
XMLmind XML Editor - Commands
Hussein Shafie

Pixware
<xmleditor-support@xmlmind.com>

XMLmind XML Editor - Commands
Hussein Shafie
Pixware
<xmleditor-support@xmlmind.com>

Published June 21, 2007

Abstract

This documents contains the reference of all native XXE commands and explains how to write custom macro-
commands.

I. Guide .. 1
1. What is a command? ... 2
2. Writing macro-commands .. 4

1. How commands are executed .. 4
2. A sequence of commands ... 5
3. Alternative commands ... 5
4. Testing if a command can be executed .. 6
5. The "%_" variable ... 6
6. Macro-variables ... 7
7. Simple use of named variables .. 8
8. General use of get ... 9
9. Variables mapped to the selection in XXE .. 10
10. Contextual commands .. 10

II. Reference .. 12
3. Menu commands ... 13

1. Reference .. 13
2. Examples .. 14

4. Macro commands .. 15
1. Reference .. 15

1.1. Pass and fail cheat sheet ... 18
1.2. Macro-variables ... 18
1.3. XPath variables .. 19

1.3.1. User variables .. 19
1.3.2. Predefined variables ... 20

2. Examples .. 23
5. Process commands .. 26

1. Reference .. 26
1.1. Attributes .. 29
1.2. Element copyDocument ... 29

1.2.1. Attributes .. 30
1.2.2. Element extract ... 31
1.2.3. Element resources .. 33

1.3. Element convertImage ... 34
1.3.1. Parameters supported by the built-in Java image toolkit 36
1.3.2. Parameters supported by the Batik image toolkit .. 36
1.3.3. Parameters supported by the Jimi image toolkit .. 37

1.4. Element copyProcessResources .. 37
1.5. Element transform .. 37

1.5.1. Using a custom XSLT style sheet .. 38
1.6. Element processFO .. 39
1.7. Element upload ... 41
1.8. Element post ... 41
1.9. Element print ... 43
1.10. Element read ... 43
1.11. Element mkdir ... 44
1.12. Element rmdir ... 44
1.13. Element delete .. 44
1.14. Element copy ... 44
1.15. Element zip ... 45
1.16. Element jar ... 45
1.17. Element shell ... 46
1.18. Element invoke .. 49
1.19. Element subProcess ... 50
1.20. Process variables .. 51

2. Commented examples .. 52
2.1. Convert explicitly or implicitly selected para to a simpara 52
2.2. Convert a DocBook document to RTF .. 53
2.3. Convert ImageDemo document to HTML .. 55

iii

3. The convertdoc command line tool .. 56
3.1. Convert a DocBook document to multi-page HTML .. 57
3.2. Example 2: Convert a DocBook document to PDF .. 58
3.3. Example 3: Convert a DocBook document to JavaHelp™ 60

6. Commands written in the Java™ programming language .. 61
1. alert .. 62
2. add ... 62
3. addAttribute ... 62
4. addBlockInFlow ... 63
5. beep ... 63
6. cancelSelection ... 63
7. center ... 64
8. checkValidity ... 64
9. confirm ... 64
10. convert .. 64
11. convertCase .. 65
12. copy ... 65
13. copyAsInclusion ... 65
14. copyInclusionEnabled .. 66
15. copyChars .. 66
16. cut .. 67
17. cutInclusionEnabled ... 67
18. declareNamespace ... 67
19. delete .. 67
20. deleteChar ... 67
21. deleteSelectionOrDeleteChar ... 68
22. deleteSelectionOrJoinOrDeleteChar .. 68
23. deleteWord ... 68
24. editAttributes .. 68
25. editMenu ... 68
26. editObject .. 69
27. editPITarget .. 69
28. ensureSelectionAt ... 69
29. execute .. 69
30. extractobject ... 70
31. include .. 70
32. insert ... 71
33. insertCharByName .. 72
34. insertCharSequence ... 72
35. insertControlChar .. 73
36. insertControlCharOrSplit .. 73
37. insertNode ... 73
38. insertSpecialChars ... 74
39. insertString .. 74
40. join ... 74
41. joinOrDeleteChar .. 75
42. listBindings .. 75
43. makeParagraphs .. 75
44. moveDotTo .. 76
45. moveElement .. 77
46. paste ... 77
47. pasteInclusionEnabled .. 78
48. pasteSystemSelection ... 78
49. pick .. 78
50. prompt .. 79
51. putAttribute .. 79
52. recordMacro ... 79
53. redo .. 80

iv

XMLmind XML Editor - Commands

54. refresh ... 80
55. removeAttribute .. 81
56. repeat .. 81
57. replace .. 81
58. run ... 82
59. search ... 83
60. searchReplace ... 84
61. selectAt ... 84
62. selectBlockAtY ... 85
63. selectById .. 85
64. selectFile ... 86
65. selectConvertedFile ... 86
66. selectPrinter ... 87
67. selectNode ... 88

67.1. List of element names or node types ... 90
67.2. OrNone, OrNode, OrElement modifiers .. 90

68. selectNodeAt .. 91
69. selectText ... 91
70. selectTo ... 91
71. setEditable ... 91
72. setObject ... 92
73. showContentModel .. 93
74. showMatchingChar .. 93
75. spellCheck ... 93
76. split .. 93
77. start .. 94
78. status .. 94
79. toggleCollapsed .. 94
80. undo ... 95
81. viewObject ... 95
82. wrap ... 96
83. xpathSearch ... 97
84. XXE.close ... 97
85. XXE.edit ... 97
86. XXE.new ... 98
87. XXE.open .. 98
88. XXE.openAsTemplate .. 99
89. XXE.openCopy ... 100
90. XXE.save ... 100
91. XXE.saveAll ... 101
92. XXE.saveAs ... 101
93. XXE.saveCopy .. 102
94. A generic, parametrizable, table editor command ... 102
95. A generic inclusion command .. 104

95.1. Declaring the generic inclusion command and its associated "GenericInclusion"
inclusion processor ... 104
95.2. The syntax of the generic inclusion command ... 105
95.3. Command processors ... 105
95.4. The ShellExec command processor ... 106
95.5. The Verbatim command processor .. 107

7. XPath functions .. 109
1. Extension functions ... 109
2. Java™ methods as extension functions .. 112

v

XMLmind XML Editor - Commands

Part I. Guide

Chapter 1. What is a command?
A command is an action which occurs in the view of a document, styled or not. This action is triggered by a key-
stroke, mouse click, custom tool bar button (example: the XHTML tool bar) or custom menu entry (example: the
DocBook menu).

Some menu entries of XMLmind XML Editor such as File|Open have been made available as commands. For
example, the command corresponding to menu entry File|Open is called XXE.open [98]. But other menu entries
such as File|Print are not (yet) available as commands. For example, you cannot invoke File|Print from a custom
tool bar and you cannot invoke File|Print from a macro-command.

Almost all commands can be passed a parameter string which is used to parametrize the behavior of the command.
The syntax of this parameter string and its exact effects are totally command specific. Therefore there is nothing
more to say about these parameter strings except that you'll need to read the reference manual of all native com-
mands [61] to check what is supported and what is not.

There are four types of commands:

Commands written in the Java programming language
All generic commands written in the Java™ programming language are predefined: you don't need to declare
them.

All XML application specific commands written in the Java™ programming language (XMLmind XML Ed-
itor - Developer's Guide describes how to write such command) need to be declared in an XXE configuration
file (see XMLmind XML Editor - Configuration and Deployment). Example:

 <command name="xhtml.preview">
 <class>com.xmlmind.xmleditapp.xhtml.Preview</class>
 </command>

Menu commands
A ``menu command'' is a popup menu of commands. This special type of command, typically invoked from
contextual macro-commands, is intended to be used to specify contextual popup menus, redefining or extending
the standard right-click popup menu.

Menu of commands need to be specified in an need to be declared in an XXE configuration file (see the section
called “command” in XMLmind XML Editor - Configuration and Deployment). Example:

 <command name="contextualMenu1">
 <menu>
 <item label="To Upper Case"
 command="convertCase" parameter="upper" />
 <item label="To Lower Case"
 command="convertCase" parameter="lower" />
 <item label="Capitalize Words"
 command="convertCase" parameter="capital" />

 <editMenu />
 </menu>
 </command>

Macro-commands
A macro-command is, to make it simple, a sequence of native commands, menu commands, process commands
or other macro-commands.

Macro-commands need to be specified in an XXE configuration file (see the section called “command” in
XMLmind XML Editor - Configuration and Deployment). Example:

 <command name="xhtml.convertToLink">
 <macro>
 <sequence>
 <command name="convert" parameter="a" />

2

../dev/guide.pdf#d0e1
../dev/guide.pdf#d0e1
../configure/configure.pdf#d0e1
../configure/configure.pdf#command
../configure/configure.pdf#command
../configure/configure.pdf#command

 <command name="putAttribute" parameter="%*" />
 </sequence>
 </macro>
 </command>

Process commands
A process command is an arbitrarily complex transformation of part or all of the document being edited.

 Process commands containing one or more of the following elements: convertImage, processFO, upload,
print, zip, jar, post, work only in XMLmind XML Editor Professional Edition.

Process commands need to be specified in an XXE configuration file (see the section called “command” in
XMLmind XML Editor - Configuration and Deployment). Example:

 <command name="toSimpara">
 <process>
 <copyDocument selection="true" to="in.xml" />
 <transform stylesheet="simpara.xslt" cacheStylesheet="true"
 file="in.xml" to="out.xml" />
 <read file="out.xml" encoding="UTF-8" />
 </process>
 </command>

3

What is a command?

../configure/configure.pdf#command

Chapter 2. Writing macro-commands
The macro-command examples you'll find in this tutorial can be tested by creating a file called customize.xxe
in XXE_user_preferences_dir/addon/ (XXE_user_preferences_dir is $HOME/.xxe/ on Unix and %APPDATA%\XM-
Lmind\XMLeditor\ on Windows) and binding the command to be tested to a keystroke.

Example: this customize.xxe file binds a macro-command named convertToBold to keystroke F2.

<?xml version='1.0' encoding='ISO-8859-1'?>
<configuration
 xmlns="http://www.xmlmind.com/xmleditor/schema/configuration"
 xmlns:cfg="http://www.xmlmind.com/xmleditor/schema/configuration">

 <binding>
 <keyPressed code="F2" />
 <command name="convertToBold" />
 </binding>

 <command name="convertToBold">
 <macro>
 <sequence>
 <command name="convert"
 parameter="[implicitElement] emphasis" />
 <command name="putAttribute" parameter="role bold" />
 </sequence>
 </macro>
 </command>

</configuration>

More information about customizing XMLmind XML Editor in XMLmind XML Editor - Configuration and De-
ployment.

The examples used in this tutorial are found in XXE_install_dir/doc/commands/tutorial/customize.xxe.

1. How commands are executed
Before attempting to write a macro-command, it is important to understand how commands (native or not) are
executed.

The execution of a command can be described as a sequence of two steps:

1. The command tests if it can be successfully executed. If this test fails, the command will not attempt to execute
itself: step #2 is silently skipped (that is, no warning or error messages are reported).

For this test to pass:

a. The command must successfully parse its parameter string (if any).

b. The current text or node selection (if any) must be compatible with the command. For example, command
replace [81] cannot be applied to text selection.

c. The grammar constraining the document (if any) must allow the operation.

2. The command is actually executed. It may return a result (a Java object) to its invocation environment.

Very few commands return a result. Unless explicitly documented, one must assume that commands do not
return a result.

Some commands such as selectFile [86] return an actual result (a file name or an URL in the case of command
selectFile [86]) or a special result understood by the invocation environment as ``command has failed or has

4

../configure/configure.pdf#d0e1
../configure/configure.pdf#d0e1

been canceled by user'' (in the case of command selectFile [86], user has clicked on the Cancel button of the
file chooser dialog box).

2. A sequence of commands
DocBook has no ``bold tag'' but it is customary to use the emphasis element with attribute role equals to bold.
The following macro automates this:

 <command name="convertToBold">
 <macro>
 <sequence>
 <command name="convert"
 parameter="[implicitElement] emphasis" />
 <command name="putAttribute" parameter="role bold" />
 </sequence>
 </macro>
 </command>

Using a sequence [16] element:

1. The macro converts anything convertible to an emphasis element (generally text selection, but not only text
selection) to an emphasis element.

2. If step #1 is successful, the macro adds attribute role with value bold to the newly created emphasis element.

Note that if the first step of a sequence cannot be executed (this is tested before attempting to actually execute the
sequence construct), the whole sequence construct cannot be executed.

Step #2 works without an "[implicitElement]" parameter for command putAttribute [79] because the newly
created emphasis element has been automatically selected by the convert [64] command of step #1.

This is often the case. A quick way to learn this is to first perform interactively what needs to be automated by the
macro.

3. Alternative commands
The above macro needs to be refined. If an emphasis element is implicitly or explicitly selected and this element
has no role attribute or a role different from bold, we would like to add to it attribute role with value bold.

The following macro uses a choice [16] element to do this:

 <command name="convertToBold2">
 <macro>
 <sequence>
 <choice>
 <command name="selectNode"
 parameter="self[implicitElement] emphasis" />
 <command name="convert"
 parameter="[implicitElement] emphasis" />
 </choice>

 <command name="putAttribute" parameter="role bold" />
 </sequence>
 </macro>
 </command>

The choice [16] element will execute the first alternative which can be executed:

• Explicitly selecting (using command selectNode [88]) the emphasis element if such element is implicitly (or
explicitly) selected;

• OR converting anything else to an emphasis element, using command convert [64].

5

Writing macro-commands

If all alternatives cannot be executed (this is tested before attempting to actually execute the choice construct), the
whole choice construct cannot be executed.

4.Testing if a command can be executed
The following macro inserts a br, an XHTML line break element, at caret position. If there is no text node after
the newly inserted br, the macro inserts a new text node in order to let the user continue to type text. This macro
is typically bound to a keystroke such as Shift-Enter.

The problem is that we don't want to insert a new text node after a br inserted in text span elements such as b, i,
em, strong, a, etc, but only after a br inserted in a text block such a p, li, etc.

Command selectNode [88] can, not only blindly select nodes, but it can also select nodes conditionally, if theses
nodes match a list of elements passed as a parameter string.

Therefore the idea is to use selectNode [88], not for its ability to select nodes, but for its ability to test where the
caret is.

The pass [16] and fail [16] constructs have designed to do this: test if a command can be executed without actually
executing it.

 <command name="insertLineBreak">
 <macro>
 <sequence>
 <command name="insert" parameter="into br" />

 <sequence>
 <pass><command name="selectNode"
 parameter="parent p li dt dd th td"/></pass>
 <command name="insertNode" parameter="textAfter" />
 <command name="cancelSelection" />
 </sequence>
 </sequence>
 </macro>
 </command>

If selectNode can be executed, then the pass construct can be executed, then the whole sequence can be executed.

Note that when the pass construct is actually executed, it does nothing at all. This is good because, in our example,
if selectNode was actually executed, it would have selected, say a p or a li, after which you generally cannot add
a text node (moreover adding a text node after the p or li is not what we want to do).

The last step of the sequence, cancelSelection [63], is just a refinement which removes the ``red border'' around
the newly inserted text node.

5.The "%_" variable
Few commands return a result to their invocation environment (here the invocation environment is the macro).

Command run [82] is one of the few commands really designed to return a value: it executes an external command,
for example dir on Windows (ls on Unix), and it captures what is printed on the console to return it as its result.

The following macro is used to run an external command (user is prompted to specify it) and then, to insert at caret
position the text which is the result of the external command.

 <command name="insertCommandOutput">
 <macro>
 <sequence>
 <command name="run" />
 <command name="insertString" parameter="%_" />
 </sequence>
 </macro>
 </command>

6

Writing macro-commands

Command insertString [74] can insert text at caret position. But how to pass to command insertString what has
been returned by command run? The answer is: use variable "%_".

Each time a command (or a sequence, or a choice) is executed inside a macro, the result of the executed command
(or construct) is used to assign a predefined variable which referenced as "%_" in command parameters.

When executed command does not return a result, variable "%_" is cleared. A reference in a command parameter
to a cleared "%_" is replaced by the empty string.

The sequence and choice constructs, which can be considered as being pseudo-commands, can return results too:

sequence
Returns the result of its last step.

choice
Returns the result of its executed alternative.

The pass and fail constructs are just tests. They have no effect on "%_". That is, they return the result of the last
executed command or construct.

6. Macro-variables
Variables which are referenced as "%variable_name" are macro-variables. They are referenced in the parameter
of commands. They are substituted with their values before the command (or construct) is tested for execution and
before the command (or construct) is actually executed.

We have already studied the "%_" variable. There are other macro-variables [7]: "%0", "%1", "%*", "%d", etc.

Note that all macro-variables are predefined, which means that there is no way for a user to define its own macro-
variables in its custom macros.

The following macro pastes after explicitly or implicitly element, the content of the clipboard after parsing this
content as paragraphs. For example, if the clipboard contains several lines of text, each line can be converted to a
paragraph. Such macro is useful to convert legacy documents to XML documents.

This macro is built using a sequence of commands makeParagraphs [75] and paste [77].

 <command name="insertAfterAsParagraphs">
 <macro>
 <sequence>
 <command name="makeParagraphs" parameter="%0" />
 <command name="paste" parameter="after[implicitElement] %_" />
 </sequence>
 </macro>
 </command>

 <binding>
 <keyPressed code="F3" />
 <command name="insertAfterAsParagraphs" parameter="para" />
 </binding>

MakeParagraph has a mandatory parameter string which must be used to specify which paragraph element to create:
is it XHTML p? Is it DocBook para? Is it DocBook simpara? Etc.

Macro insertAfterAsParagraphs has been made as generic as command makeParagraphs because it must be passed
a parameter string specifying which paragraph elements to create. This question is simply: how to reference the
parameter string passed to a macro inside this macro? The answer is: use following macro-variables:

%*
is the value of the whole parameter string.

7

Writing macro-commands

%0, %1, %2, ..., %9
are parts of the parameter string, split like what is done for command line arguments. For example, if parameter
string is:

foo 'bar is a gee' "gee is a wiz"

%0 is "foo", %1 is "bar is a gee", %2 is "gee is a wiz" and %3, ..., %9 are substituted with the empty string.

7. Simple use of named variables
The following macro is used to insert a DocBook ulink element at caret position, the URL referenced by the in-
serted ulink being chosen from a predefined list.

Command pick [78] has been created to display a dialog box which lets the user choose one item from a list. This
command returns the selected item (a string) to its invocation environment.

Command pick can always be executed, but it returns a special value when the user has canceled its execution by
clicking on the Cancel button of its dialog box.

 <command name="insertFamousUlink">
 <macro>
 <sequence>
 <command name="pick"
 parameter="Favorites true
 W3C
 http://www.w3.org/TR/
 'DocBook Oasis'
 http://www.oasis-open.org/docbook/xml/
 Java
 http://java.sun.com/" />
 <set variable="url" expression="%_" plainString="true" />

 <command name="insert" parameter="into ulink" />

 <get expression="$url" />
 <command name="putAttribute" parameter="url %_" />

 <get expression="$url" />
 <command name="insertString" parameter="%_" />
 </sequence>
 </macro>
 </command>

The above macro stores the result returned by command pick in a user variable called url. The value of the url
variable is then used twice: one time to set the value of attribute url of element ulink, a second time to specify
the text of element ulink.

Macro variable "%_" is extremely volatile. For example, the following sequence cannot be used to add attribute
url to newly inserted element ulink, because command insert [71], which does not return a result, clears "%_".

 <sequence>
 <command name="pick"
 parameter="Favorites true
 W3C
 http://www.w3.org/TR/
 'DocBook Oasis'
 http://www.oasis-open.org/docbook/xml/
 Java
 http://java.sun.com/" />

 <command name="insert" parameter="into ulink" />

 <command name="putAttribute" parameter="url %_" />
 </sequence>

8

Writing macro-commands

The only easy way to reuse what has been returned by command pick [78] is to immediately save the value of
"%_" in a user-defined variable.

User-defined variables are not related to macro-variables. They are set using special construct set [17] and are
read using special construct get [17]. These constructs have expression attributes which have been designed to
contain arbitrarily complex XPath expressions (more info. about this in following sections).

The above macro illustrates a trivial use of set [17] and get [17]. This means that you don't need to learn XPath
to use set [17] and get [17] to do simple things. However, it is important to remember this:

• User-defined variables cannot be referenced in constructs other than set [17], get [17], test [17] and match [17].

For example, it is not possible to directly write:

 <command name="putAttribute" parameter="url $url" />
 <command name="insertString" parameter="$url" />

In such case, the get [17] construct must be used because it is the only way to return in "%_" the value of "$url".

• Do not forget to add plainString=true to element set. Otherwise, the value of attribute expression is under-
stood as being an XPath expression.

• Do not use the following names for your variables because they have a special meaning (more info. about this
in following sections): implicitElement, selectedElement, implicitNode, selectedNode, selectedChars,
selectedNodes, selected, selected2, dot, dotOffset, mark, markOffset.

8. General use of get
At this point of the tutorial, you'll need to know the XPath standard to understand what follows.

The following macro is used to display in an external image viewer, the image referenced in the fileref attribute
of explicitly or implicitly selected DocBook elements graphic or imagedata.

The image viewer used by this macro is an external program called xv. It is launched using command start [94].

 <command name="startImageViewer">
 <macro>
 <sequence>
 <get context="$implicitElement/@fileref"
 expression="uri-to-file-name(resolve-uri(.))" />
 <command name="start" parameter='xv "%_"' />
 </sequence>
 </macro>
 </command>

The above macro shows how to use get [17] at its best:

1. First the context attribute, common to all XPath-based constructs get [17], set [17], test [17] and match [17],
is evaluated as a node set, using the document as a context node.

2. The expression attribute, common to get [17], set [17] and test [17], is evaluated as a string using the context
node found in previous step.

If get [17], set [17], test [17] or match [17] have no context attribute, the context node used to evaluate ex-
pression is the document node itself (that is, XPath "/").

The context attribute contains "$implicitElement/@fileref" which means attribute fileref of explicitly or
implicitly selected element, because implicitElement is a predefined variable [19] mapped to explicitly or im-
plicitly selected element (more info. about this in next section).

9

Writing macro-commands

???
http://www.w3.org/TR/xpath
???
http://www.w3.org/TR/xpath

The expression attribute contains "uri-to-file-name(resolve-uri(.))". "." is the fileref attribute node.
resolve-uri [111]() and uri-to-file-name [111]() are two non-standard XPath functions which are used to resolve a
relative URL and then to convert this URL to a file name (xv will not work if passed an URL).

9. Variables mapped to the selection in XXE
The following macro can be used to move a DocBook list item (listitem, callout or step) down in the list.
How to move a DocBook list item up in the list can be found in "Using the XPath-based constructs match and
set [25]".

 <command name="moveListItemDown">
 <macro>
 <sequence>
 <command name="selectNode"
 parameter="ancestorOrSelf[implicitElement] listitem callout step" /> 1

 <match context="$selected" pattern="*[position() < last()]" /> 2

 <set variable="anchor" context="$selected"
 expression="./following-sibling::*[1]" /> 3

 <command name="cut" /> 4

 <set variable="selected" expression="$anchor" /> 5

 <command name="paste" parameter="after" /> 6

 </sequence>
 </macro>
 </command>

1 This step ensures that the macro can be executed only inside a list item.
2 This step ensures that the macro cannot be executed for last list item.

It uses the XPath-based construct match [17]. As a pseudo-command of a macro, it can be executed only if
the context node specified in its context attribute matches the XSLT pattern specified in its pattern attribute.

This construct like pass [16], fail [16] and test [17], is only a test. When match [17] is actually executed,
it does nothing at all.

3 This step saves in user variable named anchor, the list item which follows the selected list item.

Variable selected referenced from the context attribute of this set construct is, like implicitElement
seen in previous example, one of the many predefined variables mapped to the selection in XXE [19]:

• Reading variable selected returns the node, first selected in the node selection, whatever is its type.

• Writing variable selected clears current node selection or current text selection if any, and then, explicitly
selects specified value (which must be a node set).

4 Cut selected list item.
5 Select the list item saved in variable anchor: ``the following one''.

The selection is changed by assigning a node value to predefined variable selected, as explained above.
6 Paste the list item found in the clipboard after last selected list item.

10. Contextual commands
The following macro swaps the character before the caret with the character after the caret. It is useful if, like
everybody, you are a bit dyslexic.

 <command name="transposeChars">
 <macro>
 <sequence>
 <test expression="not($selected) and not($mark) and
 $dotOffset > 0 and
 $dotOffset < string-length($dot)"/>
 <command name="selectTo" parameter="previousChar" />
 <command name="cut" />
 <command name="moveDotTo" parameter="nextChar" />

10

Writing macro-commands

http://www.w3.org/TR/xslt

 <command name="paste" parameter="into" />
 </sequence>
 </macro>
 </command>

The above macro uses basic commands selectTo [91], moveDotTo [76], cut [67] and paste [77], but also XPath-
based construct test [17].

As a pseudo-command of a macro, test [17] can be executed only if its expression attribute evaluated as a boolean
in the context specified by its context attribute returns true.

This construct like pass [16], fail [16] and match [17] [17], is only a test. When test [17] [17] is actually executed,
it does nothing at all.

Test is used in the above macro to ensure that the macro can be executed only if:

• There is no node selection: not($selected).

• There is no text selection: not($mark).

• The caret is not before first character of a textual node: $dotOffset > 0.

• The caret is not after last character of a textual node: $dotOffset < string-length($dot).

Like selected and implicitElement seen in previous examples, mark, dot and dotOffset are predefined variables
mapped to the selection in XXE [19].

11

Writing macro-commands

Part II. Reference

Chapter 3. Menu commands
1. Reference
<command
name = NMTOKEN

>
Content: class | menu | macro | process

</command>

<menu
 label = non empty token
>
 Content: editMenu? [menu | separator | item]+ editMenu?
</menu>

<separator
/>

<item
label = non empty token

 icon = anyURI
command = NMTOKEN

 parameter = string
/>

<editMenu
/>

Define a popup menu of commands. This special type of command, typically invoked from contextual macro-
commands, is intended to be used to specify contextual popup menus, redefining or extending the standard ̀ `right-
click'' popup menu.

The editMenu element can be used to specify contextual menus that extend the standard ̀ `right-click'' popup menu.
By the way, the standard ``right-click'' popup menu is a predefined menu command called editMenu [68].

This element must only be added once: before all top level items or after all top level items.

A separator is automatically added before or after editMenu. Therefore there is no need to specify a separator
element in this case.

Note that the binding configuration element (see the section called “binding” in XMLmind XML Editor - Config-
uration and Deployment) can also contain a popup menu child element. But menu commands are more powerful
because:

• They can be used to extend the standard ``right-click'' popup menu.

• They can be bound to a keystroke (popup menus in binding can only be bound to a mouse click).

13

../configure/configure.pdf#binding

2. Examples

Example 3.1. Contextual menus

The example below is pretty useless however it shows how contextual menus can be implemented. It displays a
special popup menu when some text is selected and the normal Edit popup menu otherwise.

This example can be found in XXE_install_dir/doc/configure/samples2/contextualmenus.xxe.

 <command name="contextualMenu">
 <macro>
 <choice>
 <sequence>
 <test expression="$selectedChars != ''" />
 <command name="contextualMenu1" />
 </sequence>

 <command name="editMenu" />
 </choice>
 </macro>
 </command>

 <command name="contextualMenu1">
 <menu>
 <item label="To Upper Case"
 icon="contextualmenus_icons/to_upper_case.gif"
 command="convertCase" parameter="upper" />
 <item label="To Lower Case"
 icon="contextualmenus_icons/to_lower_case.gif"
 command="convertCase" parameter="lower" />
 <item label="Capitalize Words"
 command="convertCase" parameter="capital" />

 <editMenu />
 </menu>
 </command>

 <binding>
 <mousePressed button="3"/>
 <command name="contextualMenu" />
 </binding>

14

Menu commands

Chapter 4. Macro commands
1. Reference
<command
name = NMTOKEN

>
Content: class | menu | macro | process

</command>

<macro
 trace = boolean : false
 repeatable = boolean : false
 undoable = boolean : false
 label = non empty token
>
Content: choice | sequence

</macro>

<choice>
Content: [command|sequence|choice|pass|fail|

 match|test|get|set]+
</choice>

<sequence>
Content: [command|sequence|choice|pass|fail|

 match|test|get|set]+
</sequence>

<command
name = NMTOKEN

 parameter = string
/>

<pass>
Content: [command|sequence|choice|pass|fail|

 match|test|get|set]+
</pass>

<fail>
Content: [command|sequence|choice|pass|fail|

 match|test|get|set]+
</fail>

<match
 context = XPath expr. returning a node set : "/"
pattern = XSLT pattern

 antiPattern = boolean : false
/>

<test
 context = XPath expr. returning a node set : "/"
expression = XPath expr. returning a boolean

/>

<get
 context = XPath expr. returning a node set : "/"
expression = XPath expr. returning a string

/>

<set
variable = QName

 context = XPath expr. returning a node set : "/"
expression = XPath expression

 plainString = boolean : false
/>

15

Define, to make it simple, a sequence of native commands, menu commands, process commands or other macro-
commands.

Attributes of macro:

trace
When specified with value true, this attribute causes the macro to print debug information on the console,
which is extremely useful when developing a sophisticated macro.

repeatable
When specified with value true, this attribute marks the macro as being repeatable as a whole.

By default, macros are not marked as being repeatable as a whole because few macros really need this. For
example, macros which are bound to a keystroke don't need to be marked repeatable.

undoable
When specified with value true, this attribute marks the macro as being undoable as a whole.

By default, macros are not marked as being undoable as a whole because few macros really need this. For
example, macros which just select text or nodes, macros which are used to invoke process commands, macros
which just perform a single editing action chosen by examining the editing context, don't need to be marked
as undoable.

label
Label used by the GUI (example: the Edit popup menu) to refer to an undoable and/or repeatable macro-
command.

If attribute label is not specified, a label is automatically generated by ``beautifying'' the name under which
the macro-command has been registered.

Example 1: label "Transpose chars" is used for macro "transposeChars".

Example 2: label "Move list item down" is used for macro "docb.moveListItemDown". In this case, simple
rules are used to recognize "docb." as a prefix and therefore to discard it from the generated label.

Simple child elements of macro:

sequence
Can be executed if its first child can be executed (See Execution of a command [4]). Executes all its children
one after the other.

Returns the result of its last child.

choice
Can be executed if any of its children can be executed. Execute the first child that can be executed.

Returns the result of its executed child.

pass
Can be executed if all its children can be executed. Execution does nothing at all: this element is just a test.

See pass and fail cheat sheet [18].

Returns the result of the last executed get, sequence, choice or command (that is, does not change %_).

fail
Can be executed if any of its children cannot be executed. Execution does nothing at all: this element is just
a test.

Fail is the negation of pass. See pass and fail cheat sheet [18].

16

Macro commands

Returns the result of the last executed get, sequence, choice or command (that is, does not change %_).

XPath-based child elements of macro:

match
Can be executed if the context node matches specified XSLT pattern. Execution does nothing at all: this element
is just a test.

If attribute antiPattern is specified with value true, this pseudo-command can be executed if the context
node does not match specified pattern.

Returns the result of the last executed get, sequence, choice or command (that is, does not change %_).

The context and pattern attributes can contain references to variables: user variables or variables mapped
to the selection in XXE. See XPath variables [19].

test
Can be executed if the specified expression evaluates to true given the context node. Execution does nothing
at all: this element is just a test.

Returns the result of the last executed get, sequence, choice or command (that is, does not change %_).

The context and expression attributes can contain references to variables: user variables or variables mapped
to the selection in XXE. See XPath variables [19].

get
Can be executed if there is a context node (that is, attribute context evaluates to a node). Execution returns
the string value of specified expression.

The context and expression attributes can contain references to variables: user variables or variables mapped
to the selection in XXE. See XPath variables [19].

set
Can be executed if there is a context node. Execution assigns to specified variable the value of specified ex-
pression.

Attribute variable specifies the qualified name of the variable to be assigned.

Caution

Do not specify: <set variable="$x" expression="2+2"/>. Specify: <set variable="x" ex-
pression="2+2"/>.

If attribute plainString is specified with value true, attribute expression is considered to contain a plain
string rather than an XPath expression. In this case, expression is not evaluated before being assigned to the
variable.

Returns nothing at all (that is, clears %_).

The context and expression attributes can contain references to variables: user variables or variables mapped
to the selection in XXE. See XPath variables [19].

For the above XPath-based elements, the context node is the result of the context expression (evaluated using the
document as its own context node).

If the context expression is not specified, the context node is the document itself.

If this context expression evaluates to multiple nodes, the context node is the first node of the node set in document
order.

17

Macro commands

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

If this context expression evaluates to anything other than a node set, the match, test, get, set pseudo-commands
cannot be executed.

If this context expression evaluates to a node which is not attached to a document or which is attached to a document
other than the one for which the macro-command is executed, the match, test, get, set pseudo-commands cannot
be executed.

1.1. Pass and fail cheat sheet

pass can be executed if A and B can be executed.pass A B

pass can be executed if A can be executed.pass sequence A B

pass can be executed if A or B can be executed.pass choice A B

fail can be executed if A or B cannot be executed.fail A B

fail can be executed if A cannot be executed.fail sequence A B

fail can be executed if A and B cannot be executed.fail choice A B

1.2. Macro-variables

The parameter of a command C contained in the macro-command can contain variables. These variables are sub-
stituted with their values before executing command C.

Macro-variable substitution is also performed in the context, pattern and expression attributes of the match,
test, get, set pseudo-commands.

Excerpt of example 2 [24] below: <command name="putAttribute" parameter="%0 %1"/>.

DescriptionVariable

A macro-command can have a parameter. This string is split like in a com-
mand line. First 10 parts of the split parameter can be referenced as variables
%0, %1, %2, ..., %9.

%0, %1, %2, ..., %9, %*

%* can be used to reference the whole parameter of the macro-command.

%D is the file name of the document being edited. Example: C:\nov-
el\chapter1.xml.

%D, %d

This variable is replaced by an empty string if the document being edited is
found on a remote HTTP or FTP server.

%d is the URL of the document being edited. Example: file:///C:/nov-
el/chapter1.xml.

%P is the name of the directory containing the document being edited. Ex-
ample: C:\novel.

%P, %p

This variable is replaced by an empty string if the document being edited is
found on a remote HTTP or FTP server.

%p is the URL of the directory containing the document being edited. Ex-
ample: file:///C:/novel.

Note that this URL does not end with a '/'.

%N is the base name of the document being edited. Example: chapter1.xml.%N, %R, %E

%R is the base name of the document being edited without the extension,
if any (sometimes called the root name). Example: chapter1.

18

Macro commands

DescriptionVariable

%E is the extension of the document being edited, if any. Example: xml.

Note that the extension does not start with a '.'.

%S is the native path component separator of the platform. Example: '\' on
Windows.

%S

User's account name. Example: john.%U

User's home directory. Example: /home/john.%H

%W is the name of the user's current working directory. Example:
/home/john/docs/report22.

%W, %w

%w is the URL of the user's current working directory. Example:
file:/home/john/docs/report22.

Note that this URL does not end with a '/'.

%C is the name of the directory containing the XXE configuration file from
which the macro command has been loaded. Example: C:\Pro-

gram Files\XMLmind_XML_Editor\addon\config\docbook.

%C, %c

%c is the URL of the above directory. Example: file:///C:/Pro-
gram%20Files/XMLmind_XML_Editor/addon/config/docbook.

Note that this URL does not end with a '/'.

A macro-command can be used to specify a ``pipe'' of commands.%_

If variable %_ is referenced in the parameter of command C contained in the
macro-command, this variable is substituted with the result of the command
executed before C.

Each executed command overwrites %_.

This variable is set to the empty string for commands which do not return
a result.

The "%" character can be escaped using "%%". The above variables can be specified as %{0}, %{1}, ..., %{R}, %{E},
etc, if it helps (see note about escaped URIs [52]).

1.3. XPath variables

Totally different from the above macro-variables. A reference to an XPath variable starts with "$" and can only
occur in match, test, get, set.

1.3.1. User variables

A user variable which name has no namespace or which name is in a namespace other than "http://www.xml-
mind.com/xmleditor/namespace/scope/view" is local to the macro being executed.

A user variable which name is in the "http://www.xmlmind.com/xmleditor/namespace/scope/view" namespace
uses the view of the document as its scope.

This kind of variable is persistent from an invocation of the macro to the other and/or can be shared with other
macros when this macro and/or the other macros are executed in the document view in which the variable has
been created.

A easy way to remember this is to consider that the name of this kind of variable is implicitly prefixed with the
unique ID of the document view.

19

Macro commands

1.3.2. Predefined variables

There are many predefined variables, most of them mapped to the selection in the document view in which the
macro is executed.

Read example: <get expression"$selectedChars"/> returns selected text if any, the empty string otherwise.

Write example: <set variable="dotOffset" expression="$dotOffset + 1"/> moves the caret by one
character to the right.

WriteReadValueVariable

Selects specified element.Implicitly or explicitly selected
element.

elementimplic i tEle-
ment

If the value of the variable is not a valid node
seta, clears the node selection.Empty node set if there is no

node selection or if multiple
nodes are selected or if the se-
lected node is not an element.

Selects specified element.Explicitly selected element.elementselectedEle-
ment

If the value of the variable is not a valid node
seta, clears the node selection.

Empty node set if there is no
node selection or if multiple
nodes are selected or if the se-
lected node is not an element.

Selects specified node.Implicitly or explicitly selected
node.

nodeimplicitNode

If the value of the variable is not a valid node
seta, clears the node selection.Empty node set if there is no

node selection or if multiple
nodes are selected.

Selects specified node.Explicitly selected node.nodeselectedNode

If the value of the variable is not a valid node
seta, clears the node selection.

Empty node set if there is no
node selection or if multiple
nodes are selected.

Selects text starting at first textual node of spe-
cified node set and ending at last textual node of
specified node set.

Characters contained in the text
selection.

Empty string if there is no text
selection.

stringselectedChars

If the value of the variable is not a valid node
seta, clears the text selection.

Selects specified nodes. Does nothing if specified
nodes are not adjacent siblings.

Nodes contained in the node
selection.

node set contain-
ing sibling
nodes

selectedNodes

If the value of the variable is not a valid node
seta, clears the node selection.

Empty node set if there is no
node selection.

Clears the node and text selections. Selects spe-
cified node.

First selected node in the node
selection (first in document or-
der, not first selected by user).

nodeselected

If the value of the variable is not a valid node
seta, clears the node selection.Empty node set if there is no

node selection.

Extends node selection to specified node. Does
nothing if there is no node selection or if spe-
cified node is not a sibling of selected nodes.

Last selected node in the node
selection (last in document or-
der, not last selected by user).

nodeselected2

20

Macro commands

WriteReadValueVariable

If the value of the variable is not a valid node
seta, clears the node selection.

Empty node set if there is no
node selection or if the node
selection contains a single
node.

Moves caret at the beginning of specified textual
node.

Textual node containing the
caret.

text, comment
or PI node

dot

Empty node set if the document
does not contain text, com-
ments or PIs.

Moves caret to specified offset.Offset of the caret within the
textual node containing it.

integerdotOffset

First offset is 0. Last valid off-
set is after last character.

-1 if the document does not
contain text, comments or PIs.

Clears the node selection. Moves the ``mark of
text selection'' at the beginning of specified tex-
tual node.

Textual node containing the
``mark of text selection'' (text
selection is between dot and
mark).

text, comment
or PI node

mark

Specified offset is adjusted if it is outside the
valid offset range.Empty node set if there is no

text selection.
If the value of the variable is not a valid node
seta, clears the text selection.

Moves the ``mark of text selection'' to specified
offset. Does nothing if there is no ``mark of text
selection''.

Offset of the ``mark of text se-
lection'' within the textual node
containing it.

integermarkOffset

Specified offset is adjusted if it is outside the
valid offset range.

-1 if there is no text selection.

N/AElement on which the user has
clicked. If the user has clicked

elementc l i c ke d E l e -
ment

on a text node, then this vari-
able contains its parent ele-
ment.

Can only be used when the
macro-command is bound to a
mouse click or an application
event with an origin point such
as drop.

N/ANode on which the user has
clicked.

nodeclickedNode

Can only be used when the
macro-command is bound to a
mouse click or an application
event with an origin point such
as drop.

Copies string value to the system clipboard.String contained in the system
clipboard if any, the empty
string otherwise.

stringclipboard

21

Macro commands

WriteReadValueVariable

Copies string value to the system selectionb.String contained in the system
selectionb if any, the empty
string otherwise.

stringsystemSelec-
tion

aThe value of the variable must be a non empty node set.

All nodes in this node set must be attached to the document for which the macro is executed.

When a single node is needed, this node is the first node of the node set in document order.
bThe system selection is emulated using a private clipboard on non Unix/X-Window platforms

22

Macro commands

2. Examples

Example 4.1. Using sequence and choice

 <command name="addListItem">
 <macro undoable="true">
 <choice>
 <sequence>
 <command name="selectNode"
 parameter="ancestor[implicitElement] ul ol" />
 <command name="selectNode" parameter="child" />
 <command name="insertNode" parameter="sameElementAfter" />
 </sequence>

 <sequence>
 <choice>
 <sequence>
 <command name="selectNode"
 parameter="ancestorOrSelf[implicitElement] dt" />
 <!-- Assumes that a dt is followed by a dd. -->
 <command name="selectNode" parameter="nextSibling" />
 </sequence>
 <command name="selectNode"
 parameter="ancestorOrSelf[implicitElement] dd" />
 </choice>
 <command name="insert" parameter="after dt" />
 <command name="insert" parameter="after dd" />
 <command name="selectNode" parameter="previousSibling" />
 </sequence>
 </choice>
 </macro>
 </command>

In example 1, the macro command addListItem, which is used to add a li to a ul or ol or to add a dt/dd pair
to a dl, can be described as follows:

• Select ancestor ul or ol and then

• Select previously select child which is always a li when the document is valid.

(The selectNode command selects all the ancestors one after the other until it reaches the searched ancestor.
This is equivalent to interactively typing Ctrl-Up until the desired ancestor is selected.)

• AND insert element of same type (a new li) after selected element (a li).

• OR select

• next sibling of ancestor dt (assumes that a dt is always followed by a dd);

• OR ancestor dd.

Then

• Insert a dt after the selected element (a dd).

• AND insert a dd after the selected element (the newly inserted dt).

• AND select previous sibling (the newly inserted dt) of selected element (the newly inserted dd).

23

Macro commands

Example 4.2. Macro-variables

 <command name="convertToLink">
 <macro undoable="true" repeatable="true" label="Convert to <a>">
 <sequence>
 <command name="convert" parameter="a" />
 <command name="putAttribute" parameter="%0 %1" />
 </sequence>
 </macro>
 </command>

 <binding>
 <keyPressed code="ESCAPE" />
 <charTyped char="t" />
 <command name="convertToLink" parameter="name XXX" />
 </binding>

 <binding>
 <keyPressed code="ESCAPE" />
 <charTyped char="l" />
 <command name="convertToLink" parameter="href ???" />
 </binding>

In example 2, macro-command convertToLink must be passed two arguments which specify which type of
XHTML a element is to be created: is it target or is it a link? These arguments are referenced in the parameter of
the putAttribute command using variables %0 and %1.

Example 4.3. The "%_" macro-variable

 <command name="insertCommandOutput">
 <macro>
 <sequence>
 <command name="run" />
 <command name="insertString" parameter="%_" />
 </sequence>
 </macro>
 </command>

In example 3, the output of the external program executed by the run command is referenced in the parameter of
the insertString command using the %_ variable. (The run command having no parameter will prompt the user
to specify which external program is to be executed.)

Example 4.4. Using the fail construct

 <command name="publish">
 <macro>
 <sequence>
 <pass>
 <match context="/*[1]" pattern="html" />
 <fail><command name="XXE.save" /></fail>
 </pass>
 <command name="doPublish" />
 </sequence>
 </macro>
 </command>

Execute command doPublish if current document has an html root element and if this document does not need
to be saved.

24

Macro commands

Example 4.5. Using the XPath-based constructs match and set

 <command name="moveListItemUp">
 <macro undoable="true">
 <sequence>
 <command name="selectNode"
 parameter="ancestorOrSelf[implicitElement] listitem callout step" />
 <match context="$selected" pattern="*[position() > 1]" />
 <set variable="anchor" context="$selected"
 expression="./preceding-sibling::*[1]" />
 <command name="cut" />
 <set variable="selected" expression="$anchor" />
 <command name="paste" parameter="before" />
 </sequence>
 </macro>
 </command>

Move a list item up in the list. That is, the preceding sibling of the explicitly or implicitly selected list item becomes
its following sibling.

Example 4.6. A contextual drop

 <binding>
 <appEvent name="drop" />
 <command name="xhtml.fileDrop" parameter="%{value}" />
 </binding>

 <command name="xhtml.fileDrop">
 <macro>
 <choice>
 <sequence>
 <match context="$clickedElement" pattern="a[@href]" />
 <set variable="selected" expression="$clickedElement" />
 <get expression="relativize-uri('%0')" />
 <command name="putAttribute" parameter="href '%_'" />
 </sequence>

 <command name="XXE.open" parameter="%0" />
 </choice>
 </macro>
 </command>

When a string is dropped on an XHTML element, this string is assigned to the href attribute
(after considering this string as an URL and trying to make it relative to the base URL of the a element). When a
string is dropped on any other element, XXE default action is used instead: consider the string as the URL or filename
of a document to be opened.

25

Macro commands

Chapter 5. Process commands
 Process commands containing one or more of the following elements: convertImage, processFO, upload,

print, zip, jar, post, work only XMLmind XML Editor Professional Edition.

1. Reference
<command
name = NMTOKEN

>
Content: class | menu | macro | process

</command>

<process>
 showProgress = boolean : true
 debug = boolean : false

Content: [copyDocument|convertImage|copyProcessResources|transform|
 processFO|upload|post|print|read|
 mkdir|rmdir|delete|copy|zip|jar|shell|invoke|subProcess]+
</process>

<copyDocument
to = Path

 selection = boolean : false
 preserveInclusions = boolean : false
 saveCharsAsEntityRefs = boolean : false
 indent = boolean : false
 encoding = (ISO-8859-1|ISO-8859-13|ISO-8859-15|ISO-8859-2|
 ISO-8859-3|ISO-8859-4|ISO-8859-5|ISO-8859-7|
 ISO-8859-9|KOI8-R|MacRoman|US-ASCII|UTF-16|UTF-8|
 Windows-1250|Windows-1251|Windows-1252|Windows-1253|
 Windows-1257) : UTF-8

>
Content: [extract]* [resources]*

</copyDocument>

<extract
xpath = Absolute XPath (subset)

 dataType = anyURI|hexBinary|base64Binary|XML
 toDir = Path
 baseName = File basename without an extension
 extension = File name extension
>
 <processingInstruction

target = Name
data = string

 /> |
 <attribute

name = QName
value = string

 /> | any element
</extract>

<resources
match = Regexp pattern

 copyTo = Path
 referenceAs = anyURI
/>

<convertImage
from = Glob pattern

 skip = List of file name extensions
to = Path

 format = List of file name extensions

26

 lenient = boolean : false
>
Content: [parameter | parameterGroup]*

</convertImage>

<parameter
name = Non empty token

>
Content: Parameter value

</parameter>

<parameterGroup
 name = Non empty token
/>

<copyProcessResources
resources = anyURI | @anyURI | Glob pattern
to = Path

/>

<transform
stylesheet = anyURI

 cacheStylesheet = boolean : false
file = Path
to = Path

>
Content: [parameter | parameterGroup]*

</transform>

<processFO
processor = Non empty token
file = Path
to = Path

>
Content: [parameter]* [processFO]?

</processFO>

<upload
base = anyURI

>
Content: [copyFile|copyFiles]+

</upload>

<copyFile
file = Path
to = anyURI

/>

<copyFiles
files = Glob pattern
toDir = anyURI

/>

<post
url = anyURI

 valueCharset = Any encoding supported by Java : ISO-8859-1
 readResponse = boolean : false
>
Content: [field]+

</post>

<field
name = Form field name (US-ASCII only)

>
Content: value | file

</field>

<value>
Content: xs:string

</value>

27

Process commands

<file
name = Path

 contentType = Content type
/>

<print
file = Path
printer = Printer name

/>

<read
file = Path
encoding = Any encoding supported by Java or default

/>

<mkdir
dir = Path

 quiet = boolean : false
/>

<rmdir
dir = Path

 quiet = boolean : false
/>

<delete
files = Glob pattern

 recurse = boolean : false
 quiet = boolean : false
/>

<copy
files = Glob pattern
to = Path

 recurse = boolean : false
 quiet = boolean : false
/>

<zip
archive = Path

>
Content: [add]+

</zip>

<add
files = Glob pattern

 baseDir = Path : .
/>

<jar
archive = Path

>
Content: [add]+ [manifestFile | manifest]?

</jar>

<manifestFile>
Content: Path

</manifestFile>

<manifest>
Content: [attribute]+

</manifest>

<attribute
name = xs:NMTOKEN (matches [0-9a-zA-Z_-]+

 after substitution of variables)
>
Content: xs:string

</attribute>

28

Process commands

<shell
command = Shell command

 platform = (Unix | Windows | Mac | GenericUnix)
/>

<invoke
method = Qualified name of a Java static method

 arguments = string : ""
/>

<subProcess
name = NMTOKEN

 parameter = string
/>

Define an arbitrarily complex transformation of part or all of the document being edited.

A temporary directory is created for each execution of a process-command. This temporary directory is intended
to contain all the files generated by the process.

Value type Path is a file path such as images/log.gif or C:\temp\1.tmp. If this file path is relative, it is relative
to the temporary process directory. Character '/' can be used as a path component separator even on Windows.
In fact, it is recommended to always use '/' as a path component separator to keep XXE configuration files
portable across platforms.

Value type Glob pattern is a file path, possibly with wildcards such as images/*.gif or ..\[a-zA-Z]*. Everything
said about value type Path also applies to value type Glob pattern. It is called a glob pattern because it follows
Unix conventions, not Windows conventions. Example 1: *.* matches the_document.xml, but does not match
the_document. Example 2: [a-z]*.html matches report.html, but does not match Report.html (even on
Windows where filenames are case-insensitive).

A process-command returns the result of its last executed child element which itself returns a result (if any). The
following child elements may return a result: post [41], read [43], invoke [49], subProcess [50].

1.1. Attributes

showProgress
Unless this attribute is set with value false, a dialog box is displayed during the execution of a process
command to show the user what is happening.

Though process commands have been mainly designed to convert XML documents to other formats such as
PDF, RTF of HTML, it is also possible to use them to write small, quick, yet sophisticated macro-commands.
In such case, the process command/macro-command developer will probably want to:

• Set attribute showProgress of element process to value false.

• Set attribute cacheStylesheet of child element transform to value true.

• Use child element read associated to command paste [77] or command XXE.open [98] to replace part or
all of the document being edited by the result of the XSLT transformation.

debug
If specified as true, this attribute prevents the command from deleting its work directory (/tmp/xxeNNNN/)
at the end of the processing. This is useful if, for example, you need to look at the XSL-FO file generated by
the transform [37] element of the process command.

1.2. Element copyDocument
<copyDocument
to = Path

 selection = boolean : false

29

Process commands

 preserveInclusions = boolean : false
 saveCharsAsEntityRefs = boolean : false
 indent = boolean : false
 encoding = (ISO-8859-1|ISO-8859-13|ISO-8859-15|ISO-8859-2|
 ISO-8859-3|ISO-8859-4|ISO-8859-5|ISO-8859-7|
 ISO-8859-9|KOI8-R|MacRoman|US-ASCII|UTF-16|UTF-8|
 Windows-1250|Windows-1251|Windows-1252|Windows-1253|
 Windows-1257) : UTF-8

>
Content: [extract]* [resources]*

</copyDocument>

<extract
xpath = Absolute XPath (subset)

 dataType = anyURI|hexBinary|base64Binary|XML
 toDir = Path
 baseName = File basename without an extension
 extension = file name extension
>
 <processingInstruction

target = Name
data = string

 /> |
 <attribute

name = QName
value = string

 /> | any element
</extract>

<resources
match = Regexp pattern

 copyTo = Path
 referenceAs = anyURI
/>

Copy document being edited to the location specified by required attribute to.

1.2.1. Attributes

DescriptionAttribute

Specifies the file where the document (or the node selection) is to be copied.to

If this attribute is specified with value true and if an element is explicitly selected,
this element is saved to the specified location.

selection

If multiple nodes are explicitly selected, their parent element is saved and a special
processing-instruction <?select-child-nodes>, specifying which nodes are selected,
is added to the root element of the saved document.

Example, the user has selected paragraphs with content 2, 3 and 4:

<div>
 <?select-child-nodes 3-5?>
 <p>1</p>
 <p>2</p>
 <p>3</p>
 <p>4</p>
</div>

In the above example, 3-5 is a node range intended to be tested using position(),
the XPath built-in function. See example 1 below to learn how to handle such multiple
node selection in the XSLT style sheet.

Otherwise, it is the whole document which is saved to the specified location.

If this attribute is specified with value true , the generated XML file containspreserveInclusions

30

Process commands

DescriptionAttribute

• references to (managed) external entities,

• (managed) XIncludes.

Otherwise,

• references are replaced by the contents of the external entities,

• XIncludes are replaced by the contents of the elements pointed to.

If this attribute is specified with value true, the generated XML file contains refer-
ences to character entities such as é (if needed to and if such entities are
defined in the DTD of the document being edited).

saveCharsAsEntityRefs

Otherwise, the generated XML file contains character references such as é (if
needed to).

If this attribute is specified with value true, the generated XML file is indented.indent

Otherwise, the generated XML file is not indented.

Specifies the encoding of the generated XML file.encoding

1.2.2. Element extract

<extract
xpath = Absolute XPath (subset)

 dataType = anyURI|hexBinary|base64Binary|XML
 toDir = Path
 baseName = File basename without an extension
 extension = File name extension
>
 <processingInstruction

target = Name
data = string

 /> | any element
</extract>

The extract element is designed to ease the writing of XSLT style sheets that need to transform XML documents
where binary images (TIFF, PNG, etc) or XML images (typically SVG) are embedded.

In order to do this, the extract element copies the image data found in the element or the attribute specified by
attribute xpath to a file created in the directory specified by attribute toDir.

The name of the image is automatically generated by extract. However, attributes baseName and extension may
be used to parametrize to a certain extent the generation of the image file name.

Now the question is: how does the XSLT style sheet know about the ̀ `extracted'' image files? The extract element
offers three options:

• Replace the element containing image data by the one specified as a child element of extract.

If xpath selects an attribute instead of an element, the element containing the selected attribute is replaced.

DocBook example: replace embedded svg:svg (allowed in "-//OASIS//DTD DocBook SVG Module V1.0//EN")
by much simpler imagedata:

<cfg:extract xmlns="" xpath="//imageobject/svg:svg" toDir="raw">
 <imagedata fileref="resources/{$url.rootName}.png" />
</cfg:extract>

31

Process commands

• OR, replace the element containing image data by the attribute which is specified using the attribute child
element of extract. This attribute is added to the parent element of the element containing image data.

If xpath selects an attribute instead of an element, the element containing the selected attribute is replaced.

DocBook 5 example: replace embedded db5:imagedata/svg:svg by db5:imagedata/@fileref1:

<cfg:extract xmlns=""
 xmlns:db5="http://docbook.org/ns/docbook"
 xmlns:svg="http://www.w3.org/2000/svg"
 xpath="//db5:imagedata/svg:svg" toDir="raw" >
 <cfg:attribute name="fileref"
 value="resources/{$url.rootName}.png" />
</cfg:extract>

• OR, more general approach, insert a processing instruction (which is specified using the processingInstruction
child element of extract) at the beginning of the element from which data has been extracted.

If xpath selects an attribute instead of an element, the processing instruction is inserted in the element containing
the selected attribute.

ImageDemo example (complete configuration found in XXE_install_dir/doc/configure/samples/imag-
demo/): insert <?extracted extracted_file_name?> in imgd:image_ab and imgd:image_eb:

<extract xpath="//imgd:image_ab/@data | //imgd:image_eb" toDir="raw">
 <processingInstruction target="extracted"
 data="resources/{$url.rootName}.png" />
</extract>

The replacement element (attribute values or text nodes in the element or in any of its descendant) and the inserted
processing instruction (target and data) can reference the following variables which are substituted by their values
during the extraction step:

ValueVariable

Pathname of the extracted image file. Example: "/tmp/xxe1234/book_image_3.svg".{$file.path}

Pathname of the directory containing the extracted image file. Example:
"/tmp/xxe1234/".

{$file.parent}

Name of the extracted image file. Example: "book_image_3.svg".{$file.name}

Name of the extracted image file, but without an extension. Example: "book_im-
age_3".

{$file.rootName}

Extension of the extracted image file name. Example: "svg".{$file.extension}

Native path component separator of the platform. Example: '\' on Windows.{$file.separator}

URL of the extracted image file. Example: "file:///tmp/xxe1234/book_im-
age_3.svg".

{$url}

Note

Unlike {$file.XXX} variables, the values of {$url.XXX} variables are es-
caped if needed to.

URL of the directory containing the extracted image file. Example:
"file:///tmp/xxe1234". Note that this URL does not end with a '/'.

{$url.parent}

Name of the extracted image file. Example: "book_image_3.svg".{$url.name}

1This is needed because DocBook XSL style sheets 1.70.1, which were designed for DocBook 4 + modules, do not support db5:im-
agedata/svg:svg.

32

Process commands

ValueVariable

Name of the extracted image file, but without an extension. Example: "book_im-
age_3".

{$url.rootName}

Extension of the extracted image file name. Example: "svg".{$url.extension}

In fact, any XPath expression (full XPath 1.0, not just the subset used in attribute xpath), not only variable references,
can be put between curly braces (example: {./@id}). Such XPath expressions are evaluated as strings in the context
of the element selected by attribute xpath. If attribute xpath selects an attribute, its parent element is used as an
evaluation context for the XPath expression.

Attributes:

xpath
Selects elements and attributes containing the image data to be extracted.

This XPath expression must conform to the XPath subset needed to implement W3C XML Schemas (but not
only relative paths, also absolute paths).

dataType
Specifies how the image data is ``stored'' in the elements or the attributes selected by the above XPath expres-
sion: anyURI, hexBinary, base64Binary or XML. This cannot be guessed for documents conforming to a DTD
and for documents not constrained by a grammar.

Default: find the data type using the grammar of the document being processed.

toDir
Specifies the directory where extracted image files are to be created. Relative directories are relative to the
temporary directory created during the execution of the process (that is, %W).

Default: use the temporary directory created during the execution of the process (that is, %W).

baseName
Specifies the start of the extracted image file names. An automatically generated part is always added after
this user prefix.

Default: the base name of an extracted image file is automatically generated in its entirety.

extension
Specifies which extension to use for extracted image file names. Specifying "svgz" for extracted SVG images
allows to create compressed SVG files.

Default: the extension is guessed by XXE for a number of common image formats.

1.2.3. Element resources

<resources
match = Regexp pattern

 copyTo = Path
 referenceAs = anyURI
/>

The resources child element specifies what to do with the resources which are logically part of the document.

The resources which are logically part of the document are specified using another configuration element: docu-
mentResources (see the section called “documentResources” in XMLmind XML Editor - Configuration and De-
ployment).

Note that elements replaced during an extraction step [31] specified by the extract element are never scanned
for resources.

33

Process commands

http://www.w3.org/TR/xmlschema-1/
../configure/configure.pdf#documentResources

The default resources child elements are:

<resources match="(https|http|ftp)://.*" />
<resources match=".+" copyTo="." />

Attributes of the resources child element:

match
For each resource of the document found using the documentResources element, its URI is tested to see if it
matches the first resources child element. If it does not match the first resources child element, the second
resources child element is tried and so on until a matching resources child element is found.

If the matching resources element has no copyTo or referenceAs attribute, the resource is ignored. For
example, rule <resources match="(https|http|ftp)://.*" /> is designed to ignore resources with an
absolute URL.

copyTo
Specifies where to copy the matched resource. This can be a file name or a directory name.

The value of this attribute can contain $1, $2, ..., $9 variables, which are substituted with the substrings
matching the parenthesized groups of the match regular expression.

Example:

<resources match=".*/([^/]+)\.jpg"
 copyTo="resources/$1.jpeg" />

Matches images/logo.jpg, therefore file logo.jpg will be copied to resources/logo.jpeg.

referenceAs
Specifies the reference to the resource in the document created by the copyDocument configuration element.

Like for copyTo, the value of this attribute can contain $1, $2, ..., $9 variables.

Generally, this attribute is not needed because the reference implied by the value of the copyTo attribute is
sufficient. But this attribute can be useful if images are to be converted from their original format to the format
supported by a FO processor.

Example (excerpt of XXE_addon_dir/slides_config/xslMenu.incl):

<process>
 <mkdir dir="resources" />
 <mkdir dir="raw" />
 <copyDocument to="__doc.xml">
 <resources match="(https|http|ftp)://.*" />
 <resources match=".+\.(png|jpg|jpeg|gif)"
 copyTo="resources" />
 <resources match="(?:.+/)?(.+)\.(\w+)"
 copyTo="raw" referenceAs="resources/$1.png" />
 <resources match=".+"
 copyTo="resources" />
 </copyDocument>

 <convertImage from="raw" to="resources" format="png" />
 ...
</process>

1.3. Element convertImage
<convertImage
from = Glob pattern

 skip = List of file name extensions
to = Path

 format = List of file name extensions
 lenient = boolean : false

34

Process commands

>
Content: [parameter | parameterGroup]*

</convertImage>

<parameter
name = Non empty token

>
Content: Parameter value

</parameter>

<parameterGroup
 name = Non empty token
/>

Converts between image formats using any of the image toolkit plug-ins2 loaded by XXE.

Attributes:

from
Specifies which image files are to be converted. If the value of this attribute is a directory, all the files contained
in the directory are to be converted.

skip
The value of this attribute is a list of file name extensions. All the images specified using attribute from having
any of these extensions must not be converted.

Example:

<convertImage from="resources" skip="gif jpeg jpg png"
 to="resources" format="png" />

The following case is, of course, not considered to be an error: after evaluating attributes from and skip, no
image at all needs to be converted. (In fact, this is a very common case.)

to
Specifies the output image file. May be a file name or a directory name.

If a directory name is used, the format attribute must be specified too (because without a file base name, there
is no other way to know the target image format).

If after evaluating attributes from and skip, several images needs to be converted, the value of the to attribute
must be a directory name.

Examples:

<convertImage from="resources/logo.tiff" to="resources/pixware.jpeg" />

<convertImage from="resources/*.svg" to="resources" format="png" />

format
The value of this attribute is a list of file name extensions. It specifies all the possible output formats in the
order of preference. Ignored unless attribute to specifies a directory name.

Example: the document needs to be converted to PostScript. Converting images to EPS (Encapsulated Post-
Script) is tried before trying to convert images to PNG.

<convertImage from="raw" to="resources" format="eps png" />

2Image toolkit plug-ins are generally written in the Java™ programming language. However, the imageToolkit configuration element
(see the section called “imageToolkit” in XMLmind XML Editor - Configuration and Deployment) may be used to turn any command line tool
generating GIF, JPEG or PNG images (example: ImageMagick's convert) to a fully functional image toolkit plug-in for XXE.

35

Process commands

../configure/configure.pdf#imageToolkit
http://www.imagemagick.org/

lenient
Unless this attribute is specified with value true, a error (a crash of the image toolkit or simply the fact that
the image converter needed is not available) during the image conversion step is fatal to the whole process
command.

Parameters and parameterGroups may be used to fine tune the conversion. Example:

<convertImage from="raw/*.svg" to="resources" format="jpeg">
 <parameter name="quality">0.95</parameter>
</convertImage>

Which parameters are supported depend on the image toolkit used for the conversion.

Which image toolkit is used for the conversion is often obvious. In the above example, no image toolkit other than
Batik can convert SVG graphics to PNG.

When several image toolkits can do the same job (example built-in Java™ toolkit and the Jimi plug-in), suffice to
remember that they are tried in the order given in the dialog box displayed by menu entry Help|Plug-ins.

 Unless used in XMLmind XML Editor Professional Edition, this element will cause its parent process command
to be disabled.

1.3.1. Parameters supported by the built-in Java image toolkit

DescriptionValueApplies to output
format

Parameter

Controls the tradeoff between file size and
image quality .

Number between 0
and 1.

JPEGquality

If true, the toolkit is to write the image in a
progressive mode such that the stream will
contain a series of scans of increasing quality.

true | falsePNG, JPEGprogressive

1.3.2. Parameters supported by the Batik image toolkit

DescriptionValueApplies to output
format

Parameter

Specify the size of a px CSS unit in milli-
meters. Default: 0.264583.

A positive number.PNG, JPEGpxtomm

Number of dots (that is, pixels) per inch.
Similar to pxtomm, just easier to use. Default:
96.

A positive number.PNG, JPEGdpi

Specify the background color to use. Default:
none (transparent background).

Color specified using
the CSS syntax.

PNG, JPEGbackground

E x a m p l e s :
r g b (2 5 5 , 0 , 0) ,
#FF0000, red.

A fully transparent pixel should be fully
transparent black. However, this is rarely well

true | falsePNG, JPEGforceTransparent-
White

supported by applications (FOP, XEP, etc)
that render the converted image. That's why
by default, a fully transparent pixel is fully
transparent white.

Setting the forceTransparentWhite para-
meter to false allows to remove this work-
around.

36

Process commands

DescriptionValueApplies to output
format

Parameter

Default: true.

Controls the tradeoff between file size and
image quality . Default: 0.8.

Number between 0
and 1.

JPEGquality

If specified, the generated image will be an
indexed PNG having the specified color bit

1 | 2| 4 | 8PNGindexed

depth (1-bit=2 colors, 2-bit=4colors, etc).
Default: none (generate true color PNG).

1.3.3. Parameters supported by the Jimi image toolkit

DescriptionValueApplies to output
format

Parameter

Controls the tradeoff between file size and
image quality .

Number between 0
and 100.

JPEGquality

Controls the tradeoff between the file size
and the speed of compression.

none | default | fast |
max

PNGcompression

1.4. Element copyProcessResources
<copyProcessResources
resources = anyURI | @anyURI | Glob pattern
to = Path

/>

Copy resources needed by the process to the specified location. Typically, these resources are images needed by
the XSLT style sheet.

Attributes:

resources
Specifies which resources to copy.

If the value of the resources attribute is a relative URL, it is relative to the directory containing the configur-
ation file.

Wildcards, for example xsl/images/*.png, are supported only if the value of the resources attribute is a
file: URL (after resolving this URL against the URL of the configuration file)

It is recommended to specify multiple resources using the notation @list-in-a-text-file, for example
@xsl/images/list.txt. This mechanism works even the configuration file is located on a remote server.

The URI specified in this attribute may be also resolved using XML catalogs.

to
Specifies the destination file. If the value of the resources attribute specifies multiple resources, this destin-
ation must be an existing directory.

1.5. Element transform
<transform
stylesheet = anyURI

 cacheStylesheet = boolean : false
file = Path
to = Path

>
Content: [parameter | parameterGroup]*

</transform>

37

Process commands

http://www.oasis-open.org/committees/entity/

<parameter
name = Non empty token

>
Content: Parameter value

</parameter>

<parameterGroup
 name = Non empty token
/>

Converts a XML file to another format using built-in XSLT engine.

Attributes:

stylesheet
Specifies which XSLT style sheet to use. If this URL is relative, it is relative to the directory containing the
XXE configuration file.

The URI specified in this attribute may be also resolved using XML catalogs.

cacheStylesheet
If this attribute is specified as true, a precompiled form of the XSLT style sheet is built and then cached for
subsequent uses.

It is not recommended to cache an XSLT style sheet unless this style sheet is small and used in highly inter-
active process commands (like in example 1 below).

file
Input file.

to
Output file.

Parameter and/or named parameterGroup child elements are used to parametrize the XSLT style sheet. Example:
<parameter name="paper.type">A4</parameter>.

These parameters are described in the documentation of the XSLT style sheets:

• See DocBook XSL Stylesheet Documentation.

• See The Slides Document Type.

If a transform element references a parameterGroup, this means that a parameterGroup configuration element
(see the section called “parameterGroup” in XMLmind XML Editor - Configuration and Deployment) with the
same name is defined elsewhere in this configuration file or in another configuration file. However, it is not an
error to reference a parameterGroup for which the configuration element is not found.

1.5.1. Using a custom XSLT style sheet

A user can force the use of a custom style sheet of his own instead of the one normally specified in attribute
stylesheet.

In order to do this, the user needs to specify a property called process_command_name.transform in any XXE
configuration file. The value of this property must be the URL of the custom XSLT style sheet. (This property is
typically specified in the user's customize.xxe file. See property configuration element in the section called
“property” in XMLmind XML Editor - Configuration and Deployment.)

If a process command has several transform child elements, property process_command_name.transform
specifies a style sheet for the first transform, process_command_name.transform.2 specifies a style sheet for
the second transform, process_command_name.transform.3 specifies a style sheet for the third transform and
so on.

38

Process commands

http://www.oasis-open.org/committees/entity/
http://docbook.sourceforge.net/release/xsl/current/doc/
http://docbook.sourceforge.net/release/slides/current/doc/
../configure/configure.pdf#parameterGroup
../configure/configure.pdf#property
../configure/configure.pdf#property

Example: the process command to be customized is called docb.toPS (see XXE_install_dir/addon/config/doc-
book/xslMenu.incl). User has added the following property to his customize.xxe file.

<property name="docb.toPS.transform" url="true">fo_docbook.xsl</property>

Note that the URL is relative to the configuration file containing the definition of property docb.toPS.transform
(here, it is relative to customize.xxe).

The custom XSLT style sheet fo_docbook.xsl contains:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

<xsl:import href="xxe-config:docbook/xsl/fo/docbook.xsl"/>

<xsl:template match="bookinfo/author|info/author" mode="titlepage.mode">
 <fo:block>
 <xsl:call-template name="anchor"/>
 <xsl:call-template name="person.name"/>
 <xsl:if test="affiliation/orgname">
 <fo:block>
 <xsl:apply-templates select="affiliation/orgname"
 mode="titlepage.mode"/>
 </fo:block>
 </xsl:if>
 <xsl:if test="email|affiliation/address/email">
 <fo:block>
 <xsl:apply-templates select="(email|affiliation/address/email)[1]"/>
 </fo:block>
 </xsl:if>
 </fo:block>
</xsl:template>

</xsl:stylesheet>

Note how the stock docbook.xsl is imported by this customized version.

Tip

In our opinion, it is almost impossible to cope with the complexity of customizing Norman Walsh's
DocBook XSLT style sheets without reading this excellent book: DocBook XSL: The Complete Guide
by Bob Stayton.

1.6. Element processFO
<processFO
processor = Non empty token
file = Path
to = Path

>
Content: [parameter]* [processFO]?

</processFO>

<parameter
name = Non empty token

>
Content: Parameter value

</parameter>

<parameterGroup
 name = Non empty token
/>

Converts a XSL-FO file to another format, typically a page description language such as PDF.

39

Process commands

http://www.sagehill.net/docbookxsl/

Attributes:

processor
Specifies which FO processor to use.

Unlike the XSLT engine used by a transform element, the FO processor used to perform this conversion is
not built-in into XXE. A FO processor plug-in having a name equals the value of the processor attribute
(case-insensitive) must have been registered with XXE.

file
Input file.

to
Output file.

Parameter child elements are passed, as is, to the FO processor in order to parametrize its behavior. These para-
meters are described in the documentation of the FO processors.

XFC example:

<parameter name="outputEncoding">Cp1252</parameter>

XEP example:

<parameter name="PS.LANGUAGE_LEVEL">2</parameter>

Pseudo-parameters:

XEP
The XEP FO processor understands a number of actual parameters but also a pseudo-parameter called OUT-
PUT_FORMAT. Its value specifies which is the target format of XEP: pdf, ps.

If this pseudo-parameter is absent, which format to use is guessed from the extension of the output file name.

FOP
The FOP FO processor understands a number of actual parameters, but also the following pseudo-parameters:

renderer
Its value specifies which renderer to use: pdf, ps, pcl, svg, xml, mif, txt.

If this pseudo-parameter is absent, which renderer to use is guessed from the extension of the output file
name.

configuration
Specifies the absolute URL or filename of a FOP user configuration file. Such configuration files are
useful to specify font metrics, hyphenation files, etc. More information on FOP's web site.

The processFO optional child element:

This optional child element specifies which FO processor to use when the FO processor specified by the parent
processFO element is not available.

Example: try to use FOP when XEP is not available:

<processFO processor="XEP" file="__doc.fo" to="__doc.pdf">
 <parameter name="OUTPUT_FORMAT">pdf</parameter>

 <processFO processor="FOP" file="__doc.fo" to="__doc.pdf">
 <parameter name="renderer">pdf</parameter>
 </processFO>
</processFO>

40

Process commands

http://xmlgraphics.apache.org/

 Unless used in XMLmind XML Editor Professional Edition, this element will cause its parent process command
to be disabled.

1.7. Element upload
<upload
base = anyURI

>
Content: [copyFile|copyFiles]+

</upload>

<copyFile
file = Path
to = anyURI

/>

<copyFiles
files = Glob pattern
toDir = anyURI

/>

Copies files generated during the process to remote FTP or WebDAV servers or to the local file system. Can create
directories on the fly if needed to.

Child elements:

copyFile
Specifies a single file to be copied to the upload destination.

The URL specified by the to attribute is resolved against the URL specified by the base attribute.

copyFiles
Specifies possibly multiple files to be copied to the upload destination. If a matched file is a directory, it will
be recursively copied. Has no effect is specified wildcard does not match any file.

The URL specified by the toDir attribute is resolved against the URL specified by the base attribute.

 Unless used in XMLmind XML Editor Professional Edition, this element will cause its parent process command
to be disabled.

1.8. Element post
<post
url = anyURI

 valueCharset = Any encoding supported by Java : ISO-8859-1
 readResponse = boolean : false
>
Content: [field]+

</post>

<field
name = Form field name (US-ASCII only)

>
Content: value | file

</field>

<value>
Content: xs:string

</value>

<file
name = Path

 contentType = Content type
/>

41

Process commands

Emulates an HTML form possibly containing input type="file" elements. The post element posts the content
of the emulated form to the CGI or Servlet specified by attribute url, using the multipart/form-data method.

An emulated form field has a name specified by required attribute name. There are two type of fields:

value
Emulates input type="text" or input type="hidden" elements found in an HTML form. The content of
this element, a possibly empty string, specifies the value of the field.

Attribute valueCharset of the post element specifies the charset used for all value fields. By default, this
charset is ISO-8859-1.

file
Emulates input type="file" elements found in an HTML form. The name attribute of this element specifies
the filename of the file to be uploaded.

Unless specified, the content type of the file is guessed using the extension of the filename. If the filename
ends with:

.zip
the content type is supposed to be application/zip;

.jar
the content type is supposed to be application/x-java-archive;

.xml
the content type is supposed to be text/xml.

Otherwise, the content type is supposed to be application/octet-stream.

If attribute readResponse is specified with value true, this element returns the response of the server. Otherwise,
this element returns no result at all.

Moreover, for this element to return a result, the server must respond to the post request with a success code dif-
ferent from "No Content" (204) and must send "text/*" data (e.g. "text/plain", "text/html", etc). If the content
type of the sent data has no charset, the data is read as a string using charset "ISO-8859-1".

Examples:

<post url="http://localhost:8080/measure/archive">
 <field name="op">
 <value>add</value>
 </field>
 <field name="user">
 <value>%U</value>
 </field>
 <field name="data">
 <file name="/tmp/1052_3_CO_3.1R" />
 </field>
</post>

<post url="http://localhost:8080/measure/archive"
 valueCharset="US-ASCII" readResponse="true">
 <field name="op">
 <value>add</value>
 </field>
 <field name="user">
 <value>%U</value>
 </field>
 <field name="interactive">
 <value>false</value>
 </field>
 <field name="data">
 <file name="1052_3_CO_3.1R"

42

Process commands

 contentType="text/xml; charset=ISO-8859-1" />
 </field>
</post>

 Unless used in XMLmind XML Editor Professional Edition, this element will cause its parent process command
to be disabled.

1.9. Element print
<print
file = Path
printer = Printer name

/>

Sends the file specified by attribute file (typically a PostScript® file) to the printer specified by attribute printer.

Example:

 <command name="docb.toPSPrinter">
 <process>
 <subProcess name="docb.toPS" parameter='"%0" "%1" "%2" "%3"' />

 <print file="__doc.%0" printer="%4" />
 </process>
 </command>

The syntax of printer name is:

printer_name ['->' format]?

Examples:

lp22
Sales Departement->ps
lp23->text/plain; charset=UTF-8

The optional format part specifies the mime type of the document to be printed. The following short names are
also supported: ps (application/postscript), pdf (application/pdf), pcl (application/vnd.hp-PCL).

When this format part is not specified, the print element uses the extension of the filename specified in attribute
file.

Command selectPrinter [87] allows to choose a printer using a specialized dialog box and returns a ready-to-use
printer name for the print element of a process command. Example:

 <command name="docb.printPS">
 <macro>
 <sequence>
 <command name="selectPrinter" parameter="%0" />
 <command name="docb.toPSPrinter" parameter='"%0" "%1" "%2" "%3" "%_"'/>
 </sequence>
 </macro>
 </command>

 Unless used in XMLmind XML Editor Professional Edition, this element will cause its parent process command
to be disabled.

1.10. Element read
<read
file = Path
encoding = Any encoding supported by Java or default

/>

Loads the content of specified text file and returns this content.

43

Process commands

If encoding is specified as default, the encoding of the text file is the native encoding of the platform, for example
Windows-1252 on an US Windows machine.

1.11. Element mkdir
<mkdir
dir = Path

 quiet = boolean : false
/>

Creates specified directory. If parent directories needs to be created in order to create specified directory, these
parent directories are created too.

Will report an error if specified directory cannot be created. Attribute quiet can be used to suppress the error
message when specified directory already exists.

1.12. Element rmdir
<rmdir
dir = Path

 quiet = boolean : false
/>

Removes specified directory. For this operation to succeed, the specified directory must be empty.

Will report an error if specified directory cannot be removed. Attribute quiet can be used to suppress the error
message when specified directory does not exist.

1.13. Element delete
<delete
files = Glob pattern

 recurse = boolean : false
 quiet = boolean : false
/>

Deletes specified files.

Has no effect is specified wildcard does not match any file.

Will report an error if one of the specified files cannot be deleted. Attribute quiet can be used to suppress the error
message when one of the specified files does not exist.

If attribute recurse is specified with value true, it will also recursively delete specified directories. Otherwise,
if one of the specified files is a directory, it will report an error message.

1.14. Element copy
<copy
files = Glob pattern
to = Path

 recurse = boolean : false
 quiet = boolean : false
/>

Copies files and directories specified by attribute files to the file or directory specified by attribute to.

Has no effect is specified wildcard does not match any file.

If specified wildcard matches several files or directories, the destination must be an existing directory.

Directories will not be copied unless attribute recurse is specified with value true.

44

Process commands

Attribute quiet can be used to suppress the error message when one of the specified files does not exist or when
one of the specified files is a directory (and attribute recurse is different from true).

1.15. Element zip
<zip
archive = Path

>
Content: [add]+

</zip>

<add
files = Glob pattern

 baseDir = Path : .
/>

Creates a zip archive located at archive containing the files specified by the add child elements.

See also jar [45].

Example: Let's suppose current working directory contains:

/tmp$ ls -R
doc.xml
doc.xml~
doc.xml.SAVE

./attachments:
data1.bin
data1.zip
data2.bin
data2.zip

./resources:
logo.png
chart1.jpeg

<zip archive="all.zip">
 <add files="doc.xml" />
 <add files="resources/*" />
 <add files="misc/*" />
 <add files="*.bin" baseDir="attachments" />
</zip>

The above zip element creates in current working directory, an archive called all.zip, containing:

/tmp$ unzip -v all.zip
doc.xml
resources/
resources/logo.png
resources/chart1.jpeg
data1.bin
data2.bin

Note that non-existent directory misc/ will not cause the zip element to stop its processing or to report a warning.

 Unless used in XMLmind XML Editor Professional Edition, this element will cause its parent process command
to be disabled.

1.16. Element jar
<jar
archive = Path

>
Content: [add]+ [manifestFile | manifest]?

</jar>

45

Process commands

<add
files = Glob pattern

 baseDir = Path : .
/>

<manifestFile>
Content: Path

</manifestFile>

<manifest>
Content: [attribute]+

</manifest>

<attribute
name = xs:NMTOKEN (must match [0-9a-zA-Z_-]+ after

 substitution of process variables)
>
Content: xs:string

</attribute>

Similar to zip [45], except that the archive always contains a manifest (even if this manifest is empty). The manifest,
if any, is specified using a manifestFile child element or a manifest child element.

Examples:

<jar archive="doc.jar">
 <add files="doc.xml" />
 <add files="images/*.gif" />
 <manifestFile>/tmp/manifest</manifestFile>
</jar>

<jar archive="doc2.jar">
 <add files="doc.xml" />
 <add files="images/*.gif" />
 <manifest>
 <attribute name="Master-Document">doc.xml</attribute>
 <attribute name="Publication-Date">%0</attribute>
 <attribute name="Self-Contained"></attribute>
 </manifest>
</jar>

 Unless used in XMLmind XML Editor Professional Edition, this element will cause its parent process command
to be disabled.

1.17. Element shell
<shell
command = Shell command

 platform = (Unix | Windows | Mac | GenericUnix)
/>

Executes specified command using native shell: cmd.exe on Windows and /bin/sh on Unix (Mac OS X is considered
to be a Unix platform).

The current working directory of the native shell is the temporary directory created for the execution of the process-
command (%W, see below [51]).

Specified command may reference helper applications [48] declared using the Preferences dialog box, Helper
Applications section.

If the platform attribute is not specified, the shell command is executed whatever is the platform running XXE.

If the platform attribute is specified, the shell command is executed only if the platform running XXE matches
the value of this attribute:

46

Process commands

Windows
Any version of Windows.

Mac
Mac OS X.

GenericUnix
A Unix which is not Mac OS X (Linux, Solaris, etc).

Unix
GenericUnix or Mac.

47

Process commands

Using helper applications in commands interpreted by the native shell

This applies to the shell [46] element of a process [26] command as well as to the run [82] and start [94]
commands.

Instead of containing substring "notepad foo.txt", a command line, interpreted by cmd.exe on Windows
and /bin/sh on Unix, may contain something like "helper(text/plain) foo.txt" or "helper(txt)
foo.txt" or even "helper() foo.txt".

In the above example, substring "helper(spec) path" refers to a helper application declared using the
Preferences dialog box, Helper Applications section.

This preferences sheet allows to associate helper applications to file types. In the above example, we assume
that plain text files, that is files having MIME type "text/plain" or having a "txt" filename extension,
have been associated to helper application "notepad "%F"".

Examples of command lines making use of helper applications:

<command name="run"
 parameter="helper(text/plain) '%D'"/>

<command name="start"
 parameter="helper(defaultViewer) '%_'"/>

<shell command="helper(.hhp) htmlhelp.hhp || exit 0"/>

<shell command="helper(application/x-java-help-index) ."/>

In order to use helper applications, a command line must contain substrings having this syntax: "help-
er(spec) path".

spec
Specifies which helper application to use. It may be:

• A MIME type. Example: "text/plain".

• A filename extension, with or without a leading ".". Example: ".hhp".

• Fixed string "defaultViewer", which is the helper application specified in Preferences dialog box,
Helper Applications section, Default viewer field. This default viewer is generally a Web browser.

• Empty. In which case, the filename extension of path is used.

path
Must always follow the helper() construct. This absolute or relative filename or URL may be quoted
using single or double quotes if it happens to contain whitespace characters.

When a command line contains a "helper(spec) path" substring, this substring is substituted with the
corresponding helper application. How this is done is best explained using an example.

Let's suppose the command line is "helper(defaultViewer) 'foo.html'".

Let's suppose the default viewer is specified as: "(mozilla -remote "openURL(%U)" 1> /dev/null
2>&1) || (mozilla "%U" &)".

Single quotes are stripped from path 'foo.html' and each occurrence of %U (or %F) in the helper application
is replaced by this path (without any other added value).

This gives: "(mozilla -remote "openURL(foo.html)" 1> /dev/null 2>&1) || (mozilla "foo.html"
&)" (which, in this case, cannot work because foo.html is not an absolute URL).

48

Process commands

1.18. Element invoke
<invoke
method = Qualified name of a Java static method

 arguments = string : ""
/>

Invokes specified Java™ static method, passing it specified string as an argument.

• The method generally belongs to a class which is contained in a jar dynamically discovered by XXE at startup
time.

• The method must have one of the following signatures:

• method(java.lang.String arguments,
 java.io.File workingDir);

• method(java.lang.String arguments,
 java.io.File workingDir,
 com.xmlmind.xmledit.util.Console console);

• method(java.lang.String arguments,
 java.io.File workingDir,
 com.xmlmind.xmledit.util.Console console,
 com.xmlmind.xmledit.doc.Document docBeingEdited);

arguments
The value of the arguments attribute after substituting all variables (%0, %1, %D, %p, %C, etc).

All arguments, if any, are passed as a single string. That is, the method is responsible for properly parsing
this string.

workingDir
The temporary directory created each time a process command is executed. Relative paths are generally
relative to this directory.

console
A simple way to report information and non fatal errors to the user of the process command. Throw an ex-
ception to report a fatal error.

docBeingEdited
The document being edited.

• The method may return a value. If it returns a value, this value is converted to a java.lang.String using to-
String() and then returned by the invoke element (à la read [43], for use in a macro command for example).

• The method may throw any exception.

Examples:

<invoke method="TestInvoke.echo"
 arguments="args={%*} doc='%D' pwd='%W' conf='%C'" />

<invoke method="TestInvoke.echo2" />

<invoke method="TestInvoke.gzip" arguments="__doc.xml" />

Static methods invoked by the above examples:

public final class TestInvoke {
 public static void echo(String arguments, File workingDir,
 Console console) {

49

Process commands

 console.showMessage("arguments='" + arguments + "'", Console.INFO);
 console.showMessage("workingDir='" + workingDir + "'", Console.INFO);
 }

 public static void echo2(String arguments, File workingDir,
 Console console, Document docBeingEdited) {
 echo(arguments, workingDir, console);
 console.showMessage("docBeingEdited='" + docBeingEdited.getLocation()
 + "'", Console.INFO);
 }

 public static File gzip(String arguments, File workingDir)
 throws IOException {
 File inFile = new File(workingDir, arguments.trim());
 if (!inFile.isFile())
 throw new FileNotFoundException(inFile.getPath());
 File outFile = new File(inFile.getPath() + ".gz");
 FileInputStream in = new FileInputStream(inFile);

 try {
 GZIPOutputStream out =
 new GZIPOutputStream(new FileOutputStream(outFile));

 byte[] bytes = new byte[8192];
 int count;

 while ((count = in.read(bytes)) != -1)
 out.write(bytes, 0, count);

 out.finish();
 out.close();
 } finally {
 in.close();
 }

 return outFile;
 }
}

1.19. Element subProcess
<subProcess
name = NMTOKEN

 parameter = string
/>

Invokes the process command whose name is specified by attribute name. Optional attribute parameter may be
used to parametrize the behavior of the invoked process command.

This element returns the result of its last executed child element which itself returns a result (if any).

Examples:

 <command name="docb.toPSFile"> 1

 <process>
 <subProcess name="docb.toPS" parameter='"%0" "%1" "%2" "%3"' />

 <upload base="%4">
 <copyFile file="__doc.%0" to="%4" />
 </upload>
 </process>
 </command>

 <command name="docb.toPSPrinter"> 2

 <process>
 <subProcess name="docb.toPS" parameter='"%0" "%1" "%2" "%3"' />

 <print file="__doc.%0" printer="%4" />

50

Process commands

 </process>
 </command>

1 First process command is used to convert a DocBook document to PostScript® or to PDF.
2 Second process command is used to print a DocBook document on a PostScript® or a PDF printer (after

converting it to these formats, of course).

Both process commands invoke docb.toPS which actually does the job of converting a DocBook document
to PostScript® or to PDF.

1.20. Process variables

Almost all child elements and attribute values in a process element can include variables which are substituted
just before the execution of the process-command. Example: <upload base="%0/">.

DescriptionVariable

A process-command can have a parameter. This string is split like in a command
line. First 10 parts of the split parameter can be referenced as variables %0, %1, %2,
..., %9.

%0, %1, %2, ..., %9, %*

%* can be used to reference the whole parameter of the process-command.

%D is the file name of the document being edited. Example: C:\novel\chapter1.xml.%D, %d

This variable is replaced by an empty string if the document being edited is found
on a remote HTTP or FTP server.

%d is the URL of the document being edited. Example: file:///C:/nov-
el/chapter1.xml.

%P is the name of the directory containing the document being edited. Example:
C:\novel.

%P, %p

This variable is replaced by an empty string if the document being edited is found
on a remote HTTP or FTP server.

%p is the URL of the directory containing the document being edited. Example:
file:///C:/novel.

Note that this URL does not end with a '/'.

%N is the base name of the document being edited. Example: chapter1.xml.%N, %R, %E

%R is the base name of the document being edited without the extension, if any
(sometimes called the root name). Example: chapter1.

%E is the extension of the document being edited, if any. Example: xml.

Note that the extension does not start with a '.'.

%S is the native path component separator of the platform. Example: '\' on Windows.%S

User's account name. Example: john.%U

User's home directory. Example: /home/john.%H

%W is the name of the temporary process directory. Example: C:\temp\xxe1023E45.%W, %w

%w is the URL of the temporary process directory. Example:
file:///C:/temp/xxe1023E45.

Note that this URL does not end with a '/'.

51

Process commands

DescriptionVariable

%C is the name of the directory containing the XXE configuration file from which the
process command has been loaded. Example: C:\Program Files\XMLmind_XML_Ed-
itor\addon\config\docbook.

%C, %c

%c is the URL of the above directory. Example: file:///C:/Program%20Files/XM-
Lmind_XML_Editor/addon/config/docbook.

Note that this URL does not end with a '/'.

The "%" character can be escaped using "%%". The above variables can be specified as %{0}, %{1}, ..., %{R}, %{E},
etc, if it helps (see note about escaped URIs [52]).

Note

Most attribute and element values described in this documentation as being URIs (data type anyURI) in
fact are not URIs. These attribute and element values can contain %-variables. They are required to be
valid URIs only after the %-variables have been substituted with their values.

The problem is that URIs may also contain escaped characters which look very much like references to
%-variables. For example, a whitespace must be escaped as "%20", which looks like a reference to variable
%2 followed by literal string "0".

In practice:

1. It is recommended to specify variables as %{0}, %{1}, ..., %{d}, %{E}, etc, rather than as %0, %1, ...,
%d, %E, etc, because it makes clear what is a variable reference and what is an escaped character.

2. An escaped character such as "%20" must be specified as "%%20" because variable substitution occurs
before the URIs are used and because, during variable substitution, a real percent character can be
protected against substitution by doubling it.

Example: relative URI "docs/my report/my.doc.%0", where variable %0 represents a file extension, must
be specified as "docs/my%%20report/my%%20doc.%0".

2. Commented examples

2.1. Convert explicitly or implicitly selected para to a simpara

This example can be found in XXE_install_dir/doc/configure/samples2/simpara.xxe.

<command name="toSimpara">
 <process showProgress="false">
 <copyDocument selection="true" to="in.xml" />
 <transform stylesheet="simpara.xslt" cacheStylesheet="true"
 file="in.xml" to="out.xml" />
 <read file="out.xml" encoding="UTF-8" />
 </process>
</command>

<command name="paraToSimpara">
 <macro>
 <sequence>
 <command name="selectNode"
 parameter="ancestorOrSelf[implicitElement] para" />
 <command name="toSimpara" />
 <command name="paste" parameter="to %_" />
 </sequence>
 </macro>
</command>

52

Process commands

<binding>
 <keyPressed code="ESCAPE" />
 <keyPressed code="S" modifiers="mod" />
 <command name="paraToSimpara" />
</binding>

In the above example, simpara.xlst is simply:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" encoding="UTF-8" />

<xsl:template match="para">
 <simpara>
 <xsl:copy-of select="./node()" />
 </simpara>
</xsl:template>

</xsl:stylesheet>

Note

Adding the following generic rule to any XSLT style sheet used in interactive process commands allows
to handle the case where the user has selected multiple nodes:

<xsl:template match="/*[./processing-instruction('select-child-nodes')]">
 <xsl:variable name="pi"
 select="./processing-instruction('select-child-nodes')" />
 <xsl:variable name="first" select="substring-before($pi, '-')" />
 <xsl:variable name="last" select="substring-after($pi, '-')" />

 <c:clipboard
 xmlns:c="http://www.xmlmind.com/xmleditor/namespace/clipboard">

 <xsl:for-each select="child::node()[position() >= $first and
 position() <= $last]">
 <xsl:apply-templates select="." />
 </xsl:for-each>

 </c:clipboard>
</xsl:template>

2.2. Convert a DocBook document to RTF

This example is taken from XXE_install_dir/addon/config/docbook/xslMenu.incl.

<command name="docb.convertToRTF">
 <macro>
 <sequence>
 <command name="selectFile" parameter="saveFileURL" />
 <command name="docb.toRTF" parameter='"%0" "%1" "%_"' /> 1

 </sequence>
 </macro>
</command>

<command name="docb.toRTF">
 <process>
 <mkdir dir="resources" /> 2

 <mkdir dir="raw" /> 3

 <copyDocument to="__doc.xml"> 4

 <!-- Do *not* declare the svg namespace. We want svg:svg to be
 a Name, not a QName. -->
 <cfg:extract xmlns="" xpath="//imageobject/svg:svg" toDir="raw"> 5

 <imagedata fileref="resources/{$url.rootName}.png" />
 </cfg:extract>

53

Process commands

 <resources match="(https|http|ftp)://.*" /> 6

 <resources match=".+\.(png|jpg|jpeg|gif)"
 copyTo="resources" /> 7

 <resources match="(?:.+/)?(.+)\.(\w+)"
 copyTo="raw" referenceAs="resources/$1.png" /> 8

 <resources match=".+"
 copyTo="resources" />
 </copyDocument>

 <convertImage from="raw" to="resources" format="png" /> 9

 <mkdir dir="images/callouts" /> 10

 <copyProcessResources resources="xsl/images/draft.png" to="images" />
 <copyProcessResources resources="@xsl/images/callouts/png_callouts.list"
 to="images/callouts" />

 <transform stylesheet="xsl/fo/docbook.xsl"
 file="__doc.xml" to="__doc.fo"> 11

 <parameter name="use.extensions">1</parameter>
 <!-- Cannot work and generates a lot of error messages. -->
 <parameter name="graphicsize.extension">0</parameter>

 <parameter name="paper.type">A4</parameter>

 <parameter name="generate.toc">%0</parameter>
 <parameter name="toc.section.depth">3</parameter>
 <parameter name="section.autolabel">%1</parameter>

 <parameter name="callout.graphics">1</parameter>

 <parameter name="shade.verbatim">1</parameter>

 <parameter name="ulink.show">0</parameter>

 <parameterGroup name="docb.toRTF.transformParameters" /> 12

 </transform>

 <processFO processor="XFC" file="__doc.fo" to="__doc.rtf"> 13

 <parameter name="outputEncoding">Cp1252</parameter>
 <parameterGroup name="docb.toRTF.XFCParameters" />
 </processFO>

 <upload base="%2"> 14

 <copyFile file="__doc.rtf" to="%2" />
 </upload>
 </process>
</command>

1 The docb.toRTF process command is passed 3 arguments:

%0
For which elements a Table Of Contents (TOC) is to be created. Example: "/book toc /article toc".

%1
1 if a TOC is to be generated, 0 otherwise.

%2
The URL of the RTF file to be created.

2 Images referenced in the DocBook document which are in formats supported by the XFC FO processor (GIF,
JPEG and PNG) will be copied to directory resources/.

3 Images referenced in the DocBook document which are in formats not supported by the XFC FO processor
will be copied to directory raw/ in order to be converted.

4 Copy document being edited as __doc.xml in the temporary process directory.

The copied document is flattened: all references to external entities and all XIncludes are expanded.

54

Process commands

http://www.xmlmind.com/foconverter/

As specified by extract and resources, references to resources such as external graphics files (example:
<imagedata fileref="XXX"/>) are modified in the copied document to point to copies which are local to
the temporary process directory.

5 Embedded SVG graphics (svg:svg allowed in "-//OASIS//DTD DocBook SVG Module V1.0//EN") are
extracted to directory raw/.

The svg:svg element is replaced by a properly initialized imagedata element which is easily handled by
the XSLT style sheet and then by the FO processor (it is translated by the XSLT style sheet to a fo:external-
graphic).

Caution

DocBook documents are conforming to a DTD and therefore they are not namespace aware in XXE.
That's why the svg prefix must not be declared.

By doing this, svg:svg is understood by XXE as being {}svg:svg. If you declare the svg prefix,
svg:svg is understood as being {http://www.w3.org/2000/svg}svg, which is wrong in the case
of DocBook+SVG.

6 References to really absolute resources are not modified in the copy of the document.
7 References to PNG, GIF, JPEG graphics files are modified to point to the copies which are made in directory

resources/.
8 References to other graphics files are modified to point to the converted images that will be generated in

directory resources/. The graphics files in formats other that PNG, GIF, JPEG are copied as is in directory
raw/, waiting to be converted.

9 Converts all images found in directory raw/ to PNG images created in directory resources/.
10 Copies resources internally used by the xsl/fo/docbook.xsl XSLT style sheet to where the FO processor

can find them.
11 Transforms the copy of the document __doc.xml to XSL-FO file __doc.fo.
12 This parameterGroup allows XXE users to easily customize the XSLT style sheet by adding or replacing

parameters.

Example of such parameterGroup added to XXE_user_preferences_dir/addon/customize.xxe:

 <parameterGroup name="docb.toRTF.transformParameters">
 <parameter name="callout.graphics">0</parameter>
 <parameter name="variablelist.as.blocks">1</parameter>
 </parameterGroup>

13 Convert XSL-FO file __doc.fo to local RTF file __doc.rtf.
14 Copies local RTF file __doc.rtf to its user-specified destination.

The element is called upload because it can be used to publish the converted document by sending it (and
all its associated resources, if needed to) to a remote FTP or WebDAV server.

2.3. Convert ImageDemo document to HTML

This example is taken from XXE_install_dir/doc/configure/samples/imagedemo/imagedemo.xxe.

The ImageDemo configuration has been created to teach external consultants and local gurus how to configure
XXE for XML documents embedding binary or XML images.

<command name="imgd.convertToHTML">
 <macro>
 <sequence>
 <command name="selectFile" parameter="saveFileURL" />
 <command name="imgd.toHTML" parameter='"%_"' />
 </sequence>
 </macro>
</command>

<command name="imgd.toHTML">
 <process>

55

Process commands

http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xsl/

 <mkdir dir="resources" />
 <mkdir dir="raw" />
 <copyDocument to="__doc.xml">
 <extract xpath="//imgd:image_ab/@data | //imgd:image_eb" toDir="raw"> 1

 <processingInstruction target="extracted"
 data="resources/{$url.rootName}.png" />
 </extract>
 <extract xpath="//imgd:*/svg:svg" toDir="raw">
 <processingInstruction target="extracted"
 data="resources/{$url.rootName}.png" />
 </extract>

 <resources match="(https|http|ftp)://.*" />
 <resources match=".+\.(png|jpg|jpeg|gif)"
 copyTo="resources" />
 <resources match="(?:.+/)?(.+)\.(\w+)"
 copyTo="raw" referenceAs="resources/$1.png" />
 <resources match=".+"
 copyTo="resources" />
 </copyDocument>

 <convertImage from="raw" to="resources" format="png" />

 <mkdir dir="xslt_graphics" />
 <copyProcessResources resources="xslt_graphics/*" to="xslt_graphics" />

 <transform stylesheet="html.xslt"
 file="__doc.xml" to="__doc.html"/>

 <upload base="%0"> 2

 <copyFile file="__doc.html" to="%0" />
 <copyFiles files="resources/*" toDir="resources" />
 <copyFiles files="xslt_graphics/*" toDir="xslt_graphics" />
 </upload>
 </process>
</command>

If you can follow the previous example [53], you can follow this one too because they are very similar. The main
differences are:

1 Instead of extracting the SVG graphics from svg:svg and replacing this element by another one such as
imgd:image_au, it is much simpler to insert an extracted processing instruction inside imgd:image_ab,
imgd:image_eb and svg:svg.

Doing this spares the effort of copying all the image geometry attributes, width, height, content_width,
content_height, etc, from the extracted element to the replacement imgd:image_au element.

Also note that ImageDemo documents being namespace-aware, it is mandatory to declare the svg prefix.
This is done at the top of XXE_install_dir/doc/configure/samples/imagedemo/imagedemo.xxe.

2 Unlike an RTF file, an HTML file is not self-contained. All the graphics files found in resources/ and in
xslt_graphics/ need to be copied along the generated HTML file.

3.The convertdoc command line tool
The convertdoc tool allows to execute XXE process commands from the command line, exactly as if these process
commands were executed from XXE.

Just like XXE, the convertdoc command line tool scans directories for configurations and XML catalogs, loads
image toolkit plug-ins, loads FO processor plug-ins, supports XInclude, etc.

Usage:

convertdoc -l

or:

56

Process commands

convertdoc ?-v? ?-t XSLT_stylesheet_file_or_URL?
 ?-p|-pu XSLT_stylesheet_param_name XSLT_stylesheet_param_value? ...
 ?-p|-pu XSLT_stylesheet_param_name XSLT_stylesheet_param_value?

process_command_name doc_file_or_URL
 ?-s|-u process_command_arg? ... ?-s|-u process_command_arg?

Converts XML document doc_file_or_URL using process command called process_command_name, found in
any of the XXE configuration files scanned during the startup of convertdoc (see XMLmind XML Editor - Con-
figuration and Deployment).

Options:

-l

Print XXE configuration (XXE configuration files but also XML catalogs, plug-ins, spell-checker dictionaries,
CLASSPATH) and exit.

-v

Turn verbosity on.

-d

Sets the debug attribute of the process command to value true (no matter what has been specified in the
process element).

This prevents the process command from deleting its work directory (/tmp/xxeNNNN/) at the end of the pro-
cessing.

-t XSLT_stylesheet_file_or_URL

Use this alternate XSLT style sheet instead of the one specified in the first transform child element of the
process command.

If specified process command has no transform child element but has subProcess child elements, these sub-
processes are searched recursively for a transform child element.

-p|-pu XSLT_stylesheet_param_name XSLT_stylesheet_param_value

Add/replace corresponding XSLT style sheet parameter in the first transform child element of the process
command.

-pu is useful when the parameter value is a relative filename that needs to be converted to an absolute "file:"
URL.

If specified process command has no transform child element but has subProcess child elements, these sub-
processes are searched recursively for a transform child element.

-s|-u process_command_arg ... -s|-u process_command_arg
Pass these arguments to the process command as the values of process variables %0, %1, ..., %9.

If -s (String) is specified, the argument is passed as is.

If -u (URL) is specified, the argument, a file or directory name, is first converted to an URL.

3.1. Convert a DocBook document to multi-page HTML

Convert DocBook document help.xml to multi-page HTML created in directory docs/help/ (the docb.toHTML
process command is found in XXE_install_dir/addon/config/docbook/xslMenu.incl).

$ convertdoc -p toc.section.depth 4 -p chunk.section.depth 2 \
 docb.toHTML help.xml \
 -u docs/help

57

Process commands

../configure/configure.pdf#d0e1
../configure/configure.pdf#d0e1

Figure 5.1. Excerpts of docb.toHTML

 <command name="docb.toHTML">
 <process>
 .
 .
 .
 <parameter name="chunk.first.sections">1</parameter>
 <parameter name="chunk.section.depth">1</parameter>
 <parameter name="toc.section.depth">3</parameter>
 <parameter name="section.autolabel">1</parameter>
 .
 .
 .
 <upload base="%0/">
 <copyFiles files="*.*" toDir="." />
 <copyFiles files="resources/*" toDir="resources" />
 <copyFiles files="images/*" toDir="images" />
 </upload>
 </process>
 </command>

The docb.toHTML process command expects a save directory URL as its %0 argument. This %0 argument is passed
to the process command using "-u docs/help".

3.2. Example 2: Convert a DocBook document to PDF

Convert DocBook document doc.xml to commands.pdf (the docb.toPSFile process command is found in
XXE_install_dir/addon/config/docbook/xslMenu.incl).

$ convertdoc -t fo_docbook.xsl \
 -p toc.section.depth 4 -p callout.graphics 0 -p variablelist.as.blocks 1 \
 docb.toPSFile doc.xml \
 -s pdf -s "|pdf" -s "/book toc" -s 1 -u docs/commands/commands.pdf

Note that an alternate XSLT style sheet, fo_docbook.xsl, is used instead of the stock docbook.xsl which is part
of Norman Walsh's DocBook XSL stylesheets.

58

Process commands

Figure 5.2. docb.toPSFile and excerpts of docb.toPS

 <command name="docb.toPS">
 <process>
 .
 .
 .
 <resources match="(?:.+/)?(.+)\.(png|jpg|jpeg|gif|svg|svgz%1)"
 copyTo="resources" referenceAs="%w/resources/$1.$2" />
 .
 .
 .
 <parameter name="generate.toc">%2</parameter>
 <parameter name="toc.section.depth">3</parameter>
 <parameter name="section.autolabel">%3</parameter>
 .
 .
 .
 <processFO processor="FOP" file="__doc.fo" to="__doc.%0">
 <parameter name="renderer">%0</parameter>
 <parameterGroup name="docb.toPS.FOPParameters" />
 </processFO>
 .
 .
 .
 <upload base="%4">
 <copyFile file="__doc.%0" to="%4" />
 </upload>
 </process>
 </command>

 <command name="docb.toPSFile">
 <process>
 <subProcess name="docb.toPS" parameter='"%0" "%1" "%2" "%3"' />

 <upload base="%4">
 <copyFile file="__doc.%0" to="%4" />
 </upload>
 </process>
 </command>

The docb.toPSFile process command expects 5 arguments:

%0
Specifies the output format: pdf or ps. This argument is passed to the process command using "-s pdf".

%1
Specifies the image formats other than GIF, JPEG and PNG natively supported by the XSL-FO processor for
the chosen output format: "|pdf" or "|eps|ps". This argument is passed to the process command using
"-s "|pdf"".

%2
Specifies the value of XSLT style sheet parameter "generate.toc" (see DocBook XSL Stylesheet Document-
ation). This argument is passed to the process command using "-s "/book toc"".

%3
Specifies the value of XSLT style sheet parameter "section.autolabel" (see DocBook XSL Stylesheet
Documentation). This argument is passed to the process command using "-s 1".

%4
Specifies the output file URL. This argument is passed to the process command using "-u docs/commands/com-
mands.pdf".

59

Process commands

http://docbook.sourceforge.net/release/xsl/current/doc/
http://docbook.sourceforge.net/release/xsl/current/doc/
http://docbook.sourceforge.net/release/xsl/current/doc/
http://docbook.sourceforge.net/release/xsl/current/doc/

3.3. Example 3: Convert a DocBook document to JavaHelp™

Convert DocBook document help.xml to JavaHelp™ created in directory xxe_help/.

$ XXE_CONFIG="file://`pwd`/customize.xxe;+" \
 convertdoc docb.toJavaHelp help.xml -u xxe_help

Note that the DocBook configuration bundled with XXE does not include a process command called docb.toJava-
Help, which allows to convert DocBook to JavaHelp™. That's why this process command has been added in a
separate file called customize.xxe.

60

Process commands

Chapter 6. Commands written in the
Java™ programming language
In the following command reference:

selected node
means

• the explicitly selected single node;

• OR the node (text, comment, processing-instruction or element) containing the caret, if there is no explicit
node selection and if the [implicitNode] option is used in the parameter of the command;

• OR the element containing the textual node (text, comment, processing-instruction) containing the caret,
if there is no explicit node selection and if the [implicitElement] option is used in the parameter of the
command.

selected nodes
means

• the explicitly selected single node or node range;

• OR the node (text, comment, processing-instruction or element) containing the caret, if there is no explicit
node selection and if the [implicitNode] option is used in the parameter of the command;

• OR the element containing the textual node (text, comment, processing-instruction) containing the caret,
if there is no explicit node selection and if the [implicitElement] option is used in the parameter of the
command.

argument node
means

• an empty text node, if the parameter of the command ends with #text;

• OR an automatically generated empty element (see configuration element newElementContent in the section
called “newElementContent” in XMLmind XML Editor - Configuration and Deployment), if the parameter
of the command ends with an element name;

• OR a copy of an element template (see configuration element elementTemplate in the section called
“elementTemplate” in XMLmind XML Editor - Configuration and Deployment), if the parameter of the
command ends with an element template name.

If the argument node is not explicitly specified in the parameter of a command, a dialog box is displayed and
the user will have to interactively specify it.

Note that namespace prefixes cannot be used inside the parameter of a command. Notation
{namespace_URI}local_name must be used instead.

Example 1: {http://www.w3.org/1999/xhtml}p means p in the http://www.w3.org/1999/xhtml namespace.

Example 2: p means p with no namespace.

These non-terminals are sometimes used in the synopsis of a parameter of a command:

implicit_selection -> '[implicitNode]' | '[implicitElement]'

argument_node -> '#text' |
 element_name |
 '#template(' element_name ',' template_name ')'

61

../configure/configure.pdf#newElementContent
../configure/configure.pdf#newElementContent
../configure/configure.pdf#elementTemplate
../configure/configure.pdf#elementTemplate

element_name -> Name | '{' namespace_URI '}' NCName

namespace_uri -> anyURI

In the synopsis of a parameter of a command, S means space.

Note that whitespace is not allowed inside the #template() construct. That is, "#template(figure, image)"
will not work while "#template(figure,image)" will work.

1. alert
Parameter syntax:

message

Displays an information dialog box containing the message specified by command parameter.

This command is useful to debug macro-commands.

Example:

alert Hello, world!

2. add
Parameter syntax:

'before'|'after' [implicit_selection]? S [argument_node]?

Adds argument node [61] before or after selected node [61]. If the grammar forbids to do so, tries the same oper-
ation with the parent of selected node. If the grammar forbids to do so, tries the same operation with the grand-
parent of selected node and so on.

Examples:

add after[implicitElement] para
add before #template(figure,image)

See also addBlockInFlow [63].

3. addAttribute
Parameter syntax:

['[implicitElement]']? ['[empty]'|'[none]'|'[id]']? attribute_name [attribute_value]?

This command is only useful to write macro commands.

Adds attribute attribute_name in explicitly or implicitly selected element if grammar constraining the document
allows to do so.

This command is similar to putAttribute [79] except that it will not replace the attribute if it already exists.

Examples:

addAttribute [implicitElement] cols
addAttribute linkend "chapter 1"
addAttribute [dummy] cols
addAttribute [implicitElement] [dummy] cols

62

Commands written in the Java™ pro-
gramming language

4. addBlockInFlow
Parameter syntax:

'['inline_container_element_name']' S block_element_name

Intelligently adds specified block element after the text node containing the caret or after the explicitly selected
element.

block_element_name
Specifies the element to be inserted.

inline_container_element_name
Specifies an element which can contain a mix of text and inline elements. XHTML example: p. DocBook
example: simpara (but not para which can also contain blocks). This element is needed to teach to the command
which are the inline elements of the document type.

Initially, this command has been designed to deal with XHTML elements such as li, dd, th, td, div, which not
only can contain blocks (p, ul, table, etc), but can also contain a mix of text and inline elements (b, i, em, a, etc).
This kind of content model is called a ``flow''.

XHTML example:

 +--- caret is here
 |
 v
 First| item.
 Second item.

Generic command "add [62] after[implicitElement] pre" gives:

 First item.
 Second item.

<pre>|</pre>

Smarter command "addBlockInFlow [p] pre"1 gives:

 First item.
 <pre>|</pre>

 Second item.

5. beep
No parameter.

Emits an audio beep.

This command is useful to write macro-commands.

6. cancelSelection
No parameter.

1File xhtml.jar contains command xhtml.addBlock. "addBlockInFlow [p] pre" is strictly equivalent to "xhtml.addBlock
pre".

63

Commands written in the Java™ pro-
gramming language

Cancels text or node selection if any.

7. center
No parameter.

Centers node selection, text selection or caret in the document view.

8. checkValidity
No parameter.

Checks the validity of the document and, if validity errors are found, displays a modal dialog box (similar to the
Validity tool) listing them. If there is no validity error, this command just displays an OK message.

This command has been added mainly to make it easier building simple XML editors using XXE components (that
is, not XXE itself).

9. confirm
Parameter syntax:

message

Displays a dialog box containing the message specified by command parameter and requesting the user to confirm
an action. If the user clicks on the OK button, the action is to be performed. If the user clicks on the Cancel button,
the action is to be canceled.

This command is useful when writing interactive macro-commands.

Example:

confirm Convert selected text to computeroutput?

10. convert
Parameter syntax:

[implicit_selection]? [S '#text' | element_name]?

Converts text selection or selected nodes [61] to argument node [61]2.

Unlike replace [81] which creates an empty new element, convert transfers the content of the selection to the new
element which is the result of the conversion.

More precisely, in the case of node selection:

• When a single element is selected, all its children (but not its attributes) are transferred to the result of the con-
version.

Example:

"<simpara>the <emphasis>little</emphasis> girl.</simpara>"

converted to <para> gives

"<para>the <emphasis>little</emphasis> girl.</para>".

2Note that, unlike commands insert [71], replace [81], add [62], a #template() argument is not supported by command convert.

64

Commands written in the Java™ pro-
gramming language

• When several nodes or a single non-element node are selected, all these nodes are given a new parent element
which is the result of the conversion.

Example:

"<simpara>Once upon a time.</simpara>"

plus

"<simpara>the <emphasis>little</emphasis> girl.</simpara>"

can be converted to <blockquote> and that gives us

"<blockquote><simpara>Once upon a time.</simpara><simpara>the <emphasis>little</emphasis>
girl.</simpara></blockquote>".

Examples:

convert emphasis
convert [implicitElement] #text

See also command wrap [96], a variant of command convert [64] which has a different behavior in the case of
single element selection.

11. convertCase
Parameter syntax:

lower | upper | capital

Converts case of text selection or all text contained in selected node [61]. If there is no selection, converts case
from caret position to end of word.

Note that in XXE, a word is ended by a XML space character of by end of textual node whichever comes first.

lower
All characters are converted to lower-case characters.

upper
All characters are converted to upper-case characters.

capital
First character of a word is converted to an upper-case character. The other characters are converted to lower-
case characters.

12. copy
Parameter syntax:

[implicit_selection]?

Copies text selection or selected nodes [61] to system clipboard.

Example:

copy [implicitElement]

13. copyAsInclusion
Parameter syntax:

['[implicitElement]']?

65

Commands written in the Java™ pro-
gramming language

Copies explicitly selected elements (or implicitly selected element if the [implicitElement] option is used) to
system clipboard. Each element copied to the clipboard is marked as being a reference to an element rather than
plain XML data.

Command copyAsInclusion works when one or more elements are selected. A selected element may be a normal
element or a reference to an element. A selected element cannot be contained inside a reference to an element.

Example:

copyAsInclusion [implicitElement]

Commands copyAsInclusion [65] (generally bound to keystroke Shift-Ctrl-C) and pasteInclusionEnabled [78]
(generally bound to keystroke Ctrl-V) are used to compose modular documents, see the corresponding tutorial
section in the User's Guide.

See also copyInclusionEnabled [66], include [70], cutInclusionEnabled [67], pasteInclusionEnabled [78].

Command copyAsInclusion, like command include [70] requires the presence of the XInclude processor. This
processor, available by default, may be disabled by using the inclusionProcessor configuration element. See
the section called “inclusionProcessor” in XMLmind XML Editor - Configuration and Deployment.

14. copyInclusionEnabled
A variant of command copy [65] which preserves references to elements contained in external documents (included
elements). Note that references to elements are preserved only the node selection is used, and not when the text
selection is used.

During its start-up, XXE replaces command copy [65] by command copyInclusionEnabled. Regular command
copy [65] is still available under the name plainCopy.

See also copyAsInclusion [65], include [70], cutInclusionEnabled [67], pasteInclusionEnabled [78].

15. copyChars
Parameter syntax:

[implicit_selection]? ['[separateParagraphs]'|'[separateNodes]']?

Copies characters found in text selection or in selected nodes [61] to system clipboard. Unlike command copy [65],
this command only copies characters.

By default, characters coming from different textual nodes (i.e. text, comment, PI) are simply concatenated . The
following options allow to change this behavior.

[separateParagraphs]
Automatically add a line separator after the characters of each copied ``paragraph''.

However, this automatic detection of paragraphs is easily puzzled by content models such as XHTML li,
div, td (``flows'').

[separateNodes]
Automatically add a line separator after the characters of each copied textual node.

Examples:

copyChars [implicitElement]
copyChars [implicitNode]
copyChars [implicitElement][separateParagraphs]
copyChars [separateNodes]

66

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#inclusionProcessor

16. cut
Parameter syntax:

[implicit_selection]?

Cuts text selection or selected nodes [61] to system clipboard.

Example:

cut [implicitElement]

See also cutInclusionEnabled [67].

17. cutInclusionEnabled
A variant of command cut [67] which preserves references to elements contained in external documents (included
elements). Note that references to elements are preserved only the node selection is used, and not when the text
selection is used.

During its start-up, XXE replaces command cut [67] by command cutInclusionEnabled. Regular command
cut [67] is still available under the name plainCut.

See also copyAsInclusion [65], include [70], copyInclusionEnabled [66], pasteInclusionEnabled [78].

18. declareNamespace
No parameter.

Displays a modal dialog box (similar to the dialog displayed by Tools|Declare Namespace) which allows to declare
new namespaces and/or change the prefixes of existing namespaces.

This command has been added mainly to make it easier building simple XML editors using XXE components (that
is, not XXE itself).

19. delete
Parameter syntax:

['force']? [implicit_selection]?

Deletes text selection or selected nodes [61].

Option force may be used to force the deletion even if the grammar constraining the document forbids to do so.

Example:

delete force[implicitElement]

20. deleteChar
Parameter syntax:

['backwards']?

Deletes character following the caret in the textual node (text, comment, processing-instruction). If there is no
such character, moves caret to following textual node.

If the backwards option is used, deletes character preceding the caret in the textual node. If there is no such char-
acter, moves caret to preceding textual node.

67

Commands written in the Java™ pro-
gramming language

21. deleteSelectionOrDeleteChar
Parameter syntax:

['backwards']?

If there is an explicit node selection, invokes command delete [67] without any parameter, otherwise invokes
command deleteChar [67], passing it its own parameter if any.

This command is intended to be bound to keys Del and BackSpace.

22. deleteSelectionOrJoinOrDeleteChar
Parameter syntax:

['backwards']?

If there is an explicit node selection, invokes command delete [67] without any parameter, otherwise invokes
command joinOrDeleteChar [75], passing it its own parameter if any.

This command is intended to be bound to keys Del and BackSpace.

23. deleteWord
Parameter syntax:

['backwards']?

Deletes the word following the caret in a textual node (text, comment, processing-instruction). If the backwards
option is used, this command deletes the word preceding the caret.

Note that this command also deletes the whitespace after or before the word if needed to. That is, it will attempt
not to leave superfluous whitespace between words.

24. editAttributes
Parameter syntax:

['[implicitElement]']?

Displays a modal dialog box (similar to the Attributes tool) which allows to edit the attributes of selected element.

This command has been added mainly to make it easier building simple XML editors using XXE components (that
is, not XXE itself).

25. editMenu
Parameter syntax:

['select']?

Displays Edit popup menu.

If the select option is used and if there is no text or node selection, the element clicked upon is selected before
the popup menu is displayed.

68

Commands written in the Java™ pro-
gramming language

26. editObject
Same as viewObject [95], except that the helper application is assumed to be an editor instead of a viewer. If this
editor is used to modify the object, then the changes are also automatically applied to the document being edited.

Example: let's suppose an element contains an image encoded using base 64 (data type base64Binary).

1. This command examines the first bytes of the image and, using this signature, determines which helper applic-
ation to use.

2. The helper application has been declared using the Preferences dialog box, Helper Applications section and
happens to be an image editor.

3. It reads the image data from the element, decodes it and saves it to a temporary file.

4. It starts the image editor passing it the file containing the extracted image.

5. After the user quits the image editor, the command detects that the extracted image has been modified and
therefore reloads it in the element.

27. editPITarget
Parameter syntax:

['[implicitNode]']? [S target]?

If target is specified, changes the target of the explicitly or implicitly selected processing instruction to target.

Otherwise displays a dialog box that can be used to interactively specify a new target for the explicitly or implicitly
selected processing instruction.

Examples:

editPITarget [implicitNode]
editPITarget php
editPITarget [implicitNode] php

28. ensureSelectionAt
Parameter syntax:

['selectElement']?

This command is intended to be bound to a mouse input (typically a drag appEvent -- see the section called
“binding” in XMLmind XML Editor - Configuration and Deployment). If the mouse is clicked anywhere inside
the node or text selection, this command does nothing at all. Otherwise this command selects the node clicked
upon.

If the selectElement option is specified and the node clicked upon is not an element (e.g. a text node), then, it is
its parent element which is selected.

29. execute
No parameter.

This command is mainly used to interactively test other commands.

Displays a dialog box containing a text field where the user can enter the name of a command to be executed,
possibly followed by a parameter.

69

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#binding
../configure/configure.pdf#binding

Returns result of executed command if any.

30. extractobject
Parameter:

[attribute_name|'-']? S ['anyURI'|'hexBinary'|'base64Binary'|'XML'|'-']?
 S [file_name]?

This command is the opposite of setObject [92]. It can be used to save to disk the object (generally an image)
represented by explicitly selected element.

attribute_name
This parameter specifies the name of the attribute containing the URL of the object or directly containing the
object data encoded in 'hexBinary' or in 'base64Binary'.

If this parameter is absent (or is '-'), it is the selected element itself which contains the URL of the object or
which directly contains the object data in 'hexBinary', 'base64Binary' or XML formats.

anyURI, hexBinary, base64Binary, XML
Specifies how the object is ``stored'' in the element or in the attribute. Data type 'XML' is only allowed for ele-
ments (typically an svg:svg element).

If this parameter is absent (or is '-'), the data type is found using the grammar of the document. Of course,
this cannot be guessed for documents conforming to a DTD (too weakly typed) and for invalid documents
conforming to a W3C XML or RELAX NG schema.

file_name
Specifies the name of the file created by this command.

'%T' specifies a temporary file name automatically generated by this command.

If specified file name ends with '.%X', this string is replaced by a suffix corresponding to the format of the
object. For example, this command can detect that the data compressed with gzip before being encoded in
base64Binary is in fact GIF image data and in such case, it will replace '.%X' by '.gif'.

If this parameter is absent, a chooser dialog box is displayed to let the user specify where the object file is to
be created.

This command returns the name of the file it has created.

Examples:

extractObject
extractObject fileref anyURI
extractObject -
extractObject data - /tmp/extracted.%X
extractObject - XML %T

31. include
Parameter syntax:

'into' | ('replace'|'before'|'after' [implicit_selection]?)
['[useEntity]'|'[useXInclude]'|'[chooseBest]']? [S url]?

into
Pastes a reference to an element into element containing caret, at caret position.

replace
Pastes a reference to an element replacing text selection or selected nodes [61]..

70

Commands written in the Java™ pro-
gramming language

before or after
Pastes a reference to an element before of after selected nodes [61].

URL specifies which document (that is, which root element) to reference. An element deep inside the document
may be referenced by adding an XPointer fragment to the URL.

A relative URL is relative to the location of the document being edited.

If URL is not specified, a specialized dialog box is displayed allowing the user to specify it, possibly with an
XPointer fragment.

The mechanism used to paste a reference is normally specified by the Preferences dialog box in the Edit tab. Options
useEntity, useXInclude, chooseBest may be used to override the user preferences specified there:

useEntity
Always use the reference to an external entity mecanism (for example, to ease the interchange of the documents
you create with XXE).

useXInclude
Always use the XInclude mechanism. See http://www.w3.org/TR/xinclude/.

chooseBest
Use the reference to an external entity mecanism when possible (example: the referencing document has a
<!DOCTYPE> and no XPointer is being used) and the XInclude mechanism otherwise (example: the referencing
document does not have <!DOCTYPE> or a XPointer is needed).

Examples:

include into
include after[implicitElement]
include after[implicitElement][useEntity]
include replace[useXInclude] ../common/Copyright.html
include before http://www.numbers.com/england/numbers.html#vat

Commands copyAsInclusion [65] (generally bound to keystroke Shift-Ctrl-C) and pasteInclusionEnabled [78]
(generally bound to keystroke Ctrl-V) are used to compose modular documents, see the corresponding tutorial
section in the User's Guide.

Command include [70] can be used to implement an alternative user interface for composing modular documents
and may be also useful in macro-commands.

See also copyAsInclusion [65], copyInclusionEnabled [66], cutInclusionEnabled [67], pasteInclusionEnabled [78].

Command copyAsInclusion [65], like command include requires the presence of the XInclude processor. This
processor, available by default, may be disabled by using the inclusionProcessor configuration element. See
the section called “inclusionProcessor” in XMLmind XML Editor - Configuration and Deployment.

This command works only in XMLmind XML Editor Professional Edition.

32. insert
Parameter syntax:

'into' | ('before'|'after' [implicit_selection]?) S [argument_node]?

If the into option is used, inserts argument node [61] into:

• explicitly selected empty element

• OR element containing caret, at caret position.

If the before or after options are used, inserts argument node [61] before or after selected nodes [61].

71

Commands written in the Java™ pro-
gramming language

http://www.w3.org/TR/xinclude/
../configure/configure.pdf#inclusionProcessor

Examples:

insert into
insert into ulink
insert before[implicitElement]
insert after[implicitElement] #template(table,simple)

33. insertCharByName
Parameter syntax:

['[DocBookIfNone]'|'[DocBook]']? [S entity_name]?

Inserts at caret position a character specified using its entity name. If the entity name is not specified, this command
displays a dialog box (supporting auto-completion) which allows to choose it interactively.

Important

This command does not insert a reference to a character entity, it inserts a character. It must be considered
as an alternative to using the Characters tool of XMLmind XML Editor.

Unless the [DocBookIfNone] option or the [DocBook] option is specified, this command cannot be executed if
the document being edited has no DTD defining character entities.

If the [DocBookIfNone] option is specified, the dialog box lists the names of the character entities defined in the
DocBook 4.2 DTD, but only if the DTD/schema of the document being edited does not define its own character
entities.

If the [DocBook] option is specified, the dialog box lists the names of the character entities defined in the DocBook
4.2 DTD, whatever is the DTD/schema of the document being edited.

Examples:

insertCharByName
insertCharByName Beta
insertCharByName [DocBookIfNone]
insertCharByName [DocBookIfNone] mdash
insertCharByName [DocBook]
insertCharByName [DocBook] lambda

34. insertCharSequence
Parameter syntax:

first_character S second_character [S third_character]?

Makes it easy and intuitive inserting special characters by typing the same ordinary character two or three times
in a row.

The first time first_character is typed, as expected, first_character is inserted at caret position. Example:
the first time, you type '-' (an ordinary dash), you insert '-'.

The second time first_character is typed, previously inserted first_character is replaced by second_char-
acter. Example: the second time you type '-' , you insert a – special character.

The third time first_character is typed, previously inserted second_character is replaced by third_character.
Example: the third time you type '-' , you insert a — special character. This, of course, requires
third_character to have been specified, which is not mandatory.

Important

This command is useless unless bound to the action of typing first_character.

72

Commands written in the Java™ pro-
gramming language

Characters may be specified literally, or by using their character entity name as defined in the DocBook DTD
(whatever the schema to which the document is conforming), or by using the Unicode value of the character rep-
resented in hexadecimal (with a "0x" prefix), octal (with a "0" prefix) or decimal. See the examples below.

Examples (in the examples below, hexadecimal number 0x00ab is used to represent the French opening guillemet
"«" and octal number 0273 is used to represent the French closing guillemet "»"):

<binding>
 <charTyped char="-" />
 <command name="insertCharSequence" parameter="- ndash mdash" />
</binding>

<binding>
 <charTyped char="<" />
 <command name="insertCharSequence" parameter="< 0x00ab" />
</binding>

<binding>
 <charTyped char=">" />
 <command name="insertCharSequence" parameter="> 0273" />
</binding>

35. insertControlChar
Parameter syntax:

control_character

Inserts specified control character (newline, tab, etc) at caret position. The control character can be specified using
its Java™ notation, for example: "\n" or "\u000a" for the newline character.

This command will not work if the view of the element in which the control character is to be inserted rejects such
characters.

• In the tree view, only views of elements having xml:space=preserve accept control characters.

• In the styled view, only views of elements having CSS property "white-space: pre;" accept control characters.

Note that pasting control characters using the paste [77] command always work.

36. insertControlCharOrSplit
Parameter syntax:

control_character

If caret is inside a paragraph-like element at any nesting level, splits this paragraph-like element in two parts at
caret position.

Otherwise works like insertControlChar [73].

A paragraph-like element is any type of element having no required attributes and containing text and possibly
child elements but in any order and in any number.

37. insertNode
Parameter syntax:

'commentInto'|'piInto'|'textInto' |
('commentBefore'|'piBefore'|'textBefore'|'sameElementBefore'|
 'commentAfter'|'piAfter'|'textAfter'|'sameElementAfter' [implicit_selection]?)
[pi_target]?

73

Commands written in the Java™ pro-
gramming language

If option ends with Into, inserts node specified by beginning of option (comment, pi, text, sameElement) into:

• explicitly selected empty element

• OR element containing caret, at caret position.

If option ends with Before or After, inserts node specified by beginning of option (comment, pi, text,
sameElement) before or after selected node [61].

pi_target may be used to specify the target of the processing instruction to be inserted (options piInto, piBefore
or piAfter). By default, this target is placeholder string "target", which can be modified using command edit-
PITarget [69].

pi_target is ignored for node types other than processing instructions.

Examples:

insertNode textBefore[implicitElement]
insertNode textInto
insertNode sameElementAfter[implicitElement]
insertNode piInto
insertNode piAfter[implicitNode] php

38. insertSpecialChars
Parameter syntax:

[hexadecimal, octal or decimal code of first character displayed by a 256-character palette]?

Inserts one or more ``special characters'' at caret position. These characters are selected using a modal dialog box
which is similar to the Characters tool of XMLmind XML Editor.

If a Unicode code has been specified in the parameter, the dialog box displays a 256-character palette starting at
this character; otherwise the dialog box displays the last character palette chosen by the user.

Examples: 9984 is first Dingbats character in decimal notation, 023400 is same character in octal notation (must
start with "0"), 0x2700 is same character in hexadecimal notation (must start with "0x").

insertSpecialChars
insertSpecialChars 0x2700
insertSpecialChars 023400
insertSpecialChars 9984

This command has been added mainly to allow simple XML editors built using XXE components (that is, not
XXE itself) to have the same facilities than XXE.

39. insertString
Parameter syntax:

string

Inserts specified string at caret position.

40. join
Parameter syntax:

['after']? ['[implicitElement]']?

Joins explicitly or implicitly selected element to its preceding sibling, an element of same type. This gives a single
element containing the child nodes of the two joined elements.

74

Commands written in the Java™ pro-
gramming language

If the after option is used, joins explicitly or implicitly selected element to its following sibling, an element of
same type.

This command is the inverse command of split [93].

Examples:

join after
join [implicitElement]
join after[implicitElement]

41. joinOrDeleteChar
Parameter syntax:

['backwards']?

If caret is inside a paragraph-like element at any nesting level and if caret is located after the last character of this
element, joins this paragraph-like element to the following paragraph-like element of the same type.

If backwards option is used, if caret is inside a paragraph-like element at any nesting level and if caret is located
before the first character of this element, joins this paragraph-like element to the preceding paragraph-like element
of the same type

Otherwise works like deleteChar [67].

A paragraph-like element is any type of element having no required attributes and containing text and possibly
child elements but in any order and in any number.

42. listBindings
No parameter.

Displays a dialog box (similar to the dialog displayed by Help|Mouse and Key Bindings) containing the mouse
and key bindings that can be used in current document view.

This command has been added mainly to make it easier building simple XML editors using XXE components (that
is, not XXE itself).

43. makeParagraphs
Parameter syntax:

['[blocks]']? ['[systemSelection]']? element_name

This command just returns a string and therefore, is useful only inside a macro-command [15].

Read text lines from the clipboard. For each text line, creates an element having specified name containing the
text line. Returns an XML string containing the list of elements.

Example, if element_name is para and if the clipboard contains:

word1, word1, word1.
word2, word2, word2.

word3, word3, word3.
word4, word4, word4.

then the command returns:

<?xml version="1.0"?>
<ns:clipboard

75

Commands written in the Java™ pro-
gramming language

xmlns:ns="http://www.xmlmind.com/xmleditor/namespace/clipboard"
><para
>word1, word1, word1.</para
><para
>word2, word2, word2.</para
><para
>word3, word3, word3.</para
><para
>word4, word4, word4.</para
></ns:clipboard
>

systemSelection
Read text lines from the system selection (only on Unix/X11) rather than from the clipboard.

blocks
Forces the command to convert multiple text lines separated by open lines to a single element. Without this
option, each non-empty line is converted to an element.

Example, when this option is used, if element_name is para and if the clipboard contains:

word1, word1, word1.
word2, word2, word2.

word3, word3, word3.
word4, word4, word4.

then the command returns:

<?xml version="1.0"?>
<ns:clipboard
xmlns:ns="http://www.xmlmind.com/xmleditor/namespace/clipboard"
><para
>word1, word1, word1. word2, word2, word2.</para
><para
>word3, word3, word3. word4, word4, word4.</para
></ns:clipboard
>

Syntax examples:

makeParagraphs p
makeParagraphs [blocks] simpara
makeParagraphs [blocks][systemSelection] {http://www.foo.com/schema/bar}paragraph

DocBook example:

 <command name="insertAfterAsParagraphs">
 <macro>
 <sequence>
 <command name="makeParagraphs" parameter="%0" />
 <command name="paste" parameter="after[implicitElement] %_" />
 </sequence>
 </macro>
 </command>

 <binding>
 <keyPressed code="ESCAPE" />
 <charTyped char="w" />
 <command name="insertAfterAsParagraphs" parameter="para" />
 </binding>

44. moveDotTo
Parameter syntax:

76

Commands written in the Java™ pro-
gramming language

'previousChar'|'nextChar'|'previousWord'|'nextWord'|
'previousTextNode'|'nextTextNode'|'previousElement'|
'nextElement'|'textNodeBegin'|'textNodeEnd'|
'elementBegin'|'elementEnd'|'documentBegin'|
'documentEnd'|'lineBegin'|'lineEnd'|'previousLine'|
'nextLine'|'wordBegin'|'wordEnd'

Moves caret to specified location.

45. moveElement
Parameter syntax:

'up'|'down' ['[implicitElement]']?

Swaps selected element with its preceding sibling node (up option) or with its following sibling node (down option).

Examples:

moveElement down[implicitElement]
moveElement up

46. paste
Parameter syntax:

'into'|'toOrInto' | ('to'|'before'|'after' [implicit_selection]?)
([S string]? | ['[systemSelection]']?)

into
Pastes the content of system clipboard into element containing caret, at caret position.

toOrInto
Pastes the content of system clipboard replacing text selection or selected nodes [61].

OR if there is no explicit selection, pastes the content of system clipboard into element containing caret, at
caret position.

to
Pastes the content of system clipboard replacing text selection or selected nodes [61].

before or after
Pastes the content of system clipboard before of after selected nodes [61].

The system clipboard may contain one or several nodes or just plain text. The content of system clipboard, is parsed
as XML if it begins with "<?xml" otherwise it is considered to be plain text.

If several nodes are to be pasted, they must be wrapped in a {http://www.xmlmind.com/xmledit-
or/namespace/clipboard}clipboard element. See last example below.

If string is specified in the command parameter, this string is used instead of the content of system clipboard.

If the [systemSelection] option is used, the content of system selection is used instead of the content of system
clipboard.

Examples:

paste toOrInto
paste toOrInto[systemSelection]
paste before[implicitElement]
paste before[implicitElement][systemSelection]
paste after <?xml version='1.0'?><p>A paragraph.</p>

77

Commands written in the Java™ pro-
gramming language

Whitespace and newlines have been added to improve readability.
In reality, they are not allowed here.

paste into <?xml version="1.0"?>
 <ns:clipboard xmlns:ns="http://www.xmlmind.com/xmleditor/namespace/clipboard">
 A text line containing bold and <i>italic</i> text.
 </ns:clipboard>

See also pasteInclusionEnabled [78].

47. pasteInclusionEnabled
A variant of command paste [77] which preserves references to elements contained in external documents (included
elements). Note that references to elements are preserved only the node selection is used, and not when the text
selection is used.

During its start-up, XXE replaces command paste [77] by command pasteInclusionEnabled. Regular command
paste [77] is still available under the name plainPaste.

See also copyAsInclusion [65], include [70], copyInclusionEnabled [66], cutInclusionEnabled [67].

48. pasteSystemSelection
No parameter.

Equivalent to "paste into[systemSelection]" after moving the caret to the text location clicked upon.

49. pick
Parameter syntax:

title S 'false' [S item]+
OR title S 'true' [S label S item]+
OR title S 'true'|'false' S '@' S URL_or_file_name S encoding|'default'

This command is only useful to write interactive macro commands.

Displays a dialog box with title title containing a list of strings. This dialog box supports autocompletion. This
implies that the items of the pick list are automatically sorted by their labels.

If second field in the command parameter is false, the list of strings displayed by the dialog box is [item]+. That
is, item is both a possible choice and a label for this possible choice.

If second field in the command parameter is true, the list of strings displayed by the dialog box is [label]+ but
when the user chooses a label, it is the item which follows it in the command parameter which is returned by this
command.

If the third field is character '@', the labels and/or the items are loaded from text file specified by URL_or_file_name.
This file contains labels and/or items separated by newlines ('\n', '\r', or '\r\n'). Open lines are ignored.

The encoding of this text file is specified by encoding. If encoding is specified as default, the encoding of the
text file is the native encoding of the platform, for example Windows-1252 on an US Windows machine.

Examples:

pick 'Pick a number' false 1 2 3 4 5
pick "Pick a number" true "One" 1 "Two" 2 "Three" 3 "Four" 4 "Five" 5
pick 'Pick a number' false @ "C:\temp\number_list1.txt" default
pick 'Pick a number' true @ file:///tmp/number_list2.txt ISO-8859-1

78

Commands written in the Java™ pro-
gramming language

50. prompt
Parameter syntax:

title message [suggested_value]?

This command is only useful to write interactive macro commands.

Displays a dialog box with title title asking the user to answer question message by typing a string in a text field.
Returns typed string.

If suggested_value is specified, the text field is initialized with this value.

Examples:

prompt Question "Number of columns:"
prompt Question "Text align:" left

51. putAttribute
Parameter syntax:

['[implicitElement]']? ['[empty]'|'[none]'|'[id]']? attribute_name [attribute_value]?

This command is only useful to write macro commands.

Adds or replaces attribute attribute_name in explicitly or implicitly selected element if grammar constraining
the document allows to do so.

• If attribute value attribute_value is specified then this value is used as the new value of attribute attrib-
ute_name (this value is checked for validity),

• otherwise

• If [empty] has been specified, sets the attribute to the empty string (without checking if it is a valid value).

• If [dummy] has been specified, sets the attribute to string "???" (without checking if it is a valid value).

• If [id] has been specified, sets the attribute to an automatically generated id (without checking if it is a valid
value).

• otherwise, a dialog box is displayed to let user interactively specify a value (this value is checked for validity).

Examples:

putAttribute [implicitElement] cols
putAttribute linkend "chapter 1"
putAttribute [dummy] cols
putAttribute [implicitElement] [dummy] cols

52. recordMacro
Parameter syntax:

'start'|'stop'|'toggle'|'cancel'|'view'|'get'|'replay'

This command allows to record a sequence of commands and to replay the recorded sequence at will. Used in
conjunction with commands such as search [83] and xpathSearch [97], this command may been seen as an advanced,
versatile, yet easy to use, search/replace facility. See also command confirm [64].

start
Starts recording a sequence of commands.

79

Commands written in the Java™ pro-
gramming language

stop
Stops recording the sequence of commands.

toggle
If the recording of a sequence of commands has been started, stops this recording. Otherwise, starts recording
a sequence of commands.

cancel
Cancels the recording of a sequence of commands.

view
Displays a dialog box containing last recorded macro in XML form. Very handy to paste it in an XXE config-
uration file (see XMLmind XML Editor - Configuration and Deployment).

get
Returns a string containing last recorded macro in XML form. This option is useful to write higher-level
commands and actions.

replay
Replays recorded sequence of commands.

At most 20 commands can be recorded. Typing contiguous characters, no matter how many, counts as a single
command (insertString [74]).

Attempting to record the following commands will automatically cause macro recording to be canceled:

• any command which has been designed to be bound to a mouse click (e.g. selectAt [84]),

• undo [95], redo [80], repeat [81],

• any command which fails (example: searching a string and this string is not found),

• any command which cannot be executed given current editing context (most obvious example: "recordMacro
replay"; other example: pasting some text to a place where the schema forbids to do so).

Recording interactive command such as "insert [71] after" works as expected: it is the command along with the
element interactively chosen by the user which is recorded, and not the interactive invocation of "insert after"
(i.e. which displays a dialog box).

Recording command execute [69] is fully supported and works as expected: it is the command executed by execute
which is recorded, and not execute itself.

Examples:

recordMacro start
recordMacro stop
recordMacro replay

This command works only in XMLmind XML Editor Professional Edition.

53. redo
No parameter.

Redo last undone command.

54. refresh
Parameter syntax:

'refresh'|'rebuild' ['[implicitNode]'|'[implicitElement]'|'[implicitDocument]']?

80

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#d0e1

Refreshes or rebuilds selected node [61].

Refresh means: relayout and repaint the view of the selected node.

Rebuild means: recreate the view of the selected node.

If the implicitDocument option is used and if there is no explicit node selection, the entire document is refreshed
or rebuilt.

Examples:

refresh refresh
refresh rebuild[implicitDocument]

55. removeAttribute
Parameter syntax:

['[force]']? ['[implicitElement]']? attribute_name

This command is only useful to write macro commands.

Removes attribute attribute_name in explicitly or implicitly selected element if the grammar constraining the
document allows to do so.

Option [force] may be used to remove specified attribute even if the grammar constraining the document does
not allow to do so.

Examples:

removeAttribute [implicitElement] cols
removeAttribute role
removeAttribute [force] linkend
removeAttribute [force] [implicitElement] linkend

56. repeat
Parameter syntax:

[index_in_command_history]?

Repeats last repeatable command.

Currently only commands requiring the user to interactively specify an argument are repeatable.

Returns result of repeated command if any.

57. replace
Parameter syntax:

[implicit_selection]? [S argument_node]?

Replaces selected nodes [61] with argument node [61].

Examples:

replace [implicitElement]
replace {http://www.xmlmind.com/xmleditor/schema/configuration}newElementTemplate

81

Commands written in the Java™ pro-
gramming language

58. run
Parameter syntax:

[['[Windows]'|'[Unix]'|'[GenericUnix]'|'[Mac]']? command_line]?

Executes external command line specified by its parameter. If no parameter is specified, prompts user to input a
command line.

Returns output of executed command line (that is, what is printed on stdout in C/Unix parlance).

The command line is executed using /bin/sh on Unix and using cmd.exe on Windows (this means that run will
not work on Windows 9x or Windows ME).

Specified command line may reference helper applications [48] declared using the Preferences dialog box, Helper
Applications section.

Command line may contain variables which are substituted with their values prior to command execution:

%F
File name of a temporary file containing a copy of the selection. This temporary file is created in the same
directory than the directory containing the document being edited.

• If a single element is selected, this element is saved in a DTD-less XML file, having a .xml extension, en-
coded using UTF-8.

• If several nodes are selected, the parent element of these nodes are saved in a DTD-less XML file, having
a .xml extension, encoded using UTF-8.

• If there is a text selection or a single textual node is selected, the selected text is saved in a text file, having
a .txt extension, encoded using the native encoding of the platform.

• If there is no explicit selection, the whole document is saved in a XML file, possibly having a DTD or
XML-Schema, having same extension than document being edited, encoded using UTF-8.

%f
Same as %F except that it is a file: URL.

%d
URL of the document being edited.

%D
File name of the document being edited.

If this variable needs to be sustituted and if document being edited is not stored on the local file system (ex-
ample: http://dav.acme.com/docs/mydoc.xml), command run cannot be executed.

The "%" character can be escaped using "%%". The above variables can be specified as %{F}, %{f}, %{d}, %{D} if
it helps.

If the platform option (that is, [Windows], [Unix], [GenericUnix] or [Mac]) is not specified, the command line
is executed whatever is the platform running XXE.

If the platform option is specified, the command line is executed only if the platform running XXE matches the
value of this options:

[Windows]
Any version of Windows.

[Mac]
Mac OS X.

82

Commands written in the Java™ pro-
gramming language

[GenericUnix]
A Unix which is not Mac OS X (Linux, Solaris, etc).

[Unix]
[GenericUnix] or [Mac].

Examples:

run date
run expand %F
run emacs "%D"
run helper(text/plain) "%D"
run "C:\Program Files\Info ZIP\zip.exe" -r all.zip "C:\temp\misc"

<choice>
 <command name="run" parameter='[Windows] notepad "%D"' />
 <command name="run" parameter='[Unix] emacs "%D"' />
</choice>

59. search
Parameter syntax:

['[' 'i'? 'w'? 'r'? 's'? 'b'? 'x'? ']' S]? searched_text

Searches specified text from caret position to end of document, or if the b (Backwards) option has been specified,
from caret position to beginning of document.

If searched text is not specified, displays a dialog box allowing to specify this text and any of the options.

Searched string, if specified, does not need to be quoted, even if it includes white space. However, beginning and
trailing whitespace is removed from searched string before the command is executed. Therefore, the only way to
search text starting and/or ending with whitespace is to quote (using single quotes or double quotes) the searched
string.

Options (order of option letters is not important):

i (Ignore case)
The search is case-insensitive. Example: "foo" matches both "foo" and "Foo".

w (Whole word)
The found string must be a word, that is, the found string must be surrounded by white spaces. Example: "foo"
matches "foo" but not "foobar".

r (Regular expression)
The searched string must be a valid regular expression. A regular expression is specified in a syntax similar
to that used by Perl. See also http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html.

s (Smart mode)
Searching string "Hello world!" in an XML document is not as obvious as it seems: for example, is "Hello
world!" with word "Hello" contained in an emphasis element followed by text node " world!" supposed to
be found by XXE?

• If this option is selected, the answer is yes. "Hello world!" is found within "Hello world!"
but not within "<p>Hello </p><p>world!</p>".

This mode uses the grammar constraining current document to recognize logically contiguous text across
different types of elements.

• If this option is not selected, the answer is no. Each text node is separated from other text nodes whatever
the type of the element containing it.

83

Commands written in the Java™ pro-
gramming language

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

b (Backwards)
The document is searched from caret position to the end of the document.

x (eXtend selection)
Extends text selection from caret position to end of found text. If the b (Backwards) option has also been
specified, extends text selection from caret position to beginning of found text.

This option is very useful when command search is used in macro-commands.

Examples:

search
search [xwi]
search XMLmind XML Editor
search [r] X\w+d
search "XMLmind "
search ' XML'

See also searchReplace [84] and xpathSearch [97].

60. searchReplace
Parameter syntax:

[search|searchBackwards|replace|replaceBackwards|
 findAgain|findAgainBackwards]?

Displays a modal dialog box which allows to search and replace text in the document being edited (same as the
Search tool in XMLmind XML Editor).

search
Displays the dialog box configured to be used for a text search from caret position to end of document.

searchBackwards
Displays the dialog box configured to be used for a text search from caret position to beginning of document.

replace
Displays the dialog box configured to be used for a search/replace operation from caret position to end of
document.

replaceBackwards
Displays the dialog box configured to be used for a search/replace operation from caret position to beginning
of document.

findAgain
The dialog box is not displayed. Repeats last text search from caret position to end of document.

findAgainBackwards
The dialog box is not displayed. Repeats last text search from caret position to beginning of document.

Without a parameter, the state of the dialog box is not changed. That is, the displayed dialog box is configured as
it was the last time it has been used.

This command has been added mainly to allow simple XML editors built using XXE components (that is, not
XXE itself) to have the same facilities than XXE.

61. selectAt
Parameter syntax:

['begin'|'extend'|'end']?

84

Commands written in the Java™ pro-
gramming language

begin
Cancels text or node selection if any. Moves caret to character clicked upon, if such character exists.

extend
If caret was moved by previous "selectAt begin", extends text selection to the character clicked upon.

end
If caret was moved by previous "selectAt begin", does nothing, otherwise selects node clicked upon.

Parameter is absent
Cancels text or node selection if any. Creates a new text selection:

• The beginning of the new text selection is the beginning of old text selection if any or caret position otherwise.

• The end of the new text selection is the character clicked upon.

62. selectBlockAtY
Parameter syntax:

['orParent']?

``Selects the block'' (paragraph, row, row group or table) on which the user has clicked. All graphical objects inter-
secting the Y coordinate of the mouse click are used to determine which block to select. The X coordinate of the
mouse click is ignored.

This command can only be used in a styled view because a tree view does not contain ``blocks''.

If the orParent option is specified, clicking again, exactly on the same place (i.e. without moving the mouse at
all), selects the parent of the element selected by the previous invocation of this command.

See also selectNodeAt [91].

63. selectById
Parameter syntax:

('id' | 'reference' | 'nextReference' |
'previousReference' | 'swapIdAndReference') S [id]?

id
An element with an IDREF or IDREFS attribute must be implicitly or explicitly selected. Scrolls to and selects
the element having this ID (if found).

reference
An element with an ID attribute must be implicitly or explicitly selected. Scrolls to and selects first element
referencing this ID (if found).

nextReference
An element with an IDREF or IDREFS attribute must be implicitly or explicitly selected. Scrolls to and selects
following element referencing this ID (if found).

previousReference
An element with an IDREF or IDREFS attribute must be implicitly or explicitly selected. Scrolls to and selects
preceding element referencing this ID (if found).

swapIdAndReference
An element with an ID, IDREF or IDREFS attribute must be implicitly or explicitly selected. Scrolls to and
selects opposite link end (if found).

85

Commands written in the Java™ pro-
gramming language

Notes:

• An ID argument may be specified with options id and reference (but not with options nextReference, pre-
viousReference and swapIdAndReference). When this ID argument is specified (non interactive command
typically used in a macro), there is no need for an element with an ID, IDREF or IDREFS attribute to be implicitly
or explicitly selected.

• When implicitly or explicitly selected element has an IDREFS attribute containing several IDs, user is prompted
to choose on of these IDs.

Examples:

selectById swapIdAndReference
selectById id introduction

64. selectFile
Parameter syntax:

[
 ['[' dialog_box_title ']']?

 'openFile'|'saveFile'|'openDirectory'|'saveDirectory'|
 'openFileURL'|'saveFileURL'|'openDirectoryURL'|'saveDirectoryURL'

 [URL_template]?

]?

This command is only useful to write interactive macro commands.

Displays a file chooser dialog box that may be used to select a file or directory, local or remote, existing or to be
created, depending on the first keyword in the parameter. By default, this file selection mode is openFile which
specifies a local, existing, file.

When parameter is openFile, saveFile, openDirectory or saveDirectory, the standard file chooser dialog box
is displayed and the command returns a file or directory name.

When parameter is openFileURL, saveFileURL, openDirectoryURL or saveDirectoryURL, an ``advanced'' file
chooser dialog box is displayed and the command returns a file or directory URL.

The optional URL_template parameter is used to specify the directory initially displayed by the file chooser dialog
box. When saveXXX options are used, this parameter is used, not only to specify initial directory, but also to suggest
a basename for the save file.

The optional dialog_box_title parameter may be used to specify a title for the dialog box. When this parameter
is absent, the dialog box will have a default title which depends on the specified action.

See also command selectConvertedFile [86], which has been designed to be used in Convert macro-commands
such as docb.convertToHTML1, xhtml.convertToPS, etc.

Examples:

selectFile
selectFile [Save Configuration]saveFile
selectFile [Choose An Icon] openFileURL http://www.acme.com/doc/images/logo.gif
selectFile saveFileURL file:///tmp/article.pdf

65. selectConvertedFile
Variant of command selectFile [86] specially designed to be used in Convert macro-commands such as
docb.convertToHTML1, xhtml.convertToPS, etc.

86

Commands written in the Java™ pro-
gramming language

Unlike command selectFile, this command is aware of the document being converted, which allows it to suggest
smarter save file names/file URLs.

Moreover, this command supports two more ``modes'':

saveFileWithExtension=file extension, saveFileURLWithExtension=file extension
Identical to mode saveFile [saveFileURL], except that, when no URL_template has been specified,

• saveFile suggests the same file name/file URL as the document being converted, but with an "out" exten-
sion.

• saveFileWithExtension=foo suggests the same file name/file URL as the document being converted but
with a "foo" extension.

File extension must not be empty, must not start with a '.' and must not contain spaces.

Examples:

selectConvertedFile
selectConvertedFile saveFile
selectConvertedFile [Convert to WordML]saveFileWithExtension=word.xml
selectConvertedFile [Choose An Icon] openFileURL http://www.acme.com/doc/images/logo.gif
selectConvertedFile saveFileURLWithExtension=ps file:///tmp/article.pdf

Note that when an URL_template has been specified, this URL_template is always suggested as is by the dialog
box. For example, "selectConvertedFile saveFileURLWithExtension=ps file:///tmp/article.pdf" will
suggest "file:///tmp/article.pdf" as a save file URL, and not "file:///tmp/article.ps".

66. selectPrinter
Parameter syntax:

[format [printer_name]?]?

This command is only useful to write interactive macro commands.

Displays a printer chooser dialog box that may be used to select a printer and configure the print job. This command
does not work on a Mac with a Java™ 1.4 runtime.

format
Mime type of the document to be printed. Example: application/vnd.hp-PC.

The following short names are also supported: ps (application/postscript), pdf (application/pdf), pcl
(application/vnd.hp-PCL).

printer_name
Name of a printer supporting format format. If this name is not specified, the dialog box displays the last se-
lected printer supporting this format.

Without a parameter, the dialog box displays last selected PostScript® printer (that is, default parameter is "ps").

Examples:

selectPrinter
selectPrinter ps
selectPrinter "text/plain; charset=UTF-8"
selectPrinter application/postscript lp23

Command selectPrinter returns a string using this syntax: printer_name '->' format. Example: "My Col-
or Printer->application/postscript".

87

Commands written in the Java™ pro-
gramming language

67. selectNode
Parameter syntax:

'parent' | 'child' |
'firstChild' | 'lastChild' | 'children' |
'previousSibling' | 'nextSibling' |
'firstSibling' | 'lastSibling' |
'ancestor' | 'ancestorOrSelf' | 'self' |
'descendant' | 'descendantOrSelf' |
'preceding' | 'precedingOrSelf' |
'following' | 'followingOrSelf' |
'extendToPreviousSibling' | 'extendToNextSibling'
['OrNone' | 'OrNode' | 'OrElement']?
[implicit_selection]?
S [element_name | '#text' | '#comment' | '#processing-instruction']*

A number of keystrokes are bound to this command. This command is also needed to write non-trivial macro-
commands.

parent
Selects parent of selected node [61].

child
Selects previously selected child of selected node [61].

If no child of selected node was previously selected, selects first child node of selected node [61].

firstChild
Selects first child node of selected node [61].

lastChild
Selects last child node of selected node [61].

children
Selects all the child nodes of selected node [61].

previousSibling
Selects preceding sibling of selected node [61].

nextSibling
Selects following sibling of selected node [61].

firstSibling
Selects first preceding sibling of selected node [61].

lastSibling
Selects last following sibling of selected node [61].

self
Selects selected node [61] if selected node is an element, or parent element of selected node if selected node
is a text. This option is mainly useful to test the name of implicitly or explicitly selected element.

ancestorOrSelf
Selects ancestor of selected node [61], starting at selected node [61]. Searched ancestor is specified using a
list of names. See below [90].

More precisely, lookup starts from selected node, if selected node is an element, or from parent element of
selected node if selected node is a text, comment or processing-instruction node.

88

Commands written in the Java™ pro-
gramming language

ancestor
Selects ancestor of selected node [61], starting at parent of selected node [61]. Searched ancestor is specified
using a list of names. See below [90].

More precisely, lookup starts from parent of selected node, if selected node is an element, or from grand-parent
element of selected node if selected node is a text, comment or processing-instruction node.

Note that selectNode.ancestor* selects all the ancestors one after the other until it reaches the found ancestor.
This is equivalent to interactively typing Ctrl-Up until the desired ancestor is selected. The idea behind that
is to be able to use selectNode ancestor followed by selectNode child or selectNode descendant*
in the same macro-command.

descendant
Selects previously selected descendant of selected node [61]. Searched descendant is specified using a list of
element names or node types. See below [90].

If no descendants of selected node were previously selected, searches a descendant node along the first child
axis.

descendantOrSelf
Selects previously selected descendant of selected node [61]. Searched descendant is specified using a list of
element names or node types. See below [90].

If no descendants of selected node were previously selected, searches a descendant node along the first child
axis.

Selected node itself can be explicitly selected if it corresponds to searched node.

precedingOrSelf
Selects preceding sibling of selected node [61], starting at selected node [61]. Searched sibling is specified
using a list of names. See below [90].

preceding
Selects preceding sibling of selected node [61], starting at sibling of selected node [61]. Searched sibling is
specified using a list of names. See below [90].

followingOrSelf
Selects following sibling of selected node [61], starting at selected node [61]. Searched sibling is specified
using a list of names. See below [90].

following
Selects following sibling of selected node [61], starting at sibling of selected node [61]. Searched sibling is
specified using a list of names. See below [90].

extendToPreviousSibling
Extends node selection to following sibling of last selected node.

extendToNextSibling
Extends node selection to preceding sibling of last selected node.

Examples:

selectNode childOrNone
selectNode parentOrNode
selectNode children
selectNode nextSibling[implicitElement]
selectNode self section
selectNode ancestorOrSelf[implicitElement] section sect5 sect4 sect3 sect2 sect1
selectNode descendant {http://www.xmlmind.com/xmleditor/schema/configuration}template \
 {http://www.xmlmind.com/xmleditor/schema/configuration}css
selectNode extendToPreviousSibling
selectNode extendToNextSiblingOrElement

89

Commands written in the Java™ pro-
gramming language

67.1. List of element names or node types

A list of element names or node types may be specified in order to conditionally perform a node selection.

Without this list, the specified selectNode command would select a node. Let's call it the candidate node.

The candidate node is tested against all items in the list, one after the other. If the candidate node matches any of
these items, the candidate node is actually selected.

Element name
Candidate node must be an element having the same name.

#text
Candidate node must be a text node.

#comment
Candidate node must be a comment node.

#processing-instruction
Candidate node must be a processing instruction node.

Example 1: selectNode child[implicitElement] para selects first child of explicitly or implicitly selected
element only if this child is a para.

Example 2: selectNode.ancestor.itemizedlist orderedlist variablelist selects first ancestor of explicitly selected
element which is a list.

67.2. OrNone, OrNode, OrElement modifiers

The OrNone, OrNode, OrElement modifiers may be used to specify fallback behaviors for selectNode commands
which otherwise would fail and therefore would do nothing at all.

OrNone
If specified selectNode command fails to select something new, current selection is canceled.

Example: let explicitly selected node be an empty element. In such case selectNode child fails and therefore,
does nothing at all. But selectNode childOrNone succeeds and cancels current selection.

OrNode
If there is no explicit or implicit node selection to work with, command selectNode explicitly selects textual
node containing caret.

Example: caret is contained in a para and there no explicit selection. In such case, selectNode.parent fails
and therefore, does nothing at all. But selectNode.parentOrNode succeeds and selects the textual node
containing the caret.

OrElement
If there is no explicit or implicit node selection to work with, command selectNode explicitly selects element
containing caret.

Example: caret is contained in a para and there no explicit selection. In such case, selectNode.parent fails
and therefore, does nothing at all. But selectNode.parentOrElement succeeds and selects the para containing
the caret.

It does not make sense to use OrNone, OrNode, OrElement modifiers and [implicitNode], [implicitElement]
options in the same selectNode command. In such case, the OrNone, OrNode, OrElement modifiers are simply
ignored.

90

Commands written in the Java™ pro-
gramming language

68. selectNodeAt
Parameter syntax:

['orParent' | 'extend']?

Selects the node clicked upon.

If the orParent option is specified, clicking again, exactly on the same place (i.e. without moving the mouse at
all), selects the parent of the element selected by the previous invocation of this command.

If the extend option is used and if there is a node selection, this command extends the selected node range by
adding sibling nodes to it. The location of the mouse click specifies how many sibling nodes are to be added.

See also selectBlockAtY [85].

69. selectText
Parameter syntax:

['word'|'line'|'all']?

word
Selects the characters of the word containing caret.

line
Selects the text line containing caret.

all
Selects all the characters of the document.

Parameter is absent
Selects all the characters of the textual node (text, comment, processing instruction) containing caret.

70. selectTo
Parameter syntax:

'previousChar'|'nextChar'|'previousWord'|'nextWord'|
'previousTextNode'|'nextTextNode'|'previousElement'|
'nextElement'|'textNodeBegin'|'textNodeEnd'|
'elementBegin'|'elementEnd'|'documentBegin'|
'documentEnd'|'lineBegin'|'lineEnd'|'previousLine'|
'nextLine'|'wordBegin'|'wordEnd'

Extends text selection to specified location.

71. setEditable
Parameter syntax:

['implicitDocument'|'implicitElement']? 'false'|'true'|'toggle'

Changes the read-only mark of an element or of the whole document.

• Without option implicitDocument or implicitElement, this command changes the read-only mark of the
explicitly selected element.

• With option implicitElement, this command changes the read-only mark of the explicitly or implicitly selected
element.

91

Commands written in the Java™ pro-
gramming language

• With option implicitDocument, this command changes the read-only mark of the whole document unless an
element is explicitly selected, in which case, it changes its read-only mark.

Parameter value:

false
Removes the read-only mark from selected node and all its descendants then marks the selected node as read-
only.

true
Removes the read-only mark from selected node and all its descendants.

Note that this commands fails if selected node has an ancestor marked as read-only (because changing the
read-only mark would not make selected node editable).

toggle
If selected node is editable, behaves like when parameter value is false. If selected node is not editable, behaves
like when parameter value is true.

Example:

setEditable [implicitDocument] toggle

72. setObject
Parameter syntax:

[attribute_name|'-']? S ['anyURI'|'hexBinary'|'base64Binary'|'XML'|'-']?
 S ['gzip'|'-']? S [URL_or_file]?

Changes the object (generally an image) represented by explicitly selected element.

attribute_name
This parameter specifies the name of the attribute containing the URL of the object or directly containing the
object data encoded in 'hexBinary' or in 'base64Binary'.

If this parameter is absent (or is '-'), it is the selected element itself which contains the URL of the object or
which directly contains the object data in 'hexBinary', 'base64Binary' or XML formats.

anyURI, hexBinary, base64Binary, XML
Specifies how the object is to be ``stored'' in the element or in the attribute. Data type 'XML' is only allowed
for elements (typically an svg:svg element).

If this parameter is absent (or is '-'), the data type is found using the grammar of the document. Of course,
this cannot be guessed for documents conforming to a DTD (too weakly typed) and for invalid documents
conforming to a W3C XML or RELAX NG schema.

gzip
If this parameter is specified, object data is compressed with gzip before being encoded in 'hexBinary' or in
'base64Binary'.

This parameter is ignored for 'anyURI' and 'XML' data types.

If this parameter is absent (or is '-'), data is not compressed before being encoded.

URL_or_file
Specifies the source of the object.

If this parameter is absent, a chooser dialog box is displayed to let the user specify which file to use.

Examples:

92

Commands written in the Java™ pro-
gramming language

setObject
setObject fileref anyURI
setObject - hexBinary gzip
setObject location - - file://localhost/icons/apache_pb.gif
setObject - XML - C:\graphics\logo.svgz

73. showContentModel
No parameter.

Displays a window (similar to the window displayed by Help|Show Content Model) showing the content model
of implicitly or explicitly selected element. If there is no implicitly or explicitly selected element (for example, if
several nodes have been selected), the window shows the content model of the root element.

This command has been added mainly to allow simple XML editors built using XXE components (that is, not
XXE itself) to have the same facilities than XXE.

74. showMatchingChar
Parameter syntax:

')' | '}' | ']'

Inserts specified character at caret position then, if the matching character ('(', '{', '[') is found, highlights this
matching character for half a second. If the matching character is not found, this command emits an audio beep.

This command must be bound to the following keystrokes:

 <binding>
 <charTyped char=")" />
 <command name="showMatchingChar" parameter=")" />
 </binding>

 <binding>
 <charTyped char="}" />
 <command name="showMatchingChar" parameter="}" />
 </binding>

 <binding>
 <charTyped char="]" />
 <command name="showMatchingChar" parameter="]" />
 </binding>

Note that a binding such as "<charTyped char="}"/>" may not work on some platforms. For example, it does
not work on Windows when using a French keyboard where '}' is typed by pressing AltGr-}.

75. spellCheck
No parameter.

Displays a modal dialog box which allows to check the spelling of the document being edited (same as the Spell
tool in XMLmind XML Editor).

This command has been added mainly to allow simple XML editors built using XXE components (that is, not
XXE itself) to have the same facilities than XXE.

76. split
Parameter syntax:

['[implicitElement]']?

93

Commands written in the Java™ pro-
gramming language

Splits explicitly or implicitly selected element in two parts, the split point being specified by caret position.

77. start
Similar to run [82] except that external command is executed asynchronously (like Windows start or Unix &).

78. status
Parameter syntax:

message

Displays a message in the status bar found at the bottom of XXE main window.

This command is useful to write macro-commands.

Example:

status Command foo completed

79. toggleCollapsed
Parameter syntax:

['toggle'|'collapse'|'expand'|'collapseAll'|'expandAll'
 ['+' 'toggle'|'collapse'|'expand'|'collapseAll'|'expandAll']?]?

Changes the state of the nearest collapsible view.

The ``nearest collapsible view'' is searched like this:

• Search starts at explicitly selected node if any; otherwise at node containing caret.

• If this node is an element and has a collapsible view, search is completed: this view is the ``nearest collapsible
view''.

• Otherwise search continues with the parent of the node.

The parameter of this command specifies up to two operations. The default operation is toggle. Supported operations
are:

toggle
Collapses nearest collapsible view if it is expanded and expands nearest collapsible view if it is collapsed.

collapse
Collapses nearest collapsible view if it is expanded; otherwise has no effect.

expand
Expands nearest collapsible view if it is collapsed; otherwise has no effect.

collapseAll
Collapses nearest collapsible view and then, recursively collapses all its collapsible descendant views.

expandAll
Expands nearest collapsible view and then, recursively expands all its collapsible descendant views.

Recommended bindings (found in the add-on called "A sample customize.xxe" — download and install it using
Options|Install Add-ons):

 <binding>
 <keyPressed code="ESCAPE" />

94

Commands written in the Java™ pro-
gramming language

 <charTyped char="/" />
 <command name="toggleCollapsed" />
 </binding>

 <binding>
 <keyPressed code="ESCAPE" />
 <charTyped char="+" />
 <command name="toggleCollapsed" parameter="expandAll" />
 </binding>

 <binding>
 <keyPressed code="ESCAPE" />
 <charTyped char="-" />
 <command name="toggleCollapsed" parameter="collapseAll" />
 </binding>

 <binding>
 <keyPressed code="ESCAPE" />
 <charTyped char="1" />
 <command name="toggleCollapsed" parameter="collapseAll+expand" />
 </binding>

80. undo
No parameter.

Undo last command.

81. viewObject
Parameter syntax:

['[implicitElement]']?
 S [attribute_name|'-'
 S ['anyURI'|'hexBinary'|'base64Binary'|'XML']?]?

Opens in associated helper application, the ``object'' contained or represented by implicitly or explicitly selected
element.

This command may be used for example to open an image in an external image viewer, to open a PDF file in
Adobe Acrobat Reader, etc.

Helper applications are declared using the Preferences dialog box, Helper Applications section.

The parameter may be used to specify where to find the object of interest and also the data type of this object:

attribute_name
This parameter specifies the name of the attribute containing the URL of the object or directly containing the
object data encoded in 'hexBinary' or in 'base64Binary'.

If this parameter is absent (or is '-'), it is the selected element itself which contains the URL of the object or
which directly contains the object data in 'hexBinary', 'base64Binary' or XML formats.

anyURI, hexBinary, base64Binary, XML
Specifies how the object is ``stored'' in the element or in the attribute. Data type 'XML' is only allowed for ele-
ments (typically a svg:svg or a mml:math element).

If this parameter is absent, the data type is found using the grammar of the document. Of course, this cannot
be guessed for documents conforming to a DTD (too weakly typed) and also for invalid documents conforming
to a W3C XML or RELAX NG schema.

95

Commands written in the Java™ pro-
gramming language

When the parameter is absent, which is often the case, this command will try to guess what object is to be opened
using both the grammar of the document and how helper applications have been declared in the Preferences dialog
box, Helper Applications section.

Once again this will work fine for documents conforming to a W3C XML or RELAX NG schema and not that
great for documents conforming to a DTD.

The heuristic used for that is:

1. If a helper application is associated to the namespace of selected element (e.g. svg:svg or a mml:math), extract
the element from the document and open it in helper application.

2. If selected element contains binary data (i.e. encoded in base 16 or base 64) and a helper application is associated
to the signature (also called ``magic string'') of this data, extract the data from the element, decode it and open
it in helper application.

3. if selected element contains an URI and a helper application is associated to the filename extension of this URI,
open the URI in helper application.

4. Now examine the attributes of the selected element. In a first pass, only examine required attributes. In a second
pass, examine the remaining attributes.

4.a. If the attribute contains binary data and a helper application is associated to the signature of this data, extract
the data from the attribute, decode it and open it in helper application.

4.b. If the attribute contains an URI and a helper application is associated to the filename extension of this URI,
open the URI in helper application.

This step also applies if the data type of the attribute is string and not anyURI, as this is always the case
with documents conforming to a DTD.

Note that this command considers that the default viewer (specified in the Preferences dialog box, Helper Applic-
ations section, Default viewer field; typically a Web browser) should be able to open html, text, GIF, JPEG and
PNG files3. Therefore, in last resort, it may endup invoking the default viewer.

Examples:

viewObject
viewObject [implicitElement]
viewObject fileref anyURI
viewObject - XML
viewObject [implicitElement] {http://www.w3.org/1999/xlink}href

See also editObject [69].

82. wrap
A variant of the convert [64] command. The unique difference is that when a single element is selected, the selected
element is given a new parent element.

Example:

"<simpara>the <emphasis>little</emphasis> girl.</simpara>"

wrapped in a <note> gives

"<note><simpara>the <emphasis>little</emphasis> girl.</simpara></note>".

3Command viewObject also considers that the default viewer should be able to open URLs starting with "http://" and "https://".
DocBook example: this is handy for displaying <ulink url="http://www.xmlmind.com/xmleditor/"/>.

96

Commands written in the Java™ pro-
gramming language

This is different from command convert [64] which can be used to ``morph'' selected element to another kind of
element. For example, convert [64] cannot wrap the above simpara in a note but can morph it to a para.

Examples:

wrap
wrap [implicitElement] div

83. xpathSearch
Parameter syntax:

[implicit_selection]? [XPath_expression]?

Evaluates specified XPath expression in the context of selected node [61]. The evaluation of the XPath expression
must return a nodeset. If this nodeset exclusively contains contiguous siblings, all the nodes in the nodeset are se-
lected. Otherwise, first node (in document order) of the nodeset is selected.

If the evaluation of the expression returns attributes, the corresponding elements are selected.

It is not possible to select the document node or sibling nodes of the root element.

If the XPath expression is not specified, a dialog box is displayed. This dialog box has a Simple tab which allows
to specify commonly used expressions without having to know the XPath standard and an Advanced tab which
allows to specify arbitrarily complex XPath expressions.

When this command is used interactively, qualified names found in the XPath expression may be specified using
the namespace prefixes defined in the document. When this command is used in XXE configuration files, the
{namespace_URI}local_part notation must be used instead.

Example:

xpathSearch
xpathSearch [implicitNode]
xpathSearch //@revisionflag
xpathSearch [implicitElement] following::xs:complexType[1]
xpathSearch [implicitElement] following::{http://www.w3.org/2001/XMLSchema}complexType[1]

84. XXE.close
Parameter syntax:

[file_name | URL]?

If a file name or an URL has been specified in the parameter, closes the document having this location; otherwise
closes the active document.

Returns Command.EXECUTION_FAILED if user has canceled the command. Otherwise, returns null.

85. XXE.edit
Parameter syntax:

[file_name | URL]?

Opens a document in XXE, unless it is already opened, in which case this command just brings all its views to
front and makes this document the ``active'' document.

Without a parameter, this command tries to find a reference to an external document (created using an external
general entity or a xi:include element) starting its search from the node selection or from the element containing
the caret. If such reference is found, this command acts on the referenced document.

97

Commands written in the Java™ pro-
gramming language

http://www.w3.org/TR/xpath

For example, if a book contains references to external chapter documents, moving the caret anywhere inside a
chapter and executing this command without a parameter allows the user to edit this chapter.

Parameters:

file_name or URL
Opens or activates specified document.

Returns newly opened or newly activated com.xmlmind.xmledit.doc.Document (for use by higher-level commands)
or Command.EXECUTION_FAILED if specified document is not already opened in the editor and fails to be opened.

DocBook example: edit other DocBook document referenced in the url attribute of implicitly or explicitly selected
ulink element.

 <command name="docb.editDocument">
 <macro>
 <sequence>
 <get context="$implicitElement/@url" expression="resolve-uri(.)" />
 <command name="XXE.edit" parameter="%_" />
 </sequence>
 </macro>
 </command>

86. XXE.new
Parameter syntax:

[(configuration_name template_name | '- -') [save_file_or_URL | '-']?]?

Creates a new document by copying a named template (that is, a document template which has been declared in
an XXE configuration file).

Parameters:

configuration_name

Specifies the name of the configuration where the template has been declared. Example: "XHTML".

template_name

Specifies the name of the document template. Example: "Page".

When configuration_name and template_name are absent or specified as "- -", the command displays the
File|New dialog box to let the user specify a document template.

save_file_or_URL

When this argument is specified as a filename or URL, the newly created document is immediately saved to
specified location.

When this argument is specified as "-", the command displays the file chooser dialog box to let the user specify
a save location for the newly created document. After this, the newly created document is immediately saved
to specified location.

When this argument is absent, the newly created document is automatically given a save location but it is not
actually saved to this location (that is, the command behaves like menu item File|New).

Returns newly created com.xmlmind.xmledit.doc.Document (for use by higher-level commands) or Command.EX-
ECUTION_FAILED if specified template cannot be opened or if user has canceled the command.

87. XXE.open
Parameter syntax:

98

Commands written in the Java™ pro-
gramming language

[
 '[reopen]' |
 '[reopenIfNewer]' |
 ('[checkIsOpened]' S file_name_or_URL) |
file_name_or_URL

]?

Opens a document in XXE.

Without a parameter, this command displays the file chooser dialog box to let the user specify which document
to open.

Parameters:

[reopen]
Reopens document currently opened in XXE. Useful to implement a ``revert to saved'' command.

[reopenIfNewer]
Reopens document currently opened in XXE, but only if it has been modified by an external application.

If the document currently opened in XXE has not been modified by an external application, this command
does nothing at all, succeeds and returns current com.xmlmind.xmledit.doc.Document.

Note that this option works exactly like [reopen] if the document is stored on a HTTP or FTP server. That
is, XXE will only check the dates of local files.

[checkIsOpened]
The command cannot be executed unless specified document has been opened in XXE. If specified document
is already opened in XXE, this command just returns it (a com.xmlmind.xmledit.doc.Document object)
which may be useful to write higher-level commands.

file_name_or_URL

Opens specified document.

Returns newly opened com.xmlmind.xmledit.doc.Document (for use by higher-level commands) or Command.EX-
ECUTION_FAILED if specified document cannot be opened or if user has canceled the command.

See XXE.save [100] for an example of use for this command.

88. XXE.openAsTemplate
Parameter syntax:

[(template_file_or_URL | '-') [save_file_or_URL | '-']?]?

Creates a new document using an existing document as a template. After loading a copy of the existing document,
all the content of the copy is discarded to just keep a valid skeleton of the root element.

Parameters:

template_file_or_URL

Specifies which document to use as a template.

When this argument is absent or is specified as "-", the command displays the file chooser dialog box to let
the user specify an existing document.

save_file_or_URL

When this argument is specified as a filename or URL, the newly created document is immediately saved to
specified location.

99

Commands written in the Java™ pro-
gramming language

When this argument is specified as "-", the command displays the file chooser dialog box to let the user specify
a save location for the newly created document. After this, the newly created document is immediately saved
to specified location.

When this argument is absent, the newly created document is automatically given a save location but it is not
actually saved to this location (that is, the command behaves like menu item File|Open As Template).

Returns newly created com.xmlmind.xmledit.doc.Document (for use by higher-level commands) or Command.EX-
ECUTION_FAILED if specified template cannot be opened or if user has canceled the command.

89. XXE.openCopy
Parameter syntax:

[(source_file_or_URL | '-') [save_file_or_URL | '-']?]?

Creates a new document by copying an existing document.

Parameters:

source_file_or_URL

Specifies which document to copy.

When this argument is absent or is specified as "-", the command displays the file chooser dialog box to let
the user specify an existing document.

save_file_or_URL

When this argument is specified as a filename or URL, the newly created document is immediately saved to
specified location.

When this argument is specified as "-", the command displays the file chooser dialog box to let the user specify
a save location for the newly created document. After this, the newly created document is immediately saved
to specified location.

When this argument is absent, the newly created document is automatically given a save location but it is not
actually saved to this location (that is, the command behaves like menu item File|Open Copy).

Returns newly created com.xmlmind.xmledit.doc.Document (for use by higher-level commands) or Command.EX-
ECUTION_FAILED if specified document cannot be opened or if user has canceled the command.

90. XXE.save
Parameter syntax:

['[ifNeeded]']?

Saves document currently opened in XXE.

[ifNeeded]
With this option, this command does nothing at all but can be successfully executed if current document does
not need to be saved.

Without this option, this command cannot be executed if current document does not need to be saved.

This option is useful in macro commands such as the one in the example below.

Returns Command.EXECUTION_FAILED if document cannot be saved or if user has canceled the command. Otherwise,
returns null.

Example:

100

Commands written in the Java™ pro-
gramming language

 <command name="editXMLSource">
 <macro>
 <sequence>
 <command name="XXE.save" parameter="[ifNeeded]" />
 <command name="run" parameter='emacs "%D"' />
 <command name="XXE.open" parameter="[reopenIfNewer]" />
 </sequence>
 </macro>
 </command>

1. Save the document being edited, if this is needed.

2. Load it in external text editor GNU Emacs. Use this text editor to modify it or simply to view it.

3. Reload the document in XXE, but only if it has been modified using Emacs.

91. XXE.saveAll
Parameter syntax:

['[ifNeeded]']?

Saves all the documents (which actually need to be saved) currently opened in XXE.

[ifNeeded]
Without this option, this command cannot be executed if no documents at all need to be saved.

With this option, this command does nothing but can be successfully executed even when no documents at
all need to be saved.

Returns Command.EXECUTION_FAILED if no documents at all need to be saved (when [ifNeeded] is not specified)
or if some of the documents which need to be saved, cannot be saved. Otherwise, returns null.

DITA Example: converting a DITA map to PDF requires all the topics referenced in this map to have been saved
to disk.

 <command name="dita.convertToPDF">
 <macro trace="false">
 <sequence>
 <command name="XXE.saveAll" parameter="[ifNeeded]" />

 <command name="dita.guessFileSuffixes" />
 <set variable="parameter" expression="%_" plainString="true" />

 <command name="selectConvertedFile"
 parameter="saveFileURLWithExtension=pdf" />
 <get expression="concat('"', '%_', '" ', $parameter)" />

 <command name="dita.toPDF" parameter="%_" />
 </sequence>
 </macro>
 </command>

92. XXE.saveAs
Parameter syntax:

[file_name | URL]?

Saves document being edited to a different location.

Without a parameter, this command displays the file chooser dialog box to let the user specify the document location.

Parameters:

101

Commands written in the Java™ pro-
gramming language

file_name or URL
Specifies document location.

Returns Command.EXECUTION_FAILED if an error occurred when saving the document or if user has canceled the
command. Otherwise, returns null.

93. XXE.saveCopy
Similar to XXE.saveAs [101] except that it saves a copy of document being edited.

94. A generic, parametrizable, table editor command
Parameter syntax:

'insertColumnBefore'|'insertColumnAfter'|
'cutColumn'|'copyColumn'|
'pasteColumnBefore'|'pasteColumnAfter'|
'deleteColumn'|
'insertRowBefore'|'insertRowAfter'|
'cutRow'|'copyRow'|
'pasteRowBefore'|'pasteRowAfter'|
'deleteRow'|
'incrColumnSpan'|'decrColumnSpan'|
'incrRowSpan'|'decrRowSpan'

This command may be used to edit any table conforming to a model vaguely resembling the HTML table model
(table contains rows, themselves possibly contained in row groups, etc).

DescriptionParameterPrerequisite in
terms of selec-
tion

Insert a column before column containing specified cell.insertColumnBe-

fore

A cell or an ele-
ment having a
cell ancestor Insert a column after column containing specified cell.insertColum-

nAftermust be impli-
citly or explicitly
selected. Cut to the clipboard the column containing specified cell.cutColumn

Copy to the clipboard the column containing specified cell.copyColumn

Paste copied or cut column before column containing specified cell.pasteColumnBe-

fore

Paste copied or cut column after column containing specified cell.p a s t e C o l u m -

nAfter

Delete the column containing specified cell.deleteColumn

Insert a row before row containing specified cell.insertRowBeforeA row must be
explicitly selec-
ted.

Insert a row before row containing specified cell.insertRowAfter

Cut to the clipboard the row containing specified cell.cutRow

OR a cell or an
element having a

Copy to the clipboard the row containing specified cell.copyRow

Paste copied or cut row before row containing specified cell.pasteRowBeforecell ancestor
Paste copied or cut row after row containing specified cell.pasteRowAftermust be impli-

citly or explicitly
selected.

Delete the row containing specified cell.deleteRow

Increment the number of columns spanned by specified cell.incrColumnSpanA cell or an ele-
ment having a Decrement the number of columns spanned by specified cell.decrColumnSpan
cell ancestor

Increment the number of rows spanned by specified cell.incrRowSpanmust be impli-

102

Commands written in the Java™ pro-
gramming language

DescriptionParameterPrerequisite in
terms of selec-
tion

Decrement the number of rows spanned by specified cell.decrRowSpancitly or explicitly
selected.

Unlike the other commands contained in this reference, this command has no fixed name. It must be instantiated
and given a name using a command configuration element (see the section called “command” in XMLmind XML
Editor - Configuration and Deployment). It must also be parametrized using a simple specification contained in a
property configuration element. See example below:

DITA simpletable example:

 <command name="dita.simpleTableEdit"> 1

 <class>com.xmlmind.xmleditapp.tableedit.GenericTableEdit</class>
 </command>

 <property name="dita.simpleTableEdit.tableSpecification"> 2

 table=simpletable
 row=sthead strow
 cell=stentry
 </property>

1 This creates an instance of generic, parametrizable, table editor command com.xmlmind.xmleditapp.tableed-
it.GenericTableEdit called dita.simpleTableEdit.

2 Because the table editor command is called dita.simpleTableEdit, a property called dita.simpleTableEd-
it.tableSpecification should exist too. The value of this property maps element names and attribute
names to roles understood by the generic table editor command.

Example 1: "cell=th td" specifies that an element with name th or td should be considered by the generic
table editor as being a cell.

Example 2: "rowSpan=morerows+1" specifies that attribute morerows, if found in cell elements, contains the
number of additional rows spanned by the cell.

In the above example, the fact that the rowGroup=, rowSpan= and columnSpan= lines are missing means that
this table model does not have the concept of row groups and that there are no attributes which could be used
to specify the number of rows and the number of columns spanned by a cell.

The syntax of a table specification is:

spec -> table_spec row_group_spec? row_spec cell_spec
 row_span_spec? column_span_spec?

table_spec -> table= element_name_list \n

row_group_spec -> rowGroup= element_name_list \n

row_spec -> row= element_name_list \n

cell_spec -> cell= element_name_list \n

row_span_spec -> rowSpan= attribute_name_list \n

column_span_spec -> columnSpan= attribute_name_list \n

element_name_list -> name {S name}*

attribute_name_list -> name{+1}? {S name{+1}?}*

name = non_qualified_name | {namespace_URI}local_part

103

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#command

table=
Specifies the names of the elements which must be considered as being tables, that is, row group containers
or, directly, row containers (like in HTML 3.2 tables).

rowGroup=
Specifies the names of the elements which must be considered as being row groups, that is, row containers.
May be omitted if not relevant.

row=
Specifies the names of the elements which must be considered as being rows, that is, cell containers.

cell=
Specifies the names of the elements which must be considered as being cells.

rowSpan=
Specifies the names of the attributes which are used to specify the number of rows spanned by a cell. May be
omitted if not relevant.

Use +1 to specify that the attribute contains an additional number of rows rather than the actual number of
rows spanned by a cell.

columnSpan=
Specifies the names of the attributes which are used to specify the number of columns spanned by a cell. May
be omitted if not relevant.

Use +1 to specify that the attribute contains an additional number of rows rather than the actual number of
rows spanned by a cell.

Example 1: the specification of an HTML table would be:

table=table
rowGroup=tbody thead tfoot
row=tr
cell=td th
rowSpan=rowspan
columnSpan=colspan

Example 2: the (partial) specification of a CALS table would be:

table=tgroup entrytbl
rowGroup=tbody thead tfoot
row=row
cell=entry
rowSpan=morerows+1

The fact that the columnSpan= line is missing means that there is no attribute which could be used to specify the
number of columns spanned by a cell.

95. A generic inclusion command

95.1. Declaring the generic inclusion command and its associated
"GenericInclusion" inclusion processor

This command allows to include elements in the document being edited. The included elements are managed by
the "GenericInclusion" inclusion processor4 . See the section called “The "GenericInclusion" inclusion processor”
in XMLmind XML Editor - Configuration and Deployment. Therefore, for this command to work, you need not
only to declare it and give it a name in an XXE configuration file, but you also need to declare the "GenericIn-

4This is similar to commands copyAsInclusion [65] and include [70] which create included elements managed by the "XInclude" inclusion
processor.

104

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#GenericInclusion_inclusionProcessor

clusion" inclusion processor. The easiest way to do so is to include genericincl.incl in an XXE configuration file
(e.g. docbook.xxe):

 <inclusionProcessor name="GenericInclusion">
 <class>com.xmlmind.xmleditapp.genericincl.GenericInclusionProcessor</class>
 </inclusionProcessor>

 <command name="genericInclude">
 <class>com.xmlmind.xmleditapp.genericincl.GenericInclude</class>
 </command>

 <binding>
 <keyPressed code="F3" />
 <charTyped char="b" />
 <command name="genericInclude" parameter="before[implicitElement]" />
 </binding>
 ...
 <binding>
 <keyPressed code="F3" />
 <charTyped char="i" />
 <command name="genericInclude" parameter="into" />
 </binding>

95.2.The syntax of the generic inclusion command

Parameter syntax:

'into' | ('replace'|'before'|'after' [implicit_selection]?)
[S command]?

Command specifies the command to be executed. If this command is not specified, a generic, low-level, dialog box5

is displayed in order to let the user specify it.

This command must parse its arguments and generate one or more XML elements. These elements are then included
in the document being edited.

into
Pastes generated elements into element containing caret, at caret position.

replace
Pastes generated elements replacing text selection or selected nodes [61]..

before or after
Pastes generated elements before of after selected nodes [61].

Examples:

genericInclude into
genericInclude before[implicitElement]
genericInclude after %C/date.sh
genericInclude replace[implicitElement] !! programlisting main.c

95.3. Command processors

A command is a string which is evaluated by a command processor. The most general form for a command is:

!command_processor_class_name argument ... argument

where command_processor_class_name is the fully qualified name of the Java™ class which implements the
command processor (implements interface com.xmlmind.xmleditapp.genericincl.Processor).

Out of the box, XXE comes with two command processors:

5This dialog box is expected to be replaced by higher-level, more user-friendly, dialog boxes in specializations of the com.xmlmind.xmled-
itapp.genericincl.GenericInclude command.

105

Commands written in the Java™ pro-
gramming language

../configure/samples2/genericincl.incl

com.xmlmind.xmleditapp.genericincl.ShellExec
This command processor [106] allows to execute shell commands (i.e. shell scripts or .bat files).

Example:

!com.xmlmind.xmleditapp.genericincl.ShellExec %C/date.sh

However typing "!com.xmlmind.xmleditapp.genericincl.ShellExec" is very tedious, that's why when
"!command_processor_class_name" is missing, this is equivalent to having a "!com.xmlmind.xmleditapp.gen-
ericincl.ShellExec" prefix:

%C/date.sh

com.xmlmind.xmleditapp.genericincl.Verbatim
This command processor [107] allows to include all or part of text files.

Example:

!com.xmlmind.xmleditapp.genericincl.Verbatim programlisting main.c

However typing "!com.xmlmind.xmleditapp.genericincl.Verbatim" is very tedious, that's why "!!" is
equivalent to having a "!com.xmlmind.xmleditapp.genericincl.Verbatim" prefix:

!! programlisting main.c

95.4.The ShellExec command processor

This command processor allows to specify a command as you would have typed it in a Terminal (MacOS X, Linux)
or in the Command Prompt (Windows).

This command must output a well-formed XML document. The root element of this document is included in the
document being edited. If the root element of this document is a {http://www.xmlmind.com/xmledit-
or/namespace/clipboard}clipboard element, then it is all the child elements of the root element which are in-
cluded in the document being edited.

The command is executed using the directory containing the XML document containing the inclusion as its current
working directory. This allows relative filenames referenced in the command-line to be relative to the location of
the inclusion.

The following variables are substituted in the command-line:

DescriptionVariable

%D is the file name of the document being edited. Ex-
ample: C:\novel\chapter1.xml.

%D, %d

This variable is replaced by an empty string if the docu-
ment being edited is found on a remote HTTP or FTP
server.

%d is the URL of the document being edited. Example:
file:///C:/novel/chapter1.xml.

%C is the name of the directory containing the XXE con-
figuration file where the "GenericInclusion" inclusion

%C, %c

processor has been declared (by the means of the inclu-
sionProcessor configuration element). Example:
C:\Program Files\XMLmind_XML_Editor\addon\con-

fig\docbook.

106

Commands written in the Java™ pro-
gramming language

DescriptionVariable

%c is the URL of the above directory. Example:
file:///C:/Program%20Files/XMLmind_XML_Edit-

or/addon/config/docbook.

Note that this URL does not end with a '/'.

Specifies the file which will contain the output of the
command.

%O

If the %O variable has been substituted in the specified
command-line, then XXE loads the elements to be in-
cluded from this file.

Otherwise, XXE loads the elements to be included from
what has been printed by the command on the console
(stdout).

Example: "%C/tablerows.pl" -o "%O" ~/.tablerows.cfg

95.5.The Verbatim command processor

This command processor written in Java™ does not require a shell or cmd.exe to be executed. Simply use "!!"
followed by (possibly quoted) command line arguments to invoke it.

Usage: !! element_name [[text_file_option]* text_file]+

Wrap specified text files into specified XML elements.

Relative filenames are relative to the location of the inclusion.

Text file options are:

-e text_file_encoding
Specifies the encoding of input text files. Default: auto-detected for URLs, native encoding for files.

"-e -" may be used to reset the option to its default value.

-f first_line
Extract part starting at specified line. Default: first line of the text file.

A line may be specified as:

• A line number (starting at 1). Example: "-f 10".

• A substring of the line. Example: "-f /main(/".

Note that any character (here "/") may be used to quote the substring.

• A combination of a substring and a line offset. Example: "-f ^main(^-1".

"-f -" may be used to reset the option to its default value.

-l last_line
Extract part ending at specified line (inclusive). Default: last line of the text file.

"-l -" may be used to reset the option to its default value.

-t tab_width
Expand tab characters using specified tab width. Default: do not expand tab characters.

107

Commands written in the Java™ pro-
gramming language

"-t -" may be used to reset the option to its default value.

-n
Number lines. Default: do not number lines.

"-n-" may be used to reset the option to its default value.

Example 1: !! screen /var/log/error.log

Example 2: !! {http://www.w3.org/1999/xhtml}pre src/api.h -e UTF-7 src/parse.c -e - src/format.c

Example 3: !! programlisting -n -f "^/*^+2" -l "~*/~-2" Main.java

108

Commands written in the Java™ pro-
gramming language

Chapter 7. XPath functions
All the standard XPath 1.0 functions are supported: boolean, ceiling, concat, contains, count, false, floor,
id, lang, last, local-name, name, namespace-uri, normalize-space, not, number, position, round, starts-
with, string, string-length, substring, substring-after, substring-before, sum, translate, true.

The following XSLT 1.0 functions are also supported: current, document, format-number, system-property,
key, generate-id, function-available, element-available, unparsed-entity-uri with the following spe-
cificities:

• The 3-argument form of format-number() is not supported.

• key() always returns an empty node-set when used outside a Schematron.

• element-available() returns true for any element name in the "http://www.w3.org/1999/XSL/Transform"
namespace and false otherwise.

• unparsed-entity-uri() always returns an empty string.

• system-property() supports the following XSLT 1.0 properties: xsl:version, xsl:vendor, xsl:vendor-
url, and also the following XSLT 2.0 properties: xsl:product-name, xsl:product-version, in addition to
Java™'s system properties.

1. Extension functions
node-set copy(node-set)

Returns a deep copy of specified node set.

node-set difference(node-set1, node-set2)
Returns a node-set containing all nodes found in node-set1 but not in node-set2.

string file-name-to-uri(string)
Converts specified argument, a relative or absolute native filename, to a "file://" URL. Returns the empty
string if argument is an invalid filename. Relative filenames are considered to be relative to the current
working directory.

number index-of-node(node-set1, node-set2)
Returns the rank of a node in node-set1. The node which is searched in node-set1 is specified using node-
set2: it is first node in node-set2 (which generally contains a single node). The index of first node in node-
set1 is 1 and not 0. Returns -1 if the searched node is not found in node-set1.

object if(boolean test1, object value1, ..., boolean testN, object valueN,, object fallback)
Evaluates each testi in turn as a boolean. If the result of evaluating testi is true, returns corresponding
valuei. Otherwise, if all testi evaluate to false, returns fallback.

Example:

if(@x=1,"One",@x=2,"Two",@x=3,"Three","Other than one two three")

node-set intersection(node-set1, node-set2)
Returns a node-set containing all nodes found in both node-set1 and node-set2.

string join(node-set node-set, string separator)
Converts each node in node-set to a string and joins all these strings using separator. Returns the resulting
string.

Example: join(//h1, ', ') returns "Introduction, Conclusion" if the document contains 2 h1 elements,
one containing "Introduction" and the other "Conclusion".

109

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

boolean matches(string input, string pattern, string flags?)
Similar to XPath 2.0 function matches. Returns true if input matches the regular expression pattern; other-
wise, it returns false.

Note that unless ^ and $ are used, the string is considered to match the pattern if any substring matches the
pattern.

Optional flags may be used to parametrize the behavior of the regular expression:

m
Operate in multiline mode.

i
Operate in case-insensitive mode.

Examples: matches("foobar", "^f.+r$") returns true. matches("CamelCase", "ca", "i") returns true.

number max(node-set), number max(number, ..., number)
The first form returns the maximum value of all nodes of specified node set, after converting each node to a
number.

Nodes which cannot be converted to a number are ignored. If all nodes cannot be converted to a number, returns
NaN.

The second form returns the maximum value of all specified numbers (at least 2 numbers).

Arguments which cannot be converted to a number are ignored. If all arguments cannot be converted to a
number, returns NaN.

number min(node-set), number min(number, ..., number)
Same as max() but returns the minimum value of specified arguments.

number pow(number1, number2)
Returns number1 raised to the power of number2.

string property(string property-name), string property(node-set, string property-name)
Returns the application-level property (e.g. "INCLUSION_MARK", "LOCATION_INFO", etc) having specified name
attached to specified element or document node.

In its first form, this function is applied to the context node. In its second form, this function is applied to the
first node found in specified node set.

Returns the empty string if the specified node set is empty or if the first node in the node set does not have
specified property.

Note that only element and document nodes (that is, trees) can have properties. Therefore if the first node in
the node set is not a tree itself, this function will consider its parent instead.

The "read-only" and the "editable" pseudo-properties may also be accessed using the property function:

• property("read-only") returns string "true" if specified tree has been marked as being read-only. Oth-
erwise, it returns string "false"1.

• property("editable") returns string "true" unless specified tree has been marked as being read-only
or has an ancestor which has been marked as being read-only. Otherwise, it returns string "false".

1This means that boolean(property("read-only")) always evaluates to true! However the "true" and "false" result strings are
consistent with other boolean properties.

110

XPath functions

http://www.w3.org/TR/xpath-functions/

string replace(string input, string pattern, string replacement, string flags?)
Similar to XPath 2.0 function replace. Returns the string that is obtained by replacing all non-overlapping
substrings of input that match the given pattern with an occurrence of the replacement string.

The replacement string may use $1 to $9 to refer to captured groups.

Optional flags may be used to parametrize the behavior of the regular expression:

m
Operate in multiline mode.

i
Operate in case-insensitive mode.

Example: replace("foobargeebar", "b(.+)r", "B$1R") returns "fooBaRgeeBaR".

string resolve-uri(string uri, ?string base?)
If uri is an absolute URL, returns uri.

If base is specified, it must be a valid absolute URL, otherwise an error is reported.

If uri is a relative URL,

• if base is specified, returns uri resolved using base;

• if base is not specified, returns uri resolved using the base URL of the context node.

If uri is the empty string,

• if base is specified, returns base;

• if base is not specified, returns the base URL of the context node.

string relativize-uri(string uri, ?string base?)
Converts absolute URL uri to an URL which is relative to specified base URL base. If base is not specified,
the base URL of the context node is used instead.

Uri must be a valid absolute URL, otherwise an error is reported. If base is specified, it must be a valid absolute
URL, otherwise an error is reported.

Example: returns "../john/.profile" for uri="file:///home/john/.profile" and
base="file:///home/bob/.cshrc".

If uri cannot be made relative to base (example: uri="file:///home/john/public_html/index.html" and
base="http://www.xmlmind.com/index.html"), uri is returned as is.

string uri-or-file-name(string)
Converts specified string to an URL. Specified string may be an (absolute) URL supported by XMLmind
XML Editor or the absolute or relative filename of a file or of a directory. An error is reported if the argument
cannot be converted to an URL.

string uri-to-file-name(string)
Converts specified argument, a "file://" URL, to a native file name. Returns the empty string if argument
is not a "file://" URL.

111

XPath functions

http://www.w3.org/TR/xpath-functions/

2. Java™ methods as extension functions

Note

The following section has been adapted from the documentation of James Clark's XT, one of the fastest
XSLT engines, from which the XXE implementation of XPath has been extracted.

A call to a function ns:foo where ns is bound to a namespace of the form java:className is treated as a call of
the static method foo of the class with fully-qualified name className. Example:

xmlns:file="java:java.io.File"

file:createTempFile('xxe', '.tmp')

Hyphens in method names are removed with the character following the hyphen being upper-cased. Example:

file:create-temp-file('xxe', '.tmp')

is equivalent to:

file:createTempFile('xxe', '.tmp')

A non-static method is treated like a static method with the this object as an additional first argument. Example:

file:delete-on-exit(file:createTempFile('xxe', '.tmp'))

A constructor is treated like a static method named new. Example:

xmlns:url="java:java.net.URL"

url:new('http://www.xmlmind.com/xmleditor/')

Overloading based on number of parameters is supported; overloading based on parameter types is not. Example,
it is possible to invoke:

url:new('http://www.xmlmind.com/xmleditor/')

though both java.net.URL(java.lang.String spec) and java.net.URL(java.net.URL con-

text, java.lang.String spec) exist. It is not possible to invoke:

file:new('.')

because both java.io.File(java.lang.String pathname) and java.io.File(java.net.URI uri) exist.

Extension functions can return objects of arbitrary types which can then be passed as arguments to other extension
functions.

Types are mapped between XPath and Java™ as follows:

Java™ typeXPath type

java.lang.Stringstring

doublenumber

booleanboolean

com.xmlmind.xmledit.xpath.NodeIteratornode-set

On return from an extension function, an object of type com.xmlmind.xmledit.doc.XNode is also allowed and will
be treated as a node-set; also any numeric type is allowed and will be converted to a number.

112

XPath functions

http://www.jclark.com/

