PNGwriter Quick Reference Manual
Version 0.4.4 (7/ VIII / 2004)
© 2002, 2003, 2004 Paul Blackburn (individual61@users.sourceforge.net)
http://pngwriter.sourceforge.net/
Introduction
This is the PNGwriter Quick Reference Manual. It is a summary of the functions that
PNGwriter provides. For a more detailed description, see the pngwriter.h header file.

General Notes

It is important to remember that all functions that accept an argument of type
“const char *“ will also accept “char **“. This is done so you can have a changing
filename (to make many PNG images in series with a different name, for example), and to allow
you to use string type objects which can be easily turned into const char * (if
theString is an object of type string, then it can be used as a const char * by calling
theString.c _str()).

It is also important to remember that whenever a function has a colour coeffiecient as its
argument, that argument can be either an int from 0 to 65535 or a double from 0.0 to
1.0. You must make sure that you are calling the function with the type that you want.
Remember that 1 is an int, while 1.0 is a double, and will thus determine what version of
the function will be used. Do not make the mistake of calling for example plot(x, y, 0.0,
0.0, 65535), because there is no plot(int, int, double, double, int). Also,
please note that plot () and read () (and the functions that use them internally) are protected
against entering, for example, a colour coefficient that is over 65535 or over 1.0. Similarly,
they are protected against negative coefficients. read () will return 0 when called outside the
image range. This is actually useful as zero-padding should you need it.

Compilation
A typical compilation would look like this:

g++ my program.cc -o my program ~freetype-config --cflags"
-I/usr/local/include -L/usr/local/lib -lpng -lpngwriter -1z -lfreetype

If you did not compile PNGwriter with FreeType support, then remove the FreeType-related flags
and add -DNO_FREETYPE above.

Constructor

The constructor requires the width and the height of the image, the background colour for the
image and the filename of the file (a pointer or simply “myfile.png®). The default
constructor creates a PNGwriter instance that is 250250, white background, and filename
"out.png". Tip: The filename can be given as easily as: pngwriter mypng (300, 300,
0.0, "myfile.png"); Tip: If you are going to create a PNGwriter instance for reading in
a file that already exists, then width and height can be 1 pixel, and the size will be automatically
adjusted once you use readfromfile().

pngwriter();

pngwriter(const pngwriter &rhs);
pngwriter(int width, int height, int backgroundcolour, char * filename);

pngwriter (int width, int height, double backgroundcolour,
char * filename);

pngwriter (int width, int height, int backgroundcolour,
const char * filename);

pngwriter (int width, int height, double backgroundcolour,

const char * filename);

Assignment Operator
PNGwriter overloads the assignment operator =.
pngwriter & operator = (const pngwriter & rhs);

Plot

The pixels are numbered starting from (1, 1) and go to (width, height). If the colour coefficients
are of type int, they go from 0 to 65535. If they are of type double, they go from 0.0 to
1.0. Tip: To plot using red, then specify plot(x, y, 0.0, 0.0, 1.0). To make pink,
just add a constant value to all three coefficients, like this: plot(x, y, 0.4, 0.4, 1.0).
Tip: If nothing is being plotted to your PNG file, make sure that you remember to close() the
instance before your program is finished, and that the x and y position is actually within the
bounds of your image. If either is not, then PNGwriter will not complain-- it is up to you to check
for this! Tip: If you try to plot with a colour coefficient out of range, a maximum or minimum
coefficient will be assumed, according to the given coefficient. For example, attempting to plot
plot(x, y, 1.0,-0.2,3.7) will set the green coefficient to 0.0 and the red coefficient
t0l1.0.

void plot(int x, int y, int red, int green, int blue);

void plot(int x, int y, double red, double green, double blue);

Plot HSV
With this function a pixel at coordinates (x, y) can be set to the desired colour, but with the

colour coefficients given in the Hue, Saturation, Value colourspace.
void plotHSV(int x, int y, double hue, double saturation, double value);
void plotHSV(int x, int y, int hue, int saturation, int wvalue);

Read
With this function we find out what colour the pixel (x, y) is. If “colour is 1, it will
return the red coefficient, if it is set to 2, the green one, and if it set to 3, the blue colour
coefficient will be returned, and this returned value will be of type int and be between 0 and
65535.

int read(int x, int y, int colour);

Read, Average
Same as the above, only that the average of the three colour coefficients is returned.

int read(int x, int y);

dRead

Same as read (), but the returned value will be of type double and be between 0.0 and
1.0.

double dread(int x, int y, int colour);

dRead, Average

Same as the above, only that the average of the three colour coefficients is returned.

double dread(int x, int y);

Read HSV

With this function we find out what colour the pixel (x, y) is, but in the Hue, Saturation, Value
colourspace. If “colour” is 1, it will return the Hue coefficient, if it is set to 2, the Saturation
one, and if it set to 3, the Value colour coefficient will be returned, and this returned value will
be of type int and be between 0 and 65535.

int readHSV(int x, int y, int colour);

dRead HSV
Same as the above, but the returned value will be of type double and be between 0.0 and 1.0.

double dreadHSV(int x, int y, int colour);

Clear
The whole image is set to black.

void clear(void);

Close

Close the instance of the class, and write the image to disk.
void close(void);

Rename

To rename the file once an instance of pngwriter has been created. If the argument is a long
unsigned int, for example 77, the filename will be changed to 0000000077 .png

void pngwriter rename(char * newname);

void pngwriter rename(const char * newname);

void pngwriter rename(long unsigned int index);

Figures
These functions draw basic shapes. Available in both int and double versions.
void line(int xfrom, int yfrom,

int xto, int yto,

int red, int green, int blue);
void line(int xfrom, int yfrom,

int xto, int yto,

double red, double green,double blue);
void square(int xfrom, int yfrom,

int xto, int yto,

int red, int green, int blue);
void square(int xfrom, int yfrom,

int xto, int yto,
double red, double green, double blue);
void filledsquare(int xfrom, int yfrom,
int xto, int yto,
int red, int green,int blue);
void filledsquare(int xfrom, int yfrom,
int xto, int yto,
double red, double green,double blue);
void circle(int xcentre, int ycentre, int radius,
int red, int green, int blue);
void circle(int xcentre, int ycentre, int radius,
double red, double green, double blue);
void filledcircle(int xcentre, int ycentre, int radius,
int red, int green, int blue);
void filledcircle(int xcentre, int ycentre, int radius,
double red, double green, double blue);

Bezier Curve

(After Frenchman Pierre Bézier from Regie Renault) A collection of formulae for describing
curved lines and surfaces, first used in 1972 to model automobile surfaces. (from the The Free
On-line Dictionary of Computing) See http://www.moshplant.com/direct-or/bezier/ for one of
many available descriptions of bezier curves. There are four points used to define the curve: the
two endpoints of the curve are called the anchor points, while the other points, which define the
actual curvature, are called handles or control points. Moving the handles lets you modify the
shape of the curve.

void bezier(int startPtX, int startPty,
int startControlX, int startControly,
int endPtX, int endPtY,
int endControlX, int endControly,
double red, double green, double blue);

void bezier(int startPtX, int startPty,
int startControlX, int startControly,
int endPtX, int endPtY,
int endControlX, int endControly,
int red, int green, int blue);

Read From File

Open the existing PNG image, and copy it into this instance of the class. It is important to
mention that not all colour types and bit depths are supported. Try to make sure that your PNG
image is of bit depth 8 or 16.

void readfromfile(char * name);
void readfromfile(const char * name);

Get Height
When you open a PNG with readfromfile () you can find out its height with this function.
int getheight(void);

Get Width
When you open a PNG with readfromfile () you can find out its width with this function.
int getwidth(void);

Write PNG

Writes the PNG image to disk. You can still change the PNGwriter instance after this.
void write png(void);

Set Compression Level

Set the compression level that will be used for the image. -1 is default, 0 is none, 9 is best
compression.

void setcompressionlevel(int level);

Get Bit Depth

When you open a PNG with readfromfile() you can find out its bit depth with this
function.

int getbitdepth(void);

Get Colour Type
When you open a PNG with readfromfile () you can find out its colour type.
int getcolortype(void);

Set Gamma Coeff
Set the image’s gamma (file gamma) coefficient. The default value of 0 . 5 should be fine.
void setgamma(double gamma) ;

Get Gamma Coeff
Get the image’s gamma coefficient. This is experimental.
double getgamma(void);

Set Text
Sets the text information in the PNG header. If it is not called, the default is used.
void settext(char * title, char * author,
char * description, char * software);
void settext(const char * title, const char * author,
const char * description, const char * software);

Version Number
Returns the PNGwriter version number.
double version(void);

Plot Text

Uses the Freetype2 library to plot text in the image. face path is the file path to a TrueType
font file (. tt£) (FreeType2 can also handle other types). fontsize specifices the approximate
height of the rendered font in pixels. x_start and y_start specify the placement of the
lower, left corner of the text string. angle is the text angle in radians. text is the text to be

rendered. The colour coordinates can be doubles from 0.0 to 1.0 or ints from 0 to 65535.
Tip: PNGwriter installs a few fonts in /usr/local/share/pngwriter/fonts to get you
started. Tip: Remember to add -DNO_FREETYPE fo your compilation flags if PNGwriter was
compiled without FreeType support.
void plot text(char * face path, int fontsize,

int x start, int y start, double angle,

char * text,

double red, double green, double blue);
void plot text(char * face path, int fontsize,

int x start, int y start, double angle,

char * text,

int red, int green, int blue);

Plot UTF-8 Text

Same as the above, but the text to be plotted is encoded in UTF-8. Why would you want this? To
be able to plot all characters available in a large TrueType font, for example: for rendering
Japenese, Chinese and other languages not restricted to the standard 128 character ASCII
space. Tip: The quickest way to get a string into UTF-8 is to write it in an adequate text editor,
and save it as a file in UTF-8 encoding, which can then be read in in binary mode.

void plot text utf8(char * face path, int fontsize,
int x start, int y start, double angle,
char * text,
double red, double green, double blue);
void plot text utf8(char * face path, int fontsize,
int x start, int y start, double angle,
char * text,
int red, int green, int blue);

Bilinear Interpolation of Image

Given a floating point coordinate (x from 0.0 to width, y from 0.0 to height), this function will
return the interpolated colour intensity specified by colour (where red = 1, green = 2, blue = 3).
bilinear interpolate read() returns an int from 0 to 65535, and
bilinear interpolate dread() returns a double from 0.0 to 1.0. Tip: Especially
useful for enlarging an image.

int bilinear interpolation read(double x, double y, int colour);

double bilinear interpolation dread(double x, double y, int colour);

Plot Blend
Plots the colour given by red, green blue, but blended with the existing pixel value at that
position. opacity is a double that goes from 0.0 to 1.0. For example, 0.0 will not change
the pixel at all, and 1.0 will plot the given colour. Anything in between will be a blend of both
pixel levels.
void plot blend(int x, int y, double opacity,

int red, int green, int blue);
void plot blend(int x, int y, double opacity,

double red, double green, double blue);

Invert

Inverts the image in RGB colourspace.
void invert(void);

Resize Image

Resizes the PNGwriter instance. Note: All image data is set to black (this is
a resizing, not a scaling, of the image).

void resize(int width, int height);

Boundary Fill
All pixels adjacent to the start pixel will be filled with the fill colour, until the boundary colour is
encountered. For example, calling boundary £ill () with the boundary colour set to red, on
a pixel somewhere inside a red circle, will fill the entire circle with the desired fill colour. If, on
the other hand, the circle is not the boundary colour, the rest of the image will be filled. The
colour components are either doubles from 0.0t 1.0 or ints from 0 to 65535.
void boundary fill(int xstart, int ystart,
double boundary red, double boundary green, double boundary blue,
double fill red, double fill green, double fill blue);
void boundary fill(int xstart, int ystart,
int boundary red, int boundary green, int boundary blue,
int fill red, int fill green, int fill blue) ;

Flood Fill

All pixels adjacent to the start pixel will be filled with the fill colour, if they are the same colour
as the start pixel. For example, calling £lood £il1l() somewhere in the interior of a solid
blue rectangle will colour the entire rectangle the fill colour. The colour components are either
doubles from 0.0 to 1.0 orintsfrom 0 to 65535.

void flood fill(int xstart, int ystart,

double fill red, double fill green, double fill blue);
void flood fill(int xstart, int ystart,

int fill red, int fill green, int fill blue) ;

Polygon

This function takes an array of integer values containing the coordinates of the vertexes of a
polygon. Note that if you want a closed polygon, you must repeat the first point’s coordinates for
the last point. It also requires the number of points contained in the array. For example, if you
wish to plot a triangle, the array will contain 6 elements, and the number of points is 3. Be very
careful about this; if you specify the wrong number of points, your program will either segfault of
produce points at nonsensical coordinates. The colour components are either doubles from
0.0701.0or ints from 0 to 65535.

void polygon(int * points, int number of points,
double red, double green, double blue);
void polygon(int * points, int number of points,
int red, int green, int blue);

Plot CMYK

Plot a point in the Cyan, Magenta, Yellow, Black colourspace. Please note that this colourspace

is lossy, i.e. it cannot reproduce all colours on screen that RGB can. The difference, however, is
barely noticeable. The algorithm used is a standard one. The colour components are either
doubles from 0.0 to 1.0 or ints from 0 to 65535.

void plotCMYK(int x, int y,
double cyan, double magenta, double yellow, double black);
void plotCMYK(int x, int y,

int cyan, int magenta, int yellow, int black);

Read CMYK, double version
Get a pixel in the Cyan, Magenta, Yellow, Black colourspace. if ‘colour’ is 1, the Cyan
component will be returned as a double from 0.0 to 1.0. If ‘colour is 2, the Magenta colour

component will be returned, and so on, up to 4.
double dreadCMYK(int x, int y, int colour);

Read CMYK
Same as the above, but the colour components returned are an int from 0 to 65535.
int readCMYK(int x, int y, int colour);

