and closes all open sockets.

FEATURES

Even if a socket is opened in fpacket, Ng mode, it is possible to write binaries to it.
The receiving part of the socket determines if data from the socket is to be unpacked as
a byte list or not. i.e. a sender may be in binary mode (fbinary packet, Ng) and the
receiver in byte list mode (fpacket, Ng) or vice versa. The only restriction is that the
packet sizes must match.

The modes raw and twobytes are kept for backwards compatibility, and the modes
onebyte and fourbytes have been added for forward compatibility.

In order to be able to use this module it is required to generate a key and a certificate.

For test purposes a private key and a certificate can be generated by using:

req -new -x509 -nodes -out test.pem -keyout test.pem
ln -sf test.pem ‘x509 -noout -hash < test.pem‘.0

Certificate signing request can be generated by using:

req -new -out csr.pem -keyout key.pem -days XXX

A certificate signing request (csr.pem) is then could be send to a Certificate Authority
(CA) for the purpose of of CA signing the request.

Some of Certification Authorities:

http://www.verisign.com4 - Verisign
http://www.thawte.com/certs/5 - Thawte Consulting
http://www.eurosign.com6 - EuroSign
http://www.cost.se7 - COST

Environment variables SSL CERT DIR and SSL CERT FILE could be used to set the
location of the certificate of the trusted certifying authority. This is used during the
certificate verification process.

4URL: http://www.verisign.com
5URL: http://www.thawte.com/certs/
6URL: http://eurosign.com
7URL: http://www.cost.se

25Secure Socket Layer

ssl socket SSL Reference Manual

REQUIREMENTS

When using this module, both client and server must be SSL-enabled. A SSL-server will
hang if a non-SSL client tries to connect to it. If a SSL-client tries to connect to a
non-SSL-server, the connection will fail.

SSL sockets need the SSLeay version 0.6.6 package installed in shared library form. You
can get it from ftp://ftp.psy.uq.oz.au/pub/Crypto/SSL8 or you can find other mirrored
locations at http://www.psy.uq.oz.au/~ftp/Crypto/9.

The SSLeay package implements several well known cryptographic algorithms. Some of
these are protected by software patents in some countries. The package can be
configured to exclude algorithms at installation. Below follows a summary on software
patents and restrictions for algorithms in SSLeay, see the SSLeay documentation for
details:

The use of the RSA algorithm must be licensed in the USA due to US software patents.
This includes any products sold to the USA that use the SSLeay RSA package. Export
from the USA is restricted for software containing cryptographic algorithms.

The IDEA algorithm is protected by a patent in Europe and must be licensed.

General use of cryptography is prohibited in France.

BUGS

At this stage it is not possible to establish connection between a server and a client
residing on the same Erlang node due to blocking of SSL connect().

Please note that at this stage it is not possible to use private key encrypted with a pass
phrase. To remove pass phrase do:

rsa -in key-protected -out key-unprotected.pem

The result of this restriction is that the secury of the private key relies on the file system
security mechanism. Keep the private key and the certificate in separate files.

8URL: ftp://ftp.psy.uq.oz.au/pub/Crypto/SSL
9URL: http://www.psy.uq.oz.au/~ftp/Crypto/

26 Secure Socket Layer

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

accept/1
ssl , 15

accept/2
ssl , 15
ssl socket , 20

client/5
ssl socket , 23

close/1
ssl , 15
ssl socket , 24

connect/3
ssl , 15

connect/4
ssl , 15

controlling_process/2
ssl , 15
ssl socket , 24

format_error/1
ssl , 15

getopts/2
ssl , 16

listen/2
ssl , 16

listen/4
ssl socket , 19

peername/1
ssl , 16
ssl socket , 24

pid/1
ssl , 16

port/1

ssl , 16

recv/2
ssl , 17

recv/3
ssl , 17

resolve/0
ssl socket , 24

resolve/1
ssl socket , 24

send/2
ssl , 17

setopts/2
ssl , 17

sockname/1
ssl , 17

ssl
accept/1, 15
accept/2, 15
close/1, 15
connect/3, 15
connect/4, 15
controlling_process/2, 15
format_error/1, 15
getopts/2, 16
listen/2, 16
peername/1, 16
pid/1, 16
port/1, 16
recv/2, 17
recv/3, 17
send/2, 17
setopts/2, 17
sockname/1, 17

ssl socket
accept/2, 20

27Secure Socket Layer

client/5, 23
close/1, 24
controlling_process/2, 24
listen/4, 19
peername/1, 24
resolve/0, 24
resolve/1, 24
start/0, 25
stop/0, 25

start/0
ssl socket , 25

stop/0
ssl socket , 25

28 Secure Socket Layer

