WebTool

version 0.7

Typeset in IATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Chapter 1

WebTool User’s Guide

WebTool provides a easy way to use web based tools with Erlang/OTP. WebTool configures and starts
the webserver and the various web based tools.

1.1 WebTool User Guide

1.1.1 Introduction

WebTool provides a easy and efficient way to use web based tools with Erlang/OTP. WebTool
configures and starts the webserver and the various web based tools.

All tools that shall be managed by webtool must have a *.tool file in the current path. When WebToool
starts it searches the path for such files to find the configuration data for each web based tool.

1.1.2 Starting WebTool

Start WebTool by calling the function webtool:start/0 Or webtool:start/2. If webtool:start/0is
used to start WebTool the start page of WebTool is availible at the url: http://localhost:8888/ or
http://127.0.0.1:8888/. If webtool:start/0is used to start WebTool the directory containing the root
directory for the webserver, is assumed to be the directory: webtool-vsn/priv.

The start/2 function has three variants; use one of this if the default path for the priv directory, the
default port, ip-number or servername not can be used. See WebTool Reference Manual for more
information.

1.1.3 Using WebTool
Start WebTool and point the browser to the corresponding url. At the top of the page there is a frame

with a link named WebTool click on the link and a page where it is possible to start the available tools
will appear in the main frame. Select the tools to start and click on the button labeled Start.

WebTool 1

Chapter 1: WebTool User’s Guide

1.1.4 Add new Web based Tools

When WebTool starts it searches the current path for x.tool files, to get configuration data for the
different tools. The *.tool consists of a version tuple and a list of tuples, Today WebTool only uses the
config func tuple, which describes the function call WebTool must do to get the configuration data for
the tool.

{version,1.2}.

[{config_func{Module,Function,Argument}] .
e Module, The name of the module where the callback function is defined.
e Function, The name of the callback function.
e Argument, A list of the arguments to the callback function.

1.1.5 Start a Web Based Tool

Click on the link labeled WebTool in the topmost frame, select the checkbox for each tool to start and
click on the button labeled Start. A link to each tool that WebTool succeded to start will appear in the
topmost frame.

1.1.6 Stop a Web Based Tool

If a web based tool no longer is used, click on the link labeled WebTool in the topmost frame. Select Stop
Tools in the left frame. Select the checkbox for each tool to stop and click on the button labeled Stop.

1.1.7 Develop new Web based tools

Developing web based tools to Erlang is easy and straightforward. The use of WebTool minimize the
need of knowledge about the webserver in Erlang/OTP.

Design of tool

Web based Erlang tools is best built around the generic behaviours There are many reasons for this,
among other things it will be easier to develop a web based tool that holds a state and to maintain the
code.

Since the webserver can get queries from many users the module that get the incomming requests from
the different users it is best built around the generic behavior gen_server.

In most cases it is a good idea to seperate the code for creation of the html-pages and the code for the
logic. This incresase the readability of the code and the logic might be possible to reuse.

2 WebTool

1.1: WebTool User Guide

Erl Scheme

The built in webserver httpd has three ways to create dynamic web pages CGl, Eval Scheme and Erl
Scheme. All web based tools using the framework WebTool must use the Erl Scheme.

Erl Scheme is easy to use, it tries to resemble plain CGI. The big difference between Erl Scheme and
CGil is that Erl Scheme can only execute Erlang code. The code will furthermore be executed on the
same instance as the webserver.

Assume that there are a module mytool and a function startpage that shall be called via the Erl
Scheme. Assume also that the following line was in the configuration file that was used when starting
the webserver:

ErlScriptAlias /tools [mytooll]

Then the url will be:

http://myserver/tools/mytool/startpage

or in more general form:

http://servername:port/ErlScriptAlias/module/function

Functions that are called via the Erl Scheme must take two arguments, Environment and Input.

e Environment is a list of key/value tuples, see mod_esi for more information.
e Input is the part of the url after the ?, that is the part of the url containing name value pairs. If the
page was called with the url:
http://myserver/tools/mytool/startpage?inputl=one&input2=two

input will be the string "inputi=one&input2=two" in the module httpd there is a function
parse_query that parse the Input and returns a list of key/value tuples. See the INETS documentation
for a more in depht coverage of the Erl Scheme.

A small example

A Hello World example that use the Erl Scheme would look like this.

-module (helloworld) .
-export ([helloWorld/2]).

helloWorld(Env,Input)->
[header () ,html header () ,helloWorldBody() ,html end()].

header() ->
header ("text/html").

header (MimeType) ->
"Content-type: " ++ MimeType ++ "\r\n\r\n".

html header() ->
"<HTML>
<HEAD>
<TITLE>Hello world Example </TITLE>
</HEAD>\n".

helloWorldBody()->

WebTool 3

Chapter 1: WebTool User’s Guide

"<BODY>Hello World</BODY>".

html_end()->
"</HTML>".

To use this example with WebTool a *.tool file must be created and added to a directory in the current
path, and a callback function that returns the data needed by WebTool to configure the tool must be
added.

The callback function for this example will look like this:

configData()->

{testTool,
[{web_data,{"TestTool","/testtool/helloworld/helloWorld"}},
{alias,{erl_alias,"/testtool", ["helloworld"]}}]1}.

Create a *.tool file for the tool, the file must be in the current path. The file will look something like
this.

{version,1.2}.
[{helloworld,configData, [1}].

Start WebTool by calling the function webtool:start (). Point your browser to the url
http://127.0.0.1:8888/. Select WebTool in the topmost frame and start TestTool from the web page.
Click on the link labeled TestTool in the topmost frame.

4 WebTool

WebTool Reference Manual

Short Summaries

e Erlang Module webtool [page 6] — WebTool is a tool used to simplify the use of
web based tools with Erlang/OTP.

webtool

The following functions are exported:
e start()-> {ok,Pid}| {stop,Reason}
[page 6] Start WebTool.

e start(Path,Data)->{ok,Pid}|{stop,Reason}
[page 6] Start WebTool.

e stop()->void
[page 6] Stop WebTool.

e Module:Func(Data)-> {Name,WebData}|error
[page 7] Returns configuration data needed by WebTool to configure and start a
tool.

WebTool

webtool

WebTool Reference Manual

webtool

Erlang Module

WebTool makes it easy to use web based tools with Erlang/OTP. WebTool configure and
start the webserver httpd. If WebTool not has write access to it’s priv directory copy it
to another location and use webtool;start/2 to start WebTool.

Exports

start O-> {ok,Pid}| {stop,Reason}

Start WebTool with default, port 8888, ip-number 127.0.0.1, and server-name
localhost. The configuration data is assumed to be in the directory webtool-vsn/priv.

start (Path,Data)->{ok,Pid}|{stop,Reason}

stop()->void

e Path = String() | standard_path

e Data = [Port,Address,Name] | standard_Data | PortNumber
e Port = {“Port”,Portnr}

e Address = {“BindAddress”,Ipnumber}

e Name = {“ServerName”,ServerName}

e Portnr = Ipnumber = ServerName = String()

e PortNumber = integer()

e Pid = pid()

e Reason

Use this function to start WebTool if the default port, ip-number,servername or path to
the configuration data not can be used.

If Data is set to PortNumber, the ip-number and server- name will be retreived by
calling inet:gethostname/0 and inet:getaddr/2.

If Path is set to standard path the configuration data is assumed to be in the directory
webtool-vsn/priv. If Data is set to standard data the default port ip-number and
servername is used.

Stop WebTool and the tools started by WebTool.

WebTool

WebTool Reference Manual webtool

CALLBACK FUNCTIONS

The following callback function must be implemented by each web based tool that will
be used via WebTool. WebTool search the path for *.tool files to find the callback
function, see WebTool user’s Guide for more information.

Exports

Module:Func(Data)-> {Name,WebData}|error

Data = term

Name = atom()

WebData=[WebOptions]

WebOptions = LinkData | Alias | Start

LinkData = {web_data,{ ToolName,Url} }

Alias = {alias,{VirtualPath,RealPath}} | {alias{erl_alias,Path,[Modules]}
Start = {start,StartData}

ToolName = Url = VirtualPath = realPath = Path = string()

Modules = atom()

Startdata = AppData | ChildSpec | Func

AppData = {app,AppName}

ChildSpec = child_spec()

Func = {{StartMod, StartFunc, StartArg}, {StopMod, StopFunc, StopArg}}
AppName = StartMod = SartFunc = StopMod = StopFunc =atom()
StartArg = StopArg = [term()]

The function is called by WebTool at startup to retrieve the data needed to start and
configure the tool. LinkData is used by WebTool to create the link to the tool. Alias is
used to create the aliases needed by the webserver. Start is used to start and stop the
server.

for more information about child _spec see supervisor:start_child/3.

See Also

WebTool User’s Guide.

WebTool 7

webtool WebTool Reference Manual

8 WebTool

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

Module:Func/1
webtool , 7

start/0
webtool , 6

start/2
webtool , 6

stop/0
webtool , 6

webtool
Module:Func/1,7
start/0, 6
start/2, 6
stop/0, 6

WebTool

