Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 1.0.6
1.9
April 2002

Michaél Van Canneyt

Contents

| The Pascal language 12
1 Pascal Tokens 13
1.1 Symbols. 13
1.2 CommeNnts e 13
1.3 Reservedwords e e 14
Turbo Pascalreservedwords. 14
Delphireservedwords. e 15

Free Pascalreservedwords. 15
Modifiers e e 15

1.4 Identifiers. 15
1.5 Numbers e 16
1.6 Labels. e 16
1.7 Characterstrings. e e e e 17
2 Constants 18
2.1 Ordinaryconstants. 18
22 Typedconstants e 18
2.3 Resourcestrings. i 19
3 Types 21
3.1 Basetypes e 21
Ordinaltypes 22
INtegers. 22
Booleantypes 23
Enumerationtypes. 23
Subrangetypes 25

Realtypes. 26

3.2 Charactertypes o e 26
Char. . . . e 26
SHINGS. . . o 26
Shortstrings. 27

CONTENTS

ANSISIIINGS o 27
Constantstrings 28
PChar e 29
3.3 Structured TYPES. o 30
AMTAYS . o o 30
Recordtypes o o 31
Settypes . . . e e 34
Filetypes o e 35
3.4 POINters. e 35
3.5 Proceduraltypes. 37
Objects 39
4.1 Declaration. e e e e 39
4.2 Fields A0
4.3 Constructors and destructors. Lo 41
4.4 Methods. 42
4.5 Methodinvocation. 42
Staticmethods. 43

Virtual methods. 43
Abstractmethods 44

4.6 Visibility 45
Classes 46
5.1 Classdefinitions. 46
5.2 Classinstantiation. 47
5.3 Methods. 48
INVocatioN 48
Virtual methods. e 48
Messagemethods 48

5.4 Properties. e e 50
Expressions 54
6.1 Expressionsyntax. e 55
6.2 Functioncalls. e 56
6.3 Setconstructors e 57
6.4 Valuetypecasts. e 58
6.5 The@operator e 59
6.6 Operators. 59
Arithmeticoperators 59
Logical operators. o e e e e 60
Booleanoperators e 60

CONTENTS

SNG OPerators. o e 61
Setoperators. e 61
Relational operators 62

7 Statements 63
7.1 Simplestatements. 63
ASSIQNMENtS e e e 63
Procedure statements. 64
Gotostatements e 65

7.2 Structured statements. 65
Compound statements. 66
TheCase statement e 66
Thelf..then..else Statement 67
TheFor..to/downto..do statement. 68
TheRepeat..until Statement. L. 69
TheWhile.do statement. 70
TheWith statement. 70
Exception Statements. e 72

7.3 Assemblerstatements. 72
8 Using functions and procedures 74
8.1 Proceduredeclaration. 74
8.2 Functiondeclaration. 75
8.3 Parameterlists. e 75
Value parameters. e e e e e 75
Variable parameters 76
Constant parameters. 76
Openarray parameters e 77
Array of const. e 77

8.4 Functionoverloading e 79
8.5 Forward defined functions. L 80
8.6 Externalfunctions 81
8.7 Assemblerfunctions. L 82
8.8 Modifiers e 82
alias 82
cdecl. e 83
BXPOIT . o o e e 84
iNline e 84
INTEITUPL . . . o L 84
pascal 84
popStack. 84

CONTENTS

public 84
FEQISTEr 85
SAVEIEQIStErS e e e e 85
safecall 85

stdeall 85

8.9 Unsupported Turbo Pascal modifiers 85

9 Operator overloading 87
9.1 Introduction. e e e e 87
9.2 Operatordeclarations. e 87
9.3 AsSigNMeNntoperators. e e 88
9.4 Arithmeticoperators. e 90
9.5 Comparision operatar. e 91
10 Programs, units, blocks 93
10.1 Programs. o o o e e e e e 93
10.2 Units. . . o o 94
10.3 Blocks. 95
10.4 SCOPE. . . o o o 96
Block scope. 96

Record sCope. o e e e e 97

Class SCOPEe. o o e 97
UNitSCOPE. o o 97

10.5 Libraries. e e e 98
11 Exceptions 99
11.1 Theraisestatement. e 99
11.2 Thetry..exceptstatement 100
11.3 Thetry...finally statement. 101
11.4 Exception handlingnesting. 102
11.5 Exceptionclasses 102
12 Using assembler 103
12.1 Assembler statements. 103
12.2 Assembler proceduresandfunctions 103

Il Reference : The System unit 104
13 The system unit 105
13.1 Types, Constantsand Variables 105
TYPES . . o e e e e 105

CONTENTS

Constants. 108
Variables e e 111
13.2 Functionlistby category. e 112
Filehandling e 112
Memory management e 113
Mathematical routines. e 114
Stringhandling 114
Operating System functions. oL 115
Miscellaneous functions. 115
13.3 Functionsand Procedures e 115
ADS e 115
Addr . . e 116
Append . .. 116
Arctan L e e e 117
ASSIgN . . . e 117
Assigned e e 118
BinStr e 118
Blockread e 119
Blockwrite. e 120
Break e 120
Chdir . . e 121
Chr . e 121
Close 122
CompareByte. e e 122
CompareChar. 123
CompareDWord 124
CompareWord e e e e 125
Concat. e 126
Continue. e 127
COopY. « o o 128
COS . o 128
CSEeg. . . e e e 129
Dec . . . e 129
Delete e 130
DISPOSE o e e 130
DSeg . . . e 131
BOf. . 131
Boln e 132
Erase 133
EXIt . . 133

CONTENTS

EXP . . e 134
Filepos. . . . o e 134
Filesize 135
FillByte e 136
Fillchar e 137
FillDWord e e 137
Fillword 138
Flush . . . o e 138
Frac e 139
Freemem e 139
Getdir e 140
Getmem. e 140
GetMemoryManager. 140
Halt . . . e 140
HexStr. . . o 141
Hi e 141
High . . 142
INC . . . e 143
IndexByte e e 144
IndexChar. e 144
IndexDWord. e 145
IndexWord e 146
INsert 146
IsMemoryManagerSet. 147
Nt . 147
[Oresult e 148
Length. e 149
0 149
o 150
Longdmp 150
LOW . o 151
Lowercase. e 151
Mark. . . e 151
Maxavail e 152
Memavail e 153
MKAIr . . e 153
Move . . . e 153
MoveCharO e e 154
NEW . . 154
Odd 155

CONTENTS

OfS. o o 155
Ord . . e e e 155
Paramcount. 156
Paramstr. 156
Pi 157
POS. . e 157
Power e 158
Pred . . . o e 158
PIr . 158
Random. e 159
Randomize e 159
Read. e 160
Readln. e 160
Real2Double e 161
Release 162
Rename. 162
Reset e 162
Rewrite e 163
Rmdir . . . e 164
Round. e 164
RuUnerror. e 165
Seek. . .. e 165
SeekEOf. 166
SeekEoIn e 166
SeO . . e 167
SetMemoryManager. 167
Setdmp . . . e 167
Setlength. e 168
SetTextBuf 169
SN L e 170
SizeOf. . . 170
SPIr . e e e 170
SOr. .« 171
SOt . . 171
SSEQ. . . e 172
S 172
StringOfChar 172
SUCC. . . o e 173
SWaAP . . . e e e e e 173
TIUNC . . . 174

CONTENTS

Truncate. L e e 174
UPCase e 175

Val . . 175
WrHte . . o 176
WriteLn e 176

14 The OBJPAS unit 178
141 TYPES . . o o o e 178
14.2 Functionsand Procedures 178
AssignFile. e e e 178
CloseFile e 179
Freemem L 179
Getmem. e e e 180
GetResourceStringCurrentValue o 180
GetResourceStringDefaultValue L L. 181
GetResourceStringHash. o 181
GetResourceStringName e 182
Hash. e 182
Paramstr. 183
ResetResourceTables. 183
ResourceStringCount e 184
ResourceStringTableCount., 184
SetResourceStrings e e 184
SetResourceStringValue.o 185

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

8.1

Predefined ordinal types 22
Predefined integertypes 23
Integer type mapping for 32-bit processors. L. 23
Integer type mapping for 64-bit processors. 24
Booleantypes 24
Supported Realtypes 26
PChar pointer arithmetic 30
Set Manipulationoperators. 35
Precedenceofoperatars 54
Binary arithmeticoperators. 60
Unary arithmeticoperators o e 60
Logical operators. 60
Booleanoperators. 61
Setoperators. e e e e 61
Relational operators. e 62
Allowed C constructsinFreePascal. 64
Unsupported modifiers 86

LIST OF TABLES

About this guide

This document describes all constants, types, variables, functions and procedures as they are de-
clared in the system unit. Furthermore, it describes all pascal constructs supported by Free Pascal,
and lists all supported data types. It does not, however, give a detailed explanation of the pascal lan-

guage. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal implementation.

Notations

Throughout this document, we will refer to functions, types and variablestypnwriter font.
Functions and procedures have their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.
Description What does the procedure exactly do ?
Errors What errors can occur.

See Also Cross references to other related functions/commands.
The cross-references come in two flavours:

e References to other functions in this manual. In the printed copy, a number will appear after
this reference. It refers to the page where this function is explained. In the on-line help pages,
this is a hyperlink, which can be clicked to jump to the declaration.

e References to Unix manual pages. (For linux and unix related things only) they are printed in
typewriter font, and the number after it is the Unix manual section.

Syntax diagrams

All elements of the pascal language are explained in syntax diagrams. Syntax diagrams are like flow
charts. Reading a syntax diagram means getting from the left side to the right side, following the

arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this

means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to each
other, then the diagram is ended.

Syntactical elements are written like this

»— syntactical elements are like this
Keywords which must be typed exactly as in the diagram:

=»— keywords are like this

When something can be repeated, there is an arrow around it:

»—f this can be repeated ‘ «

When there are different possibilities, they are listed in columns:
»—r First possibility
Second possibility —I

Note, that one of the possibilities can be empty:

10

LIST OF TABLES

F First possibility
Second possibility

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

11

Part |

The Pascal language

12

Chapter 1

Pascal Tokens

In this chapter we describe all the pascal reserved words, as well as the various ways to denote strings,
numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special ASCIl symbols in a Pascal source file.

[
Recognised symbols

-»— letter A...Z‘J
a.z

»— digit — 0...9
»— hex digit 0...9
\EA...Fj
a...f

The following characters have a special meaning:

+-*/=<>[].,():"@{}$#
and the following character pairs too:
<= >= = 4= = *= = (%) (L)
When used in a range specifier, the character pairis equivalent to the left square bracKet
Likewise, the character paiy is equivalent to the right square bracketWhen used for comment

delimiters, the character pdifr is equivalent to the left brade and the character paiy is equiva-
lent to the right bracg. These character pairs retain their normal meaning in string expressions.

1.2 Comments

Free Pascal supports the use of nested comments. The following constructs are valid comments:

13

1.3. RESERVED WORDS

(* This is an old style comment *)
{ This is a Turbo Pascal comment }
/I This is a Delphi comment. All is ignored till the end of the line.

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }

(* comment 1 // Comment 2 *)
/I comment 1 (* comment 2 *)
/I comment 1 { comment 2 }

The last two commentsiustbe on one line. The following two will give errors:

/I Valid comment { No longer valid comment !!

}

and

/I Valid comment (* No longer valid comment !!

")

The compiler will react with a’invalid character’ error when it encounters such constructs, regardless
of the-So switch.

1.3 Reserved words

Reserved words are part of the Pascal language, and cannot be redefined. They will be denoted as
this throughout the syntax diagrams. Reserved words can be typed regardless of case, i.e. Pascal is
case insensitive. We make a distinction between Turbo Pascal and Delphi reserved words, since with
the-So switch, only the Turbo Pascal reserved words are recognised, and the Delphi ones can be
redefined. By default, Free Pascal recognises the Delphi reserved words.

Turbo Pascal reserved words

The following keywords exist in Turbo Pascal mode

absolute else nil shl
and end not shr
array file object string
asm for of then
begin function on to
break goto operator type
case if or unit
const implementation packed until
constructor in procedure uses
continue inherited program var
destructor inline record while
div interface repeat with
do label self xor
downto mod set

14

Remark:

1.4. IDENTIFIERS

Delphi reserved words

The Delphi (Il) reserved words are the same as the pascal ones, plus the following ones:

as finalization library try
class finally on

except initialization property

exports is raise

Free Pascal reserved words

On top of the Turbo Pascal and Delphi reserved words, Free Pascal also considers the following as
reserved words:

dispose false true
exit new
Modifiers

The following is a list of all modifiers. Contrary to Delphi, Free Pascal doesn't allow the programmer
to redefine these modifiers.

absolute external pascal register
abstract far popstack saveregisters
alias forward private stdcall
assembler index protected virtual

cdecl name public write

default near published

export override read

Predefined types such Bgte , Boolean and constants such asaxint arenotreserved words.
They are identifiers, declared in the system unit. This means that these types can be redefined in other
units. The programmer is, however, not encouraged to do this, as it will cause a lot of confusion.

1.4 Identifiers

Identifiers denote constants, types, variables, procedures and functions, units, and programs. All
names of things that are defined are identifiers. An identifier consists of 255 significant characters
(letters, digits and the underscore character), from which the first must be an alphanumeric character,
or an underscore | The following diagram gives the basic syntax for identifiers.

[
Identifiers

-— identifier ﬁtter
_ J etter
digit

15

1.5. NUMBERS

1.5 Numbers

Numbers are denoted in decimal notation. Real (or decimal) numbers are written using engeneering
notation (e.g.0.314E1). Free Pascal supports hexadecimal format the same way as Turbo Pascal
does. To specify a constant value in hexadecimal format, prepend it with a dollai$3igiHus,

the hexadecima&FF equals 255 decimal. In addition to the support for hexadecimal notation, Free
Pascal also supports binary notation. A binary number can be specified by preceding it with a percent
sign @9. Thus,255 can be specified in binary notation #11111111. The following diagrams

show the syntax for numbers.

[
Numbers

»— hex digit sequence \f hex digit

»— bin digit sequence 1 >
1l

»— digit sequence T digit

»— unsigned integer digit sequence
{ $ — hex digit sequence ﬂ
% — bin digit sequence

R

»— unsigned real — digit sequence

L . —digit sequence J L scale factor J

»— scale factor T E m digit sequence
e sign

»— unsigned number T unsigned real
unsigned integer —I

»— signed number ﬁ unsigned number
sign

1.6 Labels

Labels can be digit sequences or identifiers.

[
Label

»— label digit sequence
|dent|f|er

Remark: Note thattheSg switch must be specified before labels can be used. By default, Free Pascal doesn't
supportabel andgoto statements.

16

1.7. CHARACTER STRINGS

1.7 Character strings

A character string (or string for short) is a sequence of zero or more characters from the ASCII
character set, enclosed by single quotes, and on 1 line of the program source. A character set with
nothing between the quotes () is an empty string.

[
Character strings

»— character string quoted string ‘J
[control string

»— quoted string -’ T string character T ’

»— string character T Any character except’ or CR |

»— control string T # — unsigned integer |

17

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both normal and typed constants.

2.1 Ordinary constants

Ordinary constants declarations are not different from the Turbo Pascal or Delphi implementation.

[
Constant declaration

»— constant declaration T identifier — = — expression — ; ‘

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operatorssuchas -, *, /, not, and, or, div(), mod(), ord(), chr(), sizeof

can be used, however. For more information on expressions, see chgmpiges54. Only constants

of the following types can be declare@rdinal types , Real types , Char, andString

The following are all valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a = 2 { Ordinal (Integer) type constant. }
c =4, { Character type constant. }
s = 'This is a constant string’; {String type constant.}
s = chr(32)
Is = SizeOf(Longint);

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := 'some other string’;

2.2 Typed constants

Typed constants serve to provide a program with initialised variables. Contrary to ordinary constants,
they may be assigned to at run-time. The difference with normal variables is that their value is

18

2.3. RESOURCE STRINGS

initialised when the program starts, whereas normal variables must be initialised explicitly.

[
Typed constant declaration

»— typed constant declaration »f identifier — : — type — = — typed constant — ; 7—~

»— typed constant constant
address constant —

array constant —|

record constant —

procedural constant —

Given the declaration:

Const
S : String = 'This is a typed constant string’;

The following is a valid assignment:
S := 'Result : '+Func;
WhereFunc is a function that returns &tring . Typed constants are often used to initialize arrays
and records. For arrays, the initial elements must be specified, surrounded by round brackets, and

separated by commas. The number of elements must be exactly the same as the number of elements
in the declaration of the type. As an example:

Const
tt : array [1..3] of string[20] = (ikke’, 'gij’, ’hij’);
ti : array [1..3] of Longint = (1,2,3);

For constant records, each element of the record should be specified, in tHedadm Value
separated by commas, and surrounded by round brackets. As an example:

Type
Point = record
X,Y : Real
end;
Const

Origin : Point = (X:0.0; Y:0.0);
The order of the fields in a constant record needs to be the same as in the type declaration, otherwise

a compile-time error will occur.

2.3 Resource strings

A special kind of constant declaration part is tResourestring part. This part is like &onst
section, but it only allows to declare constant of type string. This part is only availableetphi
or objfpc mode.

The following is an example of a resourcestring definition:

19

2.3. RESOURCE STRINGS

Resourcestring

FileMenu = '&File...’;
EditMenu '&Edit...";

All string constants defined in the resourcestring section are stored in special tables, allowing to
manipulate the values of the strings at runtime with some special mechanisms.

Semantically, the strings are like constants; Values can not be assigned to them, except through the
special mechanisms in the objpas unit. However, they can be used in assignments or expressions
as normal constants. The main use of the resourcestring section is to provide an easy means of
internationalization.

More on the subject of resourcestrings can be found ifPthhgrammers guideand in the chapter on
theobjpas later in this manual.

20

file:../prog/prog.html

Chapter 3

Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some
extra types from Delphi. The programmer can declare his own types, which is in essence defining an
identifier that can be used to denote this custom type when declaring variables further in the source
code.

[
Type declaration

»— type declaration — identifier — = — type —;

There are 7 major type classes :

[
Types

»— type simple type
string type

structured type
pointer type

procedural type
type identifier

The last classtype identifier, is just a means to give another name to a type. This presents a way
to make types platform independent, by only using these types, and then defining these types for
each platform individually. The programmer that uses these units doesn’t have to worry about type
size and so on. It also allows to use shortcut names for fully qualified type names. e.g. define
system.longint asOlongint and then redefinngint

3.1 Basetypes

The base or simple types of Free Pascal are the Delphi types. We will discuss each separate.

[
Simple types

21

3.1. BASE TYPES

»— simple type —- ordinal type
1 real type J

»— real type — real type identifier -

Ordinal types

With the exception of Real types, all base types are ordinal types. Ordinal types have the following
characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to start counting them
one bye one, in a specified order. This property allows the operation of functibms @st3),
Ord (155), Dec (129 on ordinal types to be defined.

2. Ordinal values have a smallest possible value. Trying to applf?tad (158 function on the
smallest possible value will generate a range check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to applystiee (173 function on the
largest possible value will generate a range check error if range checking is enabled.

Integers

A list of pre-defined ordinal types is presented in taBld) The integer types, and their ranges and

Table 3.1: Predefined ordinal types

Name
Integer
Shortint
Smallint
Longint
Int64
Byte
Word
Cardinal
QWord
Boolean
ByteBool
LongBool
Char

sizes, that are predefined in Free Pascal are listed in tat@e (

Theinteger type maps to the smallint type in the default Free Pascal mode. It maps to either
a longint or int64 in either Delphi or ObjFPC mode. This is summarized in t&b® for 32-bit
processors (such as Intel 80x86, Motorola 680x0, PowerPC 32-bit, SPARC v7, MIPS32), and in
table @.4) for 64-bit processors (such as Alpha AXP, SPARC v9 or later, Intel Itanium, MIPS64).

Free Pascal does automatic type conversion in expressions where different kinds of integer types are
used.

22

Remark:

3.1. BASE TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0..255 1
Shortint -128 .. 127 1
Smallint -32768 .. 32767 2
Integer either smallint, longint or int64 size 2,4 0r8
Word 0.. 65535 2
Longint -2147483648 .. 2147483647 4
Cardinal 0..4294967295 4
Int64 -9223372036854775808 .. 9223372036854775807 8
QWord 0..18446744073709551615 8

Table 3.3:Integer type mapping for 32-bit processors

Compiler mode Range Size in bytes
<default> -32768 .. 32767 2
tp -32768 .. 32767 2
Delphi -2147483648 .. 2147483647 4
ObjFPC -2147483648 .. 2147483647 4

Boolean types

Free Pascal supports tBeolean type, with its two pre-defined possible valuesie andFalse .

It also supports th8yteBool , WordBool andLongBool types. These are the only two values
that can be assigned toBoolean type. Of course, any expression that resolves bmalean
value, can also be assigned to a boolean type. AssuBinge of typeBoolean , the following
are valid assignments:

B := True;
B := False;
B = 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

In Free Pascal, boolean expressions are always evaluated in such a way that when the result is known,
the rest of the expression will no longer be evaluated (Called short-cut evaluation). In the following
example, the functioRunc will never be called, which may have strange side-effects.

B
A

False;
B and Func;

HereFunc is a function which returns Boolean type.

Enumeration types
Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free

Pascal allows also a C-style extension of the enumeration type, where a value is assigned to a partic-
ular element of the enumeration list.

23

3.1. BASE TYPES

Table 3.4:Integer type mapping for 64-bit processors

Compiler mode Range Size in bytes
<default> -32768 .. 32767 2

tp -32768 .. 32767 2
Delphi -9223372036854775808 .. 9223372036854775807 8
ObjFPC -9223372036854775808 .. 9223372036854775807 8

Table 3.5: Boolean types

Name Size Ord(True)
Boolean 1 1
ByteBool 1 Any nonzero value
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value
[
Enumerated types
=»— enumerated type — (— identifier list)
[assigned enum list —I

-— identifier list ﬁntifier

»— assigned enum list 7 identifier — := — expression

(see chapte6, page54 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

The C style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40,fortyone);

As a result, the ordinal number éfrty is 40, and not3, as it would be when thé= 40’

wasn't present. The ordinal value fifrtyone s then 41, and no4, as it would be when the
assignment wasn’t present. After an assignment in an enumerated definition the compiler adds 1 to
the assigned value to assign to the next enumerated value. When specifying such an enumeration
type, it is important to keep in mind that the enumerated elements should be kept in ascending order.
The following will produce a compiler error:

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

24

3.1. BASE TYPES

Itis necessary to kedprty andthirty in the correct order. When using enumeration types it is
important to keep the following points in mind:

1. ThePred andSucc functions cannot be used on this kind of enumeration types. Trying to
do this anyhow will result in a compiler error.

2. Enumeration types stored using a default size. This behaviour can be changed {#BPARKENUM
n} compiler directive, which tells the compiler the minimal number of bytes to be used for
enumeration types. For instance

Type
{$PACKENUM 4}

LargeEnum = (BigOne, BigTwo, BigThree);
{$PACKENUM 1}

SmallEnum = (one, two, three);
Var S : SmallEnum;

L : LargeEnum;

begin

WriteLn ('Small enum : ’,SizeOf(S));

WriteLn ('Large enum : ’,SizeOf(L));
end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in tHferogrammers guidén the compiler directives section.

Subrange types

A subrange type is a range of values from an ordinal typehtsttype). To define a subrange type,
one must specify it’s limiting values: the highest and lowest value of the type.

[
Subrange types

»— subrange type — constant — .. — constant

Some of the predefinddteger types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767,
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

Subrange types of enumeration types can also be defined:

Type
Days = (monday,tuesday,wednesday,thursday,friday,
saturday,sunday);
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

25

file:../prog/prog.html

3.2. CHARACTER TYPES

Real types

Free Pascal uses the math coprocessor (or emulation) for all its floating-point calculations. The Real
native type is processor dependant, but it is either Single or Double. Only the IEEE floating point
types are supported, and these depend on the target processor and emulation options. The true Turbo
Pascal compatible types are listed in taldes. The Comptype is, in effect, a 64-bit integer and

Table 3.6: Supported Real types

Type Range Significant digits Size
Real platform dependant ??? 4o0r8
Single 1.5E-45 .. 3.4E38 7-8 4
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4951 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8

is not available on all target platforms. To get more information on the supported types for each
platform, refer to thé>rogrammers guide

3.2 Character types

Char

Free Pascal supports the typbar . A Char is exactly 1 byte in size, and contains one character.

A character constant can be specified by enclosing the character in single quotes, as follows : 'a’ or
'Al are both character constants. A character can also be specified by its ASCII value, by preceding
the ASCII value with the number symbol (#). For example specifyi6§ would be the same as

'A’ . Also, the caret charactef) can be used in combination with a letter to specify a character
with ASCII value less than 27. Thu$s equals#7 (G is the seventh letter in the alphabet.) When

the single quote character must be represented, it should be typed two times successiv&ly, thus
represents the single quote character.

Strings

Free Pascal supports tBé&ring type as itis defined in Turbo Pascal (A sequence of characters with
a specified length) and it supports ansistrings as in Delphi. To declare a variable as a string, use the
following type specification:

[
ShortString

»— string type — string
L [— unsigned integer —] J

The meaning of a string declaration statement is interpreted differently depending {&Hhe
switch. The above declaration can declare an ansistrng or a short string.

Whatever the actual type, ansistrings and short strings can be used interchangeably. The compiler
always takes care of the necessary type conversions. Note, however, that the result of an expression
that contains ansistrings and short strings will always be an ansistring.

26

file:../prog/prog.html

3.2. CHARACTER TYPES

Short strings
A string declaration declares a short string in the following cases:

1. If the switch is off:{$H-} , the string declaration will always be a short string declaration.

2. If the switch is on{$H+} , and there is a length specifier, the declaration is a short string
declaration.

The predefined typ8hortString is defined as a string of length 255:
ShortString = String[255];

If the size of the string is not specified55 is taken as a default. The length of the string can be
obtained with thed_ength (149 standard runtime routine. For example in

{$H-}

Type
NameString = String[10];
StreetString = String;

NameString can contain a maximum of 10 characters. WiStesetString can contain up to
255 characters.

Ansistrings

If the {$H} switch is on, then a string definition that doesn’t contain a length specifier, will be
regarded as an ansistring.

Ansistrings are strings that have no length limit. They are reference counted. Internally, an ansistring
is treated as a pointer.

If the string is empty’(), then the pointer is nil. If the string is not empty, then the pointer points to
a structure in heap memory.

It is possible to typecast an ansistring to a pchar. If the string is empty (so the pointer is nil) then the
compiler makes sure that the typecasted pchar will point to a null byte. AnsiStrings can be unlimited
in length.

Assigning one ansistring to another doesn’t involve moving the actual string. A statement
S2:=81,;
results in the reference count®2 being decreased by one, The referece coutlak increased by

one, and finally51 (as a pointer) is copied 182. This is a significant speed-up in the code.

If a reference count reaches zero, then the memory occupied by the string is deallocated automati-
cally, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just memory for a pointer,
not more. This pointer is guaranteed to be nil, meaning that the string is initially empty. This is true
for local, global or part of a structure (arrays, records or objects).

This does introduce an overhead. For instance, declaring

Var
A : Array[1..100000] of string;

27

3.2. CHARACTER TYPES

Will copy 100,000 timesiil into A. WhenA goes out of scope, then the 100,000 strings will be
dereferenced one by one. All this happens invisibly for the programmer, but when considering per-
formance issues, this is important.

Memory will be allocated only when the string is assigned a value. If the string goes out of scope,
then it is automatically dereferenced.

If a value is assigned to a character of a string that has a reference count greater than 1, such as in the
following statements:

S:=T; { reference count for S and T is now 2 }
Slll=@;

then a copy of the string is created before the assignment. This is knaapg®n-writesemantics.
TheLength (149 function must be used to get the length of an ansistring.

To set the length of an ansistring, tBetLength (168) function must be used. Constant ansistrings
have a reference count of -1 and are treated specially.

Ansistrings are converted to short strings by the compiler if needed, this means that the use of an-
sistrings and short strings can be mixed without problems.

Ansistrings can be typecastedR€har or Pointer types:

Var P : Pointer;
PC : PChar;
S : AnsiString;

begin
S :='This is an ansistring’;
PC:=Pchar(S);
P :=Pointer(S);

There is a difference between the two typecasts. When an empty ansistring is typecasted to a pointer,
the pointer wil beNil . If an empty ansistring is typecasted t&®&har, then the result will be a
pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to consider the result
of such a typecast as read-only, i.e. suitable for passing to a procedure that needs a constant pchar
argument.

It is therefore NOT advisable to typecast one of the following:

1. expressions.

2. strings that have reference count larger than 0. (call uniquestring to ensure a string has refer-
ence count 1)

Constant strings

To specify a constant string, it must be enclosed in single-quotes, jugttaratype, only now more
than one character is allowed. Given tBds of typeString , the following are valid assignments:

"This is a string.’;

'One’+’, Two'+', Three’;

'This isn”t difficult !’;

'This is a weird character : '#145' !’;

nuvunnm

28

3.2. CHARACTER TYPES

As can be seen, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be specified by their ASCII value. The example shows also that two
strings can be added. The resulting string is just the concatenation of the first with the second string,
without spaces in between them. Strings can not be substracted, however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{$H} switch.

PChar

Free Pascal supports the Delphi implementation oPtibar type.PChar is defined as a pointer to
aChar type, but allows additional operations. TREhar type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i.e. a variable of tyéar is a pointer that points

to an array of typeChar , which is ended by a null-charactéf(). Free Pascal supports initializing

of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;

var p : PChar;

begin
P := 'This is a null-terminated string.’;
WriteLn (P);

end.

Results in the same as

program two;
const P : PChar = 'This is a null-terminated string.’
begin
WriteLn (P);
end.

These examples also show that it is possible to witige contentf the string to a file of type
Text . Thestringsunit contains procedures and functions that manipulat®@igar type as in the
standard C library. Since it is equivalent to a pointer to a par variable, it is also possible to do
the following:

Program three;
Var S : String[30];
P : PChar;
begin
S := 'This is a null-terminated string.'#0;
P = @S[1];
WriteLn (P);
end.

This will have the same result as the previous two examples. Null-terminated strings cannot be added
as normal Pascal strings. If tWRChar strings mustt be concatenated; the functions from the unit
stringsmust be used.

However, it is possible to do some pointer arithmetic. The operatand- can be used to do
operations of?Char pointers. In table3.7), P andQare of typePChar, andl is of typeLongint

29

file:../strings/strings.html
file:../strings/strings.html

3.3. STRUCTURED TYPES

Table 3.7:PChar pointer arithmetic

Operation Result

P+ 1 Addsl to the address pointed to By

I + P Adds| to the address pointed to By

P -1 Substract$ from the address pointed to By
P-Q Returns, as an integer, the distance between 2 addresses

(or the number of characters betwdeandQ)

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured types can be
nested to unlimited levels.

[
Structured Types

»— structured type —

array type
—— record type
class type
- class reference type —
set type
L file type

Unlike Delphi, Free Pascal does not support the keyviRacked for all structured types, as can be
seen in the syntax diagram. It will be mentioned when a type supporgatieed keyword. In the
following, each of the possible structured types is discussed.

Arrays

Free Pascal supports arrays as in Turbo Pascal, multi-dimensional arrays and packed arrays are also
supported:

[
Array types

»— array type ﬁ array — [ordinal type —] —of —type ———»«
packed L , J

The following is a valid array declaration:

Type
RealArray = Array [1..100] of Real;

As in Turbo Pascal, if the array component type is in itself an array, it is possible to combine the two
arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[1..100] of Array[1..3] of Real;

30

3.3. STRUCTURED TYPES

is equivalent to the following declaration:

Type
APoints = array[1..100,1..3] of Real;

The functiondHigh (142 andLow (151) return the high and low bounds of the leftmost index type
of the array. In the above case, this would be 100 and 1.

Record types

Free Pascal supports fixed records and records with variant parts. The syntax diagram for a record
type is

[
Record types

=»— record type ﬁ record end
packed L field list J

»— field list 77 fixed fields
variant part J L ; —J

Lfixed fields —; J

»— fixed fields 7 identifier list — : — type |

»— variant part — case ﬁ ordinal type identifier — of — variant :l—m
identifier —: 1 ;

»— Vvariant — constant —, = ()
T T Thedist
field list

So the following are valid record types declarations:

Type
Point = Record
X,Y,Z . Real
end;

RPoint = Record
Case Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

BetterRPoint = Record
Case UsePolar : Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

The variant part must be last in the record. The optional identifier in the case statement serves to
access the tag field value, which otherwise would be invisible to the programmer. It can be used to
see which variant is active at a certain time. In effect, it introduces a new field in the record.

Remark: Itis possible to nest variant parts, as in:

31

3.3. STRUCTURED TYPES

Type
MyRec = Record
X : Longint;
Case hyte of
2 : (Y : Longint;

case byte of
3 : (Z : Longint);
)i

end;

The size of a record is the sum of the sizes of its fields, each size of a field is rounded up to a power of
two. If the record contains a variant part, the size of the variant part is the size of the biggest variant,
plus the size of the tag field tygéan identifier was declared for.it Here also, the size of each

part is first rounded up to two. So in the above examBleeOf (170 would return 24 foPoint ,

24 for RPoint and 26 forBetterRPoint . For MyRec, the value would be 12. If a typed file

with records, produced by a Turbo Pascal program, must be read, then chances are that attempting
to read that file correctly will fail. The reason for this is that by default, elements of a record are
aligned at 2-byte boundaries, for performance reasons. This default behaviour can be changed with
the {$PackRecords n} switch. Possible values for are 1, 2, 4, 16 oDefault . This switch

tells the compiler to align elements of a record or object or class that have size largemtharbyte
boundaries. Elements that have size smaller or equalrthere aligned on natural boundaries, i.e.

to the first power of two that is larger than or equal to the size of the record element. The keyword
Default selects the default value for the platform that the code is compiled for (currently, this is 2
on all platforms) Take a look at the following program:

Program PackRecordsDemo;
type
{$PackRecords 2}
Trecl = Record

A : byte;
B : Word;
end;

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word,
end;

{$PackRecords 2}
Trec3 = Record
A,B : byte;
end;

{$PackRecords 1}
Trec4 = Record
A,B : Byte;
end;
{$PackRecords 4}
Trec5 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;

end;

32

3.3. STRUCTURED TYPES

{$PackRecords 8}
Trec6 = Record

A : Byte;

B : Array[l1..3] of byte;
C : byte;

end,;

{$PackRecords 4}
Trec7 = Record

A : Byte;
B : Array[1..7] of byte;
C : byte;

end;

{$PackRecords 8}
Trec8 = Record

A : Byte;

B : Array[1..7] of byte;
C : byte;

end;

Var recl . Trecl,

rec2 . Trec2;

rec3 . TRec3;

rec4d . TRec4;

rec5 : Trech;

recé . TRec6;

rec7 . TRec7,

rec8 . TRec8;
begin

Write ('Size Trecl :

Writeln (* Offset B :

Write ('Size Trec2 :

Writeln (* Offset B :

Write ('Size Trec3 :

Writeln (Offset B :

Write ('Size Trecd :

Writeln (* Offset B :

Write ('Size Trec5 :
Writeln (* Offset B
' Offset C :
Write ('Size Trec6 :
Writeln (* Offset B :
' Offset C :
Write ('Size Trec?
Writeln (* Offset B :

Write ('Size Trec8
Writeln (* Offset B :

end.
The output of this program will be :

Size Trecl : 4 Offset B :

" Offset C

' Offset C

', SizeOf(Trecl));
",Longint(@recl.B)-Longint(@recl));
', SizeOf(Trec2));
",Longint(@rec2.B)-Longint(@rec2));
', SizeOf(Trec3));
",Longint(@rec3.B)-Longint(@rec3));
', SizeOf(Trec4));
",Longint(@rec4.B)-Longint(@rec4));
', SizeOf(Trecb));
. ",Longint(@rec5.B)-Longint(@rec5),
",Longint(@rec5.C)-Longint(@rec5));
', SizeOf(Trec6));
",Longint(@rec6.B)-Longint(@rec6),
",Longint(@rec6.C)-Longint(@rec6));
: ", SizeOf(Trec7));
",Longint(@rec7.B)-Longint(@rec7),

. ’,Longint(@rec7.C)-Longint(@rec7));
. ", SizeOf(Trec8));
",Longint(@rec8.B)-Longint(@rec8),

. ",Longint(@rec8.C)-Longint(@rec8));

2

33

3.3. STRUCTURED TYPES

Size Trec2 : 3 Offset B : 1
Size Trec3 : 2 Offset B : 1
Size Trec4 : 2 Offset B : 1
Size Trech : 8 Offset B : 4 Offset C : 7
Size Trec6 : 8 Offset B : 4 Offset C : 7

Size Trec7 : 12 Offset B : 4 Offset C : 11
Size Trec8 : 16 Offset B : 8 Offset C : 15

And this is as expected. [frecl , sinceB has size 2, it is aligned on a 2 byte boundary, thus leaving

an empty byte betweef andB, and making the total size 4. [frec2 , B is aligned on a 1-byte
boundary, right afteA, hence, the total size of the record is 3. Foec3 , the sizes oA,B are 1,

and hence they are aligned on 1 byte boundaries. The same is titreddr . ForTrec5 , since the

size of B — 3 —is smaller than 8 will be on a 4-byte boundary, as this is the first power of two that

is larger than it’s size. The same holds Tec6 . ForTrec7 , Bis aligned on a 4 byte boundary,

since it's size — 7 — is larger than 4. However;lirec8 , it is aligned on a 8-byte boundary, since 8

is the first power of two that is greater than 7, thus making the total size of the record 16. Free Pascal
supports also the 'packed record’, this is a record where all the elements are byte-aligned. Thus the
two following declarations are equivalent:

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}
and

Trec2 = Packed Record

A : Byte;
B : Word;
end;

Note the{$PackRecords 2} after the first declaration !

Set types
Free Pascal supports the set types as in Turbo Pascal. The prototype of a set declaration is:

[
Set Types

=»— set type — set — of — ordinal type

Each of the elements &etType must be of typdargetType . TargetType can be any ordinal
type with a range betwedhand255. A set can contain maximall255 elements. The following
are valid set declaration:

Type
Junk = Set of Char;

Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
WorkDays : Set of days;

34

3.4. POINTERS

Given this set declarations, the following assignment is legal:
WorkDays := [Mon, Tue, Wed, Thu, Fri];

The operators and functions for manipulations of sets are listed in tale (Two sets can be

Table 3.8: Set Manipulation operators

Operation Operator
Union +
Difference -
Intersection *

Add element include
Delete element exclude

compared with the> and= operators, but not (yet) with theand> operators. The compiler stores
small sets (less than 32 elements) in a Longint, if the type range allows it. This allows for faster
processing and decreases program size. Otherwise, sets are stored in 32 bytes.

File types

File types are types that store a sequence of some base type, which can be any type except another file
type. It can contain (in principle) an infinite number of elements. File types are used commonly to
store data on disk. Nothing prevents the programmer, however, from writing a file driver that stores
it's data in memory. Here is the type declaration for a file type:

[
File types

»— file type —file
L of —type J

If no type identifier is given, then the file is an untyped file; it can be considered as equivalent to a file
of bytes. Untyped files require special commands to act on thenB(eekread (119, Blockwrite
(120). The following declaration declares a file of records:

Type
Point = Record
X,Y,Z : real;
end;

PointFile = File of Point;

Internally, files are represented by thkeRec record, which is declared in the DOS unit.

A special file type is th@ext file type, represented by thieextRec record. A file of typeText
uses special input-output routines.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an address in memory,
where the data of another variable may be stored.

35

Remark:

3.4. POINTERS

[
Pointer types

»— pointer type — " — type identifier >

As can be seen from this diagram, pointers are typed, which means that they point to a particular kind
of data. The type of this data must be known at compile time. Dereferencing the pointer (denoted by
adding” after the variable name) behaves then like a variable. This variable has the type declared
in the pointer declaration, and the variable is stored in the address that is pointed to by the pointer
variable. Consider the following example:

Program pointers;

type
Buffer = String[255];
BufPtr = ~Buffer;
Var B : Buffer;
BP : BufPtr;
PP : Pointer;
etc..

In this exampleBP is a pointer toa Buffer type; whileB is a variable of typeBuffer . B takes
256 bytes memory, an8lP only takes 4 bytes of memory (enough to keep an adress in memory).

Free Pascal treats pointers much the same way as C does. This means that a pointer to some type
can be treated as being an array of this type. The pointer then points to the zeroeth element of this
array. Thus the following pointer declaration
Var p : “Longint;

Can be considered equivalent to the following array declaration:

Var p : array[O..Infinity] of Longint;

The difference is that the former declaration allocates memory for the pointer only (not for the array),
and the second declaration allocates memory for the entire array. If the former is used, the memory
must be allocated manually, using t8etmem (140) function. The referencB” is then the same

asp[0] . The following program illustrates this maybe more clear:

program PointerArray;

var i : Longint;
p : “Longint;
pp : array[0..100] of Longint;
begin
for i := 0 to 100 do pp[i] := i; { Fill array }
p = @ppl0]; { Let p point to pp }
for i :== 0 to 100 do

if p[il<>ppli] then
WriteLn ('Ohoh, problem ")
end.

Free Pascal supports pointer arithmetic as C does. This means tRais # typed pointer, the
instructions

36

3.5. PROCEDURAL TYPES

Inc(P);
Dec(P);

Will increase, respectively decrease the address the pointer points to with the size of tRastype
pointer to. For example

Var P : “~Longint;

Ine (p);

will increaseP with 4. Normal arithmetic operators on pointers can also be used, that s, the following
are valid pointer arithmetic operations:

var pl,p2 : ~Longint;

L : Longint;

begin

P1 = @P2;

P2 = @L;

L = P1-P2;

P1 = P1-4;

P2 = P2+4;
end.

Here, the value that is added or substractatisnultiplied by the size of the type the pointer points
to.

3.5 Procedural types

Free Pascal has support for procedural types, although it differs a little from the Turbo Pascal imple-
mentation of them. The type declaration remains the same, as can be seen in the following syntax
diagram:

[
Procedural types

»— procedural type function header
Tprocedure header —I L of — object —J L ; — call modifiers —I

»— function header — function - formal parameter list — : — result type

»— procedure header — procedure - formal parameter list >

»— call modifiers ——— reqister
—— cdecl

—— pascal
—— stdcall
— safecall —
I saveregisters —
L— popstack —

For a description of formal parameter lists, see chafitpage74. The two following examples are
valid type declarations:

37

3.5. PROCEDURAL TYPES

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real,

var proc : TOneArg;
func : TNOArg;

One can assign the following values to a procedural type variable:

1. Nil , for both normal procedure pointers and method pointers.
2. Avariable reference of a procedural type, i.e. another variable of the same type.

3. A global procedure or function address, with matching function or procedure header and call-
ing convention.

4. A method address.
Given these declarations, the following assignments are valid:

Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;

Proc = @printit;
Func = @Pi;

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’'t necessary to
use the address operat@ (vhen assigning a procedural type variable, whereas in Free Pascal it is
required (unless theso switch is used, in which case the address operator can be dropped.)

Remark: The maodifiers concerning the calling conventions must be the same as the declaration; i.e. the
following code would give an error:

Type TOneArgCcall = Procedure (Var X : integer);cdecl;
var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begin
WriteLn (x);
end;
begin
Proc = @printit;
end.

Because th&OneArgCcall type is a procedure that uses the cdecl calling convention.

38

Chapter 4

Objects

4.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is written using
objects. Here we present some technical questions regarding object oriented programming in Free
Pascal. Objects should be treated as a special kind of record. The record contains all the fields that
are declared in the objects definition, and pointers to the methods that are associated to the objects’
type.

An object is declared just as a record would be declared; except that now,procedures and functions
can be declared as if they were part of the record. Objects can "inherit” fields and methods from
"parent” objects. This means that these fields and methods can be used as if they were included in
the objects declared as a "child” object.

Furthermore, a concept of visibility is introduced: fields, procedures and functions can be delcared
aspublic orprivate . By default, fields and methods gpablic , and are exported outside the
current unit. Fields or methods that are declgpedate are only accessible in the current unit.

The prototype declaration of an object is as follows:

[
object types

»—ﬁ object
packed LheritageJ Lﬁ component list end —J

object visibility specm

»— heritage — (— object type identifier —)

»— component list
Lffield definition TJ Lf method definition TJ

»— field definition — identifier list —: — type —;

»— method definition function header ; — method directives ————»<
E procedure header ﬂ

constructor header
desctuctor header

»— method directives

L virtual -3 [] | L cal modifiers - ;]

abstract —;

39

Remark:

4.2. FIELDS

protecte

»— object visibility specifier private
]
public

As can be seen, as mamyivate andpublic blocks as needed can be declarddethod
definitions are normal function or procedure declarations. Fields cannot be declared after meth-
ods in the same block, i.e. the following will generate an error when compiling:

Type MyObj = Object
Procedure Doit;
Field : Longint;
end;

But the following will be accepted:

Type MyObj = Object

Public
Procedure Doit;
Private
Field : Longint;
end;

because the field is in a different section.

Free Pascal also supports the packed object. This is the same as an object, only the elements (fields)
of the object are byte-aligned, just as in the packed record. The declaration of a packed object is
similar to the declaration of a packed record :

Type
TODbj = packed object;
Constructor init;
end;
Pobj = ~TOb;j;
Var PP : Pobj;

Similarly, the{$PackRecords } directive acts on objects as well.

4.2 Fields

Object Fields are like record fields. They are accessed in the same way as a record field would be
accessed : by using a qualified identifier. Given the following declaration:

Type TAnObject = Object
AField : Longint;
Procedure AMethod;
end,;

Var AnObject : TAnObject;

then the following would be a valid assignment:

AnObject.AField := 0;

40

4.3. CONSTRUCTORS AND DESTRUCTORS

Inside methods, fields can be accessed using the short identifier:

Procedure TAnObject.AMethod;
begin

AField = 0;
end;
Or, one can use theelf identifier. Theself identifier refers to the current instance of the object:

Procedure TAnObject.AMethod;
begin

Self.AField := O;
end;

One cannot access fields that are in a private section of an object from outside the objects’ methods. If
this is attempted anyway, the compiler will complain about an unknown identifier. It is also possible
to use thewith statement with an object instance:

With AnObject do
begin
Afield = 12;
AMethod;
end;

In this example, between theegin andend, it is as if AnObject was prepended to thifield
andAmethod identifiers. More about this in sectiah2, page70

4.3 Constructors and destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports constructors and
destructors. The programmer is responsible for calling the constructor and the destructor explicitly
when using objects. The declaration of a constructor or destructor is as follows:

[
Constructors and destructors

»— constructor declaration — constructor header — ; — subroutine block —— <«
»— destructor declaration — destructor header — ; — subroutine block — >«

=— constructor header — constructor identifier ——r
qualified method identifier

— formal parameter list

»— desctructor header — destructor identifier —J>
qualified method identifier

—— formal parameter list

41

4.4. METHODS

A constructor/destructor pair requiredif the object uses virtual methods. In the declaration of the
object type, a simple identifier should be used for the name of the constuctor or destructor. When
the constructor or destructor is implemented, A qualified method identifier should be used, i.e. an
identifier of the fornobjectidentifier.methodidentifier . Free Pascal supports also the
extended syntax of thdewandDispose procedures. In case a dynamic variable of an object type
must be allocated the constructor’'s name can be specified in the bWtorheNewis implemented

as a function which returns a pointer to the instantiated object. Consider the following declarations:

Type
TObj = object;
Constructor init;
end;
Pobj = ~TOb;j;
Var PP : Pobj;

Then the following 3 calls are equivalent:
pp := new (Pobj,Init);
and
new(pp,init);
and also

new (pp);
pp/.init;

In the last case, the compiler will issue a warning that the extended synteeswoénddispose

must be used to generate instances of an object. It is possible to ignore this warning, but it's better
programming practice to use the extended syntax to create instances of an object. Similarly, the
Dispose procedure accepts the name of a destructor. The destructor will then be called, before
removing the object from the heap.

In view of the compiler warning remark, the following chapter presents the Delphi approach to
object-oriented programming, and may be considered a more natural way of object-oriented pro-
gramming.

4.4 Methods

Object methods are just like ordinary procedures or functions, only they have an implicit extra pa-
rameter :self . Self points to the object with which the method was invoked. When implementing
methods, the fully qualified identifier must be given in the function header. When declaring methods,
a normal identifier must be given.

4.5 Method invocation

Methods are called just as normal procedures are called, only they have an object instance identifier
prepended to them (see also chapterage63). To determine which method is called, it is necessary
to know the type of the method. We treat the different types in what follows.

42

4.5. METHOD INVOCATION

Static methods

Static methods are methods that have been declared withahgteact or virtual keyword.
When calling a static method, the declared (i.e. compile time) method of the object is used. For
example, consider the following declarations:

Type
TParent = Object

procedure Doit;

end;
PParent = ~TParent;
TChild = Object(TParent)

procedure Doit;
end;
PChild = ~TChild;

As it is visible, both the parent and child objects have a method cBl@t . Consider now the
following declarations and calls:

Var ParentA,ParentB : PParent;
Child : PChild;
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA”.Doit;
ParentB”.Doit;
Child~.Doit;

Of the three invocations ddoit , only the last one will callTChild.Doit , the other two calls will

call TParent.Doit . This is because for static methods, the compiler determines at compile time
which method should be called. SinParentB is of type TParent , the compiler decides that

it must be called withirParent.Doit , even though it will be created asT&hild . There may

be times when the method that is actually called should depend on the actual type of the object at
run-time. If so, the method cannot be a static method, but must be a virtual method.

Virtual methods
To remedy the situation in the previous sectiwirtual methods are created. This is simply

done by appending the method declaration withuintial modifier. Going back to the previous
example, consider the following alternative declaration:

Type
TParent = Object

procedure Doit;virtual,
end;
PParent = ~TParent;
TChild = Object(TParent)

43

4.5. METHOD INVOCATION

procedure Doit;virtual,

end;
PChild = ~TChild;

As it is visible, both the parent and child objects have a method cBl@t . Consider now the
following declarations and calls :

Var ParentA,ParentB : PParent;
Child : PChild;
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA”.Doit;
ParentB”.Doit;
Child~.Doit;

Now, different methods will be called, depending on the actual run-time type of the object. For
ParentA |, nothing changes, since it is created aBRarent instance. FocChild , the situation

also doesn’t change: it is again created as an instandeCbfid . For ParentB however, the
situation does change: Even though it was declared BRaaent , it is created as an instance of
TChild . Now, when the program runs, before calliBgit , the program checks what the actual
type of ParentB is, and only then decides which method must be called. Seein@#mantB is

of typeTChild , TChild.Doit will be called. The code for this run-time checking of the actual
type of an object is inserted by the compiler at compile time. T@hild.Doit is said tooverride
theTParent.Doit . It is possible to acces thEParent.Doit ~ from within the varTChild.Doit,

with theinherited keyword:

Procedure TChild.Doit;
begin
inherited Doit;

end;

In the above example, wharChild.Doit is called, the first thing it does is cdlParent.Doit
The inherited keyword cannot be used in static methods, only on virtual methods.

Abstract methods

An abstract method is a special kind of virtual method. A method can not be abstract if it is not virtual
(this is not obvious from the syntax diagram). An instance of an object that has an abstract method
cannot be created directly. The reason is obvious: there is no method where the compiler could jump
to ! A method that is declareabstract does not have an implementation for this method. Itis up

to inherited objects to override and implement this method. Continuing our example, take a look at
this:

Type
TParent = Object

procedure Doit;virtual;abstract;
end;

PParent="TParent;
TChild = Object(TParent)

44

Remark:

4.6. VISIBILITY

procedure Doit;virtual,

end;
PChild = ATChild:;

As it is visible, both the parent and child objects have a method cBl@t . Consider now the
following declarations and calls :

Var ParentA,ParentB : PParent;
Child : PChild;
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA”.Doit;
ParentB”.Doit;
Child~.Doit;

First of all, Line 3 will generate a compiler error, stating that one cannot generate instances of objects
with abstract methods: The compiler has detectedRRatrent points to an object which has an
abstract method. Commenting line 3 would allow compilation of the program.

If an abstract method is overridden, The parent method cannot be callethigtlited , since
there is no parent method; The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract methods can't be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-time error will
occur. (run-time error 211, to be precise)

4.6 Visibility

For objects, 3 visibility specifiers exisprivate , protected andpublic . If a visibility speci-
fier is not specifiedpublic is assumed. Both methods and fields can be hidden from a programmer
by putting them in grivate section. The exact visibility rule is as follows:

Private All fields and methods that are inpaivate block, can only be accessed in the module
(i.e. unit or program) that contains the object definition. They can be accessed from inside the
object’'s methods or from outside them e.g. from other objects’ methods, or global functions.

Protected Is the same aPrivate , except that the members ofPaotected section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible, from everywhere. Fields and metogaibli@ section
behave as though they were part of an ordimagord type.

45

Remark:

Chapter 5

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around the concept of
'Classes’. A class can be seen as a pointer to an object, or a pointer to a record.

In earlier versions of Free Pascal it was necessary, in order to use classes, togtjpaiseunit in
the uses clause of a unit or prograifhis is no longer needeas of version 0.99.12. As of version
0.99.12 thesystem unit contains the basic definitions ®Object andTClass , as well as some
auxiliary methods for using classes. Toigpas unit still exists, and contains some redefinitions of
basic types, so they coincide with Delphi types. The unit will be loaded automatically whed2he
or-Sd options are specified.

5.1 Class definitions

The prototype declaration of a class is as follows :

[
Class types

»_ﬁ class
packed LheritageJ LF component list end J

class visibility specifier]

»— heritage — (— class type identifier —)
»— component list
L[field definition]J method definition
property definition
»— field definition — identifier list —: — type —;
»— method definition ‘ﬁf function header T_ D=
class procedure header

constructor header
desctuctor header

—

—— virtual ; —J Lcall modifiers — ; —I
L ; — abstract J
override

L message integer constant
T string constant j

46

Remark:

5.2. CLASS INSTANTIATION

»— class visibility specifier private
protected

public
published

As manyprivate , protected , published andpublic blocks as needed can be repeated.
Methods are normal function or procedure declarations. As can be seen, the declaration of a class is
almost identical to the declaration of an object. The real difference between objects and classes is
in the way they are created (see further in this chapter). The visibility of the different sections is as
follows:

Private All fields and methods that are inpaivate block, can only be accessed in the module
(i.e. unit) that contains the class definition. They can be accessed from inside the classes’
methods or from outside them (e.g. from other classes’ methods)

Protected Is the same aPBrivate , except that the members ofPaotected section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible.

Published Is the same asRublic section, but the compiler generates also type information that
is needed for automatic streaming of these classes. Fields defingoublished section
must be of class type. Array peroperties cannot bepualaished section.

5.2 Class instantiation

Classes must be created using their constructor. Remember that a class is a pointer to an object, so
when a variable of some class is declared, the compiler just allocates a pointer, not the entire object.
The constructor of a class returns a pointer to an initialized instance of the object. So, to initialize an
instance of some class, one would do the following :

ClassVar := ClassType.ConstructorName;

The extended syntax ofew anddispose can be used to instantiate and destroy class instances.
That construct is reserved for use with objects only. Calling the constructor will provoke a call to
getmem, to allocate enough space to hold the class instance data. After that, the constuctor’s code
is executed. The constructor has a pointer to it's dataeih .

e The{$PackRecords } directive also affects classes. i.e. the alignment in memory of the
different fields depends on the value of §§&#ackRecords } directive.

e Just as for objects and records, a packed class can be declared. This has the same effect as on
an object, or record, namely that the elements are aligned on 1-byte boundaries. i.e. as close
as possible.

e SizeOf(class) will return 4, since a class is but a pointer to an object. To get the size of
the class instance data, use T@bject.InstanceSize method.

47

5.3. METHODS

5.3 Methods

invocation

Method invocation for classes is no different than for objects. The following is a valid method
invocation:

Var AnObject : TAnObject;

begin
AnObject := TAnObject.Create;
ANobject.AMethod,;

Virtual methods

Classes have virtual methods, just as objects do. There is however a difference between the two.
For objects, it is sufficient to redeclare the same method in a descendent object with the keyword
virtual to override it. For classes, the situation is different: virtual methmdstbe overridden

with theoverride keyword. Failing to do so, will start aewbatch of virtual methods, hiding the
previous one. Thénherited keyword will not jump to the inherited method, if virtual was used.

The following code isvrong

Type ObjParent = Class
Procedure MyProc; virtual;
end;
ObjChild = Class(ObjPArent)
Procedure MyProc; virtual;
end;

The compiler will produce a warning:
Warning: An inherited method is hidden by OBJCHILD.MYPROC

The compiler will compile it, but usingnherited can produce strange effects.
The correct declaration is as follows:

Type ObjParent = Class
Procedure MyProc; virtual;
end;
ObjChild = Class(ObjPArent)
Procedure MyProc; override;
end;

This will compile and run without warnings or errors.

Message methods

New in classes armessage methods. Pointers to message methods are stored in a special table,
together with the integer or string cnstant that they were declared with. They are primarily intended to
ease programming of callback functions in sev&dl toolkits, such a¥vin32 or GTK In difference

with Delphi, Free Pascal also accepts strings as message identifiers.

Message methods that are declared with an integer constant can take only one var argument (typed
or not):

48

5.3. METHODS

Procedure TMyObject.MyHandler(Var Msg); Message 1,

The method implementation of a message function is no different from an ordinary method. Itis also
possible to call a message method directly, but this should not be done. Instée@bfbet.Dispatch
method should be used.

The TOBject.Dispatch method can be used to callneessage handler. It is declared in the
system unit and will accept a var parameter which must have at the first position a cardinal with the
message ID that should be called. For example:

Type
TMsg = Record
MSGID : Cardinal
Data : Pointer;
Var
Msg : TMSg;

MyObiject.Dispatch (Msg);

In this example, th®ispatch method will look at the object and all it's ancestors (starting at the
object, and searching up the class tree), to see if a message method with néS&ifhas been
declared. If such a method is found, it is called, and passellifiggrarameter.

If no such method is foundyefaultHandler is called.DefaultHandler is a virtual method
of TObject that doesn’t do anything, but which can be overridden to provide any processing that
might be neededefaultHandler is declared as follows:

procedure defaulthandler(var message);virtual;

In addition to the message method witlnéeger identifier, Free Pascal also supports a message
method with a string identifier:

Procedure TMyObject.MyStrHandler(Var Msg); Message 'OnClick’;

The working of the string message handler is the same as the ordinary integer message handler:

The TOBject.DispatchStr method can be used to callhaessage handler. It is declared in
the system unit and will accept one parameter which must have at the first position a string with the
message ID that should be called. For example:

Type
TMsg = Record
MsgStr : String[10]; // Arbitrary length up to 255 characters.
Data : Pointer;
Var
Msg : TMSg;

MyObject.DispatchStr (Msg);
In this example, th®ispatchStr method will look at the object and all it's ancestors (starting at

the object, and searching up the class tree), to see if a message method with rivesgsBige has
been declared. If such a method is found, it is called, and passédsthparameter.

If no such method is foundyefaultHandlerStr is called.DefaultHandlerStr is a virtual
method ofTObject that doesn’t do anything, but which can be overridden to provide any processing
that might be neededefaultHandlerStr is declared as follows:

49

Remark:

5.4. PROPERTIES

procedure DefaultHandlerStr(var message);virtual;
In addition to this mechanism, a string message method acceptk aparameter:
TMyObject.StrMsgHandler(Data : Pointer; Self : TMyObject);Message 'OnClick’;

When encountering such a method, the compiler will generate code that log8islthgparameter
into the object instance pointer. The result of this is that it is possible toSelés as a parameter to
such a method.

The type of theSelf parameter must be of the same class as the class the method is defined in.

5.4 Properties

Classes can contain properties as part of their fields list. A property acts like a normal field, i.e. its
value can be retrieved or set, but it allows to redirect the access of the field through functions and
procedures. They provide a means to associate an action with an assignment of or a reading from a
class "field’. This allows for e.g. checking that a value is valid when assigning, or, when reading,

it allows to construct the value on the fly. Moreover, properties can be read-only or write only. The
prototype declaration of a property is as follows:

[
Properties

»— property definition — property — identifier L ‘l‘
property interface
»—— property specifiers >

»— property interface . — type identifier —

L property parameter list J

L index — integerconstant —I

»— property parameter list — [7 parameter declaration T]

»— property specifiers

L read specifier J LWrite specifier J L default specifier J

»— read specifier — read — field or method

=»— write specifier — write — field or method >

»— default specifier —- default L J >
constant
nodefault

»— field or method field identifier
[method identifier J

A read specifier is either the name of a field that contains the property, or the name of a
method function that has the same return type as the property type. In the case of a simple type,
this function must not accept an argumentread specifier is optional, making the property
write-only. Awrite specifier is optional: If there is navrite specifier , the property

50

5.4. PROPERTIES

is read-only. A write specifier is either the name of a field, or the name of a method procedure that
accepts as a sole argument a variable of the same type as the property. The petta (,
published) in which the specified function or procedure resides is irrelevant. Usually, however,
this will be a protected or private method. Example: Given the following declaration:

Type
MyClass = Class
Private
Fieldl : Longint;
Field2 : Longint;
Field3 : Longint;
Procedure Sety (value : Longint);
Function Gety : Longint;
Function Getz : Longint;
Public
Property X : Longint Read Fieldl write Field2;
Property Y : Longint Read GetY Write Sety;
Property Z : Longint Read GetZ;
end;
Var MyClass : TMyClass;

The following are valid statements:

WriteLn (‘X : ’",MyClass.X);
WriteLn (Y : ',MyClass.Y);
WriteLn ('Z : ',MyClass.Z);
MyClass.X = 0;
MyClass.Y 0;

But the following would generate an error:
MyClass.Z := 0;

because Z is a read-only property. What happens in the above statements is that when a value needs
to be read, the compiler inserts a call to the varige§NNN methods of the object, and the result of

this call is used. When an assignment is made, the compiler passes the value that must be assigned
as a paramater to the variosstNNN methods. Because of this mechanism, properties cannot be
passed as var arguments to a function or procedure, since there is no known address of the property
(at least, not always). If the property definition contains an index, then the read and write specifiers
must be a function and a procedure. Moreover, these functions require an additional parameter : An
integer parameter. This allows to read or write several properties with the same function. For this,
the properties must have the same type. The following is an example of a property with an index:

{$mode obijfpc}
Type TPoint = Class(TObject)
Private
FX,FY : Longint;
Function GetCoord (Index : Integer): Longint;
Procedure SetCoord (Index : Integer; Value : longint);
Public
Property X : Longint index 1 read GetCoord Write SetCoord,;
Property Y : Longint index 2 read GetCoord Write SetCoord;
Property Coords[Index : Integer] Read GetCoord;
end;

51

5.4. PROPERTIES

Procedure TPoint.SetCoord (Index : Integer; Value : Longint);
begin

Case Index of

1 : FX := Value;

2 : FY := Value;

end;
end;
Function TPoint.GetCoord (INdex : Integer) : Longint;
begin

Case Index of

1 : Result := FX;

2 : Result := FY;

end;
end;
Var P : TPoint;
begin
P := TPoint.create;
P.X = 2
PY = 3
With P do

WriteLn ('X="X," Y="Y);
end.

When the compiler encounters an assignme, thhenSetCoord is called with as first parameter

the index (1 in the above case) and with as a second parameter the value to be set. Conversely, when
reading the value oX, the compiler callsGetCoord and passes it index 1. Indexes can only be
integer values. Array propertie also exist. These are properties that accept an index, just as an array
does. Only now the index doesn't have to be an ordinal type, but can be any type.

A read specifier for an array property is the name method function that has the same return
type as the property type. The function must accept as a sole arguent a variable of the same type as
the index type. For an array property, one cannot specify fieldsaab specifiers

A write specifier for an array property is the name of a method procedure that accepts two
arguments: The first argument has the same type as the index, and the second argument is a parameter
of the same type as the property type. As an example, see the following declaration:

Type TintList = Class
Private
Function Getlint (I : Longint) : longint;
Function GetAsString (A : String) : String;
Procedure Setint (I : Longint; Value : Longint;);
Procedure SetAsString (A : String; Value : String);
Public
Property Items [i : Longint] : Longint Read Getint
Write Setint;
Property Stritems [S : String] : String Read GetAsString
Write SetAsstring;
end;
Var AlntList : TIntList;

Then the following statements would be valid:

AlntList.ltems[26] = 1;
AlntList.Stritems['twenty-five’] := 'zero’;

52

5.4. PROPERTIES

WriteLn (ltem 26 : ’AlntList.ltems[26]);
WriteLn (ltem 25 : ' AlntList.Stritems[twenty-five]);

While the following statements would generate errors:

AlntList.ltems['twenty-five'] = 1,
AlntList.Stritems[26] := 'zero’;

Because the index types are wrong. Array properties can be decladefbadt properties. This
means that it is not necessary to specify the property name when assigning or reading it. If, in the
previous example, the definition of the items property would have been

Property Items[i : Longint]: Longint Read Getint
Write Setint; Default;

Then the assignment

AlntList.ltems[26] = 1;

Would be equivalent to the following abbreviation.
AlntList[26] = 1;

Only one default property per class is allowed, and descendent classes cannot redeclare the default
property.

53

Chapter 6

Expressions

Expressions occur in assignments or in tests. Expressions produce a value, of a certain type. Expres-
sions are built with two components: Operators and their operands. Usually an operator is binary, i.e.
it requires 2 operands. Binary operators occur always between the operandX/(43$.iBometimes

an operator is unary, i.e. it requires only one argument. A unary operator occurs always before the
operand, as iAX .

When using multiple operands in an expression, the precedence rules obtdpbr€ used. When

Table 6.1: Precedence of operators

Operator Precedence Category

Not, @ Highest (first) Unary operators

* | div mod and shl shr as Second Multiplying operators
+ - or xor Third Adding operators

< <>< ><=>=inis Lowest (Last) relational operators

determining the precedence, the compiler uses the following rules:

1. In operations with unequal precedences the operands belong to the operater with the high-
est precedence. For example 5t8+7 , the multiplication is higher in precedence than the
addition, so it is executed first. The result would be 22.

2. If parentheses are used in an expression, their contents is evaluated first.57B43)
would result in 50.

Remark: The order in which expressions of the same precedence are evaluated is not guaranteed to be left-
to-right. In general, no assumptions on which expression is evaluated first should be made in such a
case. The compiler will decide which expression to evaluate first based on optimization rules. Thus,
in the following expression:

a = g(3) + f(2);

f(2) may be executed befoigg3) . This behaviour is distinctly different from Delphior Turbo
Pascal.

If one expressiomustbe executed before the other, it is necessary to split up the statement using
temporary results:

el = g(3);
a el + f(2);

54

6.1. EXPRESSION SYNTAX

6.1 Expression syntax

An expression applies relational operators to simple expressions. Simple expressions are a series of
terms (what a term is, is explained below), joined by adding operators.

[
Expressions

»— expression — simple expression L _J
— * — simple expression

»— simple expression term >

or
Xxor

The following are valid expressions:
GraphResult<>grError

(DoltToday=Yes) and (DoltTomorrow=No);
Day in Weekend

And here are some simple expressions:

A+ B

-Pi

ToBe or NotToBe

Terms consist of factors, connected by multiplication operators.

[
Terms

—»— term factor »
]

Ly
— div —]
- mod —
-and —
— shl —]
- shr —

Here are some valid terms:

55

6.2. FUNCTION CALLS

2 * Pi
A Div B
(DoltToday=Yes) and (DoltTomorrow=No);

Factors are all other constructions:

[
Factors

»— factor —— (— expression —)
- variable reference —
—— function call ——
- unsigned constant —
—— not — factor
—— sign — factor ——
— set constructor —
— value typecast —
L— address factor —

character string —
constant identifier —

»— unsigned constant \ljunsigned number >
Nil

6.2 Function calls

Function calls are part of expressions (although, using extended syntax, they can be statements too0).
They are constructed as follows:

[
Function calls

function identifier
——— method designator
+ qualified method designator —|
variable reference

=— actual parameter list — ()
L[expression jJ

»— function call —
L actual parameter list —I

The variable reference must be a procedural type variable reference. A method designator can
only be used inside the method of an object. A qualified method designator can be used outside
object methods too. The function that will get called is the function with a declared parameter list
that matches the actual parameter list. This means that

1. The number of actual parameters must equal the number of declared parameters.

2. The types of the parameters must be compatible. For variable reference parameters, the pa-
rameter types must be exactly the same.

56

6.3. SET CONSTRUCTORS

If no matching function is found, then the compiler will generate an error. Depending on the fact of
the function is overloaded (i.e. multiple functions with the same name, but different parameter lists)
the error will be different. There are cases when the compiler will not execute the function call in an
expression. This is the case when assigning a value to a procedural type variable, as in the following
example:

Type

FuncType = Function: Integer;
Var A : Integer;
Function AddOne : Integer;

begin
A = A+l
AddOne = A;
end;
Var F : FuncType,
N : Integer,;
begin
A =0
F := AddOne; { Assign AddOne to F, Don’t call AddOne}
N := AddOne; { N := 1 I1}
end.

In the above listing, the assigment to F will not cause the function AddOne to be called. The assign-
ment to N, however, will call AddOne. A problem with this syntax is the following construction:

If F = AddOne Then
DoSomethingHorrible;

Should the compiler compare the addressds ahd AddOne, or should it call both functions, and
compare the result ? Free Pascal solves this by deciding that a procedural variable is equivalent to a
pointer. Thus the compiler will give a type mismatch error, since AddOne is considered a call to a
function with integer result, and F is a pointer, Hence a type mismatch occurs. How then, should one
compare whethdr points to the functiodddOne ? To do this, one should use the address operator

@

If F = @AddOne Then
WriteLn ('Functions are equal’);

The left hand side of the boolean expression is an address. The right hand side also, and so the
compiler compares 2 addresses. How to compare the values that both functions return ? By adding
an empty parameter list:

If F()=Addone then
WriteLn ('Functions return same values ’);

Remark that this behaviour is not compatible with Delphi syntax.

6.3 Set constructors

When a set-type constant must be entered in an expression, a set constructor must be given. In
essence this is the same thing as when a type is defined, only there is no identifier to identify the set
with. A set constructor is a comma separated list of expressions, enclosed in square brackets.

57

6.4. VALUE TYPECASTS

[
Set constructors

»— set constructor — []

»— set group — expression

L .. — expression J

All set groups and set elements must be of the same ordinal type. The empty set is derjpted by

and it can be assigned to any type of set. A set group with a ffagd makes all values in the

range a set element. If the first range specifier has a bigger ordinal value than the second the set is
empty, e.g.[Z..A] denotes an empty set. The following are valid set constructors:

[today,tomorrow]
[Monday..Friday,Sunday]
[2, 3*2, 6*2, 9*2]
[A.Z')a..'z',0..9]

6.4 Value typecasts

Sometimes it is necessary to change the type of an expression, or a part of the expression, to be able
to be assignment compatible. This is done through a value typecast. The syntax diagram for a value
typecast is as follows:

[
Typecasts

»— value typecast — type identifier — (— expression —)

Value typecasts cannot be used on the left side of assignments, as variable typecasts. Here are some
valid typecasts:

Byte('A)
Char(48)
boolean(1)
longint(@Buffer)

The type size of the expression and the size of the type cast must be the same. That is, the following
doesn'’t work:

Integer(’A’)
Char(4875)
boolean(100)
Word(@Buffer)

This is different from Delphi or Turbo Pascal behaviour.

58

6.5. THE @ OPERATOR

6.5 The @ operator

The address operat@returns the address of a variable, procedure or function. It is used as follows:

[
Address factor

»— addressfactor - @ ——— variable reference
—— procedure identifier —
—— function identifier
L qualified method identifier —

The @operator returns a typed pointer if th& switch is on. If thebT switch is off then the address
operator returns an untyped pointer, which is assigment compatible with all pointer types. The type
of the pointer iST , whereT is the type of the variable reference. For example, the following will
compile

Program tcast;
{$T-} { @ returns untyped pointer }

Type art = Array[1..100] of byte;
Var Buffer : longint;
PLargeBuffer : “art;

begin
PLargeBuffer := @Buffer;
end.

Changing thg$T-} to {$T+} will prevent the compiler from compiling this. It will give a type
mismatch error. By default, the address operator returns an untyped pointer. Applying the address
operator to a function, method, or procedure identifier will give a pointer to the entry point of that
function. The result is an untyped pointer. By default, the address operator must be used if a value
must be assigned to a procedural type variable. This behaviour can be avoided by us8w tire

-S2 switches, which result in a more compatible Delphi or Turbo Pascal syntax.

6.6 Operators

Operators can be classified according to the type of expression they operate on. We will discuss them
type by type.

Arithmetic operators

Arithmetic operators occur in arithmetic operations, i.e. in expressions that contain integers or reals.
There are 2 kinds of operators : Binary and unary arithmetic operators. Binary operators are listed

in table 6.2), unary operators are listed in tab®&3). With the exception oDiv andMod, which

accept only integer expressions as operands, all operators accept real and integer expressions as
operands. For binary operators, the result type will be integer if both operands are integer type
expressions. If one of the operands is a real type expression, then the result is real. As an exception :
division (/) results always in real values. For unary operators, the result type is always equal to the
expression type. The divisiohandModoperator will cause run-time errors if the second argument

is zero. The sign of the result ofdod operator is the same as the sign of the left side operand of the
Modoperator. In fact, thdod operator is equivalent to the following operation :

59

6.6. OPERATORS

Table 6.2: Binary arithmetic operators

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

Div Integer division
Mod Remainder

Table 6.3: Unary arithmetic operators

Operator Operation
+ Sign identity
- Sign inversion

I'mod J =1 - (I divJ) *J

but it executes faster than the right hand side expression.

Logical operators

Logical operators act on the individual bits of ordinal expressions. Logical operators require operands
that are of an integer type, and produce an integer type result. The possible logical operators are listed
in table 6.4). The following are valid logical expressions:

Table 6.4: Logical operators

Operator Operation

not Bitwise negation (unary)
and Bitwise and

or Bitwise or

xor Bitwise xor

shl Bitwise shift to the left
shr Bitwise shift to the right

A shr 1 { same as A div 2, but faster}
Not 1 { equals -2 }
Not 0 { equals -1}
Not -1 { equals 0 }
B shl 2 { same as B * 2 for integers }
1lor2 {equas 3}
3 xor 1 { equals 2 }

Boolean operators

Boolean operators can be considered logical operations on a type with 1 bit size. Thereftie the
andshr operations have little sense. Boolean operators can only have boolean type operands, and

60

6.6. OPERATORS

the resulting type is always boolean. The possible operators are listed inGefle (

Table 6.5: Boolean operators

Operator Operation

not logical negation (unary)
and logical and

or logical or

Xor logical xor

Remark: Boolean expressions are always evaluated with short-circuit evaluation. This means that from the
moment the result of the complete expression is known, evaluation is stopped and the result is re-
turned. For instance, in the following expression:

B := True or MaybeTrue;
The compiler will never look at the value bfaybeTrue , since it is obvious that the expression will

always be true. As a result of this strategyMidybeTrue is a function, it will not get called ! (This
can have surprising effects when used in conjunction with properties)

String operators

There is only one string operator+. It's action is to concatenate the contents of the two strings
(or characters) it stands between. One cannotruseconcatenate null-terminateBChar) strings.
The following are valid string operations:

This is ' + 'VERY ' + ’'easy !
Dirname+'\

The following is not:
Var Dirname = Pchar;
Dirname := Dirname+'\’;

Becausdirname is a null-terminated string.

Set operators

The following operations on sets can be performed with operators: Union, difference and intersec-
tion. The operators needed for this are listed in tabl6)(The set type of the operands must be the

Table 6.6: Set operators

Operator Action

+ Union
- Difference
* Intersection

same, or an error will be generated by the compiler.

61

6.6. OPERATORS

Relational operators

The relational operators are listed in tabte7j Left and right operands must be of the same type.

Table 6.7: Relational operators

Operator Action

= Equal

<> Not equal

< Stricty less than

> Strictly greater than
<= Less than or equal
>= Greater than or equal
in Element of

Only integer and real types can be mixed in relational expressions. Comparing strings is done on
the basis of their ASCII code representation. When comparing pointers, the addresses to which they
point are compared. This also is true &Char type pointers. To compare the strings thehar

point to, theStrComp function from thestrings unit must be used. Thia returnsTrue if the left
operand (which must have the same ordinal type as the set type) is an element of the set which is the
right operand, otherwise it returfalse

62

Chapter 7

Statements

The heart of each algorithm are the actions it takes. These actions are contained in the statements of
a program or unit. Each statement can be labeled and jumped to (within certain limit$}etih
statements. This can be seen in the following syntax diagram:

[
Statements

structured statement
asm statement

=»— statement []
label —: simple statemenj

A label can be an identifier or an integer digit.

7.1 Simple statements

A simple statement cannot be decomposed in separate statements. There are basically 4 kinds of
simple statements:

[
Simple statements

goto statement
raise statement ——

»— simple statement — assignment statement
k procedure statement —|

Of these statements, tihaise statemenwill be explained in the chapter on Exceptions (chagter
page99)

Assignments
Assignments give a value to a variable, replacing any previous value the variable might have had:

63

7.1. SIMPLE STATEMENTS

[
Assignments

»— assignment statement «Lvariable reference = expression —— <
function identifier +=

In addition to the standard Pascal assignment operater (), which simply replaces the value of
the varable with the value resulting from the expression on the right of the := operator, Free Pascal
supports some c-style constructions. All available constructs are listed in falje (For these

Table 7.1: Allowed C constructs in Free Pascal

Assignment Result
a+=b Addsb to a, and stores the result m
a-=b Substracts from a, and stores the result m
a*=b Multipliesa with b, and stores the result a
al=b Dividesa throughb, and stores the result &

constructs to work, theésc command-line switch must be specified.

Remark: These constructions are just for typing convenience, they don't generate different code. Here are
some examples of valid assignment statements:

X = X+Y;
X+=Y; { Same as X := X+Y, needs -Sc command line switch}
XI=2; { Same as X = X/2, needs -Sc command line switch}

Done := False;
Weather = Good;
MyPi = 4* Tan(l);

Procedure statements

Procedure statements are calls to subroutines. There are different possibilities for procedure calls: A
normal procedure call, an object method call (fully qualified or not), or even a call to a procedural
type variable. All types are present in the following diagram.

[
Procedure statements

»— procedure statement ——— procedure identifier
method identifier
+ qualified method identifier —
L— variable reference

L actual parameter list J

The Free Pascal compiler will look for a procedure with the same name as given in the procedure
statement, and with a declared parameter list that matches the actual parameter list. The following
are valid procedure statements:

64

7.2. STRUCTURED STATEMENTS

Usage;
WriteLn('"Pascal is an easy language !);
Doit();

Goto statements

Free Pascal supports tgeto jump statement. Its prototype syntax is

[
Goto statement

»— goto statement — goto — label o

When usinggoto statements, the following must be kept in mind:

1. The jump label must be defined in the same block asab® statement.
2. Jumping from outside a loop to the inside of a loop or vice versa can have strange effects.

3. To be able to use th&oto statement, theSg compiler switch must be used.
Goto statements are considered bad practice and should be avoided as much as possible. It is always
possible to replace goto statement by a construction that doesn’t neegbto , although this
construction may not be as clear as a goto statement. For instance, the following is an allowed goto
statement:

label
jumpto;

Jumpto :
Statement;

Goto jumpto;

7.2 Structured statements

Structured statements can be broken into smaller simple statements, which should be executed re-
peatedly, conditionally or sequentially:

[
Structured statements

=»— structured statement compound statement
repetitive statement
conditional statement
exception statement
with statement

Conditional statements come in 2 flavours :

65

7.2. STRUCTURED STATEMENTS

[
Conditional statements

»— conditional statement T if statement -
case statement —‘

Repetitive statements come in 3 flavours:

[
Repetitive statements

»— repetitive statement for statament
{ repeat statement j

while statement

The following sections deal with each of these statements.

Compound statements

Compound statements are a group of statements, separated by semicolons, that are surrounded by
the keywordsBegin andEnd. The Last statement doesn’t need to be followed by a semicolon,
although it is allowed. A compound statement is a way of grouping statements together, executing
the statements sequentially. They are treated as one statement in cases where Pascal syntax expects
1 statement, such asifh... then statements.

[
Compound statements

»— compound statement — begin T statemlhr end

The Case statement

Free Pascal supports thase statement. Its syntax diagram is

[
Case statement

»— case statement — case — expression — of Taiej L end
else part J L ; J

»— case \T constant L J . — statement
.. — constant

=»— else part — else — statement

66

Remark:

7.2. STRUCTURED STATEMENTS

The constants appearing in the various case parts must be known at compile-time, and can be of the
following types : enumeration types, Ordinal types (except boolean), and chars. The expression must
be also of this type, or a compiler error will occur. All case constants must have the same type. The
compiler will evaluate the expression. If one of the case constants values matches the value of the
expression, the statement that follows this constant is executed. After that, the program continues
after the finalend. If none of the case constants match the expression value, the statement after
theelse keyword is executed. This can be an empty statement. If no else part is present, and no
case constant matches the expression value, program flow continues after teadindlhe case
statements can be compound statements (bega..End block).

Contrary to Turbo Pascal, duplicate case labels are not allowed in Free Pascal, so the following code
will generate an error when compiling:

Var i : integer;

Case i of

3 : DoSomething;

1..5 : DoSomethingElse;
end;

The compiler will generate Buplicate case label error when compiling this, because the 3
also appears (implicitly) in the rande.5 . This is similar to Delphi syntax.

The following are valid case statements:

Case C of
'a’ : WriteLn (A pressed’);
‘b’ . WriteLn ('B pressed’);
'c’ : WriteLn ('C pressed);
else
WriteLn (‘'unknown letter pressed : ’,C);
end;

Or

Case C of

‘a’,’e’,)’i’,’o', U . WriteLn ('vowel pressed);

y' : WriteLn ('This one depends on the language);
else

WriteLn ('Consonant pressed’);
end;

Case Number of
1..10 : WriteLn ('Small number’);
11..100 : WriteLn ('Normal, medium number’);

else

WriteLn (HUGE number’);

end;

The If..then..else statement

Thelf .. then .. else.. prototype syntax is

[
If then statements

67

7.2. STRUCTURED STATEMENTS

»— if statement — if — expression — then — statement L J
else - statement

The expression between tife andthen keywords must have a boolean return type. If the expres-
sion evaluates tdrue then the statement followintlpen is executed.

If the expression evaluateskalse , then the statement followirgjse is executed, if it is present.

Be aware of the fact that the boolean expression will be short-cut evaluated. (Meaning that the
evaluation will be stopped at the point where the outcome is known with certainty) Also, before
theelse keyword, no semicolon; () is allowed, but all statements can be compound statements.
In nestedif.. then .. else constructs, some ambiguity may araise as to wilde
statement pairs with whiclfi statement. The rule is that tieése keyword matches the firgt

keyword not already matched by atse keyword. For example:

If expl Then
If exp2 then
Statl
else
stat?;

Despite it's appearance, the statement is syntactically equivalent to

If expl Then
begin
If exp2 then
Statl
else
stat2
end;

and not to

{ NOT EQUIVALENT }
If expl Then

begin

If exp2 then

Statl

end
else

stat2

If it is this latter construct is needed, thegin andend keywords must be present. When in doubt,
it is better to add them.
The following is a valid statement:
If Today in [Monday..Friday] then
WriteLn ('Must work harder’)

else
WriteLn ('Take a day off.”);

The For..to/downto..do statement

Free Pascal supports ther loop construction. A for loop is used in case one wants to calculated
something a fixed number of times. The prototype syntax is as follows:

68

Remark:

7.2. STRUCTURED STATEMENTS

[
For statement

»— for statement — for — control variable — := — initial value to T
[downto
— final value — do — statement -

»— control variable — variable identifier

»— initial value — expression

»— final value — expression

Statement can be a compound statement. When this statement is encountered, the control variable
is initialized with the initial value, and is compared with the final value. What happens next depends
on whethetto or downto is used:

1. In the cas€To is used, if the initial value larger than the final value ti&atement will
never be executed.

2. In the casébownTo s used, if the initial value larger than the final value ttfg&tatement
will never be executed.

After this check, the statement afteo is executed. After the execution of the statement, the control
variable is increased or decreased with 1, depending on whBth@rDownto is used. The control
variable must be an ordinal type, no other types can be used as counters in a loop.

Contrary to ANSI pascal specifications, Free Pascal first initializes the counter variable, and only
then calculates the upper bound.

The following are valid loops:

For Day := Monday to Friday do Work;

For | := 100 downto 1 do
WriteLn ('Counting down : ',i);
For | := 1 to 7*dwarfs do KissDwarf(i);

If the statement is a compound statement, therBtleak (120) andContinue (127) reserved words
can be used to jump to the end or just after the end oFtite statement.

The Repeat..until statement

Therepeat statement is used to execute a statement until a certain condition is reached. The
statement will be executed at least once. The prototype syntax &epeat..until statement

is

[
Repeat statement

»— repeat statement — repeat _T statement j until — expression

69

7.2. STRUCTURED STATEMENTS

This will execute the statements betweepeat anduntil up to the moment whelBxpression
evaluates tdrue . Since theexpression is evaluatedafter the execution of the statements, they

are executed at least once. Be aware of the fact that the boolean expiegsieasion will be
short-cut evaluated. (Meaning that the evaluation will be stopped at the point where the outcome is
known with certainty) The following are valigepeat statements

repeat
WriteLn (1 =,i);
| = 1+2;
until [>100;
repeat
X = X/2
until x<10e-3

TheBreak (120) andContinue (127) reserved words can be used to jump to the end or just after the
end of therepeat .. until statement.

The While..do statement

A while statement is used to execute a statement as long as a certain condition holds. This may
imply that the statement is never executed. The prototype syntax @fllle..do statementis

[
While statements

»— Wwhile statement — while — expression — do — statement

This will executeStatement as long a€xpression evaluates tdrue . SinceExpression

is evaluatedbeforethe execution oStatement , it is possible thaStatement isn’t executed at

all. Statement can be a compound statement. Be aware of the fact that the boolean expression
Expression will be short-cut evaluated. (Meaning that the evaluation will be stopped at the point
where the outcome is known with certainty) The following are valfdle statements:

| = 1+2;

while i<=100 do
begin
WriteLn (I =,i);
| = 1+2;
end;

X = X/2;

while x>=10e-3 do
X = X/2;

They correspond to the example loops for tepeat statements.

If the statement is a compound statement, therBtleak (120) andContinue (127) reserved words
can be used to jump to the end or just after the end ofthde statement.

The With statement

Thewith statement serves to access the elements of a record or object or class, without having to
specify the name of the each time. The syntax faiith statement is

70

7.2. STRUCTURED STATEMENTS

[
With statement

»— with statement T variable reference T do — statement -

1

The variable reference must be a variable of a record, object or class type. vithhestatement,
any variable reference, or method reference is checked to see if it is a field or method of the record
or object or class. If so, then that field is accessed, or that method is called. Given the declaration:

Type Passenger = Record
Name : String[30];
Flight : String[10];
end;

Var TheCustomer : Passenger;

The following statements are completely equivalent:

TheCustomer.Name := 'Michael’;
TheCustomer.Flight := 'PS901’;

and

With TheCustomer do

begin
Name := 'Michael’;
Flight := 'PS901’;
end;

The statement
With A,B,C,D do Statement;
is equivalent to

With A do
With B do
With C do
With D do Statement;

This also is a clear example of the fact that the variables arel&astdo first i.e., when the compiler
encounters a variable reference, it will first check if it is a field or method of the last variable. If not,
then it will check the last-but-one, and so on. The following example shows this;

Program testw;
Type AR = record

X,Y : Longint;

end;

PAR = Record;
Var S,T . Ar;

begin
S.X = 1;SY = 1;

71

Remark:

7.3. ASSEMBLER STATEMENTS

T.X = 2;T.Y = 2;
With S,T do
WriteLn (X, ,Y);
end.

The output of this program is
22

Showing thus that th¥,Y in theWriteLn statement match thErecord variable.

When using aVith statement with a pointer, or a class, it is not permitted to change the pointer or
the class in th&Vith block. With the definitions of the previous example, the following illustrates
what it is about:

Var p : PAR;

begin
With P? do
begin
/l Do some operations
P:=OtherP;
X:=0.0; /I Wrong X will be used !
end;

The reason the pointer cannot be changed is that the address is stored by the compiler in a temporary

register. Changing the pointer won’t change the temporary address. The same is true for classes.

Exception Statements

Free Pascal supports exceptions. Exceptions provide a convenient way to program error and error-
recovery mechanisms, and are closely related to classes. Exception support is explained in chapter
11, page99

7.3 Assembler statements

An assembler statement allows to insert assembler code right in the pascal code.

[
Assembler statements

»— asm statement — asm — assembler code — end L J
registerlist

»— registerlist — [T stringconstant j]

More information about assembler blocks can be found ifPtlegirammers guideThe register listis
used to indicate the registers that are modified by an assembler statement in the assembler block. The
compiler stores certain results in the registers. If the registers are modified in an assembler statement,

72

file:../prog/prog.html

7.3. ASSEMBLER STATEMENTS

the compiler should, sometimes, be told about it. The registers are denoted with their Intel names
for the 1386 processor, i.éEAX’ ,’ESI' etc... As an example, consider the following assembler
code:

asm
Movl $1,%ebx
Movl $0,%eax
addl %eax,%ebx

end; [EAX,EBXT;

This will tell the compiler that it should save and restore the contents dE&¥andEBXregisters
when it encounters this asm statement.

Free Pascal supports various styles of assembler syntax. By défa&lf,syntax is assumed for the
80386 and compatibles platform. The default assembler style can be changed {dthsimenode
xxx} switch in the code, or theR command-line option. More about this can be found in the
Programmers guide

73

file:../prog/prog.html

Chapter 8

Using functions and procedures

Free Pascal supports the use of functions and procedures, but with some extras: Function overloading
is supported, as well &onst parameters and open arrays.

Remark: In many of the subsequent paragraphs the wprdsedure andfunction will be used inter-
changeably. The statements made are valid for both, except when indicated otherwise.

8.1 Procedure declaration

A procedure declaration defines an identifier and associates it with a block of code. The procedure
can then be called with a procedure statement.

[
Procedure declaration

»— procedure declaration — procedure header — ; — subroutine block — ; ———»«

»— procedure header — procedure identifier _‘r
[qualified method identifier

»— formal parameter list

L modifiers —I

block
- external directive —
—— asm block
L forward

»— subroutine block —

See sectior8.3, page75 for the list of parameters. A procedure declaration that is followed by a
block implements the action of the procedure in that block. The following is a valid procedure :

Procedure DoSomething (Para : String);
begin

Writeln ('Got parameter : ',Para);

Writeln ('Parameter in upper case : ',Upper(Para));
end;

Note that it is possible that a procedure calls itself.

74

8.2. FUNCTION DECLARATION

8.2 Function declaration

A function declaration defines an identifier and associates it with a block of code. The block of
code will return a result. The function can then be called inside an expression, or with a procedure
statement, if extended syntax is on.

[
Function declaration

»— function declaration — function header — ; — subroutine block — ;
»— function header — function identifier ——r
qualified method identifier
»—— formal parameter list — : — result type L J
modifiers
»— subroutine block block
- external directive —
—— asm block
L forward

The result type of a function can be any previously declared type. contrary to Turbo pascal, where
only simple types could be returned.

8.3 Parameter lists

When arguments must be passed to a function or procedure, these parameters must be declared in the
formal parameter list of that function or procedure. The parameter list is a declaration of identifiers
that can be referred to only in that procedure or function’s block.

[
Parameters

»— formal parameter list — (»f parameter declaration T)

variable parameter

»— parameter declaration T value parameter ﬂ
constant parameter

Constant parameters and variable parameters can alsatyyjged parameters if they have no type
identifier.

Value parameters
Value parameters are declared as follows:

[
Value parameters

75

8.3. PARAMETER LISTS

=— value parameter — identifier list — : ﬁ parameter type —— <
array — of

When parameters are declared as value parameters, the procedareamtef the parameters that

the calling block passes. Any modifications to these parameters are purely local to the procedure’s
block, and do not propagate back to the calling block. A block that wishes to call a procedure with
value parameters must pass assignment compatible parameters to the procedure. This means that the
types should not match exactly, but can be converted (conversion code is inserted by the compiler
itself)

Care must be taken when using value parameters: Value parameters makes heavy use of the stack,
especially when using large parameters. The total size of all parameters in the formal parameter list
should be below 32K for portability’s sake (the Intel version limits this to 64K).

Open arrays can be passed as value parameters. See $c8tipage77 for more information on
using open arrays.

Variable parameters

Variable parameters are declared as follows:

[
Variable parameters

=— Vvariable parameter — var — identifier list L

: ﬁ parameter type J
array — of

When parameters are declared as variable parameters, the procedure or function accesses immediatly
the variable that the calling block passed in its parameter list. The procedure gets a pointer to the
variable that was passed, and uses this pointer to access the variable’s value. From this, it follows that
any changes made to the parameter, will propagate back to the calling block. This mechanism can be
used to pass values back in procedures. Because of this, the calling block must pass a parameter of
exactlythe same type as the declared parameter’s type. If it does not, the compiler will generate an
error.

Variable parameters can be untyped. In that case the variable has no type, and hence is incompatible
with all other types. However, the address operator can be used on it, or it can be can passed to a
function that has also an untyped parameter. If an untyped parameter is used in an assigment, or a
value must be assigned to it, a typecast must be used.

File type variables must always be passed as variable parameters.

Open arrays can be passed as variable parameters. See 8t tage7 7 for more information on
using open arrays.

Constant parameters

In addition to variable parameters and value parameters Free Pascal also supports Constant parame-
ters. A constant parameter as can be specified as follows:

[
Constant parameters

76

8.3. PARAMETER LISTS

»— constant parameter — const — identifier list L

: ﬁ parameter type —I
array — of

A constant argument is passed by reference if it's size is larger than a longint. It is passed by value if
the size equals 4 or less. This means that the function or procedure receives a pointer to the passed
argument, but it cannot be assigned to, this will result in a compiler error. Furthermore a const
parameter cannot be passed on to another function that requires a variable parameter. The main use
for this is reducing the stack size, hence improving performance, and still retaining the semantics of
passing by value...

Constant parameters can also be untyped. See s&fippage76 for more information about
untyped parameters.

Open arrays can be passed as constant parameters. See&&cpage/7 for more information on
using open arrays.

Open array parameters

Free Pascal supports the passing of open arrays, i.e. a procedure can be declared with an array
of unspecified length as a parameter, as in Delphi. Open array parameters can be accessed in the
procedure or function as an array that is declared with starting index 0, and last element index
High(paremeter) . For example, the parameter

Row : Array of Integer;
would be equivalent to
Row : Array[0..N-1] of Integer;

WhereN would be the actual size of the array that is passed to the fundtieih.can be calculated
asHigh(Row) . Open parameters can be passed by value, by reference or as a constant parameter.
In the latter cases the procedure receives a pointer to the actual array. In the former case, it receives a
copy of the array. In a function or procedure, open arrays can only be passed to functions which are
also declared with open arrays as parametessto functions or procedures which accept arrays of

fixed length. The following is an example of a function using an open array:

Function Average (Row : Array of integer) : Real;
Var | : longint;
Temp : Real;
begin
Temp = Rowl[0];
For | := 1 to High(Row) do
Temp = Temp + Row]i];
Average Temp / (High(Row)+1);
end;

Array of const

In Object Pascal or Delphi mode, Free Pascal supportartay of Const construction to pass
parameters to a subroutine.

77

8.3. PARAMETER LISTS

This is a special case of ti@pen array construction, where it is allowed to pass any expression
in an array to a function or procedure.

In the procedure, passed the arguments can be examined using a special record:

Type
PVvarRec = ~TVarRec;
TVarRec = record
case VType : Longint of

vtinteger . (Vinteger: Longint);
vtBoolean : (VBoolean: Boolean);
vtChar : (VChar: Char);
vtExtended . (VExtended: PExtended);
vtString . (VString: PShortString);
vtPointer . (VPointer: Pointer);
vtPChar : (VPChar: PChar);
vtObject : (VObject: TObject);
vtClass . (VClass: TClass);

vtAnsiString : (VAnsiString: Pointer);

vtWideString : (VWideString: Pointer);

vtint64 : (VInté4: PInt64);
end;

Inside the procedure body, the array of const is equivalent to an open array of TVarRec:
Procedure Testit (Args: Array of const);
Var | : longint;

begin
If High(Args)<0 then
begin
Writeln ('No aguments’);
exit;
end;
Writeln ('Got ’,High(Args)+1,” arguments :");
For i:=0 to High(Args) do
begin
write (CArgument)i,/ has type °);
case Args|i].vtype of
vtinteger
Writeln (Integer, Value :',args]i].vinteger);
vtboolean :
Writeln ('Boolean, Value :args[i].vboolean);
vtchar :
Writeln ('Char, value : ’,args[i].vchar);
vtextended
Writeln (Extended, value : ’,args[i]. VExtended");
vtString :
Writeln ('ShortString, value :’,args[i].VString");
vtPointer :
Writeln ('Pointer, value : ’,Longint(Args[i].VPointer));
vtPChar :
Writeln (PCHar, value : ',Args[i].VPChar);
vtObject

78

8.4. FUNCTION OVERLOADING

Writeln ('Object, name : ’Args|i].VObject.Classname);
vtClass
Writeln (Class reference, name :',Args|i].VClass.Classhame);
VtAnsiString :
Writeln (AnsiString, value :',AnsiString(Args|l].VAnsiStr
else
Writeln ('(Unknown) : ’,args[i].vtype);
end;
end;
end;

In code, itis possible to pass an arbitrary array of elements to this procedure:

S:='Ansistring 1’;
T:='AnsiString 2’;

Testit ([]);

Testit ([1,2]);

Testit ([A’,B]);

Testit ([TRUE,FALSE, TRUE));
Testit (['String’,’Another string’]);
Testit ([S,T]) ;

Testit ([P1,P2));

Testit ([@testit,Nil]);

Testit ([ObjA,ObjB]);

Testit ([1.234,1.234]);

Testlt ([AClass));

If the procedure is declared with tleelecl maodifier, then the compiler will pass the array as a C
compiler would pass it. This, in effect, emulates the C construct of a variable number of arguments,
as the following example will show:

program testaocc;
{$mode objfpc}

Const
P : Pchar = 'example’;
Fmt : PChar =

'This %s uses printf to print nhumbers (%d) and strings.'#10;

/I Declaration of standard C function printf:
procedure printf (fm : pchar; args : array of const);cdecl; external 'c’;

begin
printf(Fmt,[P,123]);
end.

Remark that this is not true for Delphi, so code relying on this feature will not be portable.

8.4 Function overloading

Function overloading simply means that the same function is defined more than once, but each time
with a different formal parameter list. The parameter lists must differ at least in one of it's elements
type. When the compiler encounters a function call, it will look at the function parameters to decide

79

8.5. FORWARD DEFINED FUNCTIONS

which one of the defined functions it should call. This can be useful when the same function must be
defined for different types. For example, in the RTL, Bec procedure could be defined as:

Dec(Var | : Longint;decrement : Longint);
Dec(Var | : Longint);

Dec(Var | : Byte;decrement : Longint);
Dec(Var | : Byte);

When the compiler encounters a call to the dec function, it will first search which function it should
use. It therefore checks the parameters in a function call, and looks if there is a function definition
which matches the specified parameter list. If the compiler finds such a function, a call is inserted
to that function. If no such function is found, a compiler error is generated. functions that have a
cdecl modifier cannot be overloaded. (Technically, because this modifier prevents the mangling of
the function name by the compiler).

8.5 Forward defined functions

A function can be declared without having it followed by it's implementation, by having it followed
by theforward procedure. The effective implementation of that function must follow later in
the module. The function can be used aftdomvard declaration as if it had been implemented
already. The following is an example of a forward declaration.

Program testforward;
Procedure First (n : longint); forward;
Procedure Second,;
begin
WriteLn ('In second. Calling first...’);
First (1);
end;
Procedure First (n : longint);
begin
WriteLn ('First received : ’,n);
end;
begin
Second;
end.

A function can be defined as forward only once. Likewise, in units, it is not allowed to have a forward
declared function of a function that has been declared in the interface part. The interface declaration
counts as #orward declaration. The following unit will give an error when compiled:

Unit testforward;
interface
Procedure First (n : longint);
Procedure Second;
implementation
Procedure First (n : longint); forward;
Procedure Second;
begin
WriteLn ('In second. Calling first...”);
First (1);

80

Remark:

8.6. EXTERNAL FUNCTIONS

end;
Procedure First (n : longint);
begin

WriteLn ('First received : ’,n);
end;
end.

8.6 External functions

Theexternal modifier can be used to declare a function that resides in an external object file. It
allows to use the function in some code, and at linking time, the object file containing the implemen-
tation of the function or procedure must be linked in.

[
External directive

»— external directive — external

L string constant |
k name - string constantﬂ
index — integer constant

It replaces, in effect, the function or procedure code block. As an example:

program CmodDemo;
{$Linklib c}
Const P : PChar = 'This is fun I;
Function strlen (P : PChar) : Longint; cdecl; external;
begin
WriteLn ('Length of (,p,") : ’,strlen(p))
end.

The parameters in our declaration of #edernal function should match exactly the ones in the
declaration in the object file.

If the external maodifier is followed by a string constant:
external ’lname’;

Then this tells the compiler that the function resides in library 'Iname’. The compiler will then
automatically link this library to the program.

The name that the function has in the library can also be specified:
external ’'Iname’ name 'Fname’;

This tells the compiler that the function resides in library 'lname’, but with name 'Fname’.The com-
piler will then automatically link this library to the program, and use the correct name for the function.
Under WINDOWS ando /2, the following form can also be used:

external 'Ilname’ Index Ind;

This tells the compiler that the function resides in library 'Iname’, but with indelx. The compiler
will then automatically link this library to the program, and use the correct index for the function.

Finally, the external directive can be used to specify the external name of the function :

81

8.7. ASSEMBLER FUNCTIONS

{$L myfunc.o}
external name 'Fname’;

This tells the compiler that the function has the name 'Fname’. The correct library or object file (in
this case myfunc.o) must still be linked. so that the function 'Fname’ is included in the linking stage.

8.7 Assembler functions

Functions and procedures can be completely implemented in assembly language. To indicate this,
use theassembler keyword:

[
Assembler functions

»— asm block — assembler —; — declaration part — asm statement

Contrary to Delphi, the assembler keyword must be present to indicate an assembler function. For
more information about assembler functions, see the chapter on using assemblé&roptaenmers
guide

8.8 Modifiers

A function or procedure declaration can contain modifiers. Here we list the various possibilities:

[
Modifiers

»— modifiers —;— public
+alias — : — string constant —
interrupt
call modifiers

»— call modifiers ——— register >
—— pascal
—— cdecl
—— stdcall
— popstack —
I saveregisters —
——inline
L safecall —

Free Pascal doesn't support all Turbo Pascal modifiers, but does support a number of additional
modifiers. They are used mainly for assembler and reference to C object files.

alias

Thealias modifier allows the programmer to specify a different name for a procedure or function.
This is mostly useful for referring to this procedure from assembly language constructs or from
another object file. As an example, consider the following program:

82

file:../prog/prog.html
file:../prog/prog.html

Remark:

8.8. MODIFIERS

Program Aliases;

Procedure Printitalias : 'DOIT’;
begin
WriteLn (In Printit (alias : "DOIT"));
end;
begin
asm
call DOIT
end;
end.

the specified alias is inserted straight into the assembly code, thus it is case sensitive.

Thealias modifier does not make the symbol public to other modules, unless the routine is also
declared in the interface part of a unit, or fngblic modifier is used to force it as public. Consider
the following:

unit testalias;
interface

procedure testroutine;
implementation

procedure testroutine;alias:’ARoutine’;
begin

WriteLn('Hello world’);
end;

end.

This will make the routingéestroutine available publicly to external object files uunder the label
nameARoutine .

cdecl

Thecdecl modifier can be used to declare a function that uses a C type calling convention. This
must be used when accessing functions residing in an object file generated by standard C compil-
ers. It allows to use the function in the code, and at linking time, the object file containing the
implementation of the function or procedure must be linked in. As an example:

program CmodDemo;
{$LINKLIB c}
Const P : PChar = 'This is fun !;
Function strlen (P : PChar) : Longint; cdecl; external name ’strlen’;
begin
WriteLn ('Length of (,p,) : ’,strlen(p))
end.

When compiling this, and linking to the C-library, terlen function can be called throughout the
program. Theexternal directive tells the compiler that the function resides in an external object
filebrary with the 'strlen’ name (se®6).

83

8.8. MODIFIERS

Remark: The parameters in our declaration of théunction should match exactly the ones in the declaration
in C.

export

The export modifier is used to export names when creating a shared library or an executable program.
This means that the symbol will be publicly available, and can be imported from other programs. For
more information on this modifier, consult the section on Programming dynamic libraries in the
Programmers guide

inline
Procedures that are declared inline are copied to the places where they are called. This has the effect

that there is no actual procedure call, the code of the procedure is just copied to where the procedure
is needed, this results in faster execution speed if the function or procedure is used a lot.

By default,inline procedures are not allowed. Inline code must be enabled using the command-
line switch-Si or {$inline on} directive.

1. Inline code is NOT exported from a unit. This means that when calling an inline procedure
from another unit, a normal procedure call will be performed. Only inside ulmlisie
procedures are really inlined.

2. Recursive inline functions are not allowed. i.e. an inline function that calls itself is not allowed.

interrupt

The interrupt keyword is used to declare a routine which will be used as an interrupt handler.
On entry to this routine, all the registers will be saved and on exit, all registers will be restored and
an interrupt or trap return will be executed (instead of the normal return from subroutine instruction).

On platforms where a return from interrupt does not exist, the normal exit code of routines will be
done instead. For more information on the generated code, consaltdbeammers guide

pascal

The pascal modifier can be used to declare a function that uses the classic pascal type calling
convention (passing parameters from left to right). For more information on the pascal calling con-
vention, consult th€rogrammers guide

popstack

Popstack does the samecalecl , namely it tells the Free Pascal compiler that a function uses the C
calling convention. In difference with tredecl maodifier, it still mangles the name of the function
as it would for a normal pascal function. Wigopstack , functions can be called by their pascal
names in a library.

public

ThePublic keyword is used to declare a function globally in a unit. This is useful if the function
should not be accessible from the unit file (i.e. another unit/program using the unit doesn't see the
function), but must be accessible from the object file. as an example:

84

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

8.9. UNSUPPORTED TURBO PASCAL MODIFIERS

Unit someunit;
interface
Function First : Real;
Implementation
Function First : Real;
begin

First := O;
end;
Function Second : Real; [Public];
begin

Second := 1;
end;
end.

If another program or unit uses this unit, it will not be able to use the fun@econd , since it
isn’t declared in the interface part. However, it will be possible to access the fuisgimond at the
assembly-language level, by using it's mangled name (seertltizammers guide

register

Theregister keyword is used for compatibility with Delphi. In version 1.0.x of the compiler, this
directive has no effect on the generated code.

saveregisters

If this modifier is specified after a procedure or function, then the Free Pascal compiler will save all
registers on procedure entry, and restore them when the procedure exits (except for registers where
return values are stored).

This modifier is not used under normal circumstances, except maybe when calling assembler code.

safecall

This modifier ressembles closely th&lcall ~ modifier. It sends parameters from right to left on
the stack.

More information about this modifier can be found in the@grammers guiden the section on the
calling mechanism and the chapter on linking.

stdcall

This modifier pushes the parameters from right to left on the stack, it also aligns all the parameters
to a default alignment.

More information about this modifier can be found in thesgrammers guiddn the section on the
calling mechanism and the chapter on linking.

8.9 Unsupported Turbo Pascal modifiers

The modifiers that exist in Turbo pascal, but aren’t supported by Free Pascal, are listed if.fable (

85

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

8.9. UNSUPPORTED TURBO PASCAL MODIFIERS

Table 8.1: Unsupported modifiers

Modifier Why not supported ?
Near Free Pascal is a 32-bit compiler.
Far Free Pascal is a 32-bit compiler.

86

Chapter 9

Operator overloading

9.1 Introduction

Free Pascal supports operator overloading. This means that it is possible to define the action of some
operators on self-defined types, and thus allow the use of these types in mathematical expressions.

Defining the action of an operator is much like the definition of a function or procedure, only there
are some restrictions on the possible definitions, as will be shown in the subsequent.

Operator overloading is, in essence, a powerful notational tool; but it is also not more than that, since
the same results can be obtained with regular function calls. When using operator overloading, It is
important to keep in mind that some implicit rules may produce some unexpected results. This will

be indicated.

9.2 Operator declarations

To define the action of an operator is much like defining a function:

[
Operator definitions

arithmetic operator definition
comparision operator definition

»—[result identifier T . — result type — ; — subroutine block >

»— operator definition — operator \Passignment operator definition%—»

»— assignment operator definition — := — (— value parameter)

=— arithmetic operator definition + (— parameter list —)

»— comparision operator definition (- parameter list —)

87

Remark:

9.3. ASSIGNMENT OPERATORS

The parameter list for a comparision operator or an arithmetic operator must always contain 2 pa-
rameters. The result type of the comparision operator muBoloéean .

When compiling inDelphi mode orObjfpc mode, the result identifier may be dropped. The
result can then be accessed through the starifesdlt symbol.

If the result identifier is dropped and the compiler is not in one of these modes, a syntax error will
occur.

The statement block contains the necessary statements to determine the result of the operation. It
can contain arbitrary large pieces of code; it is executed whenever the operation is encountered in
some expression. The result of the statement block must always be defined; error conditions are not
checked by the compiler, and the code must take care of all possible cases, throwing a run-time error
if some error condition is encountered.

In the following, the three types of operator definitions will be examined. As an example, throughout
this chapter the following type will be used to define overloaded operators on :

type
complex = record
re : real;
im : real;
end;

this type will be used in all examples.

The sources of the Run-Time Library contain a wdbmplex, which contains a complete calculus
for complex numbers, based on operator overloading.

9.3 Assignment operators

The assignment operator defines the action of a assignent of one type of variable to another. The
result type must match the type of the variable at the left of the assignment statement, the single
parameter to the assignment operator must have the same type as the expression at the right of the
assignment operator.

This system can be used to declare a new type, and define an assignment for that type. For instance,
to be able to assign a newly defined type 'Complex’

Var
C,Z : Complex; // New type complex

begin

Z:=C; [l assignments between complex types.
end;
The following assignment operator would have to be defined:
Operator := (C : Complex) z : complex;
To be able to assign a real type to a complex type as follows:
var

R : real;
C : complex;

88

Remark:

Remark:

9.3. ASSIGNMENT OPERATORS

begin
C=R;
end;

the following assignment operator must be defined:
Operator := (r : real) z : complex;

As can be seen from this statement, it defines the action of the operateith at the right a real
expression, and at the left a complex expression.

an example implementation of this could be as follows:
operator := (r : real) z : complex;

begin
Z.re:=r;
z.im:=0.0;
end;

As can be seen in the example, the result identifiem(this case) is used to store the result of
the assignment. When compiling in Delphi mode or objfpc mode, the use of the special identifier
Result is also allowed, and can be substituted forzhso the above would be equivalent to

operator := (r : real) z : complex;

begin
Result.re:=r;
Result.im:=0.0;
end;

The assignment operator is also used to convert types from one type to another. The compiler will
consider all overloaded assignment operators till it finds one that matches the types of the left hand
and right hand expressions. If no such operator is found, a 'type mismatch’ error is given.

The assignment operator is hot commutative; the compiler will never reverse the role of the two
arguments. in other words, given the above definition of the assignment operator, the following is
notpossible:

var
R : real,
C : complex;

begin
R:=C;
end;

if the reverse assignment should be possible (this is not so for reals and complex numbers) then the
assigment operator must be defined for that as well.

The assignment operator is also used in implicit type conversions. This can have unwanted effects.
Consider the following definitions:

operator := (r : real) z : complex;
function exp(c : complex) : complex;

89

9.4. ARITHMETIC OPERATORS

then the following assignment will give a type mismatch:

Var
rl1,r2 : real;
begin
rl:=exp(r2);
end;

because the compiler will encounter the definition ofékp function with the complex argument. It
implicitly converts r2 to a complex, so it can use the abexp function. The result of this function

is a complex, which cannot be assigned to r1, so the compiler will give a 'type mismatch’ error. The
compiler will not look further for anotheexp which has the correct arguments.

It is possible to avoid this particular problem by specifying
rl:=system.exp(r2);

An experimental solution for this problem exists in the compiler, but is not enabled by default. Maybe
someday it will be.

9.4 Arithmetic operators

Arithmetic operators define the action of a binary operator. Possible operations are:

multiplication to multiply two types, thé multiplication operator must be overloaded.
division to divide two types, thé division operator must be overloaded.

addition to add two types, the addition operator must be overloaded.

substraction to substract two types, thesubstraction operator must be overloaded.

exponentiation to exponentiate two types, thi& exponentiation operator must be overloaded.

The definition of an arithmetic operator takes two parameters. The first parameter must be of the

type that occurs at the left of the operator, the second parameter must be of the type that is at the
right of the arithmetic operator. The result type must match the type that results after the arithmetic

operation.

To compile an expression as
var

R : real;
C,Z : complex;

begin
C:=R*Z;
end;

one needs a definition of the multiplication operator as:

Operator * (r : real; z1 : complex) z : complex;

begin
zre = zlre *r;
z.im = z1.im * r;
end;

90

9.5. COMPARISION OPERATOR

As can be seen, the first operator is a real, and the second is a complex. The result type is complex.

Multiplication and addition of reals and complexes are commutative operations. The compiler, how-
ever, has no notion of this fact so even if a multiplication between a real and a complex is defined,
the compiler will not use that definition when it encounters a complex and a real (in that order). It is
necessary to define both operations.

So, given the above definition of the multiplication, the compiler will not accept the following state-
ment:

var
R : real;
C,Z : complex;

begin
C:=7*R;
end;

since the types of andR don’t match the types in the operator definition.

The reason for this behaviour is that it is possible that a multiplication is not always commutative.
e.g. the multiplication of gn,m) with a(m,n) matrix will result in a(n,n) matrix, while the
mutiplication of alm,n) with a(n,m) matrix is a(m,m) matrix, which needn’t be the same in all
cases.

9.5 Comparision operator

The comparision operator can be overloaded to compare two different types or to compare two equal
types that are not basic types. The result type of a comparision operator is always a boolean.

The comparision operators that can be overloaded are:

equal to (=) to determine if two variables are equal.

less than (<) to determine if one variable is less than another.

greater than (>) to determine if one variable is greater than another.

greater than or equal to (>=) to determine if one variable is greater than or equal to another.

less than or equal to (<=) to determine if one variable is greater than or equal to another.

There is no separate operator torequal to(<>). To evaluate a statement that contansuthequal
to operator, the compiler uses thqual tooperator (=), and negates the result.

As an example, the following opetrator allows to compare two complex numbers:
operator = (z1, z2 : complex) b : boolean;
the above definition allows comparisions of the following form:

Var
C1,C2 : Complex;

begin
If C1=C2 then
Writeln(C1l and C2 are equal’);
end;

91

9.5. COMPARISION OPERATOR

The comparision operator definition needs 2 parameters, with the types that the operator is meant to
compare. Here also, the compiler doesn't apply commutativity; if the two types are different, then it
necessary to define 2 comparision operators.

In the case of complex numbers, it is, for instance necessary to define 2 comparsions: one with the
complex type first, and one with the real type first.

Given the definitions

operator = (z1 : complex;r : real) b : boolean;
operator = (r : real; z1 : complex) b : boolean;

the following two comparisions are possible:

Var
R,S : Real
C : Complex;
begin
If (C=R) or (S=C) then
Writeln ('Ok’);
end;

Note that the order of the real and complex type in the two comparisions is reversed.

92

Chapter 10

Programs, units, blocks

A Pascal program consists of modules callgdts . A unit can be used to group pieces of code
together, or to give someone code without giving the sources. Both programs and units consist of
code blocks, which are mixtures of statements, procedures, and variable or type declarations.

10.1 Programs

A pascal program consists of the program header, followed possibly by a 'uses’ clause, and a block.

[
Programs

»— program — program header — ; ﬁ block — .
uses clause

»— program header — program - identifier

L (- program parameters —) ‘I

»— program parameters — identifier list

»— uses clause — uses ﬁnti& ;

The program header is provided for backwards compatibility, and is ignored by the compiler. The
uses clause serves to identify all units that are needed by the program. The system unit doesn’t have
to be in this list, since it is always loaded by the compiler. The order in which the units appear is
significant, it determines in which order they are initialized. Units are initialized in the same order as
they appear in the uses clause. Identifiers are searched in the opposite order, i.e. when the compiler
searches for an identifier, then it looks first in the last unit in the uses clause, then the last but one,
and so on. This is important in case two units declare different types with the same identifier. When
the compiler looks for unit files, it adds the extensippu (.ppw for Win32 platforms) to the name

of the unit. OnLINUX and in operating systems where filenames are case sensitive, when looking
for a unit, the unit name is first looked for in the original case, and when not found, converted to all
lowercase and searched for.

If a unit name is longer than 8 characters, the compiler will first look for a unit name with this length,
and then it will truncate the name to 8 characters and look for it again. For compatibility reasons,
this is also true on platforms that suport long file names.

93

10.2. UNITS

10.2 Units

A unit contains a set of declarations, procedures and functions that can be used by a program or
another unit. The syntax for a unit is as follows:

[
Units

»— unit — unit header — interface part — implementation part —
end —. >

- initialization part
Lfinalization part J

begin ‘f statemit—,i
»— unit header — unit — unit identifier — ;

=»— interface part — interface
constant declaration part
type declaration part

procedure headers part

=— procedure headers part Iprocedure headej ;

function header LcaII modifiers — ; —I

»— implementation part — implementation ﬁ declaration part ——
uses clause

»— initialization part — initialization T statement

»— finalization part — finalization T statement

The interface part declares all identifiers that must be exported from the unit. This can be constant,
type or variable identifiers, and also procedure or function identifier declarations. Declarations inside
the implementation part amngot accessible outside the unit. The implementation must contain a
function declaration for each function or procedure that is declared in the interface part. If a function
is declared in the interface part, but no declaration of that function is present in the implementation
part, then the compiler will give an error.

When a program uses a unit (sayitA) and this units uses a second unit, saitB, then the program
depends indirectly also omitB . This means that the compiler must have accessittB when
trying to compile the program. If the unit is not present at compile time, an error occurs.

Note that the identifiers from a unit on which a program depends indirectly, are not accessible to the
program. To have access to the identifiers of a unit, the unit must be in the uses clause of the program
or unit where the identifiers are needed.

Units can be mutually dependent, that is, they can reference each other in their uses clauses. This is
allowed, on the condition that at least one of the references is in the implementation section of the
unit. This also holds for indirect mutually dependent units.

If it is possible to start from one interface uses clause of a unit, and to return there via uses clauses
of interfaces only, then there is circular unit dependence, and the compiler will generate an error. As
and example : the following is not allowed:

94

10.3. BLOCKS

Unit UnitA;
interface

Uses UnitB;
implementation
end.

Unit UnitB
interface

Uses UnitA;
implementation
end.

But this is allowed :

Unit UnitA;
interface

Uses UnitB;
implementation
end.

Unit UnitB
implementation
Uses UnitA;
end.

BecauseUnitB usesUnitA only in it's implentation section. In general, it is a bad idea to have
circular unit dependencies, even if it is only in implementation sections.

10.3 Blocks

Units and programs are made of blocks. A block is made of declarations of labels, constants, types
variables and functions or procedures. Blocks can be nested in certain ways, i.e., a procedure or

function declaration can have blocks in themselves. A block looks like the following:

[
Blocks

»— block — declaration part — statement part

»— declaration part

label declaration part
constant declaration part
— resourcestring declaration part —
type declaration part
variable declaration part
L procedure/function declaration part —

»— label declaration part — label ﬁ\bij ;

»— constant declaration part — const ‘T constant declaration

typed constant declaration

]

95

10.4. SCOPE

»— resourcestring declaration part — resourcestring T string constant declaration T

»— type declaration part — type »f type declaration |

»— variable declaration part — var 7 variable declaration | >

»— procedure/function declaration part procedure declaration >
function declaration —

constructor declaration —

destructor declaration —

»— statement part — Compound statement

Labels that can be used to identify statements in a block are declared in the label declaration part
of that block. Each label can only identify one statement. Constants that are to be used only in one
block should be declared in that block’s constant declaration part. Variables that are to be used only
in one block should be declared in that block’s constant declaration part. Types that are to be used
only in one block should be declared in that block’s constant declaration part. Lastly, functions and

procedures that will be used in that block can be declared in the procedure/function declaration part.
After the different declaration parts comes the statement part. This contains any actions that the block
should execute. All identifiers declared before the statement part can be used in that statement part.

10.4 Scope

Identifiers are valid from the point of their declaration until the end of the block in which the dec-
laration occurred. The range where the identifier is known isstupeof the identifier. The exact
scope of an identifier depends on the way it was defined.

Block scope

The scopeof a variable declared in the declaration part of a block, is valid from the point of declara-

tion until the end of the block. If a block contains a second block, in which the identfier is redeclared,
then inside this block, the second declaration will be valid. Upon leaving the inner block, the first
declaration is valid again. Consider the following example:

Program Demo;

Var X : Real,

{ X is real variable }

Procedure NewDeclaration

Var X : Integer; { Redeclare X as integer}
begin

/[X = 1.234; {would give an error when trying to compile}
X = 10; { Correct assigment}

end;

{ From here on, X is Real again}

begin

96

10.4. SCOPE

X = 2.468;
end.

In this example, inside the procedure, X denotes an integer variable. It has it's own storage space,
independent of the variabloutside the procedure.

Record scope
The field identifiers inside a record definition are valid in the following places:

1. to the end of the record definition.
2. field designators of a variable of the given record type.

3. identifiers inside &Vith statement that operates on a variable of the given record type.

Class scope
A component identifier is valid in the following places:

1. From the point of declaration to the end of the class definition.
2. In all descendent types of this class, unless it is in the private part of the class declaration.
3. In all method declaration blocks of this class and descendent classes.

4. In a with statement that operators on a variable of the given class’s definition.

Note that method designators are also considered identifiers.

Unit scope

All identifiers in the interface part of a unit are valid from the point of declaration, until the end

of the unit. Furthermore, the identifiers are known in programs or units that have the unit in their
uses clause. Identifiers from indirectly dependent unitxatavailable. Identifiers declared in the
implementation part of a unit are valid from the point of declaration to the end of the unit. The system
unit is automatically used in all units and programs. It's identifiers are therefore always known, in
each pascal program, library or unit. The rules of unit scope imply that an identifier of a unit can
be redefined. To have access to an identifier of another unit that was redeclared in the current unit,
precede it with that other units name, as in the following example:

unit unitA,;
interface
Type

MyType = Real;
implementation
end.
Program prog;
Uses UnitA,;

{ Redeclaration of MyType}
Type MyType = Integer;

Var A : Mytype; { Will be Integer }
B : UnitA.MyType { Will be real }

begin

end.

97

10.5. LIBRARIES

This is especially useful when redeclaring the system unit’s identifiers.

10.5 Libraries

Free Pascal supports making of dynamic libraries (DLLs under Win32o&?) trough the use of
theLibrary keyword.

A Library is just like a unit or a program:

[
Libraries

»— library — library header —; ﬁ block —. >
uses clause

»— library header — library - identifier

By default, functions and procedures that are declared and implemented in library are not available
to a programmer that wishes to use this library.

In order to make functions or procedures available from the library, they must be exported in an
export clause:

[
Exports clause

»— exports clause — exports — exports list —;

=»— exports list T exports entry

= exports entry — identifier

L index — integer constant —I L name — string constant —I

Under Win32, an index clause can be added to an exports entry. an index entry must be a positive
number larger or equal than 1.

Optionally, an exports entry can have a name specifier. If present, the name specifier gives the exact
name (case sensitive) of the function in the library.

If neither of these constructs is present, the functions or procedures are exported with the exact names
as specified in the exports clause.

98

Remark:

Chapter 11

Exceptions

Exceptions provide a convenient way to program error and error-recovery mechanisms, and are
closely related to classes. Exception support is based on 3 constructs:

Raise statements. To raise an exeption. This is usually done to signal an error condition.

Try ... Except blocks. These block serve to catch exceptions raised within the scope of the block,
and to provide exception-recovery code.

Try ... Finally blocks. These block serve to force code to be executed irrespective of an exception
occurrence or not. They generally serve to clean up memory or close files in case an exception
occurs. The compiler generates many impliaiy ... Finally blocks around proce-
dure, to force memory consistence.

11.1 The raise statement

Theraise statementis as follows:

[
Raise statement

»— raise statement

L exception instance L _J ‘
at — address expression

This statement will raise an exception. If it is specified, the exception instance must be an initialized
instance of a class, which is the raise type. The address exception is optional. If itis not specified,
the compiler will provide the address by itself. If the exception instance is omitted, then the current
exception is re-raised. This construct can only be used in an exception handling block (see further).

Controlnevereturns after an exception block. The control is transferred to thérfirsfinally

or try...except statement that is encountered when unwinding the stack. If no such statement
is found, the Free Pascal Run-Time Library will generate a run-time error 217 (see also $&dgjon
pagel02?).

As an example: The following division checks whether the denominator is zero, and if so, raises an
exception of typeEDivException

99

11.2. THE TRY...EXCEPT STATEMENT

Type EDivException = Class(Exception);
Function DoDiv (X,Y : Longint) : Integer;
begin
If Y=0 then
Raise EDivException.Create ('Division by Zero would occur’);
Result := X Div V;
end;

The clas€Exception is defined in theSysutils unit of the rtl. (sectiorll.5 pagel02

11.2 The try...except statement

A try...except exception handling block is of the following form :

|
Try..except statement
= try statement — try — statement list — except — exceptionhandlers —end —— <

»— statement list T statement

»— exceptionhandlers -
T exception handler | L

else — statement list —I
statement list

= exception handler — on ﬁ class type identifier — do — statement ——
identifier —:

If no exception is raised during the execution of gtatement list , then all statements in the
list will be executed sequentially, and the except block will be skipped, transferring program flow to
the statement after the finahd .

If an exception occurs during the execution of #tatement list , the program flow will be
transferred to the except block. Statements in the statement list between the place where the exception
was raised and the exception block are ignored.

In the exception handling block, the type of the exception is checked, and if there is an exception
handler where the class type matches the exception object type, or is a parent type of the exception
object type, then the statement following the corresponBiagvill be executed. The first matching

type is used. After th®o block was executed, the program continues afteEihe statement.

The identifier in an exception handling statement is optional, and declares an exception object. It
can be used to manipulate the exception object in the exception handling code. The scope of this
declaration is the statement block foillowing the keyword.

If none of theOn handlers matches the exception object type, then the statement listlaéeris
executed. If no such list is found, then the exception is automatically re-raised. This process allows
to nesttry...except blocks.

If, on the other hand, the exception was caught, then the exception object is destroyed at the end of
the exception handling block, before program flow continues. The exception is destroyed through a
call to the object'Destroy destructor.

As an example, given the previous declaration offlo®iv function, consider the following

100

11.3. THE TRY...FINALLY STATEMENT

Try

Z = DoDiv (X,Y);
Except

On EDivException do Z = 0;
end;

If Y happens to be zero, then the DoDiv function code will raise an exception. When this happens,
program flow is transferred to the except statement, where the Exception handler will set the value
of Z to zero. If no exception is raised, then program flow continues past therldsstatement. To

allow error recovery, thary ... Finally block is supported. Ary...Finally block
ensures that the statements following Hieally ~ keyword are guaranteed to be executed, even if

an exception occurs.

11.3 The try...finally statement

A Try..Finally statement has the following form:

[
Try...finally statement

»— trystatement — try — statement list — finally — finally statements —end —— <

»— finally statements — statementlist >

If no exception occurs inside tlsgatement List , then the program runs as if they , Finally
andEnd keywords were not present.

If, however, an exception occurs, the program flow is immediatly transferred from the point where
the excepion was raised to the first statement ofihally statements

All statements after the finally keyword will be executed, and then the exception will be automatically
re-raised. Any statements between the place where the exception was raised and the first statement
of theFinally Statements are skipped.

As an example consider the following routine:

Procedure Doit (Name : string);
Var F : Text;
begin
Try
Assign (F,Name);
Rewrite (name);
. File handling ...
Finally
Close(F);
end;

If during the execution of the file handling an execption occurs, then program flow will continue at
theclose(F) statement, skipping any file operations that might follow between the place where
the exception was raised, and Bwse statement. If no exception occurred, all file operations will
be executed, and the file will be closed at the end.

101

11.4. EXCEPTION HANDLING NESTING

11.4 Exception handling nesting

Itis possible to nestry...Except blocks withTry...Finally blocks. Program flow will be
done accordingtolifo (lastin, first out) principle: The code of the last encountdmd..Except

or Try...Finally block will be executed first. If the exception is not caught, or it was a finally
statement, program flow will be transferred to the last-but-one btkgfinitum

If an exception occurs, and there is no exception handler present, then a runerror 217 will be gen-
erated. When using th&ysutils unit, a default handler is installed which will show the exception
object message, and the address where the exception occurred, after which the program will exit with
aHalt instruction.

11.5 Exception classes

The sysutils unit contains a great deal of exception handling. It defines the following exception
types:

Exception = class(TObject)
private
fmessage : string;
fhelpcontext : longint;
public
constructor create(const msg : string);
constructor createres(indent : longint);
property helpcontext : longint read fhelpcontext write fhelpcontext;
property message : string read fmessage write fmessage;
end,;
ExceptClass = Class of Exception;
{ mathematical exceptions }
EIntError = class(Exception);
EDivByZero = class(EIntError);
ERangeError = class(EIntError);
EIntOverflow = class(EIntError);
EMathError = class(Exception);

The sysutils unit also installs an exception handler. If an exception is unhandled by any exception
handling block, this handler is called by the Run-Time library. Basically, it prints the exception
address, and it prints the message of the Exception object, and exits with a exit code of 217. If the
exception object is not a descendent object offkeeption object, then the class name is printed
instead of the exception message.

It is recommended to use tliexception object or a descendant class for@ise statements,
since then the message field of the exception object can be used.

102

Chapter 12

Using assembler

Free Pascal supports the use of assembler in code, but not inline assembler macros. To have more
information on the processor specific assembler syntax and its limitations, s€ecth@mmers
guide

12.1 Assembler statements

The following is an example of assembler inclusion in pascal code.

Statements;

Asm
the asm code here

end;
Statements;

The assembler instructions between fmmandend keywords will be inserted in the assembler
generated by the compiler. Conditionals can be used ib assembler, the compiler will recognise it, and
treat it as any other conditionals.

12.2 Assembler procedures and functions

Assembler procedures and functions are declared usingsbembler directive. This permits the
code generator to make a number of code generation optimizations.

The code generator does not generate any stack frame (entry and exit code for the routine) if it
contains no local variables and no parameters. In the case of functions, ordinal values must be
returned in the accumulator. In the case of floating point values, these depend on the target processor
and emulation options.

103

file:../prog/prog.html
file:../prog/prog.html

Part |l

Reference . The System unit

104

Chapter 13

The system unit

The system unit contains the standard supported functions of Free Pascal. It is the same for all
platforms. Basically it is the same as the system unit provided with Borland or Turbo Pascal.

Functions are listed in alphabetical order. Arguments of functions or procedures that are optional are
put between square brackets.

The pre-defined constants and variables are listed in the first section. The second section contains
an overview of all functions, grouped by functionality, and the last section contains the supported
functions and procedures.

13.1 Types, Constants and Variables
Types
The following integer types are defined in the System unit:

Shortint = -128..127;
Smallint = -32768..32767;

Longint $80000000..$7fffffff,;
byte = 0..255;

word = 0..65535;

dword = cardinal;
longword = cardinal,

Integer = smallint;

The following types are used for the functions that need compiler magic suchl 875 or Str

a72:

StrLenInt = Longint;

ValSInt = Longint;
ValUInt = Cardinal;
ValReal = Extended;

TheReal48 type is defined to emulate the old Turbo Pastehl type:
Real48 = Array[0..5] of byte;

The assignment operator has been overloaded so this type can be assigned to the Free Pascal native
Double andExtended types.Real2Double (161).

105

13.1. TYPES, CONSTANTS AND VARIABLES

The following character types are defined for Delphi compatibility:

TAnsiChar
AnsiChar

Char;
TAnsiChar;

And the following pointer types as well:

PChar = “char;
pPChar = "“PChar;

PAnsiChar = PChar;
PQWord = "QWord;
Pint64 = AInt64;
pshortstring = “shortstring;
plongstring = “longstring;
pansistring = "ansistring;
pwidestring = “widestring;
pextended = "extended;
ppointer = /\pointer;

For theSetdJmp (167) andLongJmp (150 calls, the following jump bufer type is defined (for the
1386 processor):

jmp_buf = record
ebx,esi,edi : Longint;
bp,sp,pc : Pointer;
end;

PJmp_buf = Ajmp_buf;

The following records and pointers can be used to scan the entries in the string message handler
tables:

tmsgstrtable = record
name : pshortstring;
method : pointer;

end;

pmsgstrtable = ~tmsgstrtable;

tstringmessagetable = record

count : dword;

msgstrtable : array[0..0] of tmsgstrtable;
end;
pstringmessagetable = “tstringmessagetable;

The base class for all classes is defined as:

Type

TObject = Class

Public
constructor create;
destructor destroy;virtual;
class function newinstance : tobject;virtual,
procedure freeinstance;virtual;
function safecallexception(exceptobject : tobject;

exceptaddr : pointer) : longint;virtual;

106

13.1. TYPES, CONSTANTS AND VARIABLES

procedure defaulthandler(var message);virtual;

procedure free;

class function initinstance(instance : pointer) : tobject;
procedure cleanupinstance;

function classtype : tclass;

class function classinfo : pointer;

class function classname : shortstring;

class function classnameis(const name : string) : boolean;
class function classparent : tclass;

class function instancesize : longint;

class function inheritsfrom(aclass : tclass) : boolean;
class function inheritsfrom(aclass : tclass) : boolean;
class function stringmessagetable : pstringmessagetable;
procedure dispatch(var message);

procedure dispatchstr(var message);

class function methodaddress(const name : shortstring) : pointer;
class function methodname(address : pointer) : shortstring;
function fieldaddress(const name : shortstring) : pointer;
procedure AfterConstruction;virtual,

procedure BeforeDestruction;virtual;

procedure DefaultHandlerStr(var message);virtual;

end;
TClass = Class Of TObject;
PClass = "TClass;

Unhandled exceptions can be treated using a constant dBkeeptProc type:
TExceptProc = Procedure (Obj : TObject; Addr,Frame: Pointer);

Obj is the exception object that was used to raise the excegitdr, andFrame contain the exact
address and stack frame where the exception was raised.

The TVarRec type is used to access the elements passeddimay of Const argument to a
function or procedure:

Type
PVarRec = ~TVarRec;
TVarRec = record
case VType : Longint of

vtinteger . (VInteger: Longint);
vtBoolean . (VBoolean: Boolean);
vtChar : (VChar: Char);
vtExtended : (VExtended: PExtended);
vtString : (VString: PShortString);
vtPointer . (VPointer: Pointer);
vtPChar . (VPChar: PChar);
vtObject . (VObject: TObject);
vtClass . (VClass: TClass);

VtAnsiString : (VAnsiString: Pointer);

vtWideString : (VWideString: Pointer);

vtint64 : (VInt64: PInt64);
end;

The heap manager uses fildemoryManager type:

107

13.1. TYPES, CONSTANTS AND VARIABLES

PMemoryManager = “TMemoryManager;

TMemoryManager = record
Getmem . Function(Size:Longint):Pointer;
Freemem : Function(var p:pointer):Longint;
FreememsSize : Function(var p:pointer;Size:Longint):Longint;
AllocMem . Function(Size:longint):Pointer;
ReAllocMem : Function(var p:pointer;Size:longint):Pointer;
MemSize . function(p:pointer):Longint;
MemAvail : Function:Longint;
MaxAuvail : Function:Longint;
HeapSize : Function:Longint;

end;

More information on using this record can be foundPimgrammers guide

Constants
The following constants define the maximum values that can be used with various types:

MaxSIntValue High(ValSint);
MaxUlIntValue = High(ValUInt);
maxint = maxsmallint;
maxLongint = $7fffffff;
maxSmallint = 32767;

The following constants for file-handling are defined in the system unit:

Const
fmclosed = $D7BO;
fminput = $D7B1,;
fmoutput = $D7B2;
fminout = $D7B3;

fmappend = $D7B4;
filemode : byte = 2;

Thefilemode variable is used when a non-text file is opened usteget . It indicates how the
file will be openedfilemode can have one of the following values:

0 The file is opened for reading.
1 The file is opened for writing.
2 The file is opened for reading and writing.

The default value is 2. Other values are possible but are operating system specific.
Further, the following non processor specific general-purpose constants are also defined:

const
erroraddr : pointer = nil;
errorcode : word = O;

{ max level in dumping on error }
max_frame_dump : word = 20;

108

file:../prog/prog.html

13.1. TYPES, CONSTANTS AND VARIABLES

Remark: Processor specific global constants are named Testxxxx where xxxx represents the processor num-
ber (such as Test8086, Test68000), and are used to determine on what generation of processor the
program is running on.

The following constants are defined to access VMT entries:

vmtinstanceSize = 0;

vmtParent = 8§
vmtClassName = 12;
vmtDynamicTable = 16;
vmtMethodTable = 20;
vmtFieldTable = 24;

vmtTypelnfo = 28;

vmtlnitTable = 32;

vmtAutoTable = 36;

vmtintfTable = 40;

vmtMsgStrPtr = 44;
vmtMethodStart = 48;

vmtDestroy = vmtMethodStart;
vmtNewlnstance = vmtMethodStart+4;
vmtFreelnstance = vmtMethodStart+8;
vmtSafeCallException = vmtMethodStart+12;
vmtDefaultHandler = vmtMethodStart+16;
vmtAfterConstruction = vmtMethodStart+20;
vmtBeforeDestruction = vmtMethodStart+24;
vmtDefaultHandlerStr = vmtMethodStart+28;

The constant names should be used, and never their values, because the VMT table can change,
breaking code that uses direct values.

The following constants will be used for the plannetiant support:

varEmpty = $0000;
varNull = $0001;
varSmallint = $0002;
varinteger = $0003;
varSingle = $0004;
varDouble = $0005;
varCurrency = $0006;
varDate = $0007;
varOleStr = $0008;
varDispatch = $0009;
varError = $000A;
varBoolean = $000B;
varVariant = $000C;
varUnknown = $000D;
varByte = $0011;
varString = $0100;
varAny = $0101;
varTypeMask = $0FFF;
varArray = $2000;
varByRef = $4000;

The following constants are used in th#arRec record:

vtinteger =0

109

13.1. TYPES, CONSTANTS AND VARIABLES

vtBoolean = 1,
vtChar = 2;
vtExtended = 3
vtString = 4;
vtPointer = b5
vtPChar = 6;
vtObject =7
vtClass = 8;
vtWideChar =9
vtPWideChar = 10;
VtAnsiString = 11;
vtCurrency = 12;
vtVariant = 13;
vtinterface = 14;
vtWideString = 15;
vtint64 = 16;
vtQWord = 17,

TheExceptProc is called when an unhandled exception occurs:

Const
ExceptProc : TExceptProc = Nil;

It is set in theobjpas unit, but it can be set by the programmer to change the default exception
handling.

The following constants are defined to describe the operating system’s file system:

LineEnding = #10;

LFENSupport = true;

DirectorySeparator = '/’

DriveSeparator = "’;

PathSeparator = '’;
FileNameCaseSensitive : Boolean = True;

(the shown values are farNnix platforms, but will be different on other platforms) The meaning of
the constants is the following:

LineEnding End of line marker. This constant is used when writing end of lines to text files.

LFNSupport This is True if the system supports long file names, i.e. filenames that are not re-
stricted to 8.3 characters.

DirectorySeparator The character that is used as a directory separator, i.e. it appears between
various parts of a path to a file.

DriveSeparator On systems that support drive letters, this character separates the drive indication
from the rest of a filename.

PathSeparator This character can be found between elements in a series of paths (such as the con-
tents of thePATHenvironment variable.

FileNameCaseSensitivdndicates whether filenames are case sensitive.

When programming cross-platform, use these constants instead of hard-coded characters. This will
enhance portability of an application.

110

Remark:

13.1. TYPES, CONSTANTS AND VARIABLES

Variables

The following variables are defined and initialized in the system unit:

var
output,input,stderr : text;
exitproc : pointer;
exitcode : word;
stackbottom : Cardinal;

The variable€xitProc , exitcode are used in the Free Pascal exit scheme. It works similarly to
the one in Turbo Pascal:

When a program halts (be it through the call of thalt function orExit or through a run-time

error), the exit mechanism checks the valu&gitProc . If this one is nonNil , it is set toNil ,

and the procedure is called. If the exit procedure exits, the value of ExitProc is checked again. If it
is nonNil then the above steps are repeated. So when an exit procedure must be installed, the old
value ofExitProc should be saved (it may be ndi¥il , since other units could have set it). In the

exit procedure the value @&xitProc should be restored to the previous value, such that if it was
nonNil the exit-procedure can be called.

Listing: refex/ex98.pp

Program Example98;
{ Program to demonstrate the exitproc function. }

Var
OldExitProc : Pointer;

Procedure MyEXxit;

begin
Writeln ('My Exitproc was called. Exitcode = ', ExitCode);
{ restore old exit procedure }
ExitProc:=OIdExitProc;

end;

begin
OIdExitProc:=ExitProc;
ExitProc := @MyExit;
If ParamCount >0 Then
Halt (66);
end .

The ErrorAddr andExitCode can be used to check for error-conditions. EfrorAddr is
nonNil , a run-time error has occurred. If d6xitCode contains the error code. ErrorAddr
is Nil , then ExitCode contains the argumenttalt or O if the program terminated normally.

ExitCode is always passed to the operating system as the exit-code of the current process.
The maximum error code undemux anduNix like operating systems is 127.
UnderGO32, the following constants are also defined :

const
seg0040 = $0040;
segA000 = $A000;
segB000 = $B00O0;
segB800 = $B800;

111

13.2. FUNCTION LIST BY CATEGORY

These constants allow easy access to the bios/screen segment via mem/absolute.
The randomize function uses a seed stored irRaedSeed variable:

RandSeed : Cardinal;

This variable is initialized in the initialization code of the system unit.
Other variables indicate the state of the application.

IsLibrary : boolean;
IsMultiThread : boolean;

ThelsLibrary variable is set to true if this module is a shared library instead of an application.

ThelsMultiThread variable is set to True if the application has spawned other threads, other-
wise, and by default, it is set to False.

13.2 Function list by category

What follows is a listing of the available functions, grouped by category. For each function there is a
reference to the page where the function can be found:

File handling
Functions concerning input and output from and to file.

Name Description Page
Append Open afile in append mode 116
Assign Assign a hame to a file 117
Blockread Read data from a file into memory 119
Blockwrite Write data from memory to a file 120
Close Close afile 122
Eof Check for end of file 131
Eoln Check for end of line 132
Erase Delete file from disk 133
Filepos Position in file 134
Filesize Size of file 135
Flush Write file buffers to disk 138
IOresult Return result of last file 10 operation 148
Read Read from file into variable 160
Readln Read from file into variable and goto next line 160
Rename Rename file on disk 162
Reset Open file for reading 162
Rewrite Open file for writing 163
Seek Set file position 165
SeekEof Set file position to end of file 166

112

13.2. FUNCTION LIST BY CATEGORY

SeekEoln Set file position to end of line 166
SetTextBuf Set size of file buffer 169
Truncate Truncate the file at position 174
Write Write variable to file 176
WriteLn Write variable to file and append newline 176

Memory management

Functions concerning memory issues.

113

Name Description Page
Addr Return address of variable 116
Assigned Check if a pointer is valid 118
CompareByte Compare 2 memory buffers byte per byte 122
CompareChar Compare 2 memory buffers byte per byte 123
CompareDWord Compare 2 memory buffers byte per byte 124
CompareWord Compare 2 memory buffers byte per byte 125
CSeg Return code segment 129
Dispose Free dynamically allocated memory 130
DSeg Return data segment 131
FillByte Fill memory region with 8-bit pattern 136
Fillchar Fill memory region with certain character 137
FillDWord Fill memory region with 32-bit pattern 137
Fillword Fill memory region with 16-bit pattern 138
Freemem Release allocated memory 139
Getmem Allocate new memory 140
GetMemoryManager Return current memory manager 140
High Return highest index of open array or enumerated 142
IsMemoryManagerSet Is the memory manager set 147
Low Return lowest index of open array or enumerated 151
Mark Mark current memory position 151
Maxavail Return size of largest free memory block 152
Memavail Return total available memory 153
Move Move data from one location in memory to another 153
MoveChar0 Move data till first zero character 154
New Dynamically allocate memory for variable 154
Ofs Return offset of variable 155
Ptr Combine segmant and offset to pointer 158
Release Release memory above mark point 162
Seg Return segment 167
SetMemoryManager Set a memory manager 167
Sptr Return current stack pointer 170
SSeg Return ESS register value 172

13.2. FUNCTION LIST BY CATEGORY

Mathematical routines

Functions connected to calculating and coverting numbers.

Name Description Page
Abs Calculate absolute value 115
Arctan Calculate inverse tangent 117
Cos Calculate cosine of angle 128
Dec Decrease value of variable 129
Exp Exponentiate 134
Frac Return fractional part of floating point value 139
Hi Return high byte/word of value 141
Inc Increase value of variable 143
Int Calculate integer part of floating point value 147
Ln Calculate logarithm 149
Lo Return low byte/word of value 150
Odd Is a value odd or even ? 155
Pi Return the value of pi 157
Power Raise float to integer power 158
Random Generate random number 159
Randomize Initialize random number generator 159
Round Round floating point value to nearest integer number 164
Sin Calculate sine of angle 170
Sqr Calculate the square of a value 171
Sqrt Calculate the square root of a value 171
Swap Swap high and low bytes/words of a variable 173
Trunc Truncate a floating point value 174

String handling

All things connected to string handling.

Name Description Page
BinStr Construct binary representation of integer 118
Chr Convert ASCII code to character 121
Concat Concatenate two strings 126
Copy Copy part of a string 128
Delete Delete part of a string 130
HexStr Construct hexadecimal representation of integer 141
Insert Insert one string in another 146
Length Return length of string 149
Lowercase Convert string to all-lowercase 151

114

13.3. FUNCTIONS AND PROCEDURES

Pos Calculate position of one string in another 157
SetLength Set length of a string 168
Str Convert number to string representation 172
StringOfChar Create string consisting of a number of characters 172
Upcase Convert string to all-uppercase 175
Val Convert string to number 175

Operating System functions

Functions that are connected to the operating system.

Name Description Page
Chdir Change working directory 121
Getdir Return current working directory 140
Halt Halt program execution 140
Paramcount Number of parameters with which program was called 156
Paramstr Retrieve parameters with which program was called 156
Mkdir Make a directory 153
Rmdir Remove a directory 164
Runerror Abort program execution with error condition 165

Miscellaneous functions

Functions that do not belong in one of the other categories.

Name Description Page
Break Abort current loop 120
Continue Next cycle in current loop 127
Exit Exit current function or procedure 133
LongJmp Jump to execution point 150
Ord Return ordinal value of enumerated type 155
Pred Return previous value of ordinal type 158
Setdmp Mark execution point for jump 167
SizeOf Return size of variable or type 170
Succ Return next value of ordinal type 173

13.3 Functions and Procedures

Abs

Declaration: Function Abs (X : Every numerical type) : Every numerical type;

Description: Abs returns the absolute value of a variable. The result of the function has the same type as its
argument, which can be any numerical type.

115

13.3. FUNCTIONS AND PROCEDURES

Errors: None.

See also: Round (164)

Listing: refex/ex1.pp

Program Examplel;

{ Program to demonstrate the Abs function. }

Var
r : real;
i : integer;
begin
r:=abs(—1.0); {r:=1.01}
i:=abs(—21); { i:=21}
end .
Addr

Declaration: Function Addr (X : Any type) : Pointer;

Description: Addr returns a pointer to its argument, which can be any type, or a function or procedure name.
The returned pointer isn’t typed. The same result can be obtained I@agperator, which can return
a typed pointerrogrammers guige

Errors: None

See also: SizeOf (170

Listing: refex/ex2.pp

Program Example2;
{ Program to demonstrate the Addr function. }
Const Zero : integer = 0;

Var p : pointer;

i : Integer;
begin
p:=Addr (p); { P points to itself }
p:=Addr (I); { P points to | }
p:=Addr (Zero); { P points to 'Zero’ }
end .
Append

Declaration: Procedure Append (Var F : Text);

Description: Append opens an existing file in append mode. Any data writteR vall be appended to the file.
Only text files can be opened in append mode. After a céiffpend, the fileF becomes write-only.

File sharing is not taken into account when callfygpend .

116

file:../prog/prog.html

13.3. FUNCTIONS AND PROCEDURES

Errors: If the file doesn't exist when appending, a run-time error will be generated. This behaviour has
changed on Windows and Linux platforms, where in versions prior to 1.0.6, the file would be created
in append mode.

See also: Rewrite (163),Close (122), Reset (162

Listing: refex/ex3.pp

Program Example3;
{ Program to demonstrate the Append function. }

Var f : text;

begin
Assign (f,’ 'test.txt’);
Rewrite (f); { file is opened for write, and emptied }
Writeln (F,’ This is the first line of text.txt’);
close (f);
Append (f); { file is opened for write, but NOT emptied.

any text written to it is appended.}
Writeln (f, ' This is the second line of text.txt’);
close (f);
end .

Arctan
Declaration: Function Arctan (X : Real) : Real;

Description: Arctan returns the Arctangent of, which can be any Real type. The resulting angle is in radial
units.

Errors: None

See also: Sin (170), Cos (128

Listing: refex/ex4.pp

Program Example4;
{ Program to demonstrate the ArcTan function. }
Var R : Real;

begin

R:=ArcTan (0); { R:=0}
R:=ArcTan (1)/pi ; { R:=0.25}
end .
Assign

Declaration: Procedure Assign (Var F; Name : String);

Description: Assign assigns a name tB, which can be any file type. This call doesn’t open the file, it just
assigns a name to a file variable, and marks the file as closed.

Errors: None.

117

13.3. FUNCTIONS AND PROCEDURES

See also: Reset (162), Rewrite (163, Append (116)

Listing: refex/ex5.pp

Program Example5;
{ Program to demonstrate the Assign function. }

Var F : text;

begin
Assign (F, "’);
Rewrite (f);

{ The following can be put in any file by redirecting it
from the command line .}
Writeln (f,’ This goes to standard output !’);
Close (f);
Assign (F,’ 'Test.txt’);
rewrite (f);
writeln (f,’This doesn’’t go to standard output !');
close (f);
end .

Assigned

Declaration: Function Assigned (P : Pointer) : Boolean;

Description: Assigned returnsTrue if P is non-nil and retung-alse of P is nil. The main use of As-
signed is that Procedural variables, method variables and class-type variables also can be passed to
Assigned .

Errors: None

See also: New (154)

Listing: refex/ex96.pp

Program Example96;
{ Program to demonstrate the Assigned function. }
Var P : Pointer;

begin
If Not Assigned (P) then
Writeln ('Pointer is initially NIL");
P:=@P;
If Not Assigned (P) then
Writeln (' Internal inconsistency’)

else
Writeln (" All is well in FPC")
end .
BinStr
Declaration: Function BinStr (Value : longint; cnt : byte) : String;

118

13.3. FUNCTIONS AND PROCEDURES

Description: BinStr returns a string with the binary representationv@iue . The string has at mosint
characters. (i.e. only thent rightmost bits are taken into account) To have a complete representation
of any longint-type value, 32 bits are needed, ¢@t=32

Errors: None.

See also: Str (172),Val (175,HexStr (141)

Listing: refex/ex82.pp

Program example82;
{ Program to demonstrate the BinStr function }
Const Value = 45678;
Var | : longint;
begin
For 1:=8 to 20 do

Writeln (BinStr(Value,1):20);
end .

Blockread

Declaration: Procedure Blockread (Var F : File; Var Buffer; Var Count : Longint
[} var Result : Longint]);

Description: Blockread readscount or less records from filé&. A record is a block of bytes with size
specified by th&kewrite (163 or Reset (162) statement.

The result is placed iBuffer , which must contain enough room f@ount records. The function
cannot read partial records. Rfesult is specified, it contains the number of records actually read.
If Result isn't specified, and less thabount records were read, a run-time error is generated.
This behavior can be controlled by tff&i} switch.

Errors: If Result isn't specified, then a run-time error is generated if less toamt records were read.

See also: Blockwrite (120), Close (122), Reset (162), Assign (117)

Listing: refex/ex6.pp

Program Example6;
{ Program to demonstrate the BlockRead and BlockWrite functions. }

Var Fin, fout : File;
NumRead, NumWritten : Word;
Buf : Array [1..2048] of byte;
Total : Longint;

begin
Assign (Fin, Paramstr (1));
Assign (Fout,Paramstr (2));
Reset (Fin,1);
Rewrite (Fout,1);
Total:=0;
Repeat

119

13.3. FUNCTIONS AND PROCEDURES

BlockRead (Fin,buf, Sizeof (buf),NumRead);
BlockWrite (Fout, Buf,NumRead, NumWritten);
inc (Total, NumWritten);
Until (NumRead=0) or (NumWritten<>NumRead);
Write (’Copied ', Total,’ bytes from file ', 6 paramstr (1));
Writeln (' to file ' ,paramstr (2));
close(fin);
close(fout);
end .

Blockwrite
Declaration: Procedure Blockwrite (Var F : File; Var Buffer; Var Count : Longint);

Description: BlockWrite — writescount records fronbuffer to the fileF.A record is a block of bytes with
size specified by thRewrite (163 or Reset (162 statement.

If the records couldn’t be written to disk, a run-time error is generated. This behavior can be con-
trolled by the{$i} switch.

Errors: A run-time error is generated if, for some reason, the records couldn’t be written to disk.

See also: Blockread (119),Close (122), Rewrite (163), Assign (117)

For the example, sd®lockread (119.

Break

Declaration: Procedure Break;

Description: Break jumps to the statement following the end of the current repetitive statement. The code
between theBreak call and the end of the repetitive statement is skipped. The condition of the
repetitive statement is NOT evaluated.

This can be used witkor , varrepeat antiVhile statements.
Note that while this is a proceduBreak is a reserved word and hence cannot be redefined.

Errors: None.

See also: Continue (127), Exit (133

Listing: refex/ex87.pp

Program Example87;
{ Program to demonstrate the Break function. }
Var | : longint;

begin

1:=0;

While 1<10 Do
begin
Inc (1);
If 1>5 Then

Break ;

Writeln (i);

120

13.3. FUNCTIONS AND PROCEDURES

end;
1:=0;
Repeat
Inc (1);
If 1>5 Then
Break ;
Writeln (i);
Until 1>=10;
For 1:=1 to 10 do
begin
If 1>5 Then
Break ;
Writeln (i);
end ;
end .

Chdir
Declaration: Procedure Chdir (const S : string);
Description: Chdir changes the working directory of the proces$to
Errors: If the directoryS doesn't exist, a run-time error is generated.
See also: Mkdir (153, Rmdir (164)

Listing: refex/ex7.pp
Program Example7;

{ Program to demonstrate the ChDir function. }

begin
{$1-}
ChDir (ParamsStr (1));
if 10result <>0 then
Writeln ('Cannot change to directory : ', paramstr (1));

end .

Chr
Declaration: Function Chr (X : byte) : Char;
Description: Chr returns the character which has ASCII vaKie
Errors: None.
See also: Ord (155), Str (172
Listing: refex/ex8.pp

Program Example8;

{ Program to demonstrate the Chr function. }

begin
Write (chr (10),chr (13)); { The same effect as Writeln; }
end .

121

13.3. FUNCTIONS AND PROCEDURES

Close
Declaration: Procedure Close (Var F : Anyfiletype);

Description: Close flushes the buffer of the filE and close$-. After a call toClose , data can no longer be
read from or written td~. To reopen a file closed witBlose , it isn't necessary to assign the file
again. A call toReset (162) or Rewrite (163 is sufficient.

Errors: None.

See also: Assign (117), Reset (162, Rewrite (163), Flush (138

Listing: refex/ex9.pp

Program Example9;
{ Program to demonstrate the Close function. }

Var F : text;

begin
Assign (f,’ 'Test.txt');
ReWrite (F);

Writeln (F, Some text written to Test.txt’);

close (f); { Flushes contents of buffer to disk,
closes the file. Omitting this may
cause data NOT to be written to disk.}

end .

CompareByte
Declaration: function CompareByte(var bufl,buf2;len:longint):longint;

Description: CompareByte compares two memory regiobsifl ,buf2 on a byte-per-byte basis for a total of

len bytes.

The function returns one of the following values:

-1if bufl andbuf2 contain different bytes in the firtén bytes, and the first such byte is smaller
in bufl than the byte at the same positiorbiaf2 .

0if the firstlen bytes inbufl andbuf2 are equal.

1if bufl andbuf2 contain different bytes in the firén bytes, and the first such byte is larger in
bufl than the byte at the same positiorbmf2 .

Errors: None.

See also: CompareChar (123),CompareWord (125,CompareDWord (124

Listing: refex/ex99.pp

Program Example99;
{ Program to demonstrate the CompareByte function. }
Const

ArraySize =100;
HalfArraySize = ArraySize Div 2;

122

13.3. FUNCTIONS AND PROCEDURES

Var
Bufl,Buf2 : Array [1..ArraySize] of byte;
I : longint;

Procedure CheckPos(Len : Longint);

Begin
Write (' First ’,Len,’ positions are ');
if CompareByte(Bufl,Buf2,Len)<>0 then
Write ('NOT ');
Writeln (’equal’);

end;
begin
For 1:=1 to ArraySize do
begin
Bufi[i]:=1;
If I<=HalfArraySize Then
Buf2[1]:=1
else
Buf2[i]:=HalfArraySize—I;
end ;

CheckPos(HalfArraySize div 2);

CheckPos(HalfArraySize);

CheckPos(HalfArraySize +1);

CheckPos(HalfArraySize + HalfArraySize Div 2);
end .

CompareChar
Declaration: function CompareChar(var bufl,buf2;len:longint):longint; function CompareCharO(var
bufl,buf2;len:longint):longint;

Description: CompareChar compares two memory regiobsifl ,buf2 on a character-per-character basis for
a total oflen characters.

TheCompareChar0 variant compareken bytes, or until a zero character is found.
The function returns one of the following values:

-1if bufl andbuf2 contain different characters in the fiteh positions, and the first such char-
acter is smaller imufl than the character at the same positioburfi2 .

Oif the firstlen characters itbufl andbuf2 are equal.

1if bufl andbuf2 contain different characters in the fitsh positions, and the first such character
is larger inbufl than the character at the same positiobuf2 .

Errors: None.

See also: CompareByte (122),CompareWord (125,CompareDWord (124)

Listing: refex/ex100.pp
Program Examplel00;

{ Program to demonstrate the CompareChar function. }

Const

123

13.3. FUNCTIONS AND PROCEDURES

ArraySize = 100;
HalfArraySize = ArraySize Div 2;
Var
Bufl,Buf2 : Array [1..ArraySize] of char;

I : longint;
Procedure CheckPos(Len : Longint);

Begin
Write (' First ',Len,’ characters are ');
if CompareChar(Bufl,Buf2,Len)<>0 then
Write ('NOT ');
Writeln (’equal’);
end;

Procedure CheckNullPos(Len : Longint);

Begin
Write (" First ’,Len,’ non—null characters are ’');
if CompareChar0(Bufl,Buf2,Len)<>0 then
Write ('NOT ');
Writeln (’equal’);
end ;

begin

For 1:=1 to ArraySize do

begin

Bufi[i]:=chr (1);

If I<=HalfArraySize Then

Buf2[1]:=chr (1)
else
Buf2[i]:=chr (HalfArraySize—1);

end ;
CheckPos(HalfArraySize div 2);
CheckPos(HalfArraySize);
CheckPos(HalfArraySize +1);
CheckPos(HalfArraySize + HalfArraySize Div 2);
For 1:=1 to 4 do

begin

bufl [Random (ArraySize)+1]:=Chr (0);

buf2 [Random (ArraySize)+1]:=Chr (0);

end ;
Randomize ;
CheckNullPos (HalfArraySize div 2);
CheckNullPos (HalfArraySize);
CheckNullPos (HalfArraySize +1);
CheckNullPos (HalfArraySize + HalfArraySize Div 2);

end .

CompareDWord

Declaration: function CompareDWord(var bufl,buf2;len:longint):longint;

Description: CompareDWord compares two memory regiobsifl ,buf2 on a DWord-per-DWord basis for a
total oflen DWords. (A DWord is 4 bytes).

The function returns one of the following values:

124

13.3. FUNCTIONS AND PROCEDURES

-1if bufl andbuf2 contain different DWords in the firéén DWords, and the first such DWord is
smaller inbufl than the DWord at the same positionbaf2 .

Oif the firstlen DWords inbufl andbuf2 are equal.
1if bufl andbuf2 contain different DWords in the firsén DWords, and the first such DWord is
larger inbufl than the DWord at the same positiondaf2 .

Errors: None.
See also: CompareChar (123),CompareByte (122),CompareWord (125),

Listing: refex/ex101.pp

Program Examplel01;

{ Program to demonstrate the CompareDWord function. }

Const
ArraySize = 100;
HalfArraySize = ArraySize Div 2;
Var
Bufl,Buf2 : Array [1..ArraySize] of Dword;

I : longint;
Procedure CheckPos(Len : Longint);

Begin
Write (' First ' ,Len,’ DWords are ');
if CompareDWord(Bufl,Buf2,Len)<>0 then
Write ('NOT ');
Writeln (’equal’);

end ;
begin
For 1:=1 to ArraySize do
begin
Bufi[i]:=1;
If I<=HalfArraySize Then
Buf2[1]:=1
else
Buf2[i]:=HalfArraySize—I;
end ;

CheckPos(HalfArraySize div 2);
CheckPos(HalfArraySize);
CheckPos(HalfArraySize +1);
CheckPos(HalfArraySize + HalfArraySize Div 2);

end .

CompareWord
Declaration: function CompareWord(var bufl,buf2;len:longint):longint;

Description: CompareWord compares two memory regiobsifl ,buf2 on a Word-per-Word basis for a total
of len Words. (A Word is 2 bytes).

The function returns one of the following values:

125

13.3. FUNCTIONS AND PROCEDURES

-1if bufl andbuf2 contain different Words in the firden Words, and the first such Word is
smaller inbufl than the Word at the same positiondnf2 .

0Oif the firstlen Words inbufl andbuf2 are equal.
1if bufl andbuf2 contain different Words in the firéén Words, and the first such Word is larger
in bufl than the Word at the same positionnf2 .

Errors: None.
See also: CompareChar (123),CompareByte (122),CompareWord (125),

Listing: refex/ex102.pp

Program Examplel102;

{ Program to demonstrate the CompareWord function. }

Const
ArraySize
HalfArraySize

100;
ArraySize Div 2;

Var
Bufl,Buf2 : Array [1..ArraySize] of Word;

I : longint;
Procedure CheckPos(Len : Longint);

Begin
Write (' First ',Len,’ words are ');
if CompareWord(Bufl,Buf2,Len)<>0 then
Write ('NOT ');
Writeln (’equal’);

end ;
begin
For 1:=1 to ArraySize do
begin
Bufi[i]:=1;
If I<=HalfArraySize Then
Buf2[1]:=1
else
Buf2[i]:=HalfArraySize—I;
end ;

CheckPos(HalfArraySize div 2);
CheckPos(HalfArraySize);
CheckPos(HalfArraySize +1);
CheckPos(HalfArraySize + HalfArraySize Div 2);

end .

Concat
Declaration: Function Concat (S1,S2 [,S3, ... ,Sn]) : String;

Description: Concat concatenates the strin§4,S2 etc. to one long string. The resulting string is truncated at
a length of 255 bytes. The same operation can be performed withdperation.

Errors: None.

126

13.3. FUNCTIONS AND PROCEDURES

See also: Copy (128), Delete (130), Insert (146), Pos (157), Length (149

Listing: refex/ex10.pp

Program ExamplelO;

{ Program to demonstrate the Concat function. }

Var
S : String ;
begin
S:=Concat (' This can be done’,’ Easier ',’with the + operator !');
end .
Continue

Declaration: Procedure Continue;

Description: Continue jumps to the end of the current repetitive statement. The code betwe€oitiaue
call and the end of the repetitive statement is skipped. The condition of the repetitive statement is
then checked again.

This can be used witkor , varrepeat antiVhile statements.
Note that while this is a procedur€pntinue is a reserved word and hence cannot be redefined.

Errors: None.

See also: Break (120), Exit (133

Listing: refex/ex86.pp

Program Example86;
{ Program to demonstrate the Continue function. }
Var | : longint;

begin
1:=0;
While 1<10 Do
begin
Inc (1);
If 1<5 Then
Continue ;
Writeln (i);
end ;
1:=0;
Repeat
Inc (1);
If 1<5 Then
Continue ;
Writeln (i);
Until [>=10;
For 1:=1 to 10 do
begin
If 1<5 Then
Continue ;
Writeln (i);

127

13.3. FUNCTIONS AND PROCEDURES

end;
end .

Copy
Declaration: Function Copy (Const S : String;Index : Integer;Count : Byte) : String;

Description: Copy returns a string which is a copy if th@ount characters irg, starting at positiotndex . If
Count is larger than the length of the striig) the result is truncated. Ihdex is larger than the
length of the strings, then an empty string is returned.

Errors: None.

See also: Delete (130), Insert (146), Pos (157)

Listing: refex/ex11.pp

Program Examplell;
{ Program to demonstrate the Copy function. }

Var S, T : String ;

begi
T:='1234567";
S:=Copy (T,1,2); { S:='12" }
S:=Copy (T,4,2); { S:='45" }
S:=Copy (T,4,8); { S:='4567" }
end .
Cos

Declaration: Function Cos (X : Real) : Real,

Description: Cos returns the cosine of, where X is an angle, in radians.
If the absolute value of the argument is larger tBa63 , then the result is undefined.

Errors: None.

See also: Arctan (117), Sin (170

Listing: refex/ex12.pp

Program Examplel2;

{ Program to demonstrate the Cos function. }

Var R : Real;

begin
R:=Cos (Pi); {R:==-11}
R:=Cos(Pi/2); { R:=0 }
R:=Cos (0); {R:=1 }

end .

128

13.3. FUNCTIONS AND PROCEDURES

CSeg

Declaration: Function CSeg : Word;

Description: CSegreturns the Code segment register. In Free Pascal, it returns always a zero, since Free Pascal
is a 32 bit compiler.

Errors: None.

See also: DSeg (131), Seg (167), Ofs (155), Ptr (158

Listing: refex/ex13.pp

Program Examplel3;
{ Program to demonstrate the CSeg function. }
var W : word;
begin
W:=CSeg; {W:=0, provided for compatibility,

FPC is 32 bit.}
end .

Dec

Declaration: Procedure Dec (Var X : Any ordinal type[; Decrement : Longint]);

Description: Dec decreases the value ¥fwith Decrement . If Decrement isn’t specified, then 1 is taken as
a default.

Errors: A range check can occur, or an underflow error, if an attempt it made to deckelaslew its
minimum value.

See also: Inc (143

Listing: refex/ex14.pp

Program Examplel4;
{ Program to demonstrate the Dec function. }

Var
| . Integer;
L : Longint;
W : Word;
B : Byte;
Si : ShortiInt;

i:=5;

Dec (i); {
Dec (L,2); {
Dec (W,2); {
Dec (B,—-2); {

WS —
nonono
o R oo
(SR -

129

13.3. FUNCTIONS AND PROCEDURES

Dec (Si,0); { Si:=51}
end .

Delete
Declaration: Procedure Delete (var S : string;Index : Integer;Count : Integer);

Description: Delete removesCount characters from strin§, starting at positiomndex . All characters after
the delected characters are shif@alint positions to the left, and the length of the string is adjusted.

Errors: None.

See also: Copy (128,Pos (157),Insert (146)

Listing: refex/ex15.pp

Program Examplel5;

{ Program to demonstrate the Delete function. }

Var
S : String ;

begin

S:="This is not easy !’;

Delete (S,9,4); { S:="This is easy !’ }
end .

Dispose

Declaration: Procedure Dispose (P : pointer);
Procedure Dispose (P : Typed Pointer; Des : Procedure);

Description: The first formDispose releases the memory allocated with a calNew (154). The pointerP
must be typed. The released memory is returned to the heap.

The second form oDispose accepts as a first parameter a pointer to an object type, and as a
second parameter the name of a destructor of this object. The destructor will be called, and the

memory allocated for the object will be freed.

Errors: An runtime error will occur if the pointer doesn’t point to a location in the heap.

See also: New (154), Getmem (140), Freemem (139

Listing: refex/ex16.pp

Program Examplel6;
{ Program to demonstrate the Dispose and New functions. }
Type SS = String [20];
AnObj = Object
I : integer;
Constructor Init;

Destructor Done;
end ;

130

13.3. FUNCTIONS AND PROCEDURES

Var
P . 7SS;
T : “AnObj;

Constructor Anobj. Init;

begin
Writeln (' Initializing an instance of AnObj !');
end ;

Destructor AnObj.Done;

begin
Writeln ('Destroying an instance of AnObj !');
end ;

begin
New (P);
P~:="Hello, World !’ ;
Dispose (P);
{ P is undefined from here on !}
New(T, Init);
TA.i:=0;
Dispose (T,Done);
end .

DSeg
Declaration: Function DSeg : Word;

Description: DSeg returns the data segment register. In Free Pascal, it returns always a zero, since Free Pascal
is a 32 bit compiler.

Errors: None.

See also: CSeg (129), Seg (167), Ofs (155), Ptr (158

Listing: refex/ex17.pp

Program Examplel7;
{ Program to demonstrate the DSeg function. }

Var
W : Word;

begin
W:=DSeg; {W:=0, This function is provided for compatibility,
FPC is a 32 bit comiler.}
end .

Eof
Declaration: Function Eof [(F : Any file type)] : Boolean;

131

13.3. FUNCTIONS AND PROCEDURES

Description: Eof returnsTrue if the file-pointer has reached the end of the file, or if the file is empty. In all
other case&of returnsFalse . If no file F is specified, standard input is assumed.

Errors: None.

See also: Eoln (132, Assign (117), Reset (162, Rewrite (163

Listing: refex/ex18.pp

Program Examplel8;
{ Program to demonstrate the Eof function. }

Var T1,T2 : text;
C : Char;

begin
{ Set file to read from. Empty means from standard input.}
assign (tl,paramstr (1));
reset (tl);
{ Set file to write to. Empty means to standard output. }
assign (t2,paramstr (2));
rewrite (t2);
While not eof (t1) do
begin
read (t1,C);
write (t2,C);
end ;
Close (tl1);
Close (t2);
end .

Eoln
Declaration: Function Eoln [(F : Text)] : Boolean;

Description: Eof returnsTrue if the file pointer has reached the end of a line, which is demarcated by a line-
feed character (ASCII value 10), or if the end of the file is reached. In all other Eadereturns
False . If no file F is specified, standard input is assumed. It can only be used on files dféype

Errors: None.

See also: Eof (131), Assign (117), Reset (162, Rewrite (163

Listing: refex/ex19.pp

Program Examplel9;

{ Program to demonstrate the Eoln function. }

begin
{ This program waits for keyboard input. }
{ It will print True when an empty line is put in,

and false when you type a non—empty line.
It will only stop when you press enter.}
While not Eoln do
Writeln (eoln);
end .

132

13.3. FUNCTIONS AND PROCEDURES

Erase
Declaration: Procedure Erase (Var F : Any file type);

Description: Erase removes an unopened file from disk. The file should be assignedAsgign , but not
opened withReset or Rewrite

Errors: A run-time error will be generated if the specified file doesn't exist, or is opened by the program.

See also: Assign (117)

Listing: refex/ex20.pp

Program Example20;
{ Program to demonstrate the Erase function. }
Var F : Text;

begin
{ Create a file with a line of text in it}
Assign (F,’'test.txt’);
Rewrite (F);
Writeln (F,’Try and find this when |I’'m finished !’);
close (f);
{ Now remove the file }
Erase (f);
end .

Exit
Declaration: Procedure Exit ([Var X : return type)J;

Description: Exit exits the current subroutine, and returns control to the calling routine. If invoked in the main
program routine, exit stops the program. The optional arguideiiows to specify a return value,
in the caséExit is invoked in a function. The function result will then be equakto

Errors: None.

See also: Halt (140

Listing: refex/ex21.pp

Program Example21;

{ Program to demonstrate the Exit function. }
Procedure DoAnExit (Yes : Boolean);

{ This procedure demonstrates the normal Exit }

begin
Writeln ('Hello from DoAnExit !');
If Yes then
begin
Writeln (' Bailing out early.’);
exit ;
end ;
Writeln (’Continuing to the end.’);

133

13.3. FUNCTIONS AND PROCEDURES

end;
Function Positive (Which : Integer) : Boolean;

{ This function demonstrates the extra FPC feature of Exit
You can specify a return value for the function }

begin
if Which>0 then
exit (True)
else
exit (False);
end ;

begin
{ This call will go to the end }
DoAnExit (False);
{ This call will bail out early }
DoAnExit (True);
if Positive (—1) then
Writeln (’'The compiler is nuts, —1 is not positive.’)
else
Writeln (’The compiler is not so bad, —1 seems to be negative.’);
end .

Exp
Declaration: Function Exp (Var X : Real) : Real;

Description: Exp returns the exponent &f i.e. the numbee to the poweiX.
Errors: None.

See also: Ln (149), Power (158

Listing: refex/ex22.pp

Program Example22;
{ Program to demonstrate the Exp function. }
begin

Writeln (Exp(1):8:2); { Should print 2.72 }
end .

Filepos
Declaration: Function Filepos (Var F : Any file type) : Longint;

Description: Filepos returns the current record position of the file-pointer in Fildt cannot be invoked with
a file of typeText . A compiler error will be generated if this is attempted.

Errors: None.

See also: Filesize (135

Listing: refex/ex23.pp

134

13.3. FUNCTIONS AND PROCEDURES

Program Example23;
{ Program to demonstrate the FilePos function. }

Var F : File of Longint;
L,FP : longint;

begin
{ Fill a file with data :
Each position contains the position ! }
Assign (F,’'test.dat’);

Rewrite (F);
For L:=0 to 100 do
begin

FP:=FilePos (F);
Write (F,FP);
end ;
Close (F);
Reset (F);
{ If all goes well, nothing is displayed here. }
While not (Eof(F)) do
begin
FP:=FilePos (F);
Read (F,L);
if L<>FP then
Writeln (’'Something wrong: Got ’',I,’ on pos ' ,FP);
end ;
Close (F);
Erase (f);
end .

Filesize
Declaration: Function Filesize (Var F : Any file type) : Longint;

Description: Filesize returns the total number of records in fife It cannot be invoked with a file of type
Text . (underLINUX anduNix, this also means that it cannot be invoked on piped}.isfempty, 0
is returned.

Errors: None.

See also: Filepos (134)

Listing: refex/ex24.pp

Program Example24;
{ Program to demonstrate the FileSize function. }

Var F : File Of byte;
L : File Of Longint;

begin
Assign (F,paramstr (1));
Reset (F);
Writeln (’'File size in bytes : ', FileSize (F));
Close (F);

135

13.3. FUNCTIONS AND PROCEDURES

Assign (L, paramstr (1));
Reset (L);
Writeln (' File size in Longints : ', FileSize (L));
Close (f);
end .

FillByte
Declaration: Procedure FillByte(var X;Count:longint;Value:byte);

Description: FillByte fills the memory starting & with Count bytes with value equal t¥alue .

This is useful for quickly zeroing out a memory location. When the size of the memory location to
be filled out is a multiple of 2 bytes, it is better to Uséword (138), and if it is a multiple of 4 bytes
it is better to usé-illDWord (137), these routines are optimized for their respective sizes.

Errors: No checking on the size ofis done.

See also: Fillchar (137), FillDWord (137), Fillword (138), Move (153

Listing: refex/ex102.pp

Program Examplel102;

{ Program to demonstrate the CompareWord function. }

Const
ArraySize = 100;
HalfArraySize = ArraySize Div 2;

Var
Bufl,Buf2 : Array [1..ArraySize] of Word;

I : longint;
Procedure CheckPos(Len : Longint);

Begin
Write (' First ',Len,’ words are ');
if CompareWord(Bufl,Buf2,Len)<>0 then
Write ('NOT ');
Writeln (' equal’);
end ;

begin
For 1:=1 to ArraySize do
begin
Bufl[i]:=1;
If I<=HalfArraySize Then
Buf2[I1]:=1
else
Buf2[i]:=HalfArraySize—1;
end;
CheckPos(HalfArraySize div 2);
CheckPos(HalfArraySize);
CheckPos(HalfArraySize +1);
CheckPos(HalfArraySize + HalfArraySize Div 2);
end .

136

13.3. FUNCTIONS AND PROCEDURES

Fillchar
Declaration: Procedure Fillchar (Var X;Count : Longint;Value : char or byte);;

Description: Fillchar fills the memory starting aX with Count bytes or characters with value equal to
Value .

Errors: No checking on the size ofis done.

See also: Fillword (138), Move (153), FillByte (136), FillDWord (137)

Listing: refex/ex25.pp

Program Example25;
{ Program to demonstrate the FillChar function. }

Var S : String [10];

| : Byte,;
begin
For i:=10 downto O do
begin

{ Fill S with i spaces }
FillChar (S, SizeOf(S), "’ ');
{ Set Length }
SetLength (S, 1);
Writeln (s, ’'x");
end ;

end .

FillDWord
Declaration: Procedure FillDWord (Var X;Count : Longint;Value : DWord);;

Description: Fillword fills the memory starting aX with Count DWords with value equal t&¥alue . A
DWord is 4 bytes in size.

Errors: No checking on the size ofis done.

See also: FillByte (136), Fillchar (137), Fillword (138, Move (153

Listing: refex/ex103.pp

Program Examplel103;
{ Program to demonstrate the FillByte function. }

Var S : String [10];

| : Byte;
begin
For i:=10 downto O do
begin

{ Fill S with i bytes }
FillChar (S, SizeOf(S),32);
{ Set Length }
SetLength (S, 1);
Writeln (s, ’x");
end ;

end .

137

13.3. FUNCTIONS AND PROCEDURES

Fillword
Declaration: Procedure Fillword (Var X;Count : Longint;Value : Word);;

Description: Fillword fills the memory starting a with Count words with value equal t¥'alue . A word
is 2 bytes in size.

Errors: No checking on the size ofis done.

See also: Fillchar (137), Move (153

Listing: refex/ex76.pp

Program Example76;
{ Program to demonstrate the FillWord function. }
Var W : Array [1..100] of Word;
begin
{ Quick initialization of array W}

FillWord (W,100,0);
end .

Flush

Declaration: Procedure Flush (Var F : Text);

Description: Flush empties the internal buffer of an opened flend writes the contents to disk. The file is
notclosed as a result of this call.

Errors: If the disk is full, a run-time error will be generated.

See also: Close (122

Listing: refex/ex26.pp

Program Example26;
{ Program to demonstrate the Flush function. }
Var F : Text;

begin
{ Assign F to standard output }
Assign (F, "’);
Rewrite (F);
Writeln (F, 'This line is written first, but appears later !');
{ At this point the text is in the internal pascal buffer,
and not yet written to standard output }
Writeln ('This line appears first, but is written later !');
{ A writeln to ’'output’ always causes a flush — so this text is
written to screen }
Flush (f);
{ At this point, the text written to F is written to screen. }
Write (F,’ ' Finishing ');
Close (f); { Closing a file always causes a flush first }
Writeln (' off.’);
end .

138

13.3. FUNCTIONS AND PROCEDURES

Frac

Declaration: Function Frac (X : Real) : Real;
Description: Frac returns the non-integer part Xf

Errors: None.

See also: Round (164), Int (147)

Listing: refex/ex27.pp

Program Example27;

{ Program to demonstrate the Frac function. }
Var R : Real;

begin
Writeln (Frac (123.456):0:3); { Prints 0.456 }

Writeln (Frac (—123.456):0:3); { Prints —0.456 }
end .

Freemem

Declaration: Procedure Freemem (Var P : pointer; Count : Longint);

Description: Freemem releases the memory occupied by the poiftesf sizeCount (in bytes), and returns it
to the heapP should point to the memory allocated to a dynamic variable.

Errors: An error will occur wherP doesn't point to the heap.

See also: Getmem (140), New (154), Dispose (130

Listing: refex/ex28.pp

Program Example28;

{ Program to demonstrate the FreeMem and GetMem functions. }

Var P : Pointer;
MM : Longint;

begin
{ Get memory for P }
MM:=MemAvalil ;
Writeln ('Memory available before GetMem : ', MemAvail);
GetMem (P,80);
MM: =MM-Memavail ;

Write ("Memory available after GetMem : ' ,MemAuvail);
Writeln (' or ' ,MM,’ bytes less than before the call.’);
{ fill it with spaces }

FillChar (P",80," ');
{ Free the memory again }
FreeMem (P,80);

Writeln (’'Memory available after FreeMem : ', MemAvail);
end .

139

13.3. FUNCTIONS AND PROCEDURES

Getdir

Declaration: Procedure Getdir (drivenr : byte;var dir : string);

Description: Getdir returns indir the current directory on the drivdérivenr , where drivenr is 1 for the
first floppy drive, 3 for the first hard disk etc. A value of O returns the directory on the current disk.
OnLINUX anduNix systemsgdrivenr is ignored, as there is only one directory tree.

Errors: An error is returned undeyos, if the drive requested isn't ready.

See also: Chdir (121)

Listing: refex/ex29.pp

Program Example29;

{ Program to demonstrate the GetDir function. }
Var S : String ;

begin

GetDir (0,S);

Writeln ('Current directory is : ',S);
end .

Getmem
Declaration: Procedure Getmem (var p : pointer;size : Longint);

Description: GetmemreservesSize bytes memory on the heap, and returns a pointer to this memgry lih
no more memory is available, nil is returned.

Errors: None.

See also: Freemem (139), Dispose (130, New (154)

For an example, sdereemem (139).

GetMemoryManager
Declaration: procedure GetMemoryManager(var MemMgr: TMemoryManager);

Description: GetMemoryManager stores the current Memory Manager record/ieamMgr
Errors: None.

See also: SetMemoryManager (167), IsMemoryManagerSet (147).
For an example, séérogrammers guide
Halt

Declaration: Procedure Halt [(Errnum : byte)];

Description: Halt stops program execution and returns control to the calling program. The optional argument
Errnum specifies an exit value. If omitted, zero is returned.

140

file:../prog/prog.html

13.3. FUNCTIONS AND PROCEDURES

Errors: None.

See also: Exit (133

Listing: refex/ex30.pp

Program Example30;
{ Program to demonstrate the Halt function. }

begin

Writeln (’'Before Halt.’);

Halt (1); { Stop with exit code 1 }

Writeln (' After Halt doesn’’t get executed.’);
end .

HexStr
Declaration: Function HexStr (Value : longint; cnt : byte) : String;

Description: HexStr returns a string with the hexadecimal representatioatie . The string has at most
cnt charaters. (i.e. only thent rightmost nibbles are taken into account) To have a complete
representation of a Longint-type value, 8 nibbles are needednite8 .

Errors: None.

See also: Str (172, Val (175, BinStr (118

Listing: refex/ex81.pp

Program example81;
{ Program to demonstrate the HexStr function }
Const Value = 45678;
Var | : longint;
begin
For 1:=1 to 10 do

Writeln (HexStr(Value,1));
end .

Hi
Declaration: Function Hi (X : Ordinal type) : Word or byte;

Description: Hi returns the high byte or word froi, depending on the size of X. If the size of X is 4, then the
high word is returned. If the size is 2 then the high byte is returkdcannot be invoked on types
of size 1, such as byte or char.

Errors: None

See also: Lo (150

Listing: refex/ex31.pp

141

13.3. FUNCTIONS AND PROCEDURES

Program Example31;

{ Program to demonstrate the Hi function. }

var
L : Longint;
W : Word;
begin
L:=1 Shl 16; { = $10000 }
W:=1 Shl 8; { = $100 }
Writeln (Hi(L)); { Prints 1}
Writeln (Hi(W)); { Prints 1}
end .
High

Declaration: Function High (Type identifier or variable reference) : Ordinal,
Description: The return value oHigh depends on it's argument:

1.If the argument is an ordinal typéligh returns the highest value in the range of the given
ordinal type.

2If the argument is an array type or an array type variable High returns the highest possible
value of it's index.

3.If the argument is an open array identifier in a function or procedure, lthgm returns the
highest index of the array, as if the array has a zero-based index.

The return type is always the same type as the type of the argument (This can lead to some nasty
surprises !).

Errors: None.

See also: Low (151), Ord (155), Pred (158), Succ (173

Listing: refex/ex80.pp

Program example80;
{ Example to demonstrate the High and Low functions. }
Type TEnum = (North, East, South, West);

TRange = 14..55;
TArray = Array [2..10] of Longint;

Function Average (Row : Array of Longint) : Real;

Var | : longint;
Temp : Real;

begin
Temp := Row[O0];
For I := 1 to High (Row) do
Temp := Temp + Rowl[i];
Average := Temp / (High (Row)+1);

142

13.3. FUNCTIONS AND PROCEDURES

end ;

Var A : TEnum;

B : TRange;
C : TArray;
I : longint;
begin
Writeln ('TEnum goes from : ' ,Ord(Low (TEnum)),’ to ', Ord (high (TEnum)), ".");
Writeln ('A goes from : ' ,0Ord(Low(A)),’ to ', Ord(high (A)), '.");
Writeln ('TRange goes from : ' ,Ord(Low(TRange)),’ to ', Ord(high (TRange)), '.");
Writeln ('B goes from : ' ,0Ord(Low(B)), ' to ', Ord(high (B)), ' '.");
Writeln ('TArray index goes from : ' ,Ord (Low (TArray)),’ to ', Ord(high (TArray)),
Writeln ('C index goes from : ' ,Low(C),’ to ', high (C), .’);
For 1:=Low(C) to High (C) do
Cli]:=1;

Writeln (' Average :’,Average(c));
Write (’'Type of return value is always same as type of argument:’);
Writeln (high (high (word)));

end .

Inc

Declaration: Procedure Inc (Var X : Any ordinal type[; Increment : Longint]);

Description: Inc increases the value ofwith Increment . If Increment isn’'t specified, then 1 is taken as
a default.

Errors: If range checking is on, then A range check can occur, or an overflow error, when an attempt is made
to increaseX over its maximum value.

See also: Dec (129

Listing: refex/ex32.pp

Program Example32;
{ Program to demonstrate the Inc function. }

Const

C : Cardinal
L : Longint

I : Integer

W : Word

B : Byte

S| : Shortint
CH : Char

R R R R R R

begin
Inc (C);
Inc (L,5);
Inc (I,-3);
Inc (W,3);
Inc (B,100);
Inc (SI,-3);
Inc (CH,1);
end .

PN ON
N

1n 1
-
T o -

e R e N)
o

O
0

143

13.3. FUNCTIONS AND PROCEDURES

IndexByte
Declaration: function IndexByte(var buf;len:longint;b:byte):longint;

Description: IndexByte searches the memorylatf for maximallylen positions for the bytd and returns
it’s position if it found one. Ifb is not found then -1 is returned.

The position is zero-based.
Errors: Buf andLen are not checked to see if they are valid values.

See also: IndexChar (144), IndexDWord (145), IndexWord (146), CompareByte (122

Listing: refex/ex105.pp

Program Examplel05;
{ Program to demonstrate the IndexByte function. }
Const

ArraySize = 256;
MaxValue = 256;

Var
Buffer : Array [1..ArraySize] of Byte;
1,J : longint;
K : Byte,;
begin
Randomize ;
For 1:=1 To ArraySize do

Buffer[1]:=Random (MaxValue);
For 1:=1 to 10 do
begin
K:=Random (MaxValue);
J:=IndexByte (Buffer, ArraySize ,K);

if J=—1 then
Writeln (’Value ' ,K,’ was not found in buffer.’)
else
Writeln ('Found ' ,K,’ at position ',J,’ in buffer’);
end ;
end .
IndexChar

Declaration: function IndexChar(var buf;len:longint;b:char):longint;
Declaration: function IndexCharO(var buf;len:longint;b:char):longint;

Description: IndexChar searches the memory buf for maximallylen positions for the charactdr and
returns it's position if it found one. I is not found then -1 is returned.

The position is zero-based. ThedexChar0O variant stops looking if a null character is found, and
returns -1 in that case.

Errors: Buf andLen are not checked to see if they are valid values.

See also: IndexByte (144), IndexDWord (145, IndexWord (146), CompareChar (123

Listing: refex/ex108.pp

144

13.3. FUNCTIONS AND PROCEDURES

Program Examplel08;
{ Program to demonstrate the IndexChar function. }

Const
ArraySize = 1000;
MaxValue = 26;

Var
Buffer : Array [1.. ArraySize] of Char;
1,J : longint;
K : Char;

begin
Randomize ;
For 1:=1 To ArraySize do
Buffer[1]:=chr (Ord ('A’)+Random (MaxValue));
For 1:=1 to 10 do
begin
K:=chr (Ord ('A’)+Random (MaxValue));
J:=IndexChar (Buffer, ArraySize ,K);

if J=—1 then
Writeln (’Value ' ,K,’ was not found in buffer.’)
else
Writeln (’Found ' ,K,’ at position ',J,’ in buffer’);
end;
end .
IndexDWord

Declaration: function IndexDWord(var buf;len:longint;DW:DWord):longint;

Description: IndexChar searches the memory huf for maximallylen positions for the DWordWand
returns it's position if it found one. IDWis not found then -1 is returned.

The position is zero-based.
Errors: Buf andLen are not checked to see if they are valid values.

See also: IndexByte (144), IndexChar (144), IndexWord (146), CompareDWord (124)

Listing: refex/ex106.pp

Program Examplel06;
{ Program to demonstrate the IndexDWord function. }

Const
ArraySize = 1000;
MaxValue = 1000;

Var
Buffer : Array [1..ArraySize] of DWord;
1,J : longint;
K : DWord;

begin
Randomize ;

145

13.3. FUNCTIONS AND PROCEDURES

For 1:=1 To ArraySize do
Buffer[1]:=Random (MaxValue);

For 1:=1 to 10 do
begin
K:=Random (MaxValue);
J:=IndexDWord (Buffer, ArraySize ,K);

if J=—1 then
Writeln (’Value ' ,K,’ was not found in buffer.’)
else
Writeln (’Found ' ,K,’ at position ',J,’ in buffer’);
end ;
end .
IndexWord

Declaration: function IndexWord(var buf;len:longint;W:word):longint;

Description: IndexChar searches the memorylatif for maximallylen positions for the WordVand returns

it's position if it found one. IfWis not found then -1 is returned.
Errors: Buf andLen are not checked to see if they are valid values.

See also: IndexByte (144), IndexDWord (145, IndexChar (144), CompareWord (125

Listing: refex/ex107.pp

Program Examplel07;
{ Program to demonstrate the IndexWord function. }

Const
ArraySize = 1000;
MaxValue = 1000;

Var
Buffer : Array [1.. ArraySize] of Word;
1,J : longint;
K : Word;

begin

Randomize ;

For 1:=1 To ArraySize do
Buffer[1]:=Random (MaxValue);

For 1:=1 to 10 do
begin
K:=Random (MaxValue);
J:=IndexWord (Buffer, ArraySize ,K);

if J=—1 then
Writeln (’Value ' ,K,’ was not found in buffer.’)
else
Writeln (’Found ' ,K,’ at position ',J,’ in buffer’);
end ;
end .
Insert

Declaration: Procedure Insert (Const Source : String;var S : String;Index : Longint);

146

13.3. FUNCTIONS AND PROCEDURES

Description: Insert inserts stringSource in string$S, at positionindex , shifting all characters afténdex
to the right. The resulting string is truncated at 255 characters, if needed. (i.e. for shortstrings)

Errors: None.

See also: Delete (130), Copy (128), Pos (157)

Listing: refex/ex33.pp

Program Example33;
{ Program to demonstrate the Insert function. }
Var S : String ;

begin
S:='Free Pascal is difficult to use !’;
Insert (’NOT ’,S,pos('difficult’,S));
writeln (s);

end .

IsMemoryManagerSet

Declaration: function IsMemoryManagerSet: Boolean;

Description: IsMemoryManagerSet will return True if the memory manager has been set to another value
than the system heap manager, it will retiiadse otherwise.

Errors: None.

See also: SetMemoryManager (167), GetMemoryManager (140)

Int

Declaration: Function Int (X : Real) : Real;
Description: Int returns the integer part of any Reglas a Real.
Errors: None.

See also: Frac (139, Round (164)

Listing: refex/ex34.pp

Program Example34;
{ Program to demonstrate the Int function. }

begin
Writeln (Int (123.456):0:1); { Prints 123.0}
Writeln (Int(—123.456):0:1); { Prints —123.0}
end .

147

13.3. FUNCTIONS AND PROCEDURES

IOresult
Declaration: Function IOresult : Word;
Description: 10result contains the result of any input/output call, when{#si§¢ = compiler directive is active,

disabling 10 checking. When the flag is read, it is reset to zert®rdésult is zero, the operation
completed successfully. If non-zero, an error occurred. The following errors can occur:

DOoserrors :

2 File not found.

3 Path not found.

4 Too many open files.

5 Access denied.

6 Invalid file handle.

12Invalid file-access mode.
15Invalid disk number.

16 Cannot remove current directory.
17 Cannot rename across volumes.

I/O errors :

100Error when reading from disk.
101 Error when writing to disk.
102File not assigned.

103File not open.

104File not opened for input.
105File not opened for output.
106 Invalid number.

Fatal errors :

150Disk is write protected.

151 Unknown device.

152 Drive not ready.
153Unknown command.

154 CRC check failed.
155Invalid drive specified..

156 Seek error on disk.

157 Invalid media type.

158 Sector not found.

159 Printer out of paper.
160Error when writing to device.
161 Error when reading from device.
162 Hardware failure.

Errors: None.

See also: All I/O functions.

148

13.3. FUNCTIONS AND PROCEDURES

Listing: refex/ex35.pp

Program Example35;
{ Program to demonstrate the IOResult function. }

Var F : text;

begin
Assign (f,paramstr (1));
{$i-}
Reset (f);
{$i+}

If 10result <>0 then
writeln ('File ' ,paramstr (1), doesn’’t exist’)
else
writeln ('File ',paramstr (1), exists’);
end .

Length
Declaration: Function Length (S : String) : Byte;

Description: Length returns the length of the strirg, which is limited to 255 for shortstrings. If the strings
Sis empty, O is returnedNote: The length of the strin® is stored inS[0] for shortstrings only.
Ansistrings have their length stored elsewhere,lteegth fuction should always be used on an-
sistrings.

Errors: None.

See also: Pos (157)

Listing: refex/ex36.pp

Program Example36;
{ Program to demonstrate the Length function. }

Var S : String ;
I . Integer;

begin
S:="";
for i:=1 to 10 do
begin
S:=S+'x";
Writeln (Length (S):2,’ : ' ,s);
end ;
end .

Ln

Declaration: Function Ln (X : Real) : Real,
Description: Ln returns the natural logarithm of the Real param#teX must be positive.

Errors: An run-time error will occur whetX is negative.

149

13.3. FUNCTIONS AND PROCEDURES

See also: Exp (134), Power (158

Listing: refex/ex37.pp

Program Example37;

{ Program to demonstrate the Ln function. }

begin
Writeln (Ln(1)); { Prints 0 }
Writeln (Ln(Exp(1))); { Prints 1}
end .
Lo

Declaration: Function Lo (O : Word or Longint) : Byte or Word,;

Description: Lo returns the low byte of its argument if this is of typgeger or Word. It returns the low
word of its argument if this is of typeongint or Cardinal

Errors: None.

See also: Ord (155), Chr (121), Hi (141)

Listing: refex/ex38.pp

Program Example38;
{ Program to demonstrate the Lo function. }

Var L : Longint;

W : Word;
begin
L:=(1 shl 16) + (1 sShl 4); { $10010 }
Writeln (Lo(L)); { Prints 16 }
W:=(1 Shl 8) + (1 Shl 4); { $110 }
Writeln (Lo (W)); { Prints 16 }
end .
LongJmp

Declaration: Procedure LongJmp (Var env : Jmp_Buf; Value : Longint);

Description: LongJmp jumps to the adress in trev jmp_buf , and restores the registers that were stored in
it at the correspondingetdmp (167) call. In effect, program flow will continue at ttigetdmp call,
which will returnvalue instead of 0. If avalue equal to zero is passed, it will be converted to 1
before passing it on. The call will not return, so it must be used with extreme care. This can be used
for error recovery, for instance when a segmentation fault occurred.

Errors: None.

See also: SetIJmp (167)

For an example, segetImp (167)

150

13.3. FUNCTIONS AND PROCEDURES

Low

Declaration: Function Low (Type identifier or variable reference) : Longint;
Description: The return value okow depends on it's argument:

1.If the argument is an ordinal typepw returns the lowest value in the range of the given ordinal
type.

2.If the argument is an array type or an array type variable tteenreturns the lowest possible
value of it's index.

The return type is always the same type as the type of the argument
Errors: None.

See also: High (142), Ord (155, Pred (158), Succ (173

for an example, sedigh (142).

Lowercase

Declaration: Function Lowercase (C : Char or String) : Char or String;

Description: Lowercase returns the lowercase version of its argumeéntf its argument is a string, then the
complete string is converted to lowercase. The type of the returned value is the same as the type of
the argument.

Errors: None.

See also: Upcase (175

Listing: refex/ex73.pp

Program Example73;
{ Program to demonstrate the Lowercase function. }
Var | : Longint;

begin
For i:=ord ('A’) to ord ('Z') do
write (lowercase (chr (i)));
Writeln ;
Writeln (Lowercase (’ABCDEFGHIJKLMNOPQRSTUVWXYZ'));
end .

Mark

Declaration: Procedure Mark (Var P : Pointer);
Description: Mark copies the current heap-pointerRo
Errors: None.

See also: Getmem (140), Freemem (139, New (154), Dispose (130, Maxavail (152

Listing: refex/ex39.pp

151

13.3. FUNCTIONS AND PROCEDURES

Program Example39;
{ Program to demonstrate the Mark and Release functions. }
Var P,PP,PPP,MM : Pointer;

begin
Getmem (P,100);
Mark (MM);
Writeln (’'Getmem 100 : Memory available : ' ,MemAvail ,’ (marked)’);
GetMem (PP,1000);
Writeln ('Getmem 1000 : Memory available : ', MemAuvail);
GetMem (PPP,100000);
Writeln (’Getmem 10000 : Memory available : ' ,MemAuvail);
Release (MM);
Writeln (’'Released : Memory available : ' ,MemAvail);
{ At this point, PP and PPP are invalid ! }

end .

Maxavail

Declaration: Function Maxavail : Longint;

Description: Maxavail returns the size, in bytes, of the biggest free memory block in the heap.
Remark: The heap grows dynamically if more memory is needed than is available.

Errors: None.

See also: Release (162, Memavail (153),Freemem (139, Getmem (140

Listing: refex/ex40.pp

Program Example40;
{ Program to demonstrate the MaxAvail function. }

Var
P : Pointer;
I : longint;

begin
{ This will allocate memory until there is no more memory}
1:=0;
While MaxAvail >=1000 do
begin
Inc (1);
GetMem (P,1000);
end ;
{ Default 4MB heap is allocated, so 4000 blocks
should be allocated.
When compiled with the —Ch10000 switch, the program
will be able to allocate 10 block }
Writeln ('Allocated ',i,’ blocks of 1000 bytes’);
end .

152

13.3. FUNCTIONS AND PROCEDURES

Memavail

Declaration: Function Memavail : Longint;

Description: Memavail returns the size, in bytes, of the free heap memory.

Remark: The heap grows dynamically if more memory is needed than is available. The heap size is not equal
to the size of the memory available to the operating system, it is internal to the programs created by
Free Pascal.

Errors: None.

See also: Maxavail (152),Freemem (139, Getmem (140

Listing: refex/ex41.pp

Program Example4l;
{ Program to demonstrate the MemAvail function. }

Var
P, PP : Pointer;

begin
GetMem (P,100);
GetMem (PP,10000);
FreeMem (P,100);
{ Due to the heap fragmentation introduced
By the previous calls, the maximum amount of memory
isn’t equal to the maximum block size available. }

Writeln (' Total heap available (Bytes) : ' ,MemAvalil);
Writeln ('Largest block available (Bytes) : ', MaxAvail);
end .
Mkdir

Declaration: Procedure Mkdir (const S : string);
Description: Mkdir creates a new directof.
Errors: If a parent-directory of director§ doesn’t exist, a run-time error is generated.

See also: Chdir (121), Rmdir (164

For an example, sdemdir (164).

Move
Declaration: Procedure Move (var Source,Dest;Count : Longint);

Description: Move movesCount bytes fromSource to Dest .

Errors: If either Dest or Source is outside the accessible memory for the process, then a run-time error
will be generated.

See also: Fillword (138), Fillchar (137)

Listing: refex/ex42.pp

153

13.3. FUNCTIONS AND PROCEDURES

Program Example42;
{ Program to demonstrate the Move function. }
Var S1,S2 : String [30];
begin
Sl:="Hello World !’;

S2:='Bye, bye I
Move (S1,S2,Sizeof (S1));

Writeln (S2);
end .
MoveChar0

Declaration: procedure MoveCharO(var Src,Dest;Count:longint);

Description: MoveChar0 movesCount bytes fromSrc to Dest, and stops moving if a zero character is
found.

Errors: No checking is done to see@ount stays within the memory allocated to the process.
See also: Move (153

Listing: refex/ex109.pp
Program Examplel09;

{ Program to demonstrate the MoveChar0 function. }

Var
Bufl,Buf2 : Array [1..80] of char;
I : longint;
begin
Randomize ;
For 1:=1 to 80 do
Bufl[i]:=chr (Random (16)+Ord ('A’));

Writeln (' Original buffer’);
writeln (Bufl);
Bufl[Random (80)+1]:=#0;
MoveChar0 (Bufl,Buf2,80);
Writeln (’Randomly zero—terminated Buffer’);
Writeln (Buf2);
end .

New
Declaration: Procedure New (Var P : Pointer[, Constructor]);

Description: Newallocates a new instance of the type pointed t&bgnd puts the addressk If P is an object,
then it is possible to specify the name of the constructor with which the instance will be created.

Errors: If not enough memory is availabllil will be returned.
See also: Dispose (130, Freemem (139, Getmem (140), Memavail (153, Maxavail (152

For an example, sd@ispose (130).

154

13.3. FUNCTIONS AND PROCEDURES

Odd

Declaration: Function Odd (X : Longint) : Boolean;
Description: OddreturnsTrue if Xis odd, orFalse otherwise.
Errors: None.

See also: Abs (115, Ord (155

Listing: refex/ex43.pp

Program Example43;
{ Program to demonstrate the Odd function. }

begin
If Odd (1) Then
Writeln ('Everything OK with 1 !1");
If Not Odd (2) Then
Writeln ('Everything OK with 2 I");
end .

Ofs
Declaration: Function Ofs (Var X) : Longint;

Description: Ofs returns the offset of the address of a variable. This function is only supported for compatibility.
In Free Pascal, it returns always the complete address of the variable, since Free Pascal is a 32 bit

compiler.
Errors: None.

See also: DSeg (131), CSeg (129), Seg (167), Ptr (158

Listing: refex/ex44.pp

Program Example44;

{ Program to demonstrate the Ofs function. }
Var W : Pointer;

begin

W:=Pointer (Ofs (W)); { W contains its own offset. }
end .

Ord
Declaration: Function Ord (X : Any ordinal type) : Longint;

Description: Ord returns the Ordinal value of a ordinal-type variakle
Errors: None.

See also: Chr (121), Succ (173, Pred (158), High (142), Low (151)

155

13.3. FUNCTIONS AND PROCEDURES

Listing: refex/ex45.pp

Program Example45;

{ Program to demonstrate the Ord,Pred,Succ functions. }

Type
TEnum = (Zero, One, Two, Three, Four);
Var
X : Longint;
Y : TEnum;
begin
X:=125;
Writeln (Ord (X)); { Prints 125}
X:=Pred (X);
Writeln (Ord (X)); { prints 124}
Y:= One;
Writeln (Ord(y)); { Prints 1}
Y:=Succ (Y);
Writeln (Ord(Y)); { Prints 2}
end .
Paramcount

Declaration: Function Paramcount : Longint;

Description: Paramcount returns the number of command-line arguments. If no arguments were given to the
running programo is returned.

Errors: None.

See also: Paramstr (156)

Listing: refex/ex46.pp

Program Example46;

{ Program to demonstrate the ParamCount and ParamStr functions. }
Var
I : Longint;

begin
Writeln (paramstr (0), ' : Got ' ,ParamCount ,’ command—line parameters: ');
For i:=1 to ParamCount do
Writeln (ParamStr (i));
end .

Paramstr

Declaration: Function Paramstr (L : Longint) : String;

Description: Paramstr returns thelL-th command-line argument. must be betweefl andParamcount
these values included. The zeroth argument is the path and file name with which the program was
started.

156

13.3. FUNCTIONS AND PROCEDURES

The command-line parameters will be truncated to a length of 255, even though the operating system
may support bigger command-lines. T@bjpas unit (used inobjfpc or delphi mode) define
versions ofParamstr which return the full-length command-line arguments.

When the complete command-line must be accessedytjve pointer should be used to retrieve the
real values of the command-line parameters.

Errors: None.

See also: Paramcount (156)

For an example, sd@aramcount (156).

Pi
Declaration: Function Pi : Real;
Description: Pi returns the value of Pi (3.1415926535897932385).
Errors: None.

See also: Cos (128), Sin (170

Listing: refex/ex47.pp

Program Example47;

{ Program to demonstrate the Pi function. }

begin
Writeln (Pi); {3.1415926}
Writeln (Sin (Pi));

end .

Pos
Declaration: Function Pos (Const Substr : String;Const S : String) : Byte;

Description: Pos returns the index oBubstr in S, if S containsSubstr . In caseSubstr isn’t found,0 is
returned. The search is case-sensitive.

Errors: None

See also: Length (149, Copy (128), Delete (130), Insert (146)

Listing: refex/ex48.pp

Program Example48;
{ Program to demonstrate the Pos function. }

Var
S : String ;

begin
S:="'The first space in this sentence is at position : ';
Writeln (S,pos(’ ',S));
S:='The last letter of the alphabet doesn’’t appear in this sentence ';

157

13.3. FUNCTIONS AND PROCEDURES

If (Pos ('2',S)=0) and (Pos(’'z’,S)=0) then
Writeln (S);
end .

Power
Declaration: Function Power (base,expon : Real) : Real;

Description: Power returns the value diase to the powelexpon . Base andexpon can be of type Longint,
in which case the result will also be a Longint.

The function actually returnExp(expon*Ln(base))
Errors: None.

See also: Exp (134), Ln (149

Listing: refex/ex78.pp

Program Example78;
{ Program to demonstrate the Power function. }
begin

Writeln (Power(exp(1.0),1.0):8:2); { Should print 2.72 }
end .

Pred
Declaration: Function Pred (X : Any ordinal type) : Same type;

Description: Pred returns the element that precedes the element that was passed to it. If it is applied to the first
value of the ordinal type, and the program was compiled with range checkinggBr}(, then a
run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (155), Pred (158), High (142, Low (151)

for an example, se@rd (155

Ptr
Declaration: Function Ptr (Sel,Off : Longint) : Pointer;

Description: Ptr returns a pointer, pointing to the address specified by segBetnand offsetOff .
Remark:

1.In the 32-bit flat-memory model supported by Free Pascal, this function is obsolete.
2.The returned address is simply the offset.

Errors: None.

See also: Addr (116

Listing: refex/ex59.pp

158

13.3. FUNCTIONS AND PROCEDURES

Program Example59;
{ Program to demonstrate the Ptr function. }

Var P : ~String ;
S : String ;

begin
S:='Hello, World !’ ;
P:=Ptr (Seg(S), Longint(Ofs(S)));
{P now points to S !}
Writeln (P");
end .

Random

Declaration: Function Random [(L : Longint)] : Longint or Real;

Description: Randomreturns a random number larger or equadtand strictly less thah. If the argument. is
omitted, a Real number between 0 and 1 is returned. (0 included, 1 excluded)

Errors: None.

See also: Randomize (159

Listing: refex/ex49.pp

Program Example49;
{ Program to demonstrate the Random and Randomize functions. }

Var 1,Count,guess : Longint;
R : Real;

begin
Randomize ; { This way we generate a new sequence every time
the program is run}
Count:=0;
For i:=1 to 1000 do
If Random >0.5 then inc (Count);
Writeln ('Generated ',Count,’ numbers > 0.5");
Writeln (’'out of 1000 generated numbers.’);
count:=0;
For i:=1 to 5 do
begin
write (’Guess a number between 1 and 5 : ’);
readln (Guess);
If Guess=Random (5)+1 then inc (count);
end ;
Writeln (’'You guessed ',Count,’ out of 5 correct.’);
end .

Randomize

Declaration: Procedure Randomize ;

159

13.3. FUNCTIONS AND PROCEDURES

Description: Randomize initializes the random number generator of Free Pascal, by giving a vaRantdseed ,
calculated with the system clock.

Errors: None.

See also: Random (159

For an example, séeandom (159).

Read
Declaration: Procedure Read ([Var F : Any file type], V1 [, V2, ... , Vn]);

Description: Read reads one or more values from a fileand stores the result M1, V2, etc.; If no fileF is
specified, then standard input is readFlis of typeText , then the variable¥1, V2 etc. must be
of typeChar, Integer , Real , String orPChar. If Fis a typed file, then each of the variables
must be of the type specified in the declaratiof-obntyped files are not allowed as an argument.

Errors: If no data is available, a run-time error is generated. This behavior can be controlled wiii the
compiler switch.

See also: ReadIn (160), Blockread (119), Write (176), Blockwrite (120

Listing: refex/ex50.pp

Program Example50;
{ Program to demonstrate the Read(Ln) function. }

Var S : String ;
C : Char;
F : File of char;

begin
Assign (F,’ ex50.pp’);
Reset (F);
C.="A";
Writeln ('The characters before the first space in ex50.pp are : ');
While not Eof (f) and (C<>" ') do
Begin
Read (F,C);
Write (C);
end;
Writeln ;
Close (F);
Writeln (’'Type some words. An empty line ends the program.’);
repeat
Readln (S);
until S='";
end .

Readln
Declaration: Procedure Readln [Var F : Text], V1 [, V2, ... , Vn]);

160

13.3. FUNCTIONS AND PROCEDURES

Description: Read reads one or more values from a fileand stores the result W1, V2, etc. After that it goes
to the next line in the file (defined by théneFeed (#10) character). If no filé= is specified,
then standard input is read. The variablls V2 etc. must be of typ€har, Integer , Real ,
String or PChar.

Errors: If no data is available, a run-time error is generated. This behavior can be controlled wiii the
compiler switch.

See also: Read (160), Blockread (119, Write (176), Blockwrite (120

For an example, seéeead (160).

Real2Double
Declaration: Function Real2Double(r : real48) : double;

Description: The Real2Double function converts a Turbo Pascal style real (6 bytes long) to a native Free
Pascal double type. It can be used e.g. to read old binary TP files with FPC and convert them to Free
Pacal binary files.

Note that the assignment operator has been overloadedReald8 type can be assigned directly
to a double or extended.

Errors: None.

See also:

Listing: refex/ex110.pp

program Examplel10;
{ Program to demonstrate the Real2Double function. }

Var

integer;
Real48;

Double;
Extended;

File of Real48;

Mmoo -

begin
Assign(F, 'reals.dat’);
Reset (f);
For 1:=1 to 10 do
begin
Read (F,R);
D:=Real2Double (R);
Writeln ('Real ",i,’ : ' ,D);
D:=R;
Writeln (' Real (direct to double) ',i,’ : ' ,D);
E:=R;
Writeln ('Real (direct to Extended) ',i,’ : ' ,E);
end ;
Close(f);
end .

161

13.3. FUNCTIONS AND PROCEDURES

Release
Declaration: Procedure Release (Var P : pointer);

Description: Release sets the top of the Heap to the location pointed t&bll memory at a location higher
thanP is marked empty.

Errors: A run-time error will be generated B points to memory outside the heap.
See also: Mark (151), Memavail (153), Maxavail (152, Getmem (140, Freemem (139 New (154), Dis-
pose (130

For an example, sddark (151).

Rename

Declaration: Procedure Rename (Var F : Any Filetype; Const S : String);
Description: Renamechanges the name of the assignedFil® S. F must be assigned, but not opened.
Errors: A run-time error will be generated i isn’t assigned, or doesn’t exist.

See also: Erase (133

Listing: refex/ex77.pp

Program Example77;

{ Program to demonstrate the Rename function. }
Var F : Text;

begin
Assign (F,paramstr (1));
Rename (F,paramstr (2));
end .

Reset
Declaration: Procedure Reset (Var F : Any File Type[; L : Longint]);

Description: Reset opens a filg= for reading.F can be any file type. IF is a text file, or refers to standard 1/0
(e.g: ") then it is opened read-only, otherwise it is opened using the mode specifiilediode

If Fis an untyped file, the record size can be specified in the optional pardmeétatefault value
of 128 is used.

File sharing is not taken into account when callRgset .

Errors: If the file cannot be opened for reading, then a run-time error is generated. This behavior can be
changed by thési} compiler switch.

See also: Rewrite (163), Assign (117), Close (122, Append (116)

Listing: refex/ex51.pp

Program Example51;

{ Program to demonstrate the Reset function. }

162

13.3. FUNCTIONS AND PROCEDURES

Function FileExists (Name : String) : boolean;
Var F : File;

begin
{$i-}
Assign (F,Name);
Reset (F);
{$1+}
FileExists :=(loResult =0) and (Name<>'");
Close (f);
end;

begin
If FileExists (Paramstr (1)) then
Writeln (' File found’)
else
Writeln (' File NOT found’);
end .

Rewrite
Declaration: Procedure Rewrite (Var F : Any File Type[; L : Longint]);
Description: Rewrite opens a file- for writing. F can be any file type. IF is an untyped or typed file, then
it is opened for reading and writing. F is an untyped file, the record size can be specified in the

optional parametdr. Default a value of 128 is used.Rewrite finds a file with the same name as
F, this file is truncated to length. If it doesn’t find such a file, a new file is created.

Contrary to Turbo Pascal, Free Pascal opens the file with rfrodetput . If it should be opened
in fminout mode, an extra call tReset (162) is needed.

File sharing is not taken into account when callRgwrite

Errors: If the file cannot be opened for writing, then a run-time error is generated. This behavior can be
changed by thési} compiler switch.

See also: Reset (162), Assign (117), Close (122), Flush (138), Append (116)

Listing: refex/ex52.pp

Program Example52;
{ Program to demonstrate the Rewrite function. }

Var F : File;
I : longint;

begin
Assign (F,’'Test.dat’);
{ Create the file. Recordsize is 4}
Rewrite (F, Sizeof (1));

For 1:=1 to 10 do
BlockWrite (F,1,1);
close (f);

{ F contains now a binary representation of
10 longints going from 1 to 10 }
end .

163

13.3. FUNCTIONS AND PROCEDURES

Rmdir
Declaration: Procedure Rmdir (const S : string);

Description: Rmdir removes the directorg.
Errors: If S doesn't exist, or isn't empty, a run-time error is generated.

See also: Chdir (121), Mkdir (153

Listing: refex/ex53.pp

Program Example53;

{ Program to demonstrate the MkDir and RmDir functions. }
Const D : String [8] = '"TEST.DIR";

Var S : String ;

begin
Writeln ('Making directory ' ,D);
Mkdir (D);
Writeln (’'Changing directory to ',D);
ChDir (D);
GetDir (0,S);
Writeln ('Current Directory is : ',S);
WRiteln (’'Going back’);
ChDir ('..7);
Writeln (’'Removing directory ' ,D);
RmDir (D);

end .

Round

Declaration: Function Round (X : Real) : Longint;
Description: Round roundsX to the closest integer, which may be bigger or smaller than
Errors: None.

See also: Frac (139), Int (147), Trunc (174)

Listing: refex/ex54.pp

Program Example54;
{ Program to demonstrate the Round function. }

begin
Writeln (Round (1234.56)); { Prints 1235 }
Writeln (Round (—1234.56)); { Prints —1235}
Writeln (Round (12.3456)); { Prints 12 }
Writeln (Round (—12.3456)); { Prints —12 }
end .

164

13.3. FUNCTIONS AND PROCEDURES

Runerror

Declaration: Procedure Runerror (ErrorCode : Word);
Description: Runerror stops the execution of the program, and generates a run-timeegrasCode
Errors: None.

See also: Exit (133), Halt (140

Listing: refex/ex55.pp

Program Example55;
{ Program to demonstrate the RunError function. }

begin
{ The program will stop end emit a run—error 106 }
RunError (106);

end .

Seek

Declaration: Procedure Seek (Var F; Count : Longint);

Description: Seek sets the file-pointer for fil€& to record Nr.Count . The first record in a file ha8ount=0 .
F can be any file type, excepext . If Fis an untyped file, with no record size specifiedRaset
(162 or Rewrite (163, 128 is assumed.

Errors: A run-time error is generated @ount points to a position outside the file, or the file isn’t opened.

See also: Eof (131), SeekEof (166), SeekEoln (166)

Listing: refex/ex56.pp

Program Example56;
{ Program to demonstrate the Seek function. }

Var
F : File;
I,j : longint;

begin

{ Create a file and fill it with data }
Assign (F, test.dat’);
Rewrite (F); { Create file }
Close(f);
FileMode:=2;
ReSet (F, Sizeof (i)); { Opened read/write }
For 1:=0 to 10 do

BlockWrite (F,1,1);
{ Go Back to the begining of the file }
Seek(F,0);
For 1:=0 to 10 do

begin

BlockRead (F,J,1);

If J<>1 then

Writeln ('Error: expected ' ,i,’, got ',j);

165

13.3. FUNCTIONS AND PROCEDURES

end;
Close (f);
end .

SeekEof

Declaration: Function SeekEof [(Var F : text)] : Boolean;

Description: SeekEof returnsTrue is the file-pointer is at the end of the file. It ignores all whitespace. Calling
this function has the effect that the file-position is advanced until the first non-whitespace character or
the end-of-file marker is reached. If the end-of-file marker is reached is returned. Otherwise,

False is returned. If the parameters omitted, standarthput is assumed.

Errors: A run-time error is generated if the fileisn’'t opened.

See also: Eof (131), SeekEoln (166), Seek (165

Listing: refex/ex57.pp

Program Example57;

{ Program to demonstrate the SeekEof function. }
Var C : Char;

begin
{ this will print all characters from standard input except
Whitespace characters. }
While Not SeekEof do
begin
Read (C);
Write (C);
end ;
end .

SeekEoln

Declaration: Function SeekEoln [(Var F : text)] : Boolean;

Description: SeekEoln returnsTrue is the file-pointer is at the end of the current line. It ignores all whites-
pace. Calling this function has the effect that the file-position is advanced until the first non-
whitespace character or the end-of-line marker is reached. If the end-of-line marker is rdaiaked,
is returned. Otherwise, False is returned. The end-of-line marker is defirgtDashe LineFeed
character. If the parametEris omitted, standarthput is assumed.

Errors: A run-time error is generated if the fileisn’'t opened.

See also: Eof (131), SeekEof (166), Seek (165

Listing: refex/ex58.pp

Program Example58;
{ Program to demonstrate the SeekEoln function. }

Var
C : Char;

166

13.3. FUNCTIONS AND PROCEDURES

begin
{ This will read the first line of standard output and print
all characters except whitespace. }
While not SeekEoln do
Begin
Read (c);
Write (c);
end ;
end .

Seg
Declaration: Function Seg (Var X) : Longint;

Description: Seg returns the segment of the address of a variable. This function is only supported for compat-
ibility. In Free Pascal, it returns always 0, since Free Pascal is a 32 bit compiler, segments have no

meaning.
Errors: None.

See also: DSeg (131), CSeg (129, Ofs (155, Ptr (158

Listing: refex/ex60.pp

Program Example60;

{ Program to demonstrate the Seg function. }

Var
W : Word;
begin
W:=Seg(W); { W contains its own Segment}
end.
SetMemoryManager

Declaration: procedure SetMemoryManager(const MemMgr: TMemoryManager);
Description: SetMemoryManager sets the current memory manager recortiemmMgr
Errors: None.

See also: GetMemoryManager (140, IsMemoryManagerSet (147)

For an example, sgérogrammers guide

Setdmp
Declaration: Function Setdmp (Var Env : Jmp_Buf) : Longint;

Description: SetJmp fills env with the necessary data for a jump back to the point where it was called. It returns
zero if called in this way. If the function returns nonzero, then it means that a dadhtgImp (150

with env as an argument was made somewhere in the program.

Errors: None.

167

file:../prog/prog.html

13.3. FUNCTIONS AND PROCEDURES

See also: Longdmp (150

Listing: refex/ex79.pp

program example79;

{ Program to demonstrate the setjmp, longjmp functions }

procedure dojmp(var env : jmp_buf; value
begin
value :=2;
Writeln ('Going to jump !);
{ This will return to the setjmp call,
and return value instead of 0 }
longjmp (env, value);
end ;
var env : jmp_buf;
begin
if setimp(env)=0 then
begin
writeln (’'Passed first time.’);
dojmp(env,2);
end
else
writeln ('Passed second time.’);
end .

longint);

SetLength

Declaration: Procedure SetLength(var S : String; Len :

Longint);

Description: SetLength sets the length of the strifgto Len. S can be an ansistring or a short string. For

ShortStrings
AnsiString

Errors: None.

See also: Length (149

Listing: refex/ex85.pp

, Len can maximally be 255. FoAnsiStrings
strings,SetLength mustbe used to set the length of the string.

it can have any value. For

Program Example85;

{ Program to demonstrate the SetLength function. }

Var S : String ;

begin
FillChar (S[1],100,#32);
Setlength(S,100);
Writeln ('"",S,"'"");
end .

168

13.3. FUNCTIONS AND PROCEDURES

SetTextBuf
Declaration: Procedure SetTextBuf (Var f : Text; Var Buf[; Size : Word]);

Description: SetTextBuf assigns an I/O buffer to a text file. The new buffer is locateBu#t and isSize
bytes long. IfSize is omitted, therSizeOf(Buf) is assumed. The standard buffer of any text file
is 128 bytes long. For heavy I/O operations this may prove too slow.SEfieextBuf procedure
allows to set a bigger buffer for the 10 of the application, thus reducing the number of system calls,
and thus reducing the load on the system resources. The maximum size of the newly assigned buffer

is 65355 bytes.
Remark:

eNever assign a new buffer to an opened file. A new buffer can be assigned immediately after
a call toRewrite (163), Reset (162 or Append, but not after the file was read from/written
to. This may cause loss of data. If a new buffer must be assigned after read/write operations
have been performed, the file should be flushed first. This will ensure that the current buffer is

emptied.

eTake care that the assigned buffer is always valid. If a local variable is assigned as a buffer, then
after the program exits the local program block, the buffer will no longer be valid, and stack
problems may occur.

Errors: No checking orSize is done.

See also: Assign (117), Reset (162, Rewrite (163), Append (116

Listing: refex/ex61.pp

Program Example61;

{ Program to demonstrate the SetTextBuf function. }

Var
Fin,Fout : Text;
Ch : Char;

Bufin,Bufout : Array [1..10000] of byte;

begin
Assign (Fin,paramstr (1));
Reset (Fin);

Assign (Fout,paramstr (2));
Rewrite (Fout);
{ This is harmless before IO has begun }
{ Try this program again on a big file,
after commenting out the following 2
lines and recompiling it. }
SetTextBuf (Fin,Bufin);
SetTextBuf (Fout, Bufout);
While not eof (Fin) do
begin
Read (Fin,ch);
write (Fout,ch);
end ;
Close (Fin);
Close (Fout);
end .

169

13.3. FUNCTIONS AND PROCEDURES

Sin
Declaration: Function Sin (X : Real) : Real;

Description: Sin returns the sine of its argumeXitwhereX is an angle in radians.
If the absolute value of the argument is larger tB&63 , then the result is undefined.

Errors: None.

See also: Cos (128), Pi (157), Exp (134), Ln (149

Listing: refex/ex62.pp

Program Example62;

{ Program to demonstrate the Sin function. }

begin
Writeln (Sin(Pi):0:1); { Prints 0.0 }
Writeln (Sin(Pi/2):0:1); { Prints 1.0 }
end .

SizeOf
Declaration: Function SizeOf (X : Any Type) : Longint;

Description: SizeOf returns the size, in bytes, of any variable or type-identifier.
Remark: This isn't really a RTL function. Its result is calculated at compile-time, and hard-coded in the
executable.

Errors: None.

See also: Addr (116)

Listing: refex/ex63.pp

Program Example63;

{ Program to demonstrate the SizeOf function. }
Var

I : Longint;

S : String [10];

begin
Writeln (SizeOf(1)); { Prints 4 }
Writeln (SizeOf(S)); { Prints 11}
end .
Sptr

Declaration: Function Sptr : Pointer;
Description: Sptr returns the current stack pointer.
Errors: None.

See also: SSeg (172

170

13.3. FUNCTIONS AND PROCEDURES

Listing: refex/ex64.pp

Program Example64;

{ Program to demonstrate the SPtr function. }
Var
P :Longint;

begin
P:=Sptr ; { P Contains now the current stack position. }
end .

Sqr
Declaration: Function Sqgr (X : Real) : Real;
Description: Sqgr returns the square of its argumett
Errors: None.

See also: Sqrt (171), Ln (149, Exp (1349

Listing: refex/ex65.pp

Program Example65;

{ Program to demonstrate the Sqr function. }
Var i : Integer;

begin
For i:=1 to 10 do
writeln (Sqr(i):3);
end .

Sqrt
Declaration: Function Sgrt (X : Real) : Real;
Description: Sqrt returns the square root of its argumehtvhich must be positive.

Errors: If Xis negative, then a run-time error is generated.

See also: Sqr (172, Ln (149, Exp (134

Listing: refex/ex66.pp

Program Example66;

{ Program to demonstrate the Sqrt function. }

begin
Writeln (Sqrt (4):0:3); { Prints 2.000 }
Writeln (Sqrt (2):0:3); { Prints 1.414}
end .

171

13.3. FUNCTIONS AND PROCEDURES

SSeg
Declaration: Function SSeg : Longint;

Description: SSeg returns the Stack Segment. This function is only supported for compatibility reasons, as
Sptr returns the correct contents of the stackpointer.

Errors: None.

See also: Sptr (170

Listing: refex/ex67.pp

Program Example67;

{ Program to demonstrate the SSeg function. }
Var W : Longint;

begin
W:=SSeg;
end .

Str
Declaration: Procedure Str (Var X[:NumPlaces[:Decimals]]; Var S : String);

Description: Str returns a string which represents the value of X. X can be any numerical type. The optional
NumPLaces andDecimals specifiers control the formatting of the string.

Errors: None.

See also: Val (179

Listing: refex/ex68.pp

Program Example68;

{ Program to demonstrate the Str function. }
Var S : String ;

Function IntToStr (I : Longint) : String ;

Var S : String ;

begin

Str (1,S);

IntToStr :=S;
end ;
begin

S:="x'+IntToStr (—233)+"'x";

Writeln (S);
end .
StringOfChar
Declaration: Function StringOfChar(c : char;l : longint) : AnsiString;

172

13.3. FUNCTIONS AND PROCEDURES

Description: StringOfChar creates a new Ansistring of lengthand fills it with the charactes.
It is equivalent to the following calls:

SetLength(StringOfChar,l);
FillChar(Pointer(StringOfChar)?,Length(StringOfChar),c);

Errors: None.

See also: SetLength (168

Listing: refex/ex97.pp

Program Example97;
{$H+}
{ Program to demonstrate the StringOfChar function. }
Var S : String ;
begin
S:=StringOfChar(’ ' ,40)+’ Aligned at column 41.’;

Writeln (s);
end .

Succ

Declaration: Function Succ (X : Any ordinal type) : Same type;

Description: Succ returns the element that succeeds the element that was passed to it. If it is applied to the last
value of the ordinal type, and the program was compiled with range checkingRBr}(), then a
run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (155), Pred (158), High (142), Low (151)

for an example, se@rd (155).

Swap
Declaration: Function Swap (X) : Type of X;

Description: Swap swaps the high and low order bytesXif X is of typeWord or Integer , or swaps the high
and low order words oK if Xis of typeLongint or Cardinal . The return type is the type of

Errors: None.

See also: Lo (150, Hi (147)

Listing: refex/ex69.pp

Program Example69;
{ Program to demonstrate the Swap function. }

Var W : Word;
L : Longint;

173

13.3. FUNCTIONS AND PROCEDURES

begin
W:=$1234;
W:=Swap (W) ;
if W<>$3412 then
writeln (' Error when swapping word !’);
L:=$12345678;
L:=Swap (L);
if L<>$56781234 then
writeln (’'Error when swapping Longint !');
end .

Trunc

Declaration: Function Trunc (X : Real) : Longint;

Description: Trunc returns the integer part &f which is always smaller than (or equal %)n absolute value.

Errors: None.

See also: Frac (139), Int (147), Round (164

Listing: refex/ex70.pp

Program Example70;

{ Program to demonstrate the Trunc function. }

begin
Writeln (Trunc (123.456)); { Prints 123 }
Writeln (Trunc (—123.456)); { Prints —123}
Writeln (Trunc (12.3456)); { Prints 12 }
Writeln (Trunc (—12.3456)); { Prints —12 }
end .

Truncate

Declaration: Procedure Truncate (Var F : file);
Description: Truncate truncates the (opened) fifeat the current file position.
Errors: Errors are reported by IOresult.

See also: Append (116), Filepos (134), Seek (165

Listing: refex/ex71.pp

Program Example71;
{ Program to demonstrate the Truncate function. }

Var F : File of longint;

I,L : Longint;
begin
Assign (F,’test.dat’);
Rewrite (F);

174

13.3. FUNCTIONS AND PROCEDURES

For 1:=1 to 10 Do
Write (F,1);
Writeln (' Filesize before Truncate : ', FileSize (F));
Close (f);
Reset (F);
Repeat
Read (F,1);
Until i=5;
Truncate (F);
Writeln (' Filesize after Truncate : ', Filesize (F));
Close (f);
end .

Upcase
Declaration: Function Upcase (C : Char or string) : Char or String;

Description: Upcase returns the uppercase version of its argun@rif its argument is a string, then the com-
plete string is converted to uppercase. The type of the returned value is the same as the type of the
argument.

Errors: None.

See also: Lowercase (151)

Listing: refex/ex72.pp

Program Example72;
{ Program to demonstrate the Upcase function. }
Var | : Longint;

begin
For i:=ord(’'a’) to ord ('z’) do
write (upcase (chr (i)));
Writeln ;
{ This doesn’t work in TP, but it does in Free Pascal }
Writeln (Upcase (' abcdefghijkimnopgrstuvwxyz’));
end .

Val

Declaration: Procedure Val (const S : string;var V;var Code : word);

Description: Val converts the value represented in the st@tg a numerical value, and stores this value in the
variableV, which can be of typéongint , Real andByte . If the conversion isn’t succesfull, then
the paramete€ode contains the index of the characterSnwhich prevented the conversion. The
string S isn't allowed to contain spaces.

Errors: If the conversion doesn’t succeed, the valueCoide indicates the position where the conversion
went wrong.

See also: Str (172

Listing: refex/ex74.pp

175

13.3. FUNCTIONS AND PROCEDURES

Program Example74;

{ Program to demonstrate the Val function. }
Var |, Code : Integer;

begin
Val (ParamStr (1), 1,Code);
If Code<>0 then

Writeln ('Error at position ’',code,’ : ', Paramstr (1)[Code])
else
Writeln (’'Value : ' ,1);
end .
Write
Declaration: Procedure Write ([Var F : Any filetype;] V1 [; V2; ... , Vn)];

Description: Write writes the contents of the variablé4, V2 etc. to the fild~. F can be a typed file, orBext
file. If Fis a typed file, then the variabl®4, V2 etc. must be of the same type as the type in the dec-
laration ofF. Untyped files are not allowed. If the parametas omitted, standard output is assumed.
If Fis of typeText , then the necessary conversions are done such that the output of the variables
is in human-readable format. This conversion is done for all numerical types. Strings are printed
exactly as they are in memory, as wellR€har types. The format of the numerical conversions
can be influenced through the following modifiers: OutputVariable : NumChars [:
Decimals] This will print the value ofOutputVariable with a minimum ofNumChars
characters, from whicbecimals are reserved for the decimals. If the number cannot be repre-
sented withNumChars charactersNumChars will be increased, until the representation fits. If the
representation requires less thdamChars characters then the output is filled up with spaces, to
the left of the generated string, thus resulting in a right-aligned representation. If no formatting is
specified, then the number is written using its natural length, with nothing in front of it if it's positive,
and a minus sign if it's negative. Real numbers are, by default, written in scientific notation.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled wiibijthe
switch.

See also: WriteLn (176), Read (160), ReadIn (160), Blockwrite (120

WriteLn
Declaration: Procedure WriteLn [([Var F : Text;] [V1 [; V2; ... , Vn)]];

Description: WriteLn does the same a#&frite (176) for text files, and emits a Carriage Return - LineFeed
character pair after that. If the parametds omitted, standard output is assumed. If no variables are
specified, a Carriage Return - LineFeed character pair is emitted, resulting in a new line inFhe file

Remark: UnderLINUX andUNIX, the Carriage Return character is omitted, as customary in Unix environ-
ments.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled wiijthe
switch.

See also: Write (176), Read (160), ReadIn (160), Blockwrite (120)

Listing: refex/ex75.pp

176

13.3. FUNCTIONS AND PROCEDURES

Program Example75;

{ Program to demonstrate the Write(In) function. }

Var
F : File of Longint;
L : Longint;
begin
Write (’'This is on the first line ! "); { No CR/LF pair! }
Writeln (’And this too...");
Writeln (’'But this is already on the second line...");
Assign (f,’test.dat’);
Rewrite (f);

For L:=1 to 10 do
write (F,L); { No writeln allowed here ! }
Close (f);
end .

177

Chapter 14

The OBJPAS unit

Theobjpas unit is meant for compatibility with Object Pascal as implemented by Delphi. The unitis
loaded automatically by the Free Pascal compiler whenevé@ehghi orobjfpc more is entered,
either through the command line switch&sl or-Sh or with the{$SMODE DELPH]I} or {$MODE
OBJFPC}directives.

It redefines some basic pascal types, introduces some functions for compatibility with Delphi’s sys-
tem unit, and introduces some methods for the management of the resource string tables.

14.1 Types

Theobjpas unit redefines two integer types, for compatibity with Delphi:

type
smallint = system.integer;
integer = system.longint;

The resource string tables can be managed with a callback function which the user must provide:
TResourcelterator

Type
TResourcelterator =
Function (Name,Value : AnsiString;Hash : Longint):AnsiString;

14.2 Functions and Procedures

AssignFile
Declaration: Procedure AssignFile(Var f: FileType;Name: Character type);

Description: AssignFile is completely equivalent to the system uniissign (117) function: It assigns
Nameto a function of any typeHRileType can beText or a typed or untypedtile variable).
Namecan be a string, a single character &@har .

It is most likely introduced to avoid confusion between the regissign (117) function and the
Assign method ofTPersistent in the Delphi VCL.

Errors: None.

178

14.2. FUNCTIONS AND PROCEDURES

See also: CloseFile (179, Assign (117), Reset (162, Rewrite (163, Append (116

Listing: refex/ex88.pp

Program Example88;

{ Program to demonstrate the AssignFile and CloseFile functions. }
{$MODE Delphi}

Var F : text;

begin
AssignFile (F,’ textfile .txt");
Rewrite (F);
Writeln (F,’This is a silly example of AssignFile and CloseFile.’);
CloseFile (F);
end .

CloseFile

Declaration: Procedure CloseFile(Var F: FileType);

Description: CloseFile flushes and closes a file of any file type. F can beText or a typed or untyped
File variable. After a call tcCloseFile , any attempt to write to the filE will result in an error.

It is most likely introduced to avoid confusion between the reg@imse (122 function and the
Close method ofTForm in the Delphi VCL.

Errors: None.

See also: Close (122), AssignFile (178), Reset (162, Rewrite (163), Append (116

for an example, seassignFile (178).

Freemem

Declaration: Procedure FreeMem(Var p:pointer[;Size:Longint]);

Description: FreeMemreleases the memory reserved by a catb&iMem (180). The (optional)Size param-
eter is ignored, since the object pascal versiotefMemstores the amount of memory that was
requested.

Be sure not to release memory that was not obtained wit@#imemcall in Objpas. Normally, this
should not happen, since objpas changes the default memory manager to it's own memory manager.

Errors: None.

See also: Freemem (139, GetMem (180), Getmem (140

Listing: refex/ex89.pp

Program Example89;

{ Program to demonstrate the FreeMem function. }
{$Mode Delphi}

Var P : Pointer;

179

14.2. FUNCTIONS AND PROCEDURES

begin
Writeln ('Memory before : ' ,Memavail);
GetMem (P,10000);
FreeMem (P);
Writeln ('Memory after : ', Memavail);
end .

Getmem

Declaration: Procedure Getmem(Var P:pointer;Size:Longint);

Description: GetMemreservesSize bytes of memory on the heap and returns a pointer to R.iBize is
stored at offset -4 of the result, and is used to release the memory Bgain.be a typed or untyped
pointer.

Be sure to release this memory with theeMem (179 call defined in thebjpas unit.

Errors: In case no more memory is available, and no more memory could be obtained from the system a
run-time error is triggered.

See also: FreeMem (179, Getmem (140.

For an example, sé&reeMem (179).

GetResourceStringCurrentValue

Declaration: Function GetResourceStringCurrentValue(Tablelndex,Stringindex : Longint)
AnsiString;
Description: GetResourceStringCurrentValue returns the current value of the resourcestring in table
Tablelndex with indexStringlndex

The current value depends on the system of internationalization that was used, and which language
is selected when the program is executed.

Errors: If either Tablelndex or Stringindex are out of range, then a empty string is returned.

See also: SetResourceStrings (184), GetResourceStringDefaultValue (181), GetResourceStringHash
(181), GetResourceStringName (182), ResourceStringTableCount (184), ResourceStringCount
(184

Listing: refex/ex90.pp

Program Example90;

{ Program to demonstrate the GetResourceStringCurrentValue function. }
{$Mode Delphi}

ResourceString

First = 'First string’;
= ’Second String’;

Var 1,J : Longint;

180

14.2. FUNCTIONS AND PROCEDURES

{ Print current values of all resourcestrings }
For 1:=0 to ResourceStringTableCount—1 do
For J:=0 to ResourceStringCount(i)—1 do
Writeln (I,",’,J3," : ',GetResourceStringCurrentValue (1,J3));
end .

GetResourceStringDefaultValue

Declaration: Function GetResourceStringDefaultValue(Tablelndex,Stringindex : Longint)
AnsiString

Description: GetResourceStringDefaultValue returns the default value of the resourcestring in table
Tablelndex with index Stringlndex

The default value is the value of the string that appears in the source code of the programmer, and is
compiled into the program.

Errors: If either Tablelndex or Stringindex are out of range, then a empty string is returned.
Errors:

See also: SetResourceStrings (184), GetResourceStringCurrentValue (180), GetResourceStringHash
(181), GetResourceStringName (182), ResourceStringTableCount (184), ResourceStringCount

(184

Listing: refex/ex91.pp

Program Example91;

{ Program to demonstrate the GetResourceStringDefaultValue function. }
{$Mode Delphi}

ResourceString

First
Second

"First string’;
'Second String’;

Var 1,J : Longint;

begin
{ Print default values of all resourcestrings }
For 1:=0 to ResourceStringTableCount—1 do
For J:=0 to ResourceStringCount(i)—1 do
Writeln (I,",’,J3," : ',GetResourceStringDefaultValue (1,J3));
end .

GetResourceStringHash

Declaration: Function GetResourceStringHash(Tablelndex,Stringindex : Longint) :
Longint;

Description: GetResourceStringHash returns the hash value associated with the resource string in table
Tablelndex , with indexStringindex

The hash value is calculated from the default value of the resource string in a manner that gives the
same result as the GNgkttext mechanism. It is stored in the resourcestring tables, so retrieval is
faster than actually calculating the hash for each string.

181

14.2. FUNCTIONS AND PROCEDURES

Errors: If either Tableindex or Stringindex is zero, 0 is returned.

See also: Hash (182 SetResourceStrings (184), GetResourceStringDefaultValue (181), GetResourceS-
tringHash (181), GetResourceStringName (182, ResourceStringTableCount (184), ResourceS-
tringCount (184

For an example, sddash (182).

GetResourceStringName
Declaration: Function GetResourceStringName(Tablelndex,Stringindex : Longint) :
Ansistring;

Description: GetResourceStringName returns the name of the resourcestring in tatdbleindex with
index Stringlndex . The name of the string is always the unit name in which the string was
declared, followed by a period and the name of the constant, all in lowercase.

If a unitMyUnit declares a resourcestriMyTitle then the name returned will meyunit.mytitle
A resourcestring in the program file will have the name of the program prepended.

The name returned by this function is also the name that is stored in the resourcestring file generated
by the compiler.

Strictly speaking, this information isn’t necessary for the functioning of the program, it is provided
only as a means to easier translation of strings.

Errors: If either Tablelndex or Stringindex is zero, an empty string is returned.

See also: SetResourceStrings (184), GetResourceStringDefaultValue (181), GetResourceStringHash
(181), GetResourceStringName (182), ResourceStringTableCount (184), ResourceStringCount
(184

Listing: refex/ex92.pp

Program Example92;

{ Program to demonstrate the GetResourceStringName function. }
{$Mode Delphi}

ResourceString

First
Second

"First string’;
'Second String’;

Var 1,J : Longint;

begin
{ Print names of all resourcestrings }
For 1:=0 to ResourceStringTableCount—1 do
For J:=0 to ResourceStringCount(i)—1 do
Writeln (I,",”,J3," : ' ,GetResourceStringName (1,J));
end .

Hash

Declaration: Function Hash(S : AnsiString) : longint;

182

14.2. FUNCTIONS AND PROCEDURES

Description: Hash calculates the hash value of the stri@@ a manner that is compatible with the GNU gettext
hash value for the string. It is the same value that is stored in the Resource string tables, and which
can be retrieved with th@etResourceStringHash (181) function call.

Errors: None. In case the calculated hash value should be 0, the returned result will be -1.

See also: GetResourceStringHash (181),

Listing: refex/ex93.pp

Program Example93;

{ Program to demonstrate the Hash function. }
{$Mode Delphi}

ResourceString

First
Second

"First string’;
'Second String’;

Var 1,J : Longint;

begin
For 1:=0 to ResourceStringTableCount—1 do
For J:=0 to ResourceStringCount(i)—1 do
If Hash(GetResourceStringDefaultValue(l,J))
<>GetResourceStringHash(1,J) then

Writeln ('Hash mismatch at ' ,1,",",J)
else
Writeln (’'Hash (’,1,’,’,J,’) matches.’);
end .
Paramstr
Declaration: Function ParamStr(Param : Integer) : Ansistring;

Description: ParamsStr returns theParam-th command-line parameter as an AnsiString. The system unit
Paramstr (156) function limits the result to 255 characters.

The zeroeth command-line parameter contains the path of the executable, exceptoywhere it
is the command as typed on the command-line.

Errors: In caseParam is an invalid value, an empty string is returned.

See also: Paramstr (156)

For an example, sé@aramstr (156).

ResetResourceTables

Declaration: Procedure ResetResourceTables;

Description: ResetResourceTables resets all resource strings to their default (i.e. as in the source code)
values.

Normally, this should never be called from a user’s program. It is called in the initialization code of
the objpas unit. However, if the resourcetables get messed up for some reason, this procedure will
fix them again.

183

14.2. FUNCTIONS AND PROCEDURES

Errors: None.

See also: SetResourceStrings (184), GetResourceStringDefaultValue (181), GetResourceStringHash

(181), GetResourceStringName (182), ResourceStringTableCount (184), ResourceStringCount
(184

ResourceStringCount

Declaration: Function ResourceStringCount(Tablelndex : longint) : longint;

Description: ResourceStringCount returns the number of resourcestrings in the table with iffégdstelndex
The strings in a particular table are numbered ff®dho ResourceStringCount-1 , i.e. they're
zero based.

Errors: If an invalid Tableindex is given,-1 is returned.

See also: SetResourceStrings (184), GetResourceStringCurrentValue (180, GetResourceStringDe-

faultValue (181), GetResourceStringHash (181), GetResourceStringName (182), ResourceS-
tringTableCount (184),

For an example, se@etResourceStringDefaultValue (181)

ResourceStringTableCount

Declaration: Function ResourceStringTableCount : Longint;

Description: ResourceStringTableCount returns the number of resource string tables; this may be zero
if no resource strings are used in a program.

The tables are numbered from OResourceStringTableCount-1 , .e. they're zero based.

Errors:

See also: SetResourceStrings (184), GetResourceStringDefaultValue (181), GetResourceStringHash
(181), GetResourceStringName (182), ResourceStringCount (184)

For an example, se@etResourceStringDefaultValue (181)

SetResourceStrings

Declaration: TResourcelterator = Function (Name,Value : AnsiString;Hash : Longint):AnsiString;
Procedure SetResourceStrings (SetFunction : TResourcelterator);

Description: SetResourceStrings callsSetFunction for all resourcestrings in the resourcestring tables
and sets the resourcestring’s current value to the value return®dtBynction

TheNameValue andHash parameters passed to the iterator function are the values stored in the
tables.

Errors: None.

See also: GetResourceStringCurrentValue (180), GetResourceStringDefaultValue (181), GetResourceS-

tringHash (181), GetResourceStringName (182), ResourceStringTableCount (184), ResourceS-
tringCount (184)

Listing: refex/ex95.pp

184

14.2. FUNCTIONS AND PROCEDURES

Program Example95;

{ Program to demonstrate the SetResourceStrings function. }
{$Mode objfpc}

ResourceString

First = 'First string’;
Second = 'Second String’;

Var |,J : Longint;
S : AnsiString;

Function Translate (Name,Value : AnsiString; Hash : longint): AnsiString;

begin
Writeln (' Translate (’,Name,’) => ', Value);
Write ('=>");
Readln (Result);

end ;
begin
SetResourceStrings (@Translate);
Writeln ('’ Translated strings : ');
For 1:=0 to ResourceStringTableCount—1 do
For J:=0 to ResourceStringCount(i)—1 do
begin
Writeln (GetResourceStringDefaultValue(1,J));
Writeln (’'Translates to : ');
Writeln (GetResourceStringCurrentValue(1,J));
end ;
end .

SetResourceStringValue

Declaration: Function SetResourceStringValue(Tablelndex,Stringindex : longint; Value
Ansistring) : Boolean;

Description: SetResourceStringValue assignd/alue to the resource string in tableablelndex with
index StringIndex

Errors:

See also: SetResourceStrings (184), GetResourceStringCurrentValue (180), GetResourceStringDe-
faultValue (181, GetResourceStringHash (181), GetResourceStringName (182), ResourceS-
tringTableCount (184), ResourceStringCount (184)

Listing: refex/ex94.pp

Program Example94;

{ Program to demonstrate the SetResourceStringValue function. }
{$Mode Delphi}

ResourceString

First = 'First string’;

185

14.2. FUNCTIONS AND PROCEDURES

Second = ’'Second String’;

Var 1,J : Longint;
S : AnsiString;

begin
{ Print current values of all resourcestrings }
For 1:=0 to ResourceStringTableCount—1 do
For J:=0 to ResourceStringCount(i)—1 do
begin
Writeln (' Translate => ', GetResourceStringDefaultValue(l,J));
Write ('=>");
ReadlIn (S);
SetResourceStringValue (1,J3,S);
end;
Writeln ('Translated strings : ');
For 1:=0 to ResourceStringTableCount—1 do
For J:=0 to ResourceStringCount(i)—1 do
begin
Writeln (GetResourceStringDefaultValue(1,J));
Writeln (' Translates to : ');
Writeln (GetResourceStringCurrentValue(1,J));
end ;
end .

186

Index

Abs, 115

Addr, 116
Append, 116
Arctan,117
Assign,117
Assigned 118
AssignFile,178

BinStr, 118
Blockread,119
Blockwrite, 120
Break,120

Chdir,121
Chr,121
Close,122
CloseFile,179
CompareBytel22
CompareCharl 23

CompareDWord]124
CompareWord125

Concat,126
Continue 127
Copy, 128
Cos,128
CSeq,129

Dec,129
Delete, 130
Dispose 130
DSeg,131

Eof, 131
Eoln, 132
Erase 133
Exit, 133
Exp, 134

Filepos,134
Filesize, 135
FillByte, 136
Fillchar, 137
FillDword, 137
Fillword, 138
Flush,138
Frac,139

Freemem]139, 179

Getdir,140
Getmem 140, 180
GetMemoryManaged 40

GetResourceStringCurrentValue30
GetResourceStringDefaultValusg1

GetResourceStringHashg1
GetResourceStringNam&32

Halt, 140
Hash,182
HexStr,141
Hi, 141
High, 142

Inc, 143

IndexByte, 144
IndexChar144
IndexDWord,145
IndexWord,146
Insert,146

Int, 147

I0result,148
IsMemoryManagerSet47

Length,149
Ln, 149

Lo, 150
LongJmp,150
Low, 151
Lowercasel51

Mark, 151
Maxavail,152
Memavail, 153
Mkdir, 153
Move, 153
MoveChar0,154

New, 154

0Odd, 155
Ofs, 155
Ord, 155

Paramcount] 56

INDEX

Paramstr156, 183
Pi, 157

Pos,157
Power,158
Pred,158

Ptr, 158

Random 159
Randomize159
Read,160

ReadIn,160
Real2Double161
Releasel62
Renamel62

Reset,162
ResetResourceTablel33
ResourceStringCount84
ResourceStringTableCourig4
Rewrite, 163

Rmdir, 164

Round,164

Runerror,165

Seek,165

SeekEof166
SeekEoln166

Seg,167

Setdmp,167
SetLength 168
SetMemoryManagef,67
SetResourceString$84
SetResourceStringValugd5
SetTextBuf,169

Sin, 170

SizeOf,170

Sptr, 170

Sgr,171

Sart, 171

SSeg172

Str,172
StringOfChar172
Succ,173

Swap,173

Trunc,174
Truncate 174

Upcasel75
Val, 175

Write, 176
WriteLn, 176

188

	I The Pascal language
	Pascal Tokens
	Symbols
	Comments
	Reserved words
	Turbo Pascal reserved words
	Delphi reserved words
	Free Pascal reserved words
	Modifiers

	Identifiers
	Numbers
	Labels
	Character strings

	Constants
	Ordinary constants
	Typed constants
	Resource strings

	Types
	Base types
	Ordinal types
	Integers
	Boolean types
	Enumeration types
	Subrange types

	Real types

	Character types
	Char
	Strings
	Short strings
	Ansistrings
	Constant strings
	PChar

	Structured Types
	Arrays
	Record types
	Set types
	File types

	Pointers
	Procedural types

	Objects
	Declaration
	Fields
	Constructors and destructors
	Methods
	Method invocation
	Static methods
	Virtual methods
	Abstract methods

	Visibility

	Classes
	Class definitions
	Class instantiation
	Methods
	invocation
	Virtual methods
	Message methods

	Properties

	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	The @ operator
	Operators
	Arithmetic operators
	Logical operators
	Boolean operators
	String operators
	Set operators
	Relational operators

	Statements
	Simple statements
	Assignments
	Procedure statements
	Goto statements

	Structured statements
	Compound statements
	The Case statement
	The If..then..else statement
	The For..to/downto..do statement
	The Repeat..until statement
	The While..do statement
	The With statement
	Exception Statements

	Assembler statements

	Using functions and procedures
	Procedure declaration
	Function declaration
	Parameter lists
	Value parameters
	Variable parameters
	Constant parameters
	Open array parameters
	Array of const

	Function overloading
	Forward defined functions
	External functions
	Assembler functions
	Modifiers
	alias
	cdecl
	export
	inline
	interrupt
	pascal
	popstack
	public
	register
	saveregisters
	safecall
	stdcall

	Unsupported Turbo Pascal modifiers

	Operator overloading
	Introduction
	Operator declarations
	Assignment operators
	Arithmetic operators
	Comparision operator

	Programs, units, blocks
	Programs
	Units
	Blocks
	Scope
	Block scope
	Record scope
	Class scope
	Unit scope

	Libraries

	Exceptions
	The raise statement
	The try...except statement
	The try...finally statement
	Exception handling nesting
	Exception classes

	Using assembler
	Assembler statements
	Assembler procedures and functions

	II Reference : The System unit
	The system unit
	Types, Constants and Variables
	Types
	Constants
	Variables

	Function list by category
	File handling
	Memory management
	Mathematical routines
	String handling
	Operating System functions
	Miscellaneous functions

	Functions and Procedures
	Abs
	Addr
	Append
	Arctan
	Assign
	Assigned
	BinStr
	Blockread
	Blockwrite
	Break
	Chdir
	Chr
	Close
	CompareByte
	CompareChar
	CompareDWord
	CompareWord
	Concat
	Continue
	Copy
	Cos
	CSeg
	Dec
	Delete
	Dispose
	DSeg
	Eof
	Eoln
	Erase
	Exit
	Exp
	Filepos
	Filesize
	FillByte
	Fillchar
	FillDWord
	Fillword
	Flush
	Frac
	Freemem
	Getdir
	Getmem
	GetMemoryManager
	Halt
	HexStr
	Hi
	High
	Inc
	IndexByte
	IndexChar
	IndexDWord
	IndexWord
	Insert
	IsMemoryManagerSet
	Int
	IOresult
	Length
	Ln
	Lo
	LongJmp
	Low
	Lowercase
	Mark
	Maxavail
	Memavail
	Mkdir
	Move
	MoveChar0
	New
	Odd
	Ofs
	Ord
	Paramcount
	Paramstr
	Pi
	Pos
	Power
	Pred
	Ptr
	Random
	Randomize
	Read
	Readln
	Real2Double
	Release
	Rename
	Reset
	Rewrite
	Rmdir
	Round
	Runerror
	Seek
	SeekEof
	SeekEoln
	Seg
	SetMemoryManager
	SetJmp
	SetLength
	SetTextBuf
	Sin
	SizeOf
	Sptr
	Sqr
	Sqrt
	SSeg
	Str
	StringOfChar
	Succ
	Swap
	Trunc
	Truncate
	Upcase
	Val
	Write
	WriteLn

	The OBJPAS unit
	Types
	Functions and Procedures
	AssignFile
	CloseFile
	Freemem
	Getmem
	GetResourceStringCurrentValue
	GetResourceStringDefaultValue
	GetResourceStringHash
	GetResourceStringName
	Hash
	Paramstr
	ResetResourceTables
	ResourceStringCount
	ResourceStringTableCount
	SetResourceStrings
	SetResourceStringValue

