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Chapter 1

Design Principles

This chapter describes the Erlang/OTP design principles. The first section gives an overview, the second
one describes how systems are composed of applications, and how application are built using behaviours.

The following four sections describe individual behaviours in detail. These behaviours include:

e supervision

e servers

e events

o finite state machines

The design principles are then summarized and numerous examples illustrate the tasks involved in
developing Erlang applications. These include:

e how to structure an application

how to create a supervision tree
how to use the common behaviours

¢ how to install event handlers

¢ how to configure an application

e how to write an application specification

e how to test an application

e how to write a distributed application.
The final two sections describe special processes and error logging. Special processes contain
information necessary to write specific applications which are not built from the standard system

building blocks (behaviours), but are programmed in some other style. Such applications still have to
follow certain basic protocols to in order to work with the rest of the system.
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Chapter 1: Design Principles

1.1 Overview of Design Principles

Systems, or complete products, are made from a number of Applications [page 4]. Applications provide
the basic packaging mechanism for delivering systems. Applications are designed to be “weakly
coupled” and it is often possible to make systems by combining existing applications with your own
special purpose applications. New applications should be designed to be self sufficient, so they can be
added to the existing base of applications and offered to future users of the system.

Examples of existing applications are mnesia, which has everything needed for programming database
services, and the gs graphics system for building graphical user interfaces.

Applications are specified in terms of resources. Resources include modules, registered names,
processes, and things like dependencies on other applications.

Applications must obey certain laws and must follow certain protocols so that they present a uniform
interface to the Erlang runtime system. For example, they must be written so that the code can be
changed without stopping the system.

The easiest way to program a new application is to make use of the behaviours which are included in
the system. A behaviour is a “pattern of design” which can be used to build an application. Applications
which are programmed with the standard behaviours automatically follow the required protocols.
Behaviours are explained in the next section of this chapter.

The most common way of programming an Erlang application is to start with a supervision tree [page
20]. A supervision tree is a hierarchical tree of processes used to program fault-tolerant systems. The
higher nodes in the supervision tree are called supervisors. They monitor the lower nodes, which are
called workers, and detect when failures occur in the lower nodes.

Worker nodes actually perform computations. They do the work, the supervisors only check the status
of the work and restart them if things go wrong. This supervision principle makes it possible to design
and program fault-tolerant software. Worker nodes should also be programmed using behaviours, but
this depends on what the worker nodes have to do.

If an application is written without the help of the behaviour modules, then the programmer must
ensure that the application follows the required protocols. The following two modules are provided to
help program applications which do not make use of the standard behaviors:

e sys. This module provides a set of library functions that follow the standard system protocols.
Functions in sys should be used to interface your process to the rest of the system.

e supervisor_bridge. This module makes it possible to use an existing set of processes within a
supervision tree.

Both sys and supervisor bridge are intended for somewhat specialized usage and require detailed
knowledge of the Erlang/OTP design principles.

When writing code that is called by the standard behaviours, the programmer can call functions in the
standard libraries. The libraries provide a rich and growing set of modules which contain commonly
used library functions, such as lists, strings, ordsets, dict, and file.
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1.1: Overview of Design Principles

1.1.1 Behaviours

Behaviours are formalizations of “design patterns” which can be used to program certain common
problems.

Concurrent systems can be programmed by combining ideas and code from a small number of design
patterns. Each design pattern, which we call a behaviour, solves a particular problem.

The standard behaviours which are included with the system are:

e application. This behaviour defines how applications are implemented and terminated.

e sup_bridge. This behaviour [page 26] is used to connect a process, or subsystem, to a supervisor
tree although it has not been designed with the supervision principle in mind.

e supervisor. This behaviour [page 20] is a worker/supervisor model for structuring fault tolerant
computations, and for programming supervision trees.

e gen server. This behaviour [page 27] is used for programming client-server processes.

e gen_event. This behaviour [page 35] is used for programming event handling mechanisms, such
as event handlers and loggers, error loggers, and plug-and-play handlers.

e gen_fsm. This behaviour [page 46] is used for programming finite state machines.
Behaviours are implemented as callback modules. A callback module must export a specific set of
functions, which are then called by the system as the behaviour process executes.

All modules which make use of behaviours should start as follows:

-module (xx) .
-behaviour(yy) .

This means that the module xx has the behaviour yy. In the following declaration, the module
disk-alloc has behaviour gen_server

-module(disk_alloc).
-behaviour(gen_server) .

In a following section, titled Servers [page 27], the following type of statements are used (see also the
Reference Manual, stdlib, the module gen_server):

Module:init (Args) -> {ok, State} | {ok, State, Timeout}|
ignore | {stop, StopReason}

Module:handle call(Request, From, State) -> CallReply

Here Module is the name of the callback module. In the previous example, this is the module
disk-_alloc, and disk-alloc must export init/1 and handle_call/3 for example.

Read the section Servers [page 27] in this chapter, which explains the philosophy of the client-server
behaviour. This section should be read in conjunction with the Reference Manual, std1ib, module
gen_server, which describes the callback API in greater detail.

It is sometimes possible to write a program which does not make use of the application and behaviour
mechanisms. Such programs may be more efficient, but the increased efficiency will be at the expense

Design Principles 3



Chapter 1: Design Principles

of generality. The ability to manage all applications in the system in a consistent manner is very
important.

Programmers will find it easy to read and understand the code produced by others who are familiar
with the application architecture and standard behaviours. Ad hoc programming structures, while
possibly more efficient, are always more difficult to understand.

1.2 Applications

Applications are used for “packaging” system components. An application consists of a set of resources,
such as modules, registered names, and processes.

By structuring the system into a well-defined set of applications, the system designer is forced to think
about the system in terms of its sub-components and to decide which functionality each application
should have.

1.2.1 Programming an Application

Several operations are possible with an application. In particular, we can load, unload, start and stop an
application.

When an application is loaded, the system checks that all the resources the application will need are
present. If loading is successful, the application can be started at a later time.

When an application is started, an applicationmaster process is created. Application master is the
group leader of all the processes in the application.

The application master is aware of every process in the application. Thus, if the application was stopped
the application master would terminate all processes, for which this application is responsible, in a
controlled fashion.

When an application is unloaded, all code relating to the application is removed.

Application controller

Figure 1.1: Application Controller and Applications

All operations on applications are coordinated by a single process with the name
application_controller. The shaded circles in the above diagram represent applications. Each
individual application is controlled by an application master.
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1.2: Applications

1.2.2 The Application Resource File

The resources required by each application are defined in an application resource file. These files have
the extension .app, which specifies the resources required by the application and how the application
should be started.

A resource file (ApplName . app) has the following syntax:

{application, ApplName,
[{description, String},

{vsn, String},
id, String},
g

{modules, [{Mod1,Vsnl}, Mod2, {Mod3,Vsn3} .., {ModN,VsnN}]},
maxP, nt infinityy,

P Int | infinity
maxT, econds | infinity},

T Seconds | infinity
{registered, [Namel, Name2, ...]1},

{applications, [Appll, Appl2, .., ApplN]l},
{included_applications, [Appll, Appl2, .., ApplNl},

{env, [{Parl, Vall}, {Par2, Val2} .., {ParN, ValN}]},
{mod, {Mod, StartArgs}},

{start_phases, [{Phase, PhaseArgs}]1}1}.

The keys have the following meanings:

description
Textual description of the application.

vsn

Version of the application. It should not contain a directory separator.

id

Product identification of the application.

modules

List of all the modules and their versions introduced by this application. A module can be listed

without a version, with only the module name stated. A module can only be defined in one
application.

maxP
Maximum allowed number of simultaneous processes which this application can manage (or the
atom infinity). The key maxP is optional and defaults to infinity.

maxT
Maximum time that the application can run (or the atom infinity). The key maxT is optional
and defaults to infinity.

registered
Lists all the names of registered processes used in this application.

applications
List of applications which must be started before this application can be started. Most
applications have dependencies to the kernel and stdlib applications.

included_applications

List of applications which are included by this application. An included application is loaded, but
not started, by the application_controller. Processes implemented in an included application
should be placed underneath a supervisor in the including application. This key is optional and
defaults to an empty list.
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® env
List of the environment variables in the application. Each parameter ParX is an atom, and the
associated valX can be any term. The env key is optional and defaults to an empty list.

e mod
Application call back module of the application behavior. The application master starts the
application by evaluating the function Mod: start (Type, StartArgs), refer to the kernel
reference manual. When the application has stopped, by command or because it terminates, the
application master calls Mod: stop(State) to let the application clean up. If no State was
returned from Mod:start/2, then Mod:stop([1) is called. The mod key should be omitted for
applications which are code libraries, such as the std1ib application. These applications have no
dynamic behavior of their own and should not have a start function.

e start_phases
List of start phases and the attached start arguments for the application. The application master
starts the application by evaluating the function Mod: start_phase (Phase, Type,PhaseArgs),
for each defined start phase. (See also the Kernel reference manual). Each parameter Phase is an
atom, and the associated PhaseArgs is a list of any terms. The key start_phases is optional, but
the behavior of the system is dependent on the key being defined or not (see kernel reference
manual and the Starting Applications chapter below).

1.2.3 The Application Directory

Each application should be placed in a separate directory. This directory should be divided into several
sub-directories. The following sub-directories should exist in the application directory .. ./ApplName:
® SrcC
e cbin
® priv
e include
This structure is necessary because tools such as systools rely on this structure to be able to generate

boot scripts and release packages. The release handling procedure on target machines also depends on
this structure to be able to upgrade to new releases.
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Note:
In the target environment, the application directory name contains the application version.

The following description of the sub-directories listed also indicates if the sub-directory is mandatory
or optional.

® SIrc.
This directory contains the source code. This directory is mandatory in the development
environment, but optional in the target environment. If source code is written in several different
languages, a sub-directory with the name e_src can be created below the src directory to store
the Erlang source code.

e cbin.
This directory contains the Erlang object code, for example bean files. The application resource
file should also be placed here. This directory is mandatory.

® priv.
This directory is used for application specific files. For example, C executables should be placed
here, or in a bin directory below the priv sub-directory. The application designer can determine
the directory structure below priv. The function code:priv_dir/1 should be used to access the
priv sub-directory. This directory is optional. It can be omitted if the application does not
include any application specific files.

e include.
Included files must be placed in this directory. The application exports these files for inclusion in
other application modules. The include 1ib("ApplName/include/File.hrl") module attribute
should be used to include a file from another application. This directory is optional.

1.2.4 Configuring an Application

Application specific configuration parameters should be specified in the .env key in the resource file
[page 5]. The application can then call application:get_env(ApplName, Parameter) to retrieve the
values for the configuration parameters. You can also override configuration parameters by using the
system configuration file. This file is specified with the command line parameter -config FileName. The
file FileName.config contains a list of configuration parameters for the applications. For example:

[{sasl, [{sasl_error_logger, tty},
{errlog_type, error},
{disk_space_check_interval, 10}1},

{ApplNameN, [{Parl, Vall},

{Par2, Val2}1}].

The parameters over ride can also be executed from the command line:

erl -ApplName Parl Vall Par2 Val2 ...
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Note:

Each term should be an Erlang term. However, in the Unix shell, the term must be enclosed in single
quotation marks. For example: ’>{file, "a.log"}’.

1.2.5 The Application Master

Each individual application is controlled by an application master.

"Normal" process

Named processes

Application Master

First started process

An application

Figure 1.2: Example of an Application

The application master is responsible for all processes running in an application. The application master
can Kill all processes which belong to the application.

The application master assumes that the process started by the start function is responsible for the
internal details of the application. This process is assigned the following special role:
o If this process terminates, then the application master assumes that the application as a whole has
terminated.

o If the process started first terminates with a normal exit, then the application is assumed to have
terminated correctly.

o If the process started first terminates with an abnormal exit, then the application is assumed to
have terminated with an error.

An application can be started in one of three modes: permanent, transient, or temporary. Default value
is temporary. The mode specifies what happens if the application dies.
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1.2: Applications

¢ If a permanent application dies, all other applications are also terminated.

e If a transient application dies normally, this is reported and no other applications are terminated.
If a transient application dies abnormally, all other applications are also terminated.

¢ If a temporary application dies this is reported and no other applications are terminated. In this
way, an application can run in test mode, without disturbing the other applications.

1.2.6 Included Applications

An application can include other applications. Processes implemented in an included application should
be placed underneath a supervisor in the including application. This way, you include applications in
order to group them together.

Primary application

Included applications

Included applications

Figure 1.3: Primary Application and Included Applications

An application which is not included by any other application is called a primary application. An
application can only be included by one other application. If you want several applications to include an
application, it has to be designed as a library application without a start function (the mod key in the
.app file).

When an application is loaded, the application controller ensures that all included applications are also
loaded. When an application is started , the application controller will only start the primary
application by default (see chapter, Starting Applications).

Note:
The information in the following paragraph only applies to the Erlang/OTP environment.

When building a release, the included_applications key, which is specified in the application
resource file, can be overridden with the .rel file. Therefore, all applications have the implicit
environment (env) variable included_applications in order to read the current configuration. This is
useful when an application has multiple start parts (included applications) depending on customer
requirements, and where there is no need install or load excluded parts in the system. Refer to the
section Release Structure in the System Architecture Support Libraries Manual for more details.
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1.2.7 Distributed Applications

In a distributed system with several cooperating Erlang nodes, there is a need to control certain
applications in a distributed manner. Some applications may be specified to run on one of several nodes.
The application controllers on the different nodes can be arranged to monitor each other. If one node
goes down, the application controller on another node notices this and restart the application on its
node. These applications are called distributed applications, as opposed to local applications, which are
always started on the local node. An example of a standard local application is kernel; there is always
one local instance of kernel running on an Erlang node.

With this definition, a local application may be distributed in the sense that it uses services on other
nodes, or cooperates with applications on other nodes. For example, the application controller sees the
Mnesia DBMS started as a local application. In this description, only the control of applications is
discussed.

Because a distributed application may move between nodes, some addressing mechanism is required to
ensure that it can be addressed by other applications, regardless on which node it currently executes.
This issue is not addressed here, but the standard Erlang modules global or pg can be used for this
purpose.

Specifying Distributed Applications

The configuration parameter distributed for the application kernel defines which applications are
distributed, and on which nodes they may run. This parameter is of the form {ApplName, [NodeDesc] }
or {ApplName, Time, [NodeDesc]}, where NodeDesc = Node |{Node, ..., Node}. This data
structure specifies a list of nodes where the application ApplName may execute, and the order in which
these nodes should be used to start the application. If the nodes are specified in a tuple, the order is
undefined. If a node crashes and Time has been specified, then the application controller will wait for
Time milliseconds before attempting to restart the application on another node. If Time is not specified,
it defaults to 0, and if a node goes down the application is restarted immediately on another node.

Note:

All involved nodes have to have the same distribution specification (nodes which an application may
run on and restart time) for all distributed applications on all involved nodes. This is easiest
accomplished by using the same configuration parameter distributed on all involved nodes. All
nodes that are connected by normal connections (as opposed to hidden connections) and run the
distributed application controller (dist_ac) are involved (see the Kernel reference manual for more
information on normal/hidden connections and/or on dist_ac).

Distribution specifications can also be set by application:load/2. Observe that the management of
a distributed application cannot be expected to function correctly until all involved nodes have the
same distribution specification of the application.

For example, suppose that the application myapp is defined to be distributed as {myapp, 5000,
[cpl@cave, {cp2@cave, cp3@cave}]}. Suppose further that all nodes are up and running when myapp
is started. It is then started at cp1, as shown in the figure below.
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1.2: Applications

myapp

Figure 1.4: Application myapp - Situation 1

If cp1 goes down, the system checks which one of the other nodes, cp2 or cp3, has the least number of
running applications, but waits for 5 seconds for cp1 to restart. If cp1 does not restart and cp2 runs
fewer applications than cp3, then myapp is restarted on cp2.

OO

myapp

5 secs.

myapp

Figure 1.5: Application myapp - Situation 2

Suppose now that cp2 goes down as well and does not restart within 5 seconds. myapp is now restarted
on cp3.
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myapp

5 secs.

myapp

Figure 1.6: Application myapp - Situation 3

If cp2 now restarts, it will not restart myapp, because the order between nodes cp2 and cp3 is not
defined.

myapp

Figure 1.7: Application myapp - Situation 4

However, if cp1 restarts as well, the function application:takeover/2 moves myapp to cpl, because
cpl has a higher priority than cp3 for this application. In this case, Mod:start ({takeover,
cp3@cave}, StartArgs) is executed at cpl.
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1.2: Applications

yapp

cpl: application:takeover(myapp, permanent)

myapp

Figure 1.8: Application myapp - Situation 5

For a distributed application, the Nodes list distribution specification must be the same at each involved
node. The application controllers check this when they contact each other at start-up. If a mismatch is
found, the application controller, and thus the entire Erlang node, terminates with reason
{distributionmismatch, ApplName, Node}. The reason for this behavior is that the application may
not start at all, it may start at several nodes, or the application controller may be left hanging if there is a
mismatch in the specification.

The distributed parameter can be changed at release upgrade. The applications are however not
automatically moved to the nodes which have the (new) highest priority; this has to be made manually
by the operator after the release upgrade. New applications in the new distributed parameter are
ignored by dist_ac. Such applications have to be loaded (with distribution information) and started
manually after the release upgrade has been performed.

Starting Distributed Applications

Each node which is included in the distribution specification for a distributed application must make an
application:start call for the distributed application. The start-up sequence between local and
distributed applications is also synchronized.

To illustrate this point, suppose that a local application named localapp uses the distributed
application myapp, described in the previous example, with the distribution specification {myapp,
5000, [cpl@cave, {cp2@cave, cp3@cave}l}. Itis assured that localapp will not be started on cp1,
cp2 or cp3 until cp1 starts myapp. In this way, the start of distributed applications is a synchronization
point for all nodes that may run the application.

When a local application is dependent on a distributed application but is configured to run on a
different node than the distributed application a synchronization problem occurs, this is solved by also
starting the distributed application on the node where the local application will run. This ensures that
the applications are started in the correct order on the right nodes.

Design Principles 13
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Please note when the above configuration applies the local application must be loaded before the
distributed application is started. Normally this is not a problem because all applications are loaded
before any applications are started.

When distributed applications are specified, it is required that the sync nodes functionality in the
kernel application (see kernel(6)) is used to synchronize all involved nodes. If not used, the
distribution mechanism for distributed applications will not function correctly.

1.2.8 Starting Applications

A primary application can be started in one or two steps. The first step is mandatory and the purpose of
it is to start the main supervisor of the application and possible permanent children. The second step is
optional and its purpose is to synchronize processes within an application.

Start Supervisors

The start parameters for the first step are defined in the mod key in the resource file for the primary
application. The application master will evaluate the function Mod:start (Type, StartArgs).

Mod and StartArgs parameters are defined in the mod key. The parameter Type states what type of start
is running, ie. normal, takeover or fail-over.

Takeover signifies that the application is distributed and is to be moved from another node to this node,
due to operator invention or due to this (newly started) node is defined as superior to the other node in
the configuration parameter distributed.

Fail-over signifies that this node should start the application due to a crash of the node where the
application was previously running.

All other starts will result in a normal start type.

Note: Fail-over is only valid if the start_phases key is defined, otherwise this start type is denoted as
normal. If older application versions without start phases are being used, it is possible to set the
start_phases key to an empty list.

Synchronize Processes

The second step is executed only if the start_phases key is defined in the resource file of the primary
application.

If a primary application has a defined key, all its included applications must also have the key defined.
There is, however, a possibility to include applications without start phases by wrapping them in an
another application (how to do this is explained later).

In this step the application master evaluates the function Mod: start_phase (Phase, Type, PhaseArgs)
for each phase in the specified order. Mod is defined in the mod key, Phase and PhaseArgs in the
start_phases key, and Type is the same as in the first step. An example showing (a part of) an
application’s resource file and the evaluated functions:
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1.2: Applications

myApp . app
{mod, {myApp, StartArgs},

{included_applications, []},
{start_phases, [{init, InitArgs}, {go, GoArgs}l},

evaluated functions

myApp:start (Type, StartArgs) % start the main supervisor
% and permanent children
myApp:start_phase(init, Type, InitArgs) % start the application
% in the init phase
myApp:start_phase(go, Type, GoArgs) % start the application

% in the go phase

A primary application is responsible for starting included applications. The primary application can
read the included applications start phases by calling application:get key(Application,
start_phases). There is, however, a possibility to automate the start of included applications, but first
an example where the synchronization is taken care by the primary application:

primApp.app
{mod, {primApp, PrimAppStartArgs},

{included.applications, [inclOne, inclTwol},
{start_phases, [{init, InitArgs}, {go, GoArgs}l},

inclOne.app
{mod, {inclOne, NotUsedArgs},
{start_phases, [{go, GoArgsi}]},

inclTwo.app

{mod, {inclTwo, NotUsedArgs},
{start_phases, [{init, InitArgs2}, {go, GoArgs2}1},

evaluated functions
primApp:start(Type, PrimAppStartArgs) % start the main supervisor
% and permanent children

primApp:start_phase(init, Type, InitArgs) % start the PrimApp and InclTwo
% applications in init phase
primApp:start_phase(go, Type, GoArgs) % start all applications
% in go phase
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To automate the synchronization of the included applications a predefined module
application _starter is to be used as the Module in the mod key. application starter takes the Mod
and StartArgs as parameters: {mod, {application_starter, [{Mod, StartArgs}]}.

It is possible to have unique start phases in different applications. The order of the phases is defined in
the primary applications start_phases key for the whole tree. This aserts that all included applications
must have their start phases defined in the including applications’ resource files.

The application_starter will execute only one start phases at a time, from left to right, searching and
executing (where indicated) start phases in the included applications.

The above example is continued below using an automatic start for included applications:

primApp.app

{mod, {application.starter, [primApp, PrimAppStartArgsl},
{included_applications, [inclOne, inclTwol},
{start_phases, [{init, InitArgsPrim}, {go, GoArgsPrim}]},

inclOne.app

{mod, {inclOne, NotUsedArgs},
{start_phases, [{go, GoArgsi}]},

inclTwo.app

{mod, {inclTwo, NotUsedArgs},
{start_phases, [{init, InitArgs2}, {go, GoArgs2}1},

evaluated functions
primApp:start (Type, PrimAppStartArgs) % start the main supervisor
% and permanent children
primApp:start_phase(init, Type, InitArgsPrim) ’ start the primApp application
% in the init phase
inclTwo:start_phase(init, Type, InitArgs2) % start the inclTwo application
% in the init phase

primApp:start_phase(go, Type, GoArgsPrim) % start the primApp application
% in the go phase

inclOne:start_phase(go, Type, GoArgsl) % start the inclOne application
% in the go phase

inclTwo:start_phase(go, Type, GoArgs2) % start the inclTwo application

% in the go phase

For the reason mentioned above, the subsequently included applications on the same branch must have
their start phases defined in all the including applications resource files (start_phases key). The
application starter will then run the start phases in a sequentially correct start order.

Note:When starting the application tree the start phase does not descend level by level but follows a
branch of the tree (starting applications as it descends) before moving to the next branch.
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There is an example of the recursive use of the application starter below and a diagram of the go start
phase flow.

primApp

prim, init, some, spec, go

inclOne incl TwoPrim
Spec, go .
init, some, go
/
Vil
incl2A incl2B
some, go init

Figure 1.9: Flow of the go start phase.

primApp.app

{mod, {application starter, [primApp, PrimAppStartArgsl},

{included.applications, [inclOne, inclTwoPrim]},

{start_phases, [{prim, PrimArgs}, {init, InitArgs}, {some, SomeArgs},
{spec, SpecArgs}, {go, GoArgs}l},

inclOne.app
{mod, {inclOne, NotUsedArgs},

{included_applications, []},
{start_phases, [{spec, SpecArgs}, {go, GoArgsOne}l},

inclTwoPrim.app

{mod, {application starter, [inclTwoPrim, NotUsedArgs]},
{included.applications, [incl2A, incl2Bl},
{start_phases, [{init, [1}, {some, [1}, {go, [1}1},

incl2A.app

{mod, {incl2A, [1},
{included._applications, []},
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{start_phases, [{some, SomeArgs2A}, {go, GoArgs2A}1},

incl2B.app

{mod, {incl2B, [1},
{included_applications, [1},
{start_phases, [{init, InitArgs2B}1},

evaluated functions
primApp:start (Type, PrimAppStartArgs) % start the main supervisor
% and permanent children

primApp:start_phase(prim, Type, PrimArgs)
primApp:start_phase(init, Type, InitArgs)
inclTwoPrim:start_phase(init, Type, [1)
incl2B:start_phase(init, Type, InitArgs2B)
primApp:start_phase(some, Type, SomeArgs)
inclTwoPrim:start_phase(some, Type, [])
incl2A:start_phase(some, Type, SomeArgs2A)
primApp:start_phase(spec, Type, SpecArgs)
inclOne:start_phase(spec, Type, SpecArgs)
primApp:start_phase(go, Type, GoArgs)
inclOne:start_phase(go, Type, GoArgsOne)
inclTwoPrim: start_phase(go, Type, [1)
incl2A:start_phase(go, Type, GoArgs2A)

Mixing applications with start_phases keys together with applications which have no start_phases
keys is not allowed. The wrapper application’s only function is to start an application which has no
start_phases key. Without a wrapper the application will not start.

primApp.app
{mod, {primApp, PrimAppStartArgs},

{included_applications, [with, wrapperl},
{start_phases, [{init, InitArgs}, {go, GoArgs}l},

with.app
{mod, {with, NotUsedArgs},

{included_applications, [1},
{start_phases, [{init, InitArgsW}, {go, GoArgsW}l},

wrapper.app
{mod, {wrapper, NotUsedArgs},

{included_applications, []},
{start_phases, [{init, WrapArgs}l},
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evaluated functions
primApp:start(Type, PrimAppStartArgs)

primApp:start_phase(init, Type, InitArgs)
with:start_phase(init, Type, InitArgsW)
wrapper:start_phase(init, Type, WrapArgs)
primApp:start_phase(go, Type, GoArgs)

with:start_phase(go, Type, GoArgsW)

1.2.9 An Example

start the main supervisor
and permanent children

start the primary application
in the init phase

start the with application

in init phase

start the without

application

start the primary application
in the go phase

start the with application

in go phase

The following example assumes some familiarity with the Erlang boot script The example shows a
simple boot script and config file for nodes cp1, cp2, cp3 and cp4, and applications myapp and
localappl. These are the nodes and applications which are described in the previous section, with the
exception that node cp4 has been added. This node only executes the local application localapp.

Boot Script

The following boot script is used at all four nodes. Each node makes an application:start call for
myapp, although this distributed application is started only at one node.

{script,{"Dist Test","1.0"},
[{preLoaded, [init,erl_prim_loader]},
{progress, preloaded},
<002
{progress,init_kernel_started},
{apply,{application,load,

[{application,
myapp,
[{description, "MYAPP"},
{vsn,"1.0"},
{modules, [1},

{applications, [kernel, stdlibl},

{env, [131313}},
{apply,{application,load,
[{application,
localapp,
[{description, "LOCALAPP"},
{vsn,"1.0"%},
{modules, [1},

{applications, [kernel, stdlib, myappl},

{env, [1}1}]1}},

{progress,applications_loaded},
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{apply,{application,start, [kernel,permanent]}},
{apply,{application,start, [stdlib,permanent]}},
{apply,{application,start, [myapp, permanent] }},
{apply,{application,start, [localapp,permanent] }},
{progress,started}]}.

Config File

The following configuration file is used at all four nodes.

[{kernel, [{sync_nodes_optional, [cpl@cave, cp2@cave, cp3@cave,
cp4@cavel },

{sync_nodes_timeout, 10000},

{distributed, [{myapp, [cpl@cave, {cp2@cave, cp3@cave}]}]1}1}].

The application controller notices that cp4 cannot start myapp and then ensures that cp4 cannot start
localapp until another node has started myapp.

1.3 Supervision Principles

This section introduces a process structuring model for programming fault tolerant applications. The
model is based on the idea of workers, supervisors, and a supervision tree.
e \Workers are processes which perform computations.

e Supervisors are processes which monitor the behaviour of workers. A supervisor can restart a
worker if something goes wrong.

e The supervision tree is a hierarchical arrangement of an application into workers and supervisors.
A supervisor can supervise either workers or supervisors. Hereafter we will use the term child to mean
either a worker or a supervisor.
Supervision trees can be manipulated by using the functions exported from the module supervisor.
A typical supervision tree looks as follows:
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Q/a 1
O O

Figure 1.10: Supervision Tree

e The square boxes represent supervisors.
e The circles represent workers.

e The supervisors are annotated with either “1” (one_for_one), or “a” (one_for_all). This denotes the
type of supervision strategy used.

1 One for one supervision
If any child diesit isrestarted

Figure 1.11: One_for_one Supervision

One_for_one Supervision. If a the supervised child dies, then only that child is restarted according to the
start specification.
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all-for-one supervision
a If any child diesall children
areterminated and all are restarted

Figure 1.12: All_for_one Supervision

One_for_all Supervision. If a supervised child dies, then all the supervised children will be terminated
according to the shutdown specification and all will then be restarted according to the start
specification.

One_for_one supervision is often used when the processes supervised are independent of each other. If
the processes are independent, they can often be programmed as sets of processes with no internal
communication between them.

One_for_all supervision is often used when the processes supervised depend on each other. If the
processes are dependent, they can often be programmed as sets of synchronized, communicating
processes.

1.3.1 The Supervision Tree

Supervision trees are created by using an instance of the supervisor behaviour. A supervision tree is
created from a supervision start specification. The module xx is an example of the supervision
behaviour. xx:init (Args) must be written so as to return {ok, SuperSpec}, or {error, What}, or
ignore. The supervision tree is created with the following call:

supervisor:start_link(Name, xx, Args)

Name is the name of the supervision tree and can be used to manipulate the supervision tree. Args is an
argument which is passed to xx:init. Name can be omitted if an anonymous supervisor is started.

-module (xx) .
-behaviour(supervisor).
-export([init/1]).

init () >
{ok,{{one_for_all, MaxR, MaxT},
[
{log, {log, start, [25]}, permanent, 5000, worker, [logl},

{mysup, {mysup, start, []}, permanent, infinity, supervisor, [mysupl},

{ChildName, MFA, Type, Shutdown, Class, Modules}
1.
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e xx:init returns a tuple of the form {ok, SupSpec}.
e SupSpec is a term of the form {SupFlags, [ChildSpec]}.

e SupFlags specifies the supervision to be of type one_for_one or one_for_all, and it specifies the
restart frequency.

e ChildSpec is a list of specifications (one per child) which specifies how each child should be
started and treated.
Each child can be one of three types:

e a permanent child is always restarted when it dies
e atransient child is restarted if it dies abnormally
e a temporary child is never restarted.
All child processes which are added to the supervision tree must implement the shutdown protocol

correctly (refer to the section The Shutdown Protocol [page 24]). All the generic servers, event
handlers, and other standard system behaviours automatically implement this protocol.

User processes which are implemented without using the standard behaviours must follow the
shutdown protocol. This protocol can either be coded directly into the process, or it can be
programmed using a supervisor bridge. Refer to the section Supervisor Bridge [page 26] in this chapter.

Refer also to the Reference Manual, the module supervisor in stdlib.

1.3.2 Restart of Processes in the Supervision Tree

If a one_for_all supervisor detects that one of its children has died, then the supervisor will terminate
and restart all the processes it is supervising.

If a one_for_one supervisor detects that one its children has died, then the supervisor will terminate and
restart only the process that died. However, if the supervisor itself terminates, it terminates all the
children it supervises.

The restart behaviour will occur if the following conditions apply:

e the child process was a permanent process which dies for any reason; or
e the child process was a transient process which dies with abnormal exit; and
e the restart limit has not been exceeded.

Note:
A temporary process which dies will not cause any restart behaviour.
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1.3.3 The Shutdown Protocol

The shutdown protocol is used when the supervisor decides to kill a child for any reason. This is
achieved by evaluating shutdown (Pid, Shutdown), where Pid is the Pid of the child, and Shutdown is
the termination timeout value supplied in the start specification. Pid must be linked to the supervisor.

The supervisor process sends an exit signal to the child process and waits for acknowledgment. The
child process should handle the {*EXIT’ ,ParentPid, shutdown} message and terminate with reason
shutdown if it traps exit signals. If an acknowledgment is not received within the specified time, then
the child is killed.

Alternatively, the child can be terminated by specifying Shutdown = infinity, or Shutdown =
brutal kill. The exact behaviour is as follows:

shutdown(Pid, brutal_kill) ->
exit(Pid, kill);
shutdown(Pid, infinity) ->
exit(Pid, shutdown),
receive
{’EXIT’, Pid, shutdown} -> true
end;
shutdown(Pid, Time) ->
exit(Pid, shutdown),
receive
{’EXIT’, Pid, shutdown} ->
true
after Time ->
exit(Pid, kill)
end.

When a supervisor has to terminate several children, it terminates them synchronously in the reverse
order of creation.

1.3.4 The Restart Frequency Limit Mechanism

The supervisors have a built-in mechanism to limit the number of restarts which can occur in a given
time interval. This is determined by the values of the two parameters MaxR and MaxT. If more than MaxR
number of restarts occur in the last MaxT seconds, then the supervisor shuts down all the children it
supervises and dies.

If a supervisor terminates, then the next higher level supervisor takes some action. It either restarts the
lower level supervisor or dies.

The intention of the restart mechanism is to prevent a situation where a process repeatedly dies for the
same reason, only to be restarted again.

After the pre-determined number of restarts, the supervisor itself will die and the next higher level
supervisor tries to correct the error by applying its restart strategy, and so on.

If a particular level in the system is incapable of correcting a given error, then it will eventually give up
trying and pass the responsibility higher up in the supervision tree.

At some level in this process we hope that the error will finally be corrected.
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Interpretation of the Restart Frequency

Assume that a number of restarts are performed at times:
T(0), T(1), T(2),
We define the quantity Acc (N) as follows:

1 + Acc(N-1) * (1 - Dt(N)/MaxT) when Dt(N) <= MaxR
1 Otherwise

Acc(N)
Acc(N)

In the above expression, Dt (N) = T(N) - T(N-1).

Acc represents an accumulator which increments by one every time a new restart is performed. The
value of the accumulator decays linearly to zero in the time period MaxT, which is the measurement
period.

If Acc is greater than the threshold value MaxR, then the supervising process dies.

1.3.5 Dynamic Processes in the Supervision Tree

In addition to the static supervision tree, we can also add dynamic children. A new child is added to an
existing supervision tree with the following call:

supervisor:start_child(SupName, StartSpec) -> Result

SupName is the name,or the process identity, of the supervisor. StartSpec is a 6-tuple which contains
the start specification of the child process, including the name of the child.

Children which are added using start_child/2 behave in the same manner as children defined in the
start specification of the supervisor, with the following important exception:

Warning:
If a supervisor dies and is re-created, then all children which were dynamically added to the
supervisor will be lost.

Any child, static or dynamic, can be stopped with the following call, which also stops the child in
accordance with the shutdown specification for the child.

supervisor:terminate_child(Sup, ChildName)

A stopped child can be restarted with the following call:

supervisor:restart_child(Sup, ChildName)

A stopped child is permanently deleted with the following call, and cannot be restarted again:

supervisor:delete_child(Sup, ChildName)

As with start_child/2, any effects of dynamically adding or deleting children is lost if the supervisor
itself restarts. In this case, the original start specification is used to restart the children.

Design Principles 25



Chapter 1: Design Principles

1.3.6 The Supervisor Bridge

It can sometimes be useful to connect a process or a subsystem to the supervision tree, although it has
not been designed with the supervision principles in mind. This can be accomplished by using an
instance of the supervisor_ bridge behaviour. A supervisor bridge is a process which sits in between a
supervisor and the subsystem. It behaves like a real supervisor to its supervisor, but has a different
interface than a real supervisor to its subsystem.

supervisor bridge

O

subsystem

Figure 1.13: Supervision Bridge

The subsystem must choose one main process to be responsible for the subsystem, which the supervisor
bridge will monitor. If this process terminates, the supervisor bridge will assume that the entire
subsystem has terminated.

The supervisor_bridge behaviour must export two functions:
e init/1, which starts the subsystem and returns {ok, Pid, State}. Pid is the Pid of the main
subsystem process, and State is any term.
e terminate/2, which is responsible for terminating the entire subsystem.
Suppose that we want to connect the vshlr server to a supervision tree. This server is described in the
next section which is titled Servers [page 28]. If we use vshlr_2 version of the server, we can connect it

directly to a supervisor as it is written, since it uses the gen_server behaviour. If we use vshlr_1
version instead, we must write a supervisor bridge to connect the server to a supervisor.

-module (vshlr_sup) .
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $’).

-behaviour (supervisor_bridge) .

-export([start_link/0]).
-export([init/1, terminate/2]).
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%% Creates a supervisor bridge for vshlr_1
start_link() ->
supervisor_bridge:start_link({local, vshlr_sup}, vshlr_sup, []).

%% This function is supposed to start the vshlr server
init([1) ->
vshlr_1:start(),
case whereis(vshlr_1) of
Pid when pid(Pid) -> {ok, Pid, [1};
undefined -> {error, start_error}
end.

%% This function is supposed to stop the vshlr server
terminate(_Reason, []) ->
vshlr_1:stop(Q).

A supervisor child specification for this supervisor bridge looks as follows:

{vshlr_sup, {vshlr_sup, start_link, []}, permanent, 2000, worker, []}

1.3.7 C Code and Supervision

Parts of a system are likely to be written in C. This may be for perfomance reasons, or as a result of
sourcing. It is possible to make these programs to behave as supervised Erlang processes by wrapping
the C programs with an Erlang stub, and this Erlang stub can be included as a worker in a supervision
tree. The stub also relays supervision messages to the C program. The C program reacts to them in the
form of “hooks”, instead of messages.

The supervision features are included in the interface generator module. Using this module, C
programs with their Erlang interfaces can benefit from being supervised.

Refer to the chapter titled Interface Libraries, the section The C Interface Generator for a detailed
explanation of C code supervision.

1.4 Servers

This section describes a simple and powerful way of programming client-server applications.
Client-server applications are programmed using the gen_server behaviour.

Refer to the Reference Manual , the module gen_server in stdlib, for full details of the behaviour
interface.
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1.4.1 Client-Server Principles

This section describes several solutions to one sample problem in order to illustrate how to write
client-server applications.

The sample problem is a very simple server which acts as a Home Location Register (HLR). We will
implement a small sub-set of an HLR which we call VSHLR (Very Simple HLR) in a number of
different ways. The Erlang modules which implement our VSHLR will always be called something like
vshlr XX. All these modules will export the following functions:

e vshlr XX:start() -> true starts the server.

e vshlr XX:stop() -> true stops the server.

e vshlr XX:i_am_at(Person, Position) -> ok tells the server that Person is at the location
Position.

e vshrl XX:find(Person) -> {at, Position} | lost asks the server where Person is. The
server responds {at, Position}, where Position is the last reported location, or lost if it does
not know where the person is.

The client-server model can be illustrated in the following figure:

Clients

The Client-server model

Figure 1.14: The Client-Server Model

The client-server model is characterized by a central server and an arbitrary number of clients. The
client-server model is generally used for resource management operations, where several different
clients want to share a common resource. The server is responsible for managing this resource.

If we ignore how the server is started and stopped, and ignore all error cases, then it is possible to
describe the server by means of a simple function f.
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Suppose that the internal state of the server is described by the state variable S and that the server
receives a query Q. The server responds by sending a reply R back to the client and changes its internal
state to S’. This can be described as follows:

{R, 8’} = £(Q, 9)
Given a function £, we can write a very simple universal client server as follows:

-module (server) .
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $’).

-export([start/3, stop/1, loop/3, call/2]).

start (Name, F, State) ->
register (Name, spawn(server, loop, [Name, F, State])).

stop(Name) ->
exit(whereis(Name), kill).

call(Name, Query) ->
Name ! {self(), Query},
receive
{Name, Reply} ->
Reply
end.

loop(Name, F, State) ->
receive
{Pid, Query} ->
{Reply, Statel} = F(Query, State),
Pid ! {Name, Reply},
loop(Name, F, Statel)
end.

vshlr can be written using server:

-module(vshlr_1).
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $°).

-export([start/0, stop/0, i_am_at/2, find/1, handle_event/2]).
start() -> server:start(xxi1,
fun(Event, State) —>
handle_event (Event, State)
end,
(1.

stop() -> server:stop(xxl).

i_am_at (Person, Position) -> server:call(xxl, {i_am_at, Person, Position}).
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find (Person) -> server:call(xx1l, {find, Person}).

handle_event({i_am_at, Person, Position}, State) ->
Statel = update_position(Person, Position, State),
{ok, Statel};

handle_event ({find, Person}, State) —->
Location = lookup(Person, State),
{Location, State}.

update_position(Key, Value, [{Key, _}I|T]) -> [{Key, Valuel}|T];
update_position(Key, Value, [H|T]) -> [H|update_position(Key, Value, T)];
update_position(Key, Value, []) -> [{Key,Value}].

lookup(Key, [{Key, Value}|_]1) -> {at, Value};
lookup(Key, [_IT]) -> lookup(Key, T);
lookup(Key, [1) -> lost.

We can run this as follows:

1 > vshlr_l:start().

true

2> vshlr 1:i am_at("joe", "home").
ok

3> vshlr_1:i_am_at("helen", "work").
ok

4> vshlr_1:find("joe").

{at,"home"}

5> vshlr 1:find("mike").

lost

6> vshlr_1:i_am at("joe", {building,23}).
ok

7> vshlr_1:find("helen").
{at,"work"}

8> vshlr_1:find("joe").
{at,{building,23}}

Even though our VSHLR program is extremely simple, it illustrates and provides simple solutions to a
surprisingly large number of design issues.

The reader should note the following:

e The functionality is divided between two different modules. All the code that deals with
spawning processes and sending and receiving messages is contained in the module server. All
the code that has to do with the implementation of the VSHLR is contained in the module vshrl.
Note also that most of the functions in vshrl can be written in a pure, side effect free manner.
This division of functionality is good programming practice.

e The code in server can be re-used to build many different client-server applications.

e The name of the server, in this example the atom xx1, is hidden from the users of the client
functions. This means it can be changed without effecting the code that uses the client functions.
This point has important consequences for writing distributed systems. Essentially, we can develop
programs as non-distributed applications and then turn them into distributed applications by
making very small changes to the client stub code. This point will be covered in more detail later.
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e \We hide the details of the remote procedure call inside the server module. This means that we
can change how we do the remote procedure call at a later stage. This has consequences for error
handling and the recovery from failures which may occur during a remote procedure call.

¢ \WWe hide the details of the protocol used between the client and the server inside the server
module. This is good programming practice and allows us to change the protocols without having
to make any changes to the functions which use the server.

Extending the Server

Splitting a server into two parts means that we can work on either of the parts without effecting the
other. We can illustrate this by extending the server so that it logs the last ten requests and calls the
error logger if something goes wrong. This version is called server1 to distinguish it from server.

-module(serveril).
—-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $’).

-export([start/3, stop/1, loop/4, call/2]).

start (Name, F, State) ->
register(Name, spawn(serverl, loop, [Name, F, State, []1]1)).

stop(Name) ->
exit(whereis(Name), kill).

call(Name, Query) ->
Name ! {self(), Query},
receive
{Name, error} ->
exit (server_error);
{Name, {ok, Reply}} —->
Reply
end.

loop(Name, F, State, Buff) ->
receive
{Pid, Query} ->
Buffl = trim([Query|Buff]),
case catch F(Query, State) of
{’EXIT’, Why} ->
Pid ! {Name, error},
error_logger:error_msg({server_error, Name, Buffi});
{Reply, Statel} —>
Pid ! {Name, {ok, Replyl}},
loop(Name, F, Statel, Buffl)
end
end.

trim([X1,X2,X3,X4,X5,X6,X7,X8,X9,X101_]1) -> [X1,X2,X3,X4,X5,X6,X7,X8,X9,X10];
trim(X) -> X.
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serverl has exactly the same function interface as the previous version of server.
If we use server1 together with vshlr, we get an improved version of vshlr, which has additional
error handling facilities.

The improvement to VSHLR was made without any significant change to the code in the module
vshlr. This is a consequence of dividing the server into two parts, the generic part which is common to
all servers, and the specific part which concerns the VSHLR problem.

The Generic Server

The examples shown in the previous sections make it apparent that the server can be extended in a
number of different ways. The module gen_server provides a number of useful extensions to our
simple server. In the following example, vshrl is re-implemented using gen_server.

The Reference Manual, stdlib, module gen_server has detailed information about the generic server.

-module (vshlr_2).
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $’).

-export([start/0, start_link/0O, stop/0, i_am_at/2, find/1]).
-behaviour(gen_server).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2]).
%% These are the interface routines

start() -> gen_server:start({local, xx2}, vshlr_2, [1, [1).
start_link() -> gen_server:start_link({local, xx2}, vshlr_2, [1, [1).

stop() -> gen_server:call(xx2, die, 10000).

i_am_at (Person, Location) ->
gen_server:call(xx2, {i_am_at, Person, Location}, 10000).

find(Person) ->
gen_server:call(xx2, {find, Person}, 10000).

%% These Routine MUST be exported since they are called by gen_server
init (L) -> {ok, [1}.

handle_call({i_am_at, Person, Location}, _, State) ->
Statel = update_location(Person, Location, State),
{reply, ok, Statell};
handle_call({find, Person}, _, State) ->
Location = lookup(Person, State),
{reply, Location, State};
handle_call(die, _, State) ->
%% ok goes back to the user and terminate(normal, State)
%% will be called
{stop, normal, ok, Statel}.
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handle_cast(Request, State) -> {noreply, State}.
handle_info(Request, State) -> {noreply, State}.

terminate (Reason, State) ->
ok.

%% sub-functions

update_location(Key, Value, [{Key, _}|T]) -> [{Key, Valuel}|T];
update_location(Key, Value, [H|T]) -> [H|update_location(Key, Value, T)];
update_location(Key, Value, []) -> [{Key,Value}].

lookup(Key, [{Key, Valuel}|_]) -> {at, Value};
lookup(Key, [_ITI) -> lookup(Key, T);
lookup(Key, [1) -> lost.

The flow of control in the example shown above is as follows:

e Start a new server by evaluation the expression gen_server:start({local, xx2}, vshlr_2,
Args, Opts).
This expression starts a local server with name xx2 on the local node. The handler module
vshlr_2 is called to initialize the server.
The generic server calls vshlr_2:init (Args) which is expected to return {ok, S}. The value of
S is used as the initial value of the state of the server.

e The client routines use the following type of calls:
gen_server:call(xx2, {i_am_at, Person, Location}, 10000)

For communication purposes, xx2 is the name of the server and must agree with the name used to
start the server. {i_am_at, Person, Location} is a command which is passed to the server, and
10000 is a timeout value. If the server does not respond within 10000 milliseconds, the call to the
server is aborted.

The previous call corresponds to the clause:

handle_call({i_am_at, Person, Location}, _, State) ->
Statel = update_Location(Person, Location, State),
{reply, ok, Statel};

handle_call returns a tuple of the form{reply, Reply, Statel}. In this tuple, Reply is the
reply which should be sent back to the client, and State1 is a new value for the state of the server.

e Stop the server by evaluating gen_server:call(xx2, die, 10000) .
This matches the following expression:

handle_call(die, _, State) ->
{stop, normal, ok, Statel}.

The return value tells the server to stop. The server first evaluates vshlr 2:terminate (normal,
State). The reply, which is ok in this example, is passed back to the client and the server stops.

Local Client-Server

The example shown in the previous section was a local server. The main points to note were:
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e gen server:start({local, xx2}, ...) startsthe server.
e gen server:call(xx2, ...) callsthe server.

Global Client-Server

To make a global server, the following small changes are made to the access routines:

e gen server:start({global, xx2}, ...) starts the server.
e gen server:call({global, xx2}, ...) callsthe server.
With these changes, the client-server model will work in a network of distributed nodes. All nodes in

the system are assumed to evaluate identical copies of the code. The server will be placed on the first
node which evaluates gen_server:start. All other nodes will be coupled to this node automatically.

Anonymous Server

The following calls will start an anonymous server:
e gen server:start(Mod, ...) -> {ok, Pid} startsan anonymous server. All calls to the
server must include an explicit reference to the Pid of the server.
e gen server:call(Pid, ...) calls the server.

The user must ensure that the Pid of the server is communicated to all clients which make use of the
server.

1.4.2 Notes
e The server can be started with gen_server:start, Or gen_server:start_link. In the case of
start_1link, the server is linked to the process which started the server.
e The start_1ink function must be used if the server is supervised by a supervisor.

e The server does not normally trap exits and will die if it receives an exit signal. If you wish the
server to trap exits then you should evaluate process_flag(trap-exit, true) in init/1 before
returning {ok, State}.

e This section has only described the remote procedure call interface to the server. You can also
send a cast to the server. In a cast, the client sends a message to the server and continues since no
reply is sent by the server.

e The server can also handle exit messages and information requests from the management system.
Refer to the Reference Manual, stdlib for more information.

34 Design Principles



1.5: Events

1.5 Events

The event manager behaviour gen_event provides a general framework for building application specific
event handling routines.

Refer to the Reference Manual , the module gen_event in stdlib, for full details of the behaviour
interface.

Event managers provide named objects to which events can be sent. When an event arrives at an event
manager, it will be processed by all the event handlers which have been installed within the event
manager. None or several event handlers can be installed within a given event manager.

Event handlers can be written which act on all events in a particular class, on some of the events, or on
some particular complex combination of events.

All events are processed by functions which are called from the module gen_event .

Event managers can be manipulated at runtime. In particular, we can install an event handler, remove
an event handler, or replace one event handler with a different handler.

Event managers can be built for tasks like:

e error logging
alarm handling

call record logging
debugging
e equipment management.

The event mechanism provides an extremely powerful model for building a large number of different
applications. The following sections include examples of the kind of applications which can be built.

1.5.1 Definitions

The following definitions will help in understand this topic.

Event An occurrence, or something which happens.

Event Category The type or class of an event.

Event Manager A process which coordinates the processing of events of the same category.
Notification The act of informing an event manager that an event has occurred.

Event Handler A module which exports functions that can process events of a particular category.
Event handlers can be installed within an event manager.
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1.5.2 The Event Manager

The event manager essentially maintains a list of {Mod, State} pairs, which are called an MS list. For
example:

[{Mod1l, Statel}, {Mod2, State2}, ...]

New modules are added to this list by calling gen_event :add handler (EventManager, NewMod,
Args).

EventManager is the name of the event manager, and NewMod is the name of an event handler and its
callback module.

The event manager calls NewMod: init (Args), which is expected to return {ok, NewState}. If this
happens, the tuple {NewMod, NewState} is added to the MS list.

When an application generates an event by calling gen_event:notify(EventManager, Event), the
event Event is delivered to the event manager.

The event manager then processes the event by calling Mod:handle_event (Event, State) for each
module in the MS list. This has the effect of replacing the MS list [{Mod1, Statel}, {Mod2,
State2}, ....] with [{Modl, Statelp}, {Mod2, State2p}, ...], where:

{ok, Statelp}
{ok, State2p}

Mod1:handle_event (Event, Statel)
Mod2:handle_event (Event, State2)

The event manager can be thought of as a generalization of a conventional finite state machine. Instead
of a single state, we maintain a set of states, and a set of state transition functions.

We further generalize this mechanism by allowing handle_event to return not only a new state, but
also by allowing it to request a change of the event handler, or to request the removal of the existing
event handler. What happens is shown by the following pseudo-code example which executes within
gen_event. The callback functions Mod1:terminate(...) and Mod2:init (...) must also be supplied
by the user.

notify(Event, Modl, State) ->
case Modl:handle_event(Event, State) of
{ok, Statel} —>
. add {Modl, Statel} to the MS list
remove_handler ->
Modl:terminate (remove_handler, State),
. delete the handler from the MS list
{swap_handler, Argsl, Statel, Mod2, Args2}
State2 = Modl:terminate(Argsl, Statel),
{ok, State2a} = Mod2:init({Args2, State2}),
. add {Mod2, State2al} to the MS list and delete
the Modl handler

The handler returns the following values:

e {ok, State}. The new state is added to the MS list.
e remove_handler. The handler is finalized and then removed from the MS list.

e {swap_handler, ...}. The handler is finalized and the return value is passed into the init
function of the new handler.
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You can also send a request to a specific handler in the MS list by evaluating

gen_event:call (EventManager, Mod, Query), which returns the value obtained by evaluating
Mod:handle_call(Query, State).

You remove a handler with the call gen_event:delete handler (EventManager, Mod, Args), which
returns the value obtained by evaluating Mod: terminate (Args, State), where State is the state
associated with Mod in the MS list.

Finalization

Each time a new handler is installed, Mod:init (.. .) is called, and each time a handler is removed
Mod:terminate(...) is called.

The act of calling a specific routine every time a handler is removed is called “finalization”. The
finalization routine terminate has two arguments:

e Args which is the reason for termination
e State which is the current value of the state.

Mod:terminate/2 is expected to return a new state. Depending on the context, this state is sometimes
ignored and sometimes passed into a new initialization routine.

1.5.3 Writing an Event Manager

To create a new event manager, we evaluate the function gen_event: start (Manager), where Manager
is the name of the event manager.

For example, the call gen_event:start({local, error_logger}) starts a new (local) event manager
called error_logger. Note that calling gen_event:start ({local, Manager}) has the side effect of
creating a new registered process named Manager.

Note:
We could also create a global event manager by calling gen_event: start ({global,
event_logger}).

So far, the error logger cannot do anything and we have to install a handler. The function
gen_event:add-handler (Manager, Handler, Args) can be used to install the handler Handler in the
event manager Manager.

When gen_event:add handler (Manager, Handler, Args) is called, the event manager calls the
function Handler:init (Args) which normally returns {ok,State}. The value of State is stored in the
event manager together with the name of the handler.

Any process can send an event to the event manager by evaluating the function

gen_event :notify(Manager, Event). When this happens, the event manager processes the event by
calling the function Handler :handle event (Event, State). This is done for each handler which has
been installed in the manager. The function Handler :handle event (Event, State) should return one
of three different values:

e {ok, State}. State is a new state which will be used the next time the handler is called.

e remove handler. This tells the event manager to remove this event handler by calling
Handler:terminate(remove handler, State).
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e {swap.handler, Argsl, Statel, Mod2, Args2}. This tells the event manager to remove the
current event handler by calling State2 = Handler:terminate(Argsl, Statel), and then to
install a new handler by calling Mod2:init (Args2, State2)

An Error Logger

The module error_logger memory_h provides a simple memory resident error logger. It stores at most
Max error messages. After this all error messages are lost.

-module(error_logger_memory_h) .
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/roma/2 $ ’).

-behaviour(gen_event) .
-export([init/1, handle_event/2, handle_info/2, handle_call/2, terminate/2]).
init(Max) -> {ok, {Max, 0, [1}}.

handle_event (Event, {1, Lost, Buff}) ->
{ok, {1, Lost+1, Buff}};
handle_event (Event, {N, Lost, Buff}) ->
{ok, {N-1, Lost, [{eventl, date(), time(), Event}|Buff]}}.

handle_info(_, S) -> {ok, S}.
handle_call(_, S) -> {ok, ok, S}.

terminate(swap_to_file, {_, O, Buffl}) ->
{error_logger_memory_h, Buff};
terminate(swap_to_file, {_, Lost, Buff}) ->
{error_logger_memory_h,
[{eventl,date() ,time() ,{Lost, messages_lost}}|Buff]l};
terminate(_, State) ->
. display the data using a secret internal BIF ...

To start a simple memory based error logger which can store at most 25 messages we evaluate:

gen_event:start({local, error_logger}),
gen_event:add_handler (error_logger, error_logger_memory_h, 25).

To log an error, an application evaluates the expression:

gen_event:notify(error_logger, Event)

This error logger is similar to the error logger installed in the system kernel when the system boots. Be
aware that no file system has been installed just after the system has started, so if any errors occur they

are stored in memory. This error logger is perfectly adequate for recording errors which occur when
booting the system.

The simple error logger shown can be improved by doing something more intelligent with the errors.
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e If a file system is installed, then we might want to store the errors in disk files.

o If we have no file system, but we are a distributed Erlang node, then we might wish to send the
errors to some other node in the system where they can be stored.

The following example shows a handler which stores events on disk:

-module(error_logger_file_h).
—-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/3 $°).

-behaviour(gen_event) .
-export([init/1, handle_event/2, handle_info/2, handle_call/2, terminate/2]).

init ({{Fname,Max,N}, {error_logger_memory_h, Buffl}}) ->
{ok, {{Fname, N}, length(Buff), Max, Buff}}.

handle_event (Event, {F, N, Max, Buff}) ->
Buffl = [{eventl, date(), time(), Event}|Buff],
N1 =N+ 1,
if
N1 > Max -> {ok, {dump_events(F, Buffl), 0, Max, []1}};
true -> {ok, {F, N1, Max, Buffi}}
end.

handle_info(_, S) -> {ok, S}.
handle_call(_, S) -> {ok, ok, S}.

terminate(_, {F, N, Max, Buff}) ->
dump_events(F, Buff),
ok.

dump_events(F, [1) ->F;

dump_events({File, Index}, Buff) ->
Fname = File ++ integer_to_list(Index) ++ ".log",
file:write_file(Fname, term_to_binary(Buff)),
{File, Index + 1}.

This handler has been explicitly written to take over from the simple error handler. To swap handlers so
that all errors are logged on disk we can evaluate:

gen_event:swap_handler(error_logger,
{error_logger_memory_h, swap_to_filel},
{file_error_handler_h, {"/usr/local/file/log",100,45}}).

Each disk file will contain 100 events. These files will be called /usr/local/file/log45.log,
/usr/local/file/log46.log, and so on.

The reader should also examine this example carefully and observe the flow of control between the
finalization routine in the memory resident error logger, and the initialization routine in the file logger.
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An Alarm Handler
We start by creating an alarm manager.
gen_event:start({local, alarm}).

That is all you need to do to make an alarm manager. Any process can now generate an alarm by
evaluating gen_event :notify(alarm, Event).

For example, to say that apparatus one is overheating you might call:
gen_event:notify(alarm, {hardware, 1, overheating}).

This alarm is then delivered to the alarm manager. However, the alarm manager will ignore the alarm
since no alarm handlers have been installed.

The following example shows how to write and install an alarm handler which sends all alarms to the
error logger:

-module(log_all_alarms_h).

-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).

-vsn(’$Revision: /main/release/2 $’).

-behaviour(gen_event) .

-export([init/1, handle_event/2, handle_info/2, handle_call/2, terminate/2]).

init(_) -> {ok, 1%}.

handle_event (Event, N) ->
gen_event:notify(error_logger, {alarm, N, Event}),
{ok, N + 1}.

handle_info(_, S) -> {ok, S}.

handle_call(_,S) -> {ok, ok, S}.

terminate(_, _) -> ok.

The next example shows an alarm handler which is only interested in alarms from hardwarel. This
handler counts the alarms and stops the hardware if 10 alarms have arrived:

-module (hardware_1_alarms_h).

-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/roma/1 $°).
-behaviour(gen_event) .

-export([init/1, handle_event/2, handle_call/2, terminate/2]).

init(_) -> {ok, 1%}.

handle_event ({hardware, 1, Whatl}, N) ->
N1 =N+ 1,
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if
N1 == 10 ->
%% .... code to stop hardware 1 ....
{ok, true};
true ->
{ok, N + 1}
end;

handle_event(_,State) ->
%% This catches all other events intended
%% for other handlers
{ok, Statel}.

handle_call(_,State) —-> {ok, ok, State}.

terminate(_, _) —> ok.
Both of these alarm handlers are installed in the alarm manager as follows:

gen_event:add_handler(alarm, log_all_alarms_h, []),
gen_event:add_handler(alarm, hardware_1_alarm_h, []),

Both handlers will run concurrently. A specialized handler can be added and removed at any time. Note
also the second clause of handle_event. Since our handler must succeed for any event we add a final
“catch all” clause and make sure it returns the original state.

Exit Notification

This section describes how to monitor a process and send a message to the error logger if the process
terminates with an abnormal exit.

-module(at_exit_log_error_h).
—-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/roma/1 $ ’).

-behaviour(gen_event).

-export([init/1, handle_event/2, handle_info/2, handle_call/2, terminate/2]).

init (L) ->
process_flag(trap_exit, true),
{ok, [1}.

handle_event ({monitor, Pid}, S) —>
link(Pid), {ok, S};
handle_event(_, S) —>
{ok, S}.

handle_info({’EXIT’, _, normall}, S) —>
{ok, S3};

handle_info({’EXIT’, Pid, Whyl}, S) ->
gen_event:notify(error_logger, {non_normal_exit, Pid, Whyl}),
{ok, S};
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handle_info(_, S) -> {ok, S}.
handle_call(_, S) -> {ok, ok, S}.
terminate(_, _) -> ok.

To start the handler we evaluate:

gen_event:start({local, at_exit}),
gen_event:add_handler(at_exit, at_exit_log_error_h, []).

A monitoring process is started with gen_event :notify(at_exit, {monitor, Pid}). where Pid
represents the process that we wish to monitor.

Exit Handler

This section describes how to trigger an event to occur when a process exits.

-module(at_exit_apply_h).
-copyright (°’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/roma/1 $ ’).

-behaviour(gen_event) .
-export([init/1, handle_event/2, handle_info/2, handle_call/2, terminate/2]).
init(_) ->

process_flag(trap_exit, true),

{ok, [1}.

handle_event ({at_exit_apply,Pid,MFA},S) -> {ok, [{Pid, MFA}|S]};
handle_event(_, S) -> {ok, S}.

handle_info({’EXIT’, Pid, _}, S) -> {ok, do_exit_actions(Pid,S,[]1)};
handle_info(_, S) -> {ok, S}.

handle_call(_, S) -> {ok, ok, S}.
terminate(_, _) -> [].

do_exit_actions(Pid, [{Pid, {M,F,A}}|T], L) ->
catch apply(M, F, A),
do_exit_actions(Pid, T, L);
do_exit_actions(Pid, [HIT], L) ->
do_exit_actions(Pid, T, [HIL]);
do_exit_actions(Pid, [], L) ->
L.

Install the handler as follows:

gen_event:start({local, at_exit}).
gen_event:add_handler(at_exit, at_exit_apply_h, [1).
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Set an event as follows:
gen_event:notify(at_exit, {at_exit, Pid, MFA})

Now, whenever Pid dies, MFA will be applied.

1.5.4 One or Many Handlers

The previous sections describe three different at_exit handlers. When designing a system we have to
decide whether to install three different handlers in the same manager, or to create three different
managers each with a single handler.

The following two examples produce the same effect.
Example 1:

gen_event:start({local, at_exit}).
gen_event:add_handler(at_exit, at_exit_apply_h, [1).
gen_event:add_handler(at_exit, at_exit_log_error_h, []).

gen_event:notify(at_exit, {monitor, Pid}).
gen_event:notify(at_exit, {at_exit_apply, Pid, MFA}).

Example 2:

gen_event:start({local, at_exit_apply}).
gen_event:add_handler(at_exit_apply, at_exit_apply_h, [1).
gen_event:start({local, at_exit_log_error}).
gen_event:add_handler(at_exit_log_error, at_exit_log_error_h, []).

gen_event:notify(at_exit_apply, {monitor, Pid}).
gen_event:notify(at_exit_log_error, {at_exit_apply, Pid, MFA}).

The first example creates one manager and installs two handlers. The second example creates two
managers each with a single handler.

The first strategy is more flexible and will allow more handlers to be added at runtime, but at the cost of
reducing concurrency in the system.

Plug and Play

This example assumes that a number of hardware drivers have been written which can automatically
detect when hardware is added or removed from a system. The following functions are used to add and
remove hardware from the system:

e gen event:notify(plug_and play, {added, Hw}). Use this function to add hardware.
e gen event:notify(plug_and play, {removed, Hw}). Use this function to remove hardware.

The handler plug_and_play_db_h maintains a database of all plug and play hardware which has been
added to the system:
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-module(plug_and_play_db_h).
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/roma/1 $’).

-behaviour(gen_event) .

-export([init/1, handle_event/2, handle_info/2, handle_call/2, terminate/2]).
init(_) -> {ok, [1}.

handle_event ({added, Hw}, S) -> {ok, [Hwl|S]};

handle_event ({removed, Hw}, S) -> {ok, lists:delete(Hw, S)I};

handle_event(_, S) -> {ok, S}.

handle_info(_, S) -> {ok, S}.

handle_call(what_hardware, State) -> {ok, State, State}.

terminate(_, _) -> ok.

This code just keeps a record of all hardware that has been started in a list. You can ask what hardware
has been installed by evaluating the following function, which returns a list of the hardware that the
plug and play manager knows about.

gen_event:call(plug_and_play, plug_and_play_db_h, what_hardware)

The following example shows a specialized handler which serves the purpose of doing something
special when a piece of hardware is added, and doing something different when this piece of hardware
is removed. The example is written for a sound card:

-module(plug_and_play_sound_h).
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $°).

-behaviour(gen_event) .
-export([init/1, handle_event/2, handle_info/2, handle_call/2, terminate/2]).
init(_) -> {ok, none}.

handle_event ({added, {soundcard, X}}, S) ->
Pid = soundcard:start(X),
{ok, [{X, Pid}Is]};
handle_event ({removed, {soundcard, X}}, S) ->
{ok, stop_card(X, S, [1)};
handle_event(_, S) —>
{ok, S}.

stop_card(X, [{X, Pid}IT], L) -> soundcard:stop(Pid), lists:reverse(L, T);

stop_card(X, [HIT], L) -> stop_card(X, T, [HIL]);
stop_card(X, [1, L) -> L.
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handle_info(_, S) -> {ok, S}.
handle_call(_,S) -> {ok, ok, SI}.

terminate(_,_) -> ok.

The plug-and-play manager can take care of both the plug-and-play database and the special processing
of sound cards, when they are added and removed.

gen_event:start({local, plug_and_play}).
gen_event:add_handler (plug_and_play, plug_and_play_db_h, []).
gen_event:add_handler (plug_and_play, plug_and_play_sound_h, []).

Trace Logger

This section describes a simple handler which can trace all “foo” events.

-module (trace_foo_h).
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/roma/1 $’).

-behaviour(gen_event) .
-export([init/1, handle_event/2, handle_info/2, handle_call/2, terminate/2]).
init(File) ->

{ok, Stream} = file:open(File, write),

{ok, Stream}.

handle_event ({foo, X}, F) -> io:format(F, "“w™n", [X]), {ok, F};
handle_event(_,S) -> {ok, S}.

handle_info(_, S) -> {ok, S}.
handle_call(_,S) -> {ok, ok, SI}.

terminate(_, S) -> file:close(S), ok.

If you start the tracer with the function gen_event:start({local, tracer}). and trace “foo” events
with the call gen_event:notify(tracer, {foo, ...})., nothing will happen.

If you install a trace handler by calling gen_event:add handler(tracer, trace foo h,
"/usr/local/filel") ., then all foo events will be written to the file “/usr/local/filel”.

Evaluating gen_event :remove handler (tracer, trace foo h). removes the handler and closes the
file at the same time .

Note:
This example supplies arguments to both init and terminate.
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1.5.5 Encapsulation

In all the examples shown in this section, gen_event function calls have been used instead of
encapsulating the different functions which access the event manager. In the following example, the
interface routines start/0, stop/0, added/1, removed/1 and which/0 are added to the code for
plug_and play.erl.

-module(plug_and_play).
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $°).

-behaviour(gen_event) .

-export([start/0, stop/0, added/1, removed/1, which/0]).
-export([init/1, handle_event/2, handle_call/2, terminate/2]).

start() ->
gen_event:start({local, plug_and_play}),
gen_event:add_handler (plug_and_play, plug_and_play, []).

stop() -> gen_event:stop(plug_and_play) .

added(Hw) -> gen_event:notify(plug_and_play, {added, Hwl}).

removed(Hw) -> gen_event:notify(plug_and_play, {removed, Hw}).

which() -> gen_event:call(plug_and_play, plug_and_play, what_hardware).

init(_) -> {ok, [1}.

handle_event ({added, Hw}, S) -> {state, [Hw|S]};
handle_event ({removed_hw, Hw}, S) -> {state, lists:delete(Hw, S)};
handle_event(_, S) -> {state, S}.

handle_call (what_hardware, State) -> {ok, State, Statel}.

terminate(_, _) -> ok.

This module should now be accessed through its interface routines only, and all details on how it was
implemented using gen_event can be omitted.

1.6 Finite State Machines

This section describes the general principles of the Finite State Machine (FSM) behaviour and shows
how to make FSM based applications. Refer to the Reference Manual stdlib, the module gen_fsm for
additional information about this behaviour.

Many applications can be modeled as FSMs and be programmed using the gen_fsm behaviour. Protocol
stacks are such an example.

A FSM can be described as a set of relations of the form:

State(S) x Event(E) -> Actions (A), State(S’)
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These relations are interpreted as meaning:

If we are in state S and the event E occurs, we should perform the actions A and make a
transition to the state S°.

If you program an FSM using the gen_fsm behaviour, then the state transition rules should be written as
a number of Erlang functions which conform to the following convention:

StateName (Event, StateData) ->
. code for actions here ...
{next_state, StateName’, StateData’}

The figure below is a simple FSM describing “Plain Ordinary Telephony Service” (POTS).
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Figure 1.15: FSM Example

The POTS FSM can be described by the following gen_fsm behaviour:

init(A) ->
{ok, idle, A}.

48 Design Principles



1.6: Finite State Machines

idle({off_hook, A}, A) —>

{next_state, getting_number, {A,[1}};
idle({seize, A}, B) when A /= B —>

{next_state, ringing b_side, {B, A});
idle(_, A) ->

{next_state, idle, A}.

getting_number ({digit, D}, {A, Seq}) —->
case ... of
.=

{next_state, ringing_a_side, {A, B}};
.

{next_state, getting number, {A, Seqll}};
.=

{next_state, wait_on_hook, A}
end;
getting_number ({on_hook, A}, {A,_}) ->
{next_state, idle, A}.

ringing_a_side({on_hook, A}, {A, B}) ->
{next_state, idle, A};

ringing_a_side({answered, B}, {A, B}) ->
{next_state, speech, {A,B}}.

ringing_b_side({on_hook, A}, {B, A}) ->
{next_state, idle, B};

ringing b_side({off_hook, B}, {B, A}) ->
{next_state, speech, {B, A}}.

speech({on_hook, A}, {A, B}) —>
{next_state, idle, A};

speech({on_hook, B}, {A, B}) —>
{next_state, wait_on_hook, A}.

wait_on_hook({on_hook, A}, A) —>
{next_state, idle, A}.

The code shown above only describes the state transitions. To add the actions, we might add the

following code:

getting_number ({digit, D}, {A, Seq}) ->
Seql = Seq ++ [D],
case number_analyser:analyse(Seql) of
{user, B} —>
hw:seize(B, A),
{next_state, ringing a_side, {A, B}};
get_more_digits —>
{next_state, getting_number, {A, Seql}};
invalid_number ->
hw:send_nasty_tone(A, bad_number_tone),
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{next_state, wait_on_hook, A}
end;
getting_number({on_hook, A}, {A,_}) ->
hw:stop_codec(4),
{next_state, idle, A}.

To complete this example, we have to package the FSM and the event generation routines in a
behaviour module, as shown in the following example, and then add the code for the FSM.

-module (pots) .
-behaviour(gen_£fsm) .
—export([...]).

start() -> gen_fsm:start(...)

stop() -> gen_fsm:send_all_state_event(...)

on_hook(A) -> gen_fsm:send_event(..., {off_hook, A}).

1.6.1 An FSM Example

The simple POTS example shown above does not include all required details. The following example is
complete and hopefully also self explanatory.

-module(testl_fsm).
-behaviour(gen_fsm) .

%% interface routines

%% start us up
start() -> gen_fsm:start({local, hello}, testl_fsm, [], [1).

%% send a hello -- this will end up in the FSM routines
hello() -> gen_fsm:send_event(hello, {hello, self()}).

%% send a stop this will end up in "handle_event"
stop() -> gen_fsm:send_all_state_event(hello, stopit).

%% -- interface end

%% This initialisation routine gets called
init(_) ->
{ok, idle, []}.

%% The state machine
idle({hello, A}, [1) —>
{next_state, one, A}.

one({hello, B}, A) —>

A ' {hello, B},
B ! {hello, A},
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{next_state, idle, [1}.

%% this handles events in *any* state
handle_event(stopit, AnyState, TheStateData) ->
{stop, i_shall_stop, [1}. %% tell it to stop

%% This is the finalisation routine - it gets called

%% When we have to stop

terminate(i_shall_stop, TheStateIwasIn, TheStateData) ->
ok.

1.6.2 Other Ways of Programming FSMs

This section has focused on the gen_fsm behaviour. A very large FSM, or an FSM which has a very
regular structure, can be built another way. It is possible to automatically generate the code which
describes the machine from the FSM specification.

1.7 Special Processes

This section describes how to write a process which understands and behaves like the generic processes,
for example gen_server and gen_fsm. In this context, behaves means:

e the process takes care of special system messages
e it creates a crash report if terminated abnormally.

All processes should be started in a supervision tree and they must respond to system messages when
started this way.

System messages are used to change code in a controlled way and they are synchronized by a dedicated
process which is called the release handler. Other typical system messages are requests for process
status, and requests to suspend or resume process execution and debug messages.

1.7.1 Starting a Process

The proc_1ib module should be used to start a process. This process wraps the initial function call with
a catch, and a crash report is generated if the process terminates with another reason than normal or
shutdown.

The function which starts a new process shall always return {ok,Pid} when successfully started, or
{error,Reason} in case of failure. One of the proc_lib:start_link or spawn_link functions must be
used when the process is included in a supervision tree . The following simple example illustrates this:

-module(test) .
-export([start/0,init/1]).

start () —->
case whereis(test_server) of
undefined ->
Pid = proc_lib:spawn_link(test, init, [self()]),
{ok, Pid};
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Pid ->
{error, {already_started, Pid}}

end.

init (Parent) ->

register(test_server, self( )),

%% here is the new process.

1.7.2 System Messages

System messages are received as: {system, From, Request}. The content and meaning of this message
are not interpreted by the receiving process module. When a system message has been received the
function sys:handle_system msg(Request, From, Parent, Mod, Deb, Misc) is called in order to
handle the request. The arguments of this function have the following meaning:

Request is any term

From is the process identity of the calling process
Parent is the parent process identity

Mod is the current module

Deb is a list of debug information

Misc is any term describing the internal state.

Note:

The handle_system msg/6 function never returns. It calls one of the functions system_continue/3
or system_terminate/4 to return to the original module. These functions are described in the
following list.

The Mod module must export the following functions, which may be called from the
sys:handle_system msg/6 function:

system_continue(Parent, Deb, Misc), where Misc is the internal state (i.e. loop data)
forwarded in the above call to handle_system.msg/6. This function resumes normal execution. .

system terminate (Reason, Parent, Deb, Misc). The Parent process has terminated with
Reason, or ordered us to terminate according to the shutdown protocol [page 24]. This provides a
chance to clean up before terminating.

system_code_change (Misc, 01dVsn, Module, Extra) -> {ok, NMisc} | Error. In this case,
our process has been ordered to perform a code change. Extra gives extra information about the
code change. 01dVsn is the old version of Module. The system_code_change function is executed
in the newly loaded version of the module. This function should return the internal state, possibly
modified in order to fulfil the needs of the new module.

Note:
The version is specified as an attribute -vsn(Vsn) . in the Erlang source code.
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According to the shutdown protocol [page 24], a {’EXIT’ ,Parent,Reason} message from Parent is an
order to terminate. Normally one shall terminate the process with the same Reason as Parent.

1.7.3 Other Messages

If the modules used to implement the process can change dynamically during runtime, there is one
more message a process must understand. An example is the gen_event processes, which add new
handlers at runtime.

This message is {get modules, From}. The reply to this message is {modules, Modules}, where
Modules is a list of the currently active modules in the process.

This message is used by the release handler to find which processes execute a certain module. A process
may then be suspended and ordered to perform a code change for one of its modules.

1.7.4 Debugging

The module sys implements some standardized debug and trace facilities. The Deb information passed
with the handle_system msg function can be manipulated, created and inspected using the following
functions:

e sys:debug options([Opt]) -> Deb. This function creates the Deb information. Opt is one of
trace | log | statistics | {log_-to_file, FileName} | {install, {Func, FuncState}}.

e sys:get_debug(Opt, Deb, Default) -> Value. This function fetches the current value of Opt
in Deb. Default is any term which describes the default value.

e sys:handle_debug(Deb, FormFunc, Info, Event) -> Deb. This function is called whenever
we want to handle an event as a debug event. It has the following arguments:

— FormFunc is one of {Module, Function} or a fun with arity 3. This function is called as
FormFunc (Dev,Event,Info), where Dev is used in the same manner as in
io:format (Dev,Format,Args). The FormFunc function is used to display the events.

— Info is any term passed to FormFunc.

— Event is {in, Msg} | {in, Msg, From} | {out, Msg, To} | term()
The following functions in the module sys can be used to activate or de-activate debugging, or to install
your own trigger/debug functions: log/2, log/3, trace/2 trace/3, statistics/2, statistics/3,

log_to_file/2,log_to_file/3, no_debug/1, no_debug/2, install/2, install/3, remove/2,
remove/3. Refer to the Reference Manual, stdlib, module sys for details.

An Example

The following example of a simple server illustrates how to use the special processes described.

-module(test).
-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $’).

-export([start/1, init/2, system_continue/3,
system_terminate/4, write_debug/3]).

start(Options) ->
case whereis(test_server) of
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undefined ->
Pid = proc_lib:spawn_link(test, init, [self(), Options]),
register(test_server, Pid),
{ok, Pid};
Pid ->
{error, {already_started, Pid}}
end.

init(Parent, Options) ->
process_flag(trap_exit, true),
Deb = sys:debug_options(Options),
loop([], Parent, Deb).

loop(State, Parent, Deb) ->
receive
{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent, test, Deb, State);
{’EXIT’, Parent, Reason} ->
cleanup(State),
exit (Reason);
{From, OurMsgs} ->
NewDeb = sys:handle_debug(Deb, {test, write_debug},
test_server, {in, OurMsgs, From}),
{Answer, NewState} = do_something(OurMsgs, State),
From ! {self(),Answer},
NewerDeb = sys:handle_debug(NewDeb, {test, write_debug},
test_server,
{out, {self(), Answer}, From}),
loop(NewState, Parent, NewerDeb);
What ->
NewDeb = sys:handle_debug(Deb, {test, write_debug},
test_server, {in, Whatl}),
loop(State, Parent, NewDeb)
end.

cleanup(State) ->
ok.

do_something(Msg, State) ->
%% Here we shall perform actions to handle the request.
{ok, State}.

%% Here are the sys call back functions

system_continue(Parent, Deb, State) ->
loop(State, Parent, Deb).

system_terminate(Reason, Parent, Deb, State) ->
cleanup(State),

exit (Reason).

write_debug(Dev, Event, Name) ->
io:format(Dev, "“p event = “p~n", [Name, Event]).
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This can be used as follows:

1> test:start([tracel]).
{ok,<0.21.0>}

2> test_server ! hej.

test_server event = {in,hej}

hej

3> test._server ! {self(), hopp}.
test_server event = {in,hopp,<0.18.0>}
{<0.18.0>,hopp}

test_server event = {out,{<0.21.0>,0k},<0.18.0>}
4> receive X -> X end.
{<0.21.0>,0k}

5> sys:trace(testserver, false).
ok

6> sys:log(test_server, true).

ok

7> test_server ! message_l.
message_1

8> test_server ! message. 2.
message_2

9> sys:log(test_server, print).
test_server event = {in,message 1}
test_server event = {in,message 2}
ok

1.8 Writing an Application

This chapter describes and examplifies the following tasks, which all make up the larger task of writing

an Erlang application:

e how to structure an application

e how to create a supervision tree

e how to use the common behaviours

e how to install event handlers

e how to configure an application

e how to write an application specification
e how to test an application

e how to write a distributed application.

1.8.1 Structuring the Application

Every application has an application master process that monitors the behaviour of the entire
application. It starts the application by calling the start function specified in the application
specification. This start function is assumed to start one process that is the main process of the
application. Normally, this process is a supervisor, but it could also be a supervisor bridge.

Most applications are structured as a supervision tree, where the main process is the root supervisor of
the application, and all other processes in the application are located somewhere under this supervisor.
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To illustrate this point, suppose that we want to build an application named hlr. We want this
application to contain the vshlr server introduced in Client-Server Principles [page 28], and a special
alarm event handler. This simple application will then have one supervisor and two worker as shown in
[llustration of HLR Application [page 56].

Figure 1.16: Illustration of HLR Application

1.8.2 Designing the Processes

Each application has an application callback module, with behaviour application. This module is
called when the application is started, and when it has stopped. The start function in this module
starts the topmost supervisor for the application.

All worker processes in the application should be written using the standard behaviours, such as
gen_server, gen_fsm Or gen_event. Alternatively, they should be special processes written with sys
and proc_lib. There are two main reasons for this:

e we want to be able to change code on all processes
e we want a fault tolerant system.
Simple, temporary processes can be written as normal Erlang processes without using a standard

behaviour. However, these processes must be started with proc_lib:spawn_link instead of the BIFs
spawn Or spawn_link. However, it will not be possible to change code in these processes.

Note:
Always use spawn_1ink, and never spawn. You might otherwise loose track of the process and
produce a zombie process.
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The next example illustrates the following scenario:

e we want a special alarm event handler installed during the lifetime of the hlr application
e this event handler is called hlr_alarm h and writes each alarm to a special file
e when starting hlr, we want to install this event handler in the already existing alarm handler.

To implement this, we place the call gen_event:add handler (alarm handler, hlr_alarmh,
FileName) in the initialisation function of the application.

The application callback module for h1r will then look as follows:

-module (hlr) .
-vsn(1).
-behaviour(application).

%% External exports
-export([start/2, stop/1]).

start(_, _) ->
case hlr_sup:start() of
{ok, Pid} —>
gen_event:add_handler(alarm_handler, hlr_alarm_h, []),
{ok, Pid, [1};
Error -> Error
end.

stop(_State) ->
gen_event:delete_handler(alarm_handler, hlr_alarm_h).

The supervisor will look as follows:

-module (hlr_sup) .
-vsn(1).
-behaviour (supervisor) .

%% External exports
-export([start/0]).

%% Internal exports
—export ([init/1]).

ot ===
%%% This module implements a supervisor for the HLR application.

oty ===
start() ->

supervisor:start_link({local, hlr_sup}, hlr_sup, []1).
init([1) ->

SupFlags = {one_for_one, 4, 3600},
Vshlr = {xx2, {vshlr_2, start_link, []},
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permanent, 2000, worker, [vshlr_2]},
{ok, {SupFlags, [Vshlr]}}.

Configuring the Application

In this section, the h1lr alarm event handler is used as an example of how to configure an application.
This handler is an instance of the gen_event behaviour. Its purpose is to write some alarms to a specified
file. The event handler should be configured to write to the filename specified in the alarm output.

The file h1r_alarms. cnf contains a list of all alarms which should be logged. This file looks as follows:

hlr_almost_full.
hlr_inconsistent.

This file is stored in the private directory priv of the application. It is found by calling
code:privdir(hlr).

Each application has an associated environment where configuration parameters are defined. This
environment is specified in the application specification, and is overridden by the system configuration
file. The value of the parameter hlr _alarm file is a string which specifies the file which logs all alarms.
The value of the parameter is found with the call application:get_env(hlr, hlr alarm file). The
hlr_alarm_h looks as follows:

-module(hlr_alarm_h).
-vsn(1).
-behaviour(gen_event) .

-export([init/1, handle_event/2, handle_info/2, terminate/2]).

-record(state, {fd, alarms}).

init (L) ->
CnfFile = filename:join(code:priv_dir(hlr), "hlr_alarm.cnf"),
Alarms = case file:consult(CnfFile) of
{ok, List} -> List;
_—>10
end,
case application:get_env(hlr, hlr_alarm_file) of
{ok, File} ->
{ok, Fd} = file:open(File, write),
{ok, #state{fd = Fd, alarms = Alarms}};
undefined ->
{error, {no_config, hlr_alarm_file}}
end.

handle_event ({set_alarm, Alarm}, State)->
case is_hlr_alarm(Alarm, State) of
true -> io:format(State#state.fd, "set alarm: “p~n", [Alarm]);
false -> ok
end,
{ok, Statel};
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handle_event({clear_alarm, AlarmId}, State)->
case is_hlr_alarm(Alarm, State) of
true -> io:format(State#state.fd, "clear alarm: “p~n", [AlarmId]);
false -> ok
end,
{ok, Statel}.

handle_info(_, State) —> {ok, Statel}.

terminate(_, State) ->
file:close(Statet#tstate.fd).

is_hlr_alarm({AlarmId, _}, #state{alarms = Alarms}) ->
lists:member (AlarmId, Alarms).

Application Specification

An application specification is required in order to test the hlr application. This specification is placed
in the file hlr.app, which looks as follows:

{application, hlr,
[{description, "VSHLR"},
{vsn, "1.0"},
{modules, [{vshlr_2, 1}, {hlr_alarm_h, 1}, {hlr_sup, 1}, {hlr, 1}13},
{registered, [hlr_sup, xx2]},
{applications, [kernel, stdlib, sasl]l},
{env, [{hlr_alarm_file, "hlr.alarms"}]},
{mod, {hlr, [1}}1}.

This specification says that if no hlr_alarm file is specified in the system configuration file, we use the
file h1r.alarms in the current directory as a default.

Testing the Application

The next task is to test the application. In doing so, we also want to specify another hlr alarm file. We
do this by writing a configuration file called sys.config:

[{hlr, [{hlr_alarm_file, "alarms.log"}]1}].

The following interaction shows how to test the application. The command to start the system is
followed by a command to start the application itself.

erl -pa . -config ./sys

5> application:start(hlr, temporary).

=PROGRESS REPORT==== 29-May-1996::14:04:05 ===
Supervisor: {local,hlr sup}
Started: [{pid,<0.54.0>},
{name, xx2},
{mfa,{vshlr 2,start link, [1}},
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{restart_type,permanent},
{shutdown, 2000},
{child_type,worker}]

ok

6> gen_event:which handlers(alarm handler).
[hlr_alarm_h,alarm_handler]

7> vshlr 2:i_am_at(martin, home).

ok

8> vshlr 2:find(martin).

{at,home}

9> application:stop(hlr).

ok

10> gen_event:which handlers(alarm handler).
[alarm handler]

1.8.3 Distributed Applications
This section describes and illustrates how distributed applications can be used.

The example illustrated in this section is shown in [page 60].

snmp/ snmp/
cmip cmip

ss/ ss/ Xx25 Xx25

Figure 1.17: Example of Distributed Application

This system has the following components and characteristics:

e there are two administrative CPUs, adm1 and adm?2
e there are six functional CPUs, fp1 - fp6 which are organized as shown in the illustration below
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e the two administrative CPUs are used for redundancy and we want to use both of them for
performance reasons

¢ there are five applications of different type:

1. snmp. This is a management application, which interfaces an operator. There must be only
one instance of this application in the system.

2. cmip. This is a management application, which interfaces an operator. There must be only
one instance of this application in the system.

3. ch. This is a call handling application. It needs the applications ss7 and x25. We want as
many instances of this application as possible, but only one per node.

4. ss7. This application interfaces ss7. We want as many instances of this application as
possible, but only one per node.

5. x25. This application interfaces x25. There must only be one instance of this application in
the system.

The administrative CPUs take care of the management applications snmp and cmip, and the functional
CPUs the call handling application ch. This application uses the interfaces ss7 and x25, which are
represented by corresponding applications. As shown in the figure, only fp1 and fp2 have an ss7
interface, and only £p3 and fp4 have an x25 interface.

This is summarized in the table below:

Application Instances | Nodes
snmp 1 adml, adm2
cmip 1 adml, adm2
ch N fpl - fp6
ss7 N fpl, fp2
x25 1 fp3, fp4

Table 1.1: Node Distribution for Example Application

The following sections describe how to specify this parameter for the different applications in the
example.

The SNMP and CMIP Applications

These applications can run on either adm1 or adm2. In normal operating mode, we want one application
to run at each of these processors, snmp on adm1, and cmip on adm2. If one of the nodes goes down, the
other node starts the application and both applications will run on one node. When the faulty node
restarts, it takes over its application from the other node. This arrangement is specified as follows:

{snmp, [adml, adm2]},
{cmip, [adm2, admi]}

In the boot script, snmp and cmip is started on both nodes.
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The CH Application

The ch application is a local application and is started in the boot script on each fp node. This call
handling application is run on each fp node and the application controller can therefore not view this
application as distributed.

The SS7 Application

This application also has several instances. For this reason, it cannot be distributed, but is local on nodes
fpl and £p2.

The X25 Application

This is an application with one instance only and it can run on either £p3 or £p4. Accordingly, it is a
distributed application. In normal operating mode, we do not care on which one of these two
processors the application runs, but if this node goes down, the other node must start the application.
There is no need to move the application back to the original node if it restarts. This requirement is
expressed as follows:

{x25, [{fp3, fp4l}l}

1.9 Error Logging

There is a system process with the registered name error_logger. This process receives all error
messages from the Erlang runtime system and error messages sent by the error reporting functions in
the module error_logger.

This section describes the following topics:

e error types

e error message handling

e the standard error logger

e customized error report handlers.

1.9.1 Types of Errors

Errors are divided into the following three categories:

e predicted, recoverable errors
e predicted, unrecoverable errors
e unpredicted errors.

The system designer has to decide if a process can recover from predicted errors.
The last two categories of errors cause an abnormal termination of the process.
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1.9.2 Error Message Handling

Errors can be reported by propagating an EXIT signal, by producing an error report, or both of these
methods. The following table summarizes how the three categories of errors can be reported.

Category EXIT reason Error report
Predicted and recoverable - yes
Predicted and unrecoverable yes yes

Not predicted yes -

Table 1.2: Error Message Reporting

Recoverable errors are not reported by EXIT signals because the process does not terminate.
Unpredicted errors are only reported by EXIT signals because the program does not take care of these
errors.

Note:
The recovery from predicted errors is interpreted as an internal process error recovery. A process
restart, issued by the layer above in the supervision tree, can also be used to recover from errors.

An unrecoverable, but predicted error can provide meaningful error descriptions, not only in an error
report but also through an informative EXIT reason. It is recommended that the EXIT reason is
composed as {Reason, {Mod,Fun,Args}} where:

e Reason is an informative error descriptor, for example an atom or {atom, Value}.

e {Mod,Fun,Args} is the Mod:Fun(Args) function where the error is detected.

1.9.3 The Standard Error Logger

The error_logger process receives and handles the following types of errors:

e all errors generated by the Erlang runtime system (the emulator)
e errors reported through the error_logger module interface functions error msg/1,
error msg/2, infomsg/1, infomsg/2, format/2, error_report/1, and info_report/1.
When the error_logger process receives an error, it is sent to the the error_logger on the node which
is the group leader process for the process which caused the error.

During system start-up, errors are kept in a buffer and they are also written unformatted to standard
out, because error message handling is determined by the start-up process. The standard error_logger
provides two possibilities:

e write to standard_out
e write to a specified file.

All buffered errors are written again when the intended handler is installed. Initially errors are written
in the format {error_logger,Time,Argl,Arg2}, where:
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e Time is a tuple which contains date and time information
e Argl and Arg?2 are the arguments given to a report function.

When a standard handler is installed, errors are written in the following format:

=ERROR REPORT=== Time ====
Formatted error

Formatted error error messages, which are reported through the format or error msg functions calls,
are produced from Format and Args in the same way as in the function io:format/2. If the error was
reported through the supplied error_report (Report) function, the Report argument is interpreted
and written as follows:

e [{Tag,Info}]l, where Tag and Info is any term. Each {Tag,Info} tuple is written on a separate
line:
Tag: Info
e Other is written as io_1ib:format ("~“p~n", [Other]).

It is also possible to use the info_report (Report) function to format Report as error_report/1 in the
above example, but with the heading:

=INFO REPORT=== Time ====

1.9.4 Adding A Customized Report Handler

It is possible to add customized error report handlers to the error_logger process. This may be
desirable in order to satisfy one of the following purposes:

e to perform additional processing of standard error messages

e to override the standard behaviour (the standard handlers must be deleted)

e to handle new types of error messages.

The following two functions are used to add and delete handlers:

e add report_handler to add a handler
e delete report_handler to delete a handler.

Note:

It is strongly recommended that the standard error reporting functions be used. Customized handlers
should only be added if they are really needed.

The error_logger is implemented with the gen_event behaviour [page 35]. This means that an event
callback module has to be implemented in order to add an associated error logger handler .

All handlers installed within the error_logger are notified about errors that are received by the
error_logger. This notification is done by calling handle_event/2 in each callback module. This
means that several actions can be performed when specific events occur. For example, the standard
error_logger behaviour can be accompanied by an SNMP trap which is triggered when a
pre-determined level of error messages have been received.
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New types of error message can be reported with the error_report/2 and info_report/2 functions.
Errors which are reported this way are ignored by the standard error logger handlers and would be lost
unless an associated handler has been installed.

The event generated by calling error_logger:error_report (Type, Report), and which has to be
handled by the added error report handler, is the term:
e {error report, Gleader, {Type, Pid, Report}} where:
— Gleader is the group leader process of the process which executes the function call.
— Type is a term which identifies the type of the error report.

— Pid is the process identity of the process that issued the error report. The Pid can be used to
determine at which node the report was generated.

— Report is a term which describes the error. This term must be recognized by the customized
error report handler.

Substitute info_report in place of error_report when calling the error_logger:info report (Type,
Report) function.

Note:
No standard error_logger messages are described here.

The following example illustrates how an error report handler for my_error type of error messages can
be implemented:

-module (my_error_logger_h).

-copyright (’Copyright (c) 1991-97 Ericsson Telecom AB’).
-vsn(’$Revision: /main/release/2 $°).
-behaviour(gen_event).

-export([start/0, stop/0, init/1, handle_event/2, handle_info/2,
handle_call/2, terminate/2, report/1]).

start() -> error_logger:add_report_handler(my_error_logger_h).
stop() -> error_logger:delete_report_handler (my_error_logger_h).

report (My_error) ->
error_logger:error_report (my_error, My_error) .

init (L) -> {ok, [1}.

handle_event ({error_report, Gleader, {my_error, Pid, My_error}}, State) ->
handle_my_error(Gleader, Pid, My_error),

{ok, State};
handle_event(_, State) -> 7% Ignore all other error messages.
{ok, Statel.

handle_info(_, State) —>
{ok, Statel}.
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handle_call(_, State) ->
{error, bad_query}.

terminate(_, _) ->
ok.

handle_my_error(Gleader, Pid, My_error) when node(Gleader) == node() ->
%% do handle the error
ok;

handle_my_error(_, _, _) -> % Ignore error if Gleader at another node.
ok.

The purpose of the error_logger is to log or write errors. If some other type of event handler is needed
it must be implemented as a customized process with another registered name. Refer to the section
Events [page 35] for further information.
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