Crypto Application

version 1.1

Typeset in IATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Crypto Release Notes
1.1 Crypto Release Notes
1.1.1 Crypto1.1.2
112 Cryptol.1.1
1.1.3 Cryptol.1 .
1.14 Cryptol.0 .

2 Crypto Reference Manual
2.1 crypto
2.2 crypto

Crypto Application

N PR R R R

Crypto Application

Chapter 1

Crypto Release Notes

The Crypto Application provides functions for computation of message digests, and encryption and
decryption functions.

1.1 Crypto Release Notes

This document describes the changes made to the Crypto application.

1.1.1 Crypto 1.1.2

Reported Fixed Bugs and Malfunctions

¢ In the manual page crypto(3) the function names md5_finish and sha_finish have been
changed to md5_final and sha _final to correctly document the implementation. Own Id:
OTP-3409

1.1.2 Crypto1l.1.1

Code replacement in runtime is supported. Upgrade can be done from from version 1.1 and downgrade
to version 1.1.

Improvements and New Features

e The driver part of the Crypto application has been updated to use the erl_driver header file.
Version 1.1.1 requires emulator version 4.9.1 or later.

1.1.3 Crypto 1.1

Reported Fixed Bugs and Malfunctions

e On Windows the crypto_drv was incorrectly linked to static run-time libraries instead of dynamic
ones. Own Id: OTP-3240

Crypto Application 1

Chapter 1: Crypto Release Notes

1.1.4 Crypto 1.0

New application.

2 Crypto Application

Crypto Reference Manual

Short Summaries

e Application crypto [page 5] — The Crypto Application
e Erlang Module crypto [page 6] — Crypto Functions

crypto

No functions are exported.

crypto

The following functions are exported:
e start() -> ok
[page 6] Start the crypto server.

e stop() -> ok
[page 6] Stop the crypto server.

e info() -> [atom()]
[page 6] Provide a list of available crypto functions.

e md5(Data) -> Digest
[page 6] Compute an MD5 message digest from Data

e md5_init() -> Context
[page 6] Creates an MD5 context

e md5_update(Context, Data) -> NewContext
[page 7] Update an MD5 Context with Data, and return a NewContext

e md5_final (Context) -> Digest
[page 7] Finish the update of an MD5 Context and return the computed MD5
message digest

e sha(Data) -> Digest
[page 7] Compute an SHA message digest from Data

e sha_init() -> Context
[page 7] Create an SHA context

e sha_update(Context, Data) -> NewContext
[page 7] Update an SHA context

e sha_final(Context) -> Digest
[page 7] Finish the update of an SHA context

Crypto Application

Crypto Reference Manual

md5_mac (Key, Data) -> Mac
[page 7] Compute an MD5 MAC message authentification code

md5 mac_96 (Key, Data) -> Mac
[page 8] Compute an MD5 MAC message authentification code

shamac(Key, Data) -> Mac
[page 8] Compute an MD5 MAC message authentification code

shamac_96(Key, Data) -> Mac
[page 8] Compute an MD5 MAC message authentification code

des_cbc_encrypt (Key, IVec, Text) -> Cipher
[page 8] Encrypt Text according to DES in CBC mode

des_cbc_decrypt (Key, IVec, Cipher) -> Text
[page 8] Decrypt Cipher according to DES in CBC mode

Crypto Application

Crypto Reference Manual crypto

crypto

Application

This chapter describes the application Crypto in OTP, which provides message digests
MD5 and SHA, and CBC-DES encryption and decryption.

The purpose of this application is to provide message digest and DES encryption for
SMNPV3.

Configuration

The following environment configuration parameters are defined for the Crypto
application. Refer to application(3) for more information about configuration
parameters.

debug = true | false <optional> Causes debug information to be written to
standard error or standard output. Default is false.

SEE ALSO

application(3)

Crypto Application 5

crypto Crypto Reference Manual

crypto

Erlang Module

This module provides a set of cryptographic functions.
References:

e md5: The MD5 Message Digest Algorithm (RFC 1321)

e sha: Secure Hash Standard (FIPS 180-1)

e hmac: Keyed-Hashing for Message Authentication (RFC 2104)
e des: Data Encryption Standard (FIPS 46-2)

ech, cbc, cfb, ofb: DES modes of operation (FIPS 81).

Types

byte() = 0 ... 255
ioelem() = byte() | binary() | iolist()
iolist() [ioelem()]

Exports

start() -> ok

Starts the crypto server.

stop() -> ok

Stops the crypto server.

info() -> [atom()]

Stops the crypto server.

md5(Data) -> Digest
Types:
e Data =iolist() | binary()
e Digest = binary()
Computes an MD5 message digest from Data, where the length of the digest is 128 bits
(16 bytes).
md5_init() -> Context

Types:

6 Crypto Application

Crypto Reference Manual crypto

e Context = binary()
Creates an MD5 context, to be used in subsequent calls to md5_update/2.

md5_update(Context, Data) -> NewContext
Types:

e Data = iolist() | binary()
e Context = NewContext = binary()

Updates an MD5 Context with Data, and returns a NewContext.

md5_final (Context) -> Digest
Types:
e Context = Digest = binary()
Finishes the update of an MD5 Context and returns the computed MD5 message digest.
sha(Data) -> Digest
Types:

e Data = iolist() | binary()
e Digest = binary()

Computes an SHA message digest from Data, where the length of the digest is 160 bits
(20 bytes).

sha_init() -> Context
Types:
e Context = binary()

Creates an SHA context, to be used in subsequent calls to sha_update/2.

sha_update(Context, Data) -> NewContext
Types:

e Data = iolist() | binary()
e Context = NewContext = binary()

Updates an SHA Context with Data, and returns a NewContext.
sha_final(Context) -> Digest
Types:
e Context = Digest = binary()
Finishes the update of an SHA Context and returns the computed SHA message digest.
md5_mac (Key, Data) -> Mac
Types:

e Key = Data = iolist() | binary()
e Mac = binary()

Crypto Application

crypto Crypto Reference Manual

Computes an MD5 MAC message authentification code from Key and Data, where the the
length of the Mac is 128 bits (16 bytes).

md5_mac_96 (Key, Data) -> Mac
Types:
e Key = Data = iolist() | binary()
e Mac = binary()

Computes an MD5 MAC message authentification code from Key and Data, where the
length of the Mac is 96 bits (12 bytes).

sha_mac(Key, Data) -> Mac
Types:
e Key = Data = iolist() | binary()
e Mac = binary()

Computes an SHA MAC message authentification code from Key and Data, where the
length of the Mac is 160 bits (20 bytes).

shamac_96(Key, Data) -> Mac
Types:
e Key = Data = iolist() | binary()
e Mac = binary()

Computes an SHA MAC message authentification code from Key and Data, where the
length of the Mac is 96 bits (12 bytes).

des_cbc_encrypt (Key, IVec, Text) -> Cipher
Types:
e Key = Text = iolist() | binary()
e |\Vec = Cipher = binary()

Encrypts Text according to DES in CBC mode. Text must be a multiple of 64 bits (8
bytes). Key is the DES key, and IVec is an arbitrary initializing vector. The lengths of
Key and IVec must be 64 bits (8 bytes).

des_cbc_decrypt (Key, IVec, Cipher) -> Text
Types:
e Key = Cipher = iolist() | binary()
e I\Vec = Text = binary()

Decrypts Cipher according to DES in CBC mode. Key is the DES key, and IVec is an
arbitrary initializing vector. Key and IVec must have the same values as those used when
encrypting. Cipher must be a multiple of 64 bits (8 bytes). The lengths of Key and IVec
must be 64 bits (8 bytes).

8 Crypto Application

Crypto Reference Manual crypto

DES in CBC mode

The Data Encryption Standard (DES) defines an algoritm for encrypting and decrypting
an 8 byte quantity using an 8 byte key (actually only 56 bits of the key is used).

When it comes to encrypting and decrypting blocks that are multiples of 8 bytes various
modes are defined (FIPS 81). One of those modes is the Cipher Block Chaining (CBC)
mode, where the encryption of an 8 byte segment depend not only of the contents of
the segment itself, but also on the result of encrypting the previous segment: the
encryption of the previous segment becomes the initializing vector of the encryption of
the current segment.

Thus the encryption of every segment depends on the encryption key (which is secret)
and the encryption of the previous segment, except the first segment which has to be
provided with a first initializing vector. That vector could be chosen at random, or be
counter of some kind. It does not have to be secret.

The following example is drawn from the FIPS 81 standard, where both the plain text
and the resulting cipher text is settled. We use the Erlang bitsyntax to define binary
literals. The following Erlang code fragment returns ‘true’.

Key = <<16#01,16#23,16#45,16#67,16#89, 16#ab, 16#cd, 16#ef>>,
IVec = <<16#12,16#34,16#56,16#78,16#90, 16#ab,16#cd,16#ef>>,
P = "Now is the time for all ",

C crypto:des_cbc_encrypt(X, I, P),

C == <<16#eb,16#c7,16#cd, 16#de,16#87,16#2b,16#f2,16#7c,
16#43,16#e9,16#34,16#00, 16#8c,16#38,16#9c, 16#0f,
16#68,16#37,16#88,16#49,16#9a,16#7c,16#05, 16#f6>>,

<<"Now is the time for all ">> ==

crypto:des_cbc_decrypt (Key,IVec,C).

The following is true for the DES CBC mode. For all decompositions P1 ++ P2 = P of
a plain text message P (where the length of all quantities are multiples of 8 bytes), the
encryption C of P is equal to C1 ++ C2, where C1 is obtained by encrypting P1 with Key
and the initializing vector IVec, and where C2 is obtained by encrypting P2 with Key
and the initializing vector 1(C1), where 1(B) denotes the last 8 bytes of the binary B.

Similarly, for all decompositions C1 ++ C2 = C of a cipher text message C (where the
length of all quantities are multiples of 8 bytes), the decryption P of C is equal to P1 ++
P2, where P1 is obtained by decrypting C1 with Key and the initializing vector IVec, and
where P2 is obtained by decrypting C2 with Key and the initializing vector 1 (C1), where
1(.) isas above.

Crypto Application 9

crypto Crypto Reference Manual

10 Crypto Application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

crypto md5_update/2
des_cbc_decrypt/3,8 crypto, 7
des_cbc_encrypt/3, 8
info/0, 6 sha/1
md5/1, 6 crypto , 7
md5_final/1,7
md5_init/0, 6 sha_final/1
md5_mac/2, 7 crypto, 7
md5_mac_96/2, 8 sha_init/0
md5_update/2, 7 crypto , 7
sha/1,7
sha_final/1,7 sha_mac/2
sha_init/0,7 crypto, 8
sha_mac/2,8 sha_mac_96/2
sha_mac_96/2, 8 crypto , 8
sha_update/2,7
start/0, 6 sha_update/2
stop/0, 6 crypto, 7

start/0

des_cbc_decrypt/3 crypto , 6
crypto, 8 stop/0

des_cbc_encrypt/3 crypto, 6
crypto, 8

info/0
crypto , 6

md5/1
crypto , 6

md5_final/1
crypto, 7

md5_init/0
crypto , 6

md5_mac/2
crypto , 7

md5_mac_96/2
crypto, 8

Crypto Application

12

Crypto Application

