XMLmind XML Editor - Support of
Cascading Style Sheets (W3C CSYS)

Hussein Shafie
Pixware

<xm edi t or - support @ni m nd. con

XMLmind XML Editor - Support of Cascading Style Sheets (W3C
CSS)

Hussein Shafie
Pixware
<xmleditor-support@xmlmind.com>

Published June 21, 2007

Abstract

This document describes the subset of CSS2 supported by XXE, as well as advanced "proprietary extensions"
needed to style complex XML documents.

o PSP 1
I [g1 oo [0 o PP 2
P 1Y o PP 3
3. Extensions related to generated CONTENTc.uiiiiiiiiii e a s 6

I L o] - ToT=To I To] 1] 1 PP 6
A LTl (=T ol)01 =T | PRSPPI 6
O @15 T=] Q=4 7 1 Y 0] TP 8
L BUIE-IN CSS TUIES .. e e e e e et e e et e e e eai e eaees 8
2. CSS3 SBIBCIONS .t ettt e e e e 9
3. Styling an element which contains a specific processing instructioncccoeeviviiiineennnns. 9
4. Styling an element which contains a specific child elementc..cooiiiiin i, 9
5. SPECITYING NAMESPACES ...vvuiiitieeiiieeii ettt et e et e e e e et e et e e et e e et a e et e e et e e st e eaaaaeaanaees 10
6. Inserting in generated content the name of the element which is the target of the CSS rule 12
7. Dynamic evaluation of property ValUESviiiiiiiiiii e 12
7.1. Simple dynamic evaluation of property Valuescccoveviiiiiiiiiiiiiiciiie e 12

7.2. Using custom code to extend the CSS style Sheetccooeiiiiiiiiiiiii 13

8. New values for the display ProPertYoviiiiiii e 14
9. Rendering repeating elements as atableccooiiiiiii 14
10. Making a table look like @ SPreadsheetviviiiiiiii i 16
11. Collapsible blocks and tablescouiiiiiieii i 16
12. Styling comments and processing INStIUCLIONScc.ueiiiiiiiie e e eaens 19
13. Styling element attriDULESiiii i 20
14. :property() and :read-only extension pSEUAO CIASSEScccuviiiiiieiiiieiiiiierie e e 22
15. Url() 1S XML Catalog @WAIEuiiiieiiieiii e e e e e e e e a e e e aa s 23
16. Modularizing a complex CSS style sheet using @property-group and @property-value 24
T O o (o] 1= YT o {1 o 24

16.2. @PIOPEITY-ValUEcovviiii i e e 26

17. Marker-0ffset: fill ... 29
18. If needed, selectors can use default attribute ValUEScccoviiiiiiiiiii e, 29
19. Simple, fast, purely declarative COUNTETSc..viiiireiiiiei e aa e 29

LI] £ =10 (o TP UPP PP 31

ST O00) 31 (=1 o1 o] o T Tox =3 32
1. add-attribUte-DULIONeete e e 33
2. AHTIOULES et e 33
3L CNECK=DOX ...t e 34
ot] -1 35
5. COMBIO-DOX ettt e 35
B. COMMEANU-DULEON ...t e e e e e e e e b 36
01 10] 0 0] 4 =] o | A PP PPN 37
ST ool 01Y =T o101 o] o PP 37
0. ALE-TIEIA .t 37
10. delBtE-DULION ... et et e e 38
o [o 01U ot PPN 38
0 0] | (= PP 39
13, fle-NAME-TIEIot i 39
I - Uo [0 - PP 41
I T T o PP UPP 41
G TR T 0o [T Lo PP 41
17, INSert-after-DULTONoee e 42
18. INSert-before-DULLONooe 43
TR0 o o 1U 1 7o PSP 43
20. insert-same-after-DULIONccoii i 43
21. insert-same-hefore-DULION 43
A7 |14 o 1= 43
B | = To (Y oLV oo o PP 44
24, JaDBI oo 47
12 T 11 P PPT 48
26. NUMDBEI-FIEIA ...oeet e 49

XMLmind XML Editor - Support of
Cascading Style Sheets (W3C CSS)

27. TA0I0-DULEONS ..eeet e e 50
28. remove-attribULE-DULIONuu 51
29, TEPIACE-DULION ...t e e 51
30. SEt-attriDULE-DULTON ...t e 51
) I (o) (L (=T TP PPUPT PR 52
B2 AEXE-TIEIA e 52
33 VAIUE-EAIION «.oevt e e e 53
KT - L1 2 PN 53
T 01001 (=T a1 Y011 55
o 1Y T o] PR 55
R =1 - 1o =1 o] PN 55
K (0 PP 55
7. Display values supported for generated CONTENToeiiiiiiiiieiie e e 57
L diSPlay: INHINE «.covn e e 57
2. diSPlaY: DIOCK . .oee 58
KT 113 0] =V 1) 1 (=T 2 63
4, diSPlay: tADIE ... 63
5. display: tablE-TOW-grOUDiiiiiiiiee e e e e e e e e e 64
B. diSPlaY: tADIE-TOW ...t e 66
7. display: table-Cellcovniii i 67

Part |. Guide

Chapter 1. Introduction

XMLmind XML Editor (XXE for short) supports a subset of CSS2 and a few CSS3 features.

The role of the CSS style sheet in XXE is to make the XML document easy to read (get rid of the tree view, no
visible tags, etc) and to make its structure (chapter, section, list, list item, etc) easy to understand.

This is very different from the role of CSS style sheets in Web browsers, for which the CSS standard has been
designed.

In practice, this means:

 You really need to design a CSS style sheet specifically for XML authoring. For that, no need to be WYSIWYG,
that is,

« you should not try to emulate what will be displayed in the browser after the conversion of the XML document
to HTML;

« you should not try to emulate what will be displayed in Acrobat™ Reader after conversion of the XML doc-
ument to PDF.

Note that XXE supports enough CSS to make your XML documents look WYSIRN (What You See I's Really
Neat).

» Unless you are styling XML data (or a mix of XML document/XML data) rather than XML documents, you
should restrict yourself from using XMLmind proprietary extensions. You can style 99% of any type of XML
document using the subset of CSS2 supported by XXE. (The remaining 1% is solved by the image() [43] or
the image-viewport() [44] content objects.)

http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/css3-selectors

Chapter 2. Restrictions

I mportant

The properties not listed in the following two tables are not supported by XXE.

The following properties can be inherited whether explicitly (inherit keyword) or implicitly (inherited property).

For all properties except line-height where the specified number is inherited (which is the correct behavior), the
inherited value is the actual value not the computed value.

Property

Value

Restrictions

background-color

color|transparent |inherit

border

width [style color?]? |inherit

Order is strictly width, style, color

border-color

side_value{1,4}

border-bottom-color

color|transparent inherit

border-left-color

border-right-color

border-top-color

border-style

none|dotted|dashed |sol-
id|double|groove |ridge|inset|outset

No hidden

border-width

thin|thick|medium |length|inherit

color

color|inherit

counter-reset, counter-increment

[identifierinteger?]+|nonelin-
herit

display noneljinline|block |list-item|marker |No run-in, compact.
[table |inline-table [table-row-group
[table-header-group |table-footer-
group [table-row |table-column-group
|table-column|table-cell |table-caption
linline-block|treelinherit
font [style weight?]? size family |inherit |Order is strictly style then weight
font-family [[name|generic] ,]* [name|generic] |font-family is expected to contain
linherit serif, sans-serif or monospace. Ex-
ample: "font-family: Helvetica,
Arial, sans-serif;".
However a few well-know font famil-
ies are mapped to the corresponding
generic font families. Example:
"font-family: verdana;" is under-
stood to be sans-serif.
All other cases will cause the serif font
family to be used. Example: "font-
family: "Nimbus Sans";".
font-size medium|small|large |x-small|x-large|-
|xx-small|xx-large |smaller|larger
|length|percentage |inherit
font-style normallitalicloblique |inherit italic and oblique are aliases
font-weight normal|bold|inherit No NOO, bolder, lighter

Restrictions

Property

Value

Restrictions

line-height

normal|number|inherit

No length, percentage

list-style-image

URl | none | |inherit

Also supports icon(nare).

list-style-position

outside | inside| inherit

list-style-type

decimal | lower-alpha | upper-alpha
| lower-roman | upper-roman | none
| inherit

No decimal-leading-zero, hebrew, ar-
menian, lower-greek, etc.

list-style

type [position[image]?]?|inher-
it

Order is strictly type then position then
image.

margin

side_value{1,4}

margin-bottom

length|auto|inherit

No percentage

margin-left

margin-right

margin-top

padding

side_value{1,4}

padding-bottom

length|inherit

No percentage

padding-left

padding-right

padding-top

text-align

left|right|center |inherit

No justify

text-decoration

nonejunderlineloverline line-
throughlinherit

No blink

text-indent length|inherit No percentage

vertical-align baseline|middle|sub |super|text- |No length, percentage
top|top |text-bottom|bottom |inherit

white-space normal|pre[nowrap |inherit -

The following properties cannot be inherited whether explicitly (inherit keyword) or implicitly (inherited property).

Property

Value

Restrictions

border-spacing

length length?

caption-side top|bottom left, right, inherit are not supported.
content string|urifattr(X) |open-quote|close-|No-open-quote, no-close-quote are
guote |no-open-quote |no-close-quote |ignored.
|counter(name) |counter(name, style)
|counters(name, separ) |coun- Counter styles are limited to: decimal,
ters(name, separ, style) |lower-alpha, lower-latin, upper-alpha,
|disc|circle]square |see extensions ~ [upper-latin, lower-roman, upper-ro-
man.
height lengthjauto No percentage. This property is cur-
rently ignored.
marker-offset lengthjautolfill No percentage.
width lengthjauto No percentage. This property is cur-

rently only useful to specify the min-
imum width of a table cell.

Other restrictions:

Restrictions

The CSS box decorations (border, padding, etc) are not supported for inlined elements. The background-
color is the only property supported for such elements.

Inserting block elements inside inlined elements is not supported. It will not crash the XML editor, but the result
will be ugly. However inserting element having property display: inline-block; or property display: in-
line-table; inside inlined elements should work fine.

The border properties, except border-color, cannot be specified individually for each side of the box.

first-letter and :fir st-line pseudo-elements are ignored.

The limportant specifier is ignored.

Chapter 3. Extensions related to
generated content

Tip

Rules which use extensions specific to XMLmind XML Editor may be specified in @media XMLmind-

XML-Editor constructs (identifier XMLmind-XML-Editor being case-insensitive). Example:

@media XMLmind-XML-Editor {
img {
content: image(attr(src));
}

3

Elaborate examples of generated content can be found in XXE_i nst al | _di r /demo/bugreport/bugreport.css
and in XXE_i nst al | _di r /addon/config/common/css/xmldata.css.

1. Replaced content

XXE not only supports generated content but also supports replaced content. This means that content may be
used for any element and not only for :before and :after pseudo-elements. When used for an actual element, it
replaces what is normally displayed for this element.

Therefore, in what follows, generated content generally means generated or replaced content.

2. Generated content

Extensions related to generated content fall in three categories:
 Content objects [32].

Standard CSS only supports text and images. Example: content: url(images/right._png) "foo=" at-
tr(foo) ;. XXE supports other ways of specifying text and images as well as using controls (buttons, comboboxes,
etc) as generated content.

Example:

img {
content: image(attr(src));
}

» Content layouts [55].

Standard CSS does not allow to structure and layout generated content. XXE allows for example to structure
and layout generated content as an embedded table.

Example:

orderedProducts:before {

display: table-row;

content: row(cell(""QUANTITY™),
cel 1 ("REFERENCE™),
cel 1 (""'DESIGNATION™),
cell(content(""PRICENA", attr(currency))),
font-weight, bold,
color, white,
background-color, #0000AO,
border-width, 1,
border-style, solid,

Extensions related to generated content

border-top-color, gray,

border-bottom-color, gray,
border-right-color, gray,
border-left-color, gray);

« Display values supported for generated content [57].

Standard CSS only supports inline, block, marker as the value of the display property of generated content, and
generated content is limited to inline and block elements. XXE does much more than this.

Example: table-row in the above example.

Chapter 4. Other extensions
Tip

Rules which use extensions specific to XMLmind XML Editor may be specified in @media XMLmind-
XML-Editor constructs (identifier XMLmind-XML-Editor being case-insensitive). Example:

@media XMLmind-XML-Editor {
img {
content: image(attr(src));
1

}

1. Built-in CSS rules

XMLmind XML Editor has built-in CSS rules mainly used to style comments and processing instructions. These
built-in rules are always implicitly loaded before the rules found in a CSS file. However, nothing prevents you
from overriding any of the following built-in rules.

*::comment,

*::processing-instruction {
display: block;
margin: 2px;
white-space: pre;
text-align: left;
font-family: monospace;
font-style: normal;
font-weight: normal;
font-size: small;

}

*::comment {
background-color: #FFFFCC;
color: #808000;

}

*::processing-instruction {
background-color: #CCFFCC;
color: #008000;

}

*::processing-instruction(xxe-formula) {
content: gadget(‘'com.xmlmind.xmleditapp.spreadsheet.Formula™);
display: inline;

}

*:read-only {
background-color: #EOFOFO;
T

@namespace xi url(http://www.w3.0rg/2001/XInclude);

xi|include,
xi\:include {

display: tree;
b

@media print {
*I:comment,
*::processing-instruction,
*::processing-instruction(xxe-formula) {
display: none;

}

*:read-only {

Other extensions

background-color: transparent;

}

In practice, this just means that you have nothing special to do to style comments, processing instructions and
spreadsheet formulas (processing instruction xxe-formula).

2. CSS3 selectors

In addition to all CSS2 selectors, XXE also supports the following CSS3 selectors:

Pattern Meaning

E:last-child an E element, last child of its parent

E:first-of-type an E element, first sibling of its type

E:last-of-type an E element, last sibling of its type

E:root an E element which is the root element of a document

E:empty an E element which does not contain child nodes of any
type

[att"=val] the att attribute whose value begins with the prefix
"

[att$=val] the att attribute whose value ends with the suffix "val"

[att*=val] the att attribute whose value contains at least one in-
stance of the substring "val™

3. Styling an element which contains a specific pro-
cessing instruction

Use pseudo-class :contains-processing-instruction(t ar get) where t ar get , a CSS identifier or string, is the target
of the processing instructions.

Example: display all XHTML spans containing one or more spreadsheet formulas with a yellow background.

span:contains-processing-instruction(xxe-formula) {
background-color: yellow;
}

4. Styling an element which contains a specific child
element

Use pseudo-class :contains-element(el enent _nane) where el enent _nane, a CSS identifier, string or qualified
name, specifies the name of child element.

Note that:

p:contains-element(i) {
color: red;
e

is very different from:
p>1i{

color: red;
b

In the first case, the target of the CSS rule, that is the element which is styled, is p. In the second case, it is i.

http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/css3-selectors

Other extensions

Examples:
/* No namespace declaration before this. */

p:contains-element(i) {H
color: red;

}

p:contains-element(]|b) {B
color: green;

}

@namespace foo "http://foo.com";

p:contains-element(foolhl) {H
color: blue;

}

@namespace "http://bar.com";
p:contains-element(hl) {&

color: yellow;

|:contains-element(*|hl) {B
text-decoration: underline;

}

*Ihl {
display: inline;

}

Element with local name p, whatever is its namespace, containing a i whatever is its namespace, gets a red
color.

Element with local name p, whatever is its namespace, containing a {}b, gets a green color.

Element with local name p, whatever is its namespace, containing a {http://foo.com}hl, gets a blue color.

Element {http://bar.com}p, containing a {http://bar._.com}hl, gets a yellow color.

Any element having a child with local name h1, whatever is the namespace of this hl, is to be underlined.

5. Specifying namespaces
Namespace support in CSS3 style sheets is outlined in Selectors. In summary:
» @namespace rule declares a namespace prefix and associates it to the namespace URI. Examples:

@namespace url(http://www.xmImind.com/xmleditor/schema/configuration);

@namespace html url(http://www.w3.0rg/1999/xhtml);

Rule #1 specifies that element names (in selectors) without an explicit namespace component belong to the
"http://www.xmImind.com/xmleditor/schema/configuration” namespace.

Rule #2 specifies that element or attribute names with a "html" prefix belong to the "ht-
tp://www.w3._0org/1999/xhtml" namespace.

 Notation for qualified names is prefi x|l ocal _name, where character | = is used to separate the two parts of
the qualified name.

Example of element names:
@namespace ns url(http://www.ns.com);
ns|para { font-size: 8pt; }

ns|* { font-size: 9pt; 1}
|[para { font-size: 10pt; }

10

http://www.w3.org/TR/css3-selectors

Other extensions

*|para { font-size: 1ipt; }
para { font-size: 1i1pt; }

Rule #1
will match only para elements in the "http://www.ns.com" namespace.

Rule #2
will match all elements in the "http://www.ns.com" namespace.

Rule #3
will match only para elements without any declared namespace.

Rule #4
will match para elements in any namespace (including those without any declared namespace).

Rule #5
is equivalent to the rule #4 because no default namespace has been defined.

Examples of attribute names:
@namespace ns "‘http://www.ns.com";

[ns|role=minor] { font-size: 8pt; }

[*]role] { font-size: 9pt; }

[lrole] { font-size: 10pt; }

[role] { font-size: 10pt; }

Rule #1
will match only elements with the attribute role in the "http://www_ns.com" namespace with the value
"minor".

Rule #2

will match only elements with the attribute role regardless of the namespace of the attribute (including no
declared namespace).

Rule #3 and #4
will match only elements with the attribute role where the attribute is not declared to be in a namespace.

Note that default namespaces do not apply to attributes.

The attr() pseudo-function also supports namespaces.
@namespace ns "‘http://www.ns.com";

para:before { content: attr(ns|role); }

The generated content inserted before "para" elements is the content of attribute role declared in the "ht-
tp://www.ns.com' hamespace.

Pitfall 1

In XXE, documents conforming to a DTD are not namespace aware, which means that:

e an attribute such as xlink:href is understood as being {}xlink:href and not {ht-
tp://www.w3.0rg/1999/xlink}href,

» xmlns attributes have no special meaning.

When the target document is namespace aware, the xlink namespace must be declared using @namespace
and the xlink:href attribute must be specified as "xlink]href" in the style sheet.

When the target document is not namespace aware, the xlink namespace must not be declared and the
xlink:href attribute must be specified as "xlink\:href" in the style sheet.

11

Other extensions

Pitfall 2

The XML namespace, "http://www.w3.0rg/XML/1998/namespace", is always predefined and an attribute
such as xml :space must always be defined as xml | space, even when used for target documents which
are otherwise not namespace aware.

6.Inserting in generated content the name of the element
which is the target of the CSS rule

Standard pseudo-function attr() can be used to insert in generated content the value of an attribute of the element
which is the target of CSS rule.

Example:

xref {
content: “xref=" attr(linkend) " *;

}

Pseudo functions element-name(), element-local-name(), element-namespace-uri(), element-label)
are similar to attr() except that they insert strings related to the name of the element which is the target of CSS
rule.

Example:
xref {
content: element-name() "=" attr(linkend) "™ ";
}
Pseudo-function Description Example
element-name() The fully qualified name of the ele- |ns:myElement-1
ment.
element-local-name() Local part of element name. myElement-1
element-namespace-uri() Namespace URI of element name. |http://acme.com/ns/foo/bar
element-label() Local part of element name, made |My element 1
more readable.

7. Dynamic evaluation of property values

7.1. Simple dynamic evaluation of property values

concatenate(value, ..., value) may be used to specify a dynamically evaluated property value anywhere a static
property value is allowed.

A dynamic property value is evaluated just before building the view corresponding to the subject of the selector:
1. The value arguments are converted to strings and concatenated together.
2. The result of the evaluation is a string which is parsed as a property value.

Example 1 (XHTML), simple table formatting could be implemented using this feature:

td, th {
display: table-cell;
text-align: concatenate(attr(align));
vertical-align: concatenate(attr(valign));
row-span: concatenate(attr(rowspan));
column-span: concatenate(attr(colspan));
border: 1 inset gray;

12

Other extensions

padding: 2;
}

Example 2 (custom DTD) image name is the concatenation of a basename obtained from attribute name and an
extension obtained from attribute format (see above to have a description of pseudo-function image () [43]):

image {
content: concatenate(*'image("", attr(name), ".'", attr(format), "",-400,-200)");
}

7.2. Using custom code to extend the CSS style sheet

In the rare cases where Cascading Style Sheets (CSS) are not powerful enough to style certain elements of a class
of documents, it is possible to use custom code written in the Java™ language to do so.

@extension "extension_cl ass_nane paraneter ... parameter*; must be used to declare the Java™ class
implementing the CSS extension.

Example (XHTML):

@extension "com.xmImind.xmleditapp.xhtml_TableSupport black "rgb(238, 238, 224)"";

In the above example, com.xmImind . xmleditapp.xhtml . TableSupport is a class which is used to style XHTML
(that is, HTML 4) tables. The two parameters which follow the class name specify colors used to draw table and
cell borders. Parameters are optional and can be quoted if they contain white spaces.

The same CSS style sheet can contain several @extension constructs. For example, an extension class may be
used to style HTML tables and an other extension class may be used to localize generated content. If two @exten-
sions reference the same class name, the last declared one will be used by the CSS engine. For example, redeclaring
an extension class imported from another CSS style sheet may be useful to change its parameters.

How to write such extension class is explained in detail in the Chapter 8, Writing style sheet extensions in XMLmind
XML Editor - Developer's Guide.

» The code of the extension class (contained in a . jar file) must have been loaded at XXE. This is done simply
by copying the . jar file anywhere in one of the two addons/ directories scanned by XXE during its startup.
More information in the section called “Dynamic discovery of add-ons” in XMLmind XML Editor - Configuration
and Deployment.

 Each time the style sheet containing the @extension rule is loaded, a new instance of the extension class is
created.

» The extension class does not need to implement any specific interface but it must have a constructor with the
following signature: Construct or (Java.lang.String[] parameters, com.xmlmind.xmledit.styled-
view.StyledViewFactory factory).

* Invoking the constructor of the extension class may have side effects such as registering intrinsic style specific-
ations (com.xmImind.xmledit.stylesheet.StyleSpecs, See Chapter 8, Writing style sheet extensions in
XMLmind XML Editor - Developer's Guide) with the com.xmImind.xmledit.styledview.StyledViewFactory
passed as the second argument of the constructor.

The extension class may have methods which have been written to dynamically evaluate property values. These
methods are invoked using the following syntax: invoke(net hod_name, paraneter,, par anet er).
Parameters are optional.

Example (Email schema used as an example in the Chapter 8, Writing style sheet extensions in XMLmind XML
Editor - Developer's Guide):

from:before {
content: invoke("localize™, "From:");

}

13

http://www.w3.org/TR/REC-CSS2
../dev/guide.pdf#styleext
../configure/configure.pdf#addon_discovery
../dev/guide.pdf#styleext
../dev/guide.pdf#styleext

Other extensions

In the above example, method localize of class StyleExtension is used to translate string "From:" to the language
specified by the xml : 1ang attribute (if found on the emai I root element). For example, if xml - lang is set to fr
(French), the generated content will contain "De:" instead of "From:".

Methods used to dynamically evaluate property values must have the following signature (see Chapter 8, Writing
style sheet extensions in XMLmind XML Editor - Developer's Guide): com.xmImind.xmledit.stylesheet.Styl-
eValue Method(com.xmImind.xmledit.stylesheet.StyleValue[] parameters, com.xmImind.xmled-
it.doc.Node contextNode, com.xmlmind.xmledit.styledview.StyledViewFactory factory).

If several extensions classes have dynamic property value methods with identical names (even if this unlikely to
happen), the method actually used by the CSS engine will be the method of the class first declared using @extension.

8. New values for the display property

 display: tree may be used to mix styled element views and non-styled (tree-like) element views. This is partic-
ularly useful for meta-information (such as DocBook's bookinfo, sectioninfo, indexterm, etc) for which a sensible
style is hard to come up with.

Example (DocBook):
E- & colspec

align CENtEr|
calname |2
calhum |2
[&p colspec

—

- @ spanspec

—

colsep 1
natmeend |3
natnest |2
rowezep |1

2

spanname |2x2
1,1 1,2 1,2 1,4
2,1 | 2,4
2x2
3,1 | 3,4
4.1 4,2 4.3 4,4

« display: inline-block may be used to specify a rectangular block that participates in an inline formatting context.
(This is similar to inline-table.)

9. Rendering repeating elements as a table

» Two properties column-span and row-span have been added to specify the column and row span of elements
with a table-cell display. The value for these properties is a strictly positive integer number. The initial value
is 1. These properties are not inherited.

* The low-level property start-column is generally used by style sheet extensions to specify the start column of
a cell in the case of complex tables. For example, this property is used by the Java™ code that styles Doc-
Book/CALS tables. Note that first column is column #0, not column #1. The initial value is -1, which means the
normal column for the cell. This property is not inherited.

« In addition to what is specified by CSS2, the :before and :after pseudo-elements allow values of the display
property as follows:

« If the subject of the selector is a table element, allowed values are block, marker, table-row-group and
table-row. If the value of display has any other value, the pseudo-element will behave as if the value was
block.

14

../dev/guide.pdf#styleext
../dev/guide.pdf#styleext

Other extensions

« |f the subject of the selector is a table-row-group element, allowed value is table-row. If the value of display
has any other value, the pseudo-element will behave as if the value was table-row.

« |If the subject of the selector is a table-row element, allowed value is table-cell. If the value of display has
any other value, the pseudo-element will behave as if the value was table-cell.

These extensions are supported to add generated column and row headers to arbitrary XML data displayed as
a table.

For example, with these styles, the select, optgroup and option XHTML elements are displayed as a table with
automatically generated column and row headers:

select {
display: table;
border: 1 solid black;
padding: 2;
border-spacing: 2;
background-color: silver;

}

select:before {

display: table-row-group;

content: row(cell('Category', width, 20ex), cell(*'Choice #1'),
cell(""Choice #2'"), cell('Choice #3"),
font-weight, bold, color, olive,
padding-top, 2, padding-right, 2,
padding-bottom, 2, padding-left, 2,
border-width, 1, border-style, solid);

}
optgroup {

display: table-row;
}

optgroup:before {
display: table-cell;
content: attr(label);
¥

option {
display: table-cell;
border: 1 solid black;
padding: 2;
background-color: white;

s
XHTML source:

<select>
<optgroup label="Language'>
<option>Java</option>
<option>C++</option>
<option>Perl</option>
</optgroup>
<optgroup label="Editor'>
<option>Emacs</option>
<option>Vi</option>
<option>UltraEdit</option>
</optgroup>
<optgroup label="0S"">
<option>Linux</option>
<option>Windows</option>
<option>Solaris</option>
</optgroup>
</select>

Rendered as:

15

Other extensions

Category ||choice #1 ||choice #2 ||choice #3 |
Language |Ja\fa ||C++ ||Per| |
Edlitor |Emacs [[vi [[utragdi |
05 |Linux ||Winduws ||Sularis |

10. Making a table look like a spreadsheet

Use property show-row-column-labels: yesno to add/remove Al-style labels to tables. Specify this property for
elements with display:table, otherwise it is ignored.

Example: note that in DocBook, tgroup has display:table, not table or informaltable:

informaltable[role=spreadsheet] > tgroup {
show-row-column-labels: yes;

}

| A E

Investment ROI

1
uE
3

11. Collapsible blocks and tables

Elements with display: block or display: table can be made collapsible/expandable by specifying property
collapsible: yes.

16

Other extensions

Table 4.1. Properties used to parametrize the collapsibility of a block or table

Property

Value

Initial value

Description

collapsible

yes | no

no

yes
block or table can be
collapsed and expan-
ded

no
block or table cannot
be collapsed and expan-
ded

collapsed

yes | no

no

yes
block or table is ini-
tially collapsed

no
block or table is ini-
tially expanded

not-collapsible-head

non-negative integer

Number of graphical items
(gadgets) at the beginning
of the block or table which
must be kept visible even if
the block or table is col-
lapsed.

not-collapsible-foot

non-negative integer

Number of graphical items
(gadgets) at the end of the
block or table which must
be kept visible even if the
block or table is collapsed.

collapsed-content

same as property content

no content

Content which must be dis-
played (in lieu of hidden
graphical items) when the
block or table is collapsed.

Note that this content is
transformed to an image
before being used. There-
fore this type of generated
content cannot wrap at word
boundaries.

collapsed-content-align

auto|left/center|right

auto

Specifies how the col-
lapsed-content image is
to be horizontally aligned.

Special value auto means
that the collapsed-con-
tent image must be hori-
zontally aligned just like the
normal content it represents.

The above properties cannot be inherited whether explicitly (inherit keyword) or implicitly (inherited property).

Examples:

17

Other extensions

section {
collapsible: yes;
not-collapsible-head: 1; /*keep title visible*/

}
table {
collapsible: yes;
not-collapsible-head: 1; /*keep title visible*/
collapsed-content: url(../../icons2/table._gif);
}

Specifying collapsible: yes is not sufficient to be able to use collapsible blocks and tables. A special kind of
toggle button called a collapser must be added to the generated content of the collapsible block or table or to the
generated content of one of its descendants.

This toggle button is inserted in generated content using the col lapser () pseudo-function [35].

Examples:

section > title:before {
content: collapser() " " simple-counter(n-) " *';
}

table > title:before {
content: collapser() " "
}

The above examples show the most common case: A title or caption element is the mandatory first or last child
of the collapsible block or table. This title or caption must always be kept visible (not-col lapsible-head: 1).
The collapser is inserted in the generated content of the title or caption.

The following example may be used to make a XHTML div collapsible. Note that a XHTML div has no mandatory
first or last child. Therefore the collapser must be inserted in the generated content of the div itself.

div {
display: block;
b

div[class=c3] {
collapsible: yes;

}

div[class=c3]:before,

div[class=c3]:after {
content: collapser();
display: block;
margin: 5 auto;
text-align: center;

}

div[class=c3]:after {
content: collapser(collapsed-icon, icon(collapsed-left),
expanded-icon, icon(expanded-up));

Limitations

» A block, marked as being collapsible, can be collapsed only if it contains other blocks or tables. In the
above example, an XHTML div of class ¢3 which just contains text cannot be collapsed.

« An element styled using "display:table;" is not collapsible per se. The table needs to contain a
caption or title of any kind ("display:table-caption;") in order to be made collapsible.

In fact, only blocks containing other blocks or tables are potentially collapsible. Adding a caption to a
table automatically creates an anonymous block containing both the caption and the table. It is this
anonymous block which is collapsible.

18

Other extensions

12. Styling comments and processing instructions

The construct used for styling comments and processing instructions is similar to the standard construct used for
styling the first line or the first letter of an element. Examples:

*:comment {
background-color: yellow;
display: block;

}

*:processing-instruction {
background-color: green;
display: block;

}

section > *:processing-instruction {
content: icon(left-half-disc) processing-instruction-target() icon(right-half-disc);
display: block;

}

para:processing-instruction(php) {
color: red;
display: inline;

}

Rule #1
specifies that comments are formatted as blocks with a yellow background.

The values allowed for the display property of comment and processing instruction pseudo-elements are: inline,
block, inline-block.

Rule #2
specifies that processing instructions are formatted as blocks with a green background.

Note that the target of the processing instruction is treated like a pseudo-attribute (editable using Edit|Processing
Instruction|Change Processing Instruction Target) and is not considered to be part of its textual content.

Rule #3
specifies that processing instructions which are contained in direct children of section have replaced content.

Comments and processing instructions may have replaced content but not generated content (:before, : after).

The replaced content of a processing instruction pseudo-element may contain processing-instruction-tar get()
which is replaced by the target of the processing instruction subject of the rule.

Rule #4
matches processing instructions with target "php" contained in para elements.

Rendering of comments and processing instructions in a DocBook article using the above style sheet:

1 My section

A comment
A pracessing instruction with defadlt 'target' as its target.

A paragraph cantaining a pracessing instruction with target 'target’
dtargete
and also anather ane with target 'nhp' aphoe.

Note that it is also possible to use CSS3-like syntax : : comment and : :processing-instruction instead of CSS2-
like syntax :comment and :processing-instruction.

19

Other extensions

13. Styling element attributes

An attribute can be rendered in the document view by inserting a value editor in the generated content.

XHTML example: a pair of radio buttons [50] are used to set the dir attribute of a p of class bidi.

p-bidi:after {
display: block;
content: "Direction:
radio-buttons(attribute, dir,
labels, "Left to right\A Right to left",
values, "Itr\A rtl");

font-size: smaller;

3

AMXHTML g of class bidd having |a value editor for its 44 attribute.

Direction: ® Leftto right T Rightto left

This way of rendering attributes is fine but is too tedious to specify to be used on a large scale, for example to style
XML data where most elements are empty but have several attributes.

In such case, it is recommended to use CSS rules where the selector contain the :attribute() non-standard pseudo-
element.

Same example as above but using this type of rule:

p-bidi2:after {H
display: block;
content: attributes();
}

p-bidi2: :attribute(dir) {&

attribute-content-left: "Direction:™;

attribute-content-middle: radio-buttons(attribute, dir,
labels,
"Left to right\A Right to left",
values, "Itr\A rti");

show-attribute: always;

font-size: smaller;

First rule inserts an attributes() container [33] after each p of class bidi2.

A attributes() container is similar to a table with a row for each attribute. This table has 3 columns: left,
middle, right. No border is drawn around its cells.

The content of an attributes() container is specified using CSS rules where the selector contain the :at-
tribute() non-standard pseudo-element.

Second rule specifies that attribute dir must always be displayed for each p of class bidi2, whether this at-
tribute is set or not.

attribute-content-left specifies the content of left column in the attributes() container. attribute-
content-middle specifies the content of middle column in the attributes() container. attribute-content-
right specifies the content of right column in the attributes() container.

20

Other extensions

Table 4.2. Properties used to specify generated content for attributes

Property

Value

Initial value

Description

attribute-content-left

Any value allowed for the
content: property plus at-
tribute-*() pseudo func-
tions (see below [22]).

(no content)

Generated content for the
attribute which is the target
of the :attribute() rule
that goes to the left column
of the attributes() con-
tainer.

attribute-content-middle

Any value allowed for the
content: property plus at-
tribute-*() pseudo func-
tions (see below [22]).

(no content)

Generated content for the
attribute which is the target
of the :attribute() rule
that goes to the middle
column of the attrib-
utes() container.

attribute-content-right

Any value allowed for the
content: property plus at-
tribute-*() pseudo func-
tions (see below [22]).

(no content)

Generated content for the
attribute which is the target
of the :attribute() rule
that goes to the right
column of the attrib-
utes() container.

show-attribute

never | always | when-ad-
ded

when-added

never
Never display this at-
tribute in the attrib-
utes() container.

always
Always display this at-
tribute in the attrib-
utes() container even
if the attribute has not
yet been added to the
element.

when-added
Display this attribute in
the attributes()
container if the attrib-
ute has been added to
the element.

Same example as above with all attributes a p of class bidi2, displayed when they are added to this element, except
for the dir attribute which is always displayed:

p-bidi2:after {
display: block;

content: attributes();

}

p-bidi2::attribute() {A
attribute-content-left: attribute-label() ":";H
attribute-content-middle: Bvalue-editor(attribute, attribute());d
attribute-content-right: remove-attribute-button(attribute, attribute());H
show-attribute: when-added;

font-size: smaller;

}

p-bidi2: :attribute(dir) {@

attribute-content-I

eft: "Direction:";

21

Other extensions

}

attribute-content-middle: radio-buttons(attribute, dir,
labels,
"Left to right\A Right to left",
values, "I1tr\A rtl");
show-attribute: always;

ANHTML p of class bidiz having a value editar far its d4r attribute.
Class: |bidiz -

Direction: ' Leftto right {7 Rightto left -

Note

Notice that in the above figure, the values of the dir attribute are displayed in green. This is because,
unlike in first example, this p of class bidi2 has no dir attribute yet.

By default (this can be specified [32]):
» A green foreground color means that attribute is not set.

» A red foreground color means that attribute value is invalid or that the value editor is not well suited
to display this kind of values.

This rule specifies the generated content for all attributes of a p of class bidi2.
attribute-label () is only supported in the attribute-content-left, attribute-content-middle,
attribute-content-right properties.

Similar generated content is:

Pseudo-function Description Example
attribute-name() The fully qualified name of the at- |ns:myAttribute-1
tribute.
attribute-local-name() Local part of attribute name. myAittribute-1
attribute-namespace-uri() Namespace URI of attribute name. | http://acme.com/ns/foo/bar
attribute-label() Local part of attribute name, made | My attribute 1
more readable.

value-editor() [53] will automatically find a suitable value editor based on the data type of attribute which
is the target of the rule.

value-editor() like all other value editors (such as radio-buttons()) can also be used to edit the value
of an element. "attribute, attribute()" specifies that the value editor to be inserted in generated content
will be used to edit the attribute which is the target of the rule.

See remove-attribute-button() [51].

This rule specializes the previous rule for the dir attribute. The attribute-content-right property not
specified in this rule is inherited from the more general :attribute() rule.

14. :property() and :read-only extension pseudo classes

Application properties are similar to element attributes except that:

» They are not part of the document content.

» They are not persistent.

 Their values are not limited to strings but can be any Java™ object.

22

Other extensions

» They are not directly editable by the user. They are added to elements and to the document itself by the applic-
ation (that is, XXE).

An example of application property is LOCATION_INFO, the location of the file from which an element has been
loaded.

Example of CSS rule using the :property() pseudo class:

*:property(""LOCATION_INFO™) :before {
display: block;
color: red;
font-size: small;
text-align: center;
content: "LOCATION_INFO="" property("'LOCATION_INFO") **\A"™ icon(down);

}

The above rule inserts above any element having a LOCATION_INFO property, a block displaying the value of this
property.

Note that pseudo-function property(pr opert y_name) can be used to insert the value of the property in generated
content.

Read-only is a property which differs from other application properties by that fact that it is represented very effi-
ciently (other properties are similar to hash table entries).

Example of CSS rule using the :read-only pseudo class:

*:read-only {
background-color: #FOFOFO;
bs

The above rule is used to display any element marked as being read-only with a light-gray background.

Pattern Meaning
E:read-only an E element, marked as being read-only
E:property("foo™) an E element, having a property named "foo"
E:property("foo”, "bar") or E:property(“foo", equals,|an E element, having a property named "foo" with a value
"bar") whose string representation equals "bar"
E:property("foo", starts-with, "f") an E element, having a property named "foo" with a value

whose string representation starts with string "f".

E:property("foo", ends-with, "00") an E element, having a property named "foo" with a value
whose string representation ends with string "00".

E:property("foo™, contains, "0") an E element, having a property named "foo™ with a value
whose string representation contains substring "o".

15. url() is XML catalog aware

The URI specified using the standard uri () pseudo-function may be resolved using XML catalogs.

For example, this feature can be used to customize the DocBook CSS style sheet bundled with XXE:

@import url(xxe-config:docbook/css/docbook.css) ;|
my custom zation here

Note that @import "xxe-config:docbook/css/docbook.css™; works fine too. That is, in the case of
@import, the url () pseudo-function is not strictly necessary for the XML catalogs to be used to resolve the
URL.

23

http://www.oasis-open.org/committees/entity/

Other extensions

This works because the XML catalog bundled with XXE, XXE_i nstal | _di r /addon/config/catalog.xml,
contains the following rule:

<rewriteURI uriStartString="xxe-config:" rewritePrefix="_" />

16. Modularizing a complex CSS style sheet using
@property-group and @property-value

These extensions are useful when writing complex, modular, CSS style sheets. @property-value is especially
useful when generating complex content such as embedded form controls.

16.1. @property-group

@property-group allows to define a named, possibly parametrized, group of properties. The syntax for defining
such group is:

@property-group groupName(paraml, ..., paramN) {
property;

property;
}

Including a @property-group in a rule is possible by using the following syntax:

selector {
property;

property-group: groupNane(argumentl, ..., argunmentN);

property;
}

Simple example:

@property-group title-style() {
color: #004080;
font-weight: bold;

b

@property-group standard-vmargins() {
margin: 1.33ex O;

}

title,

subtitle,

titleabbrev {
display: block;
property-group: title-style();
property-group: standard-vmargins(Q);

}
The above example is equivalent to:

title,

subtitle,

titleabbrev {
display: block;
color: #004080;
font-weight: bold;

24

Other extensions

margin: 1.33ex O;

}

A @property-group can include other @property-groups. Example:

@property-group verbatim-style() {
font-family: monospace;
font-size: 0.83em;

}

@property-group verbatim-block-style() {
display: block;
white-space: pre;
property-group: verbatim-style();
property-group: standard-vmargins();
border: thin solid gray;
padding: 2px;

b

programlisting {
property-group: verbatim-block-style();
}

The above example is equivalent to:

programlisting {
display: block;
white-space: pre;
font-family: monospace;
font-size: 0.83em;
margin: 1.33ex O;
border: thin solid gray;
padding: 2px;

}

@property-groups can have formal parameters. When a @property-group is included in a rule, these formal para-
meters are replaced by actual arguments. Example:

@property-group verbatim-block-style(border-color) {
display: block;
white-space: pre;
property-group: verbatim-style();
property-group: standard-vmargins();
border: thin solid border-color;
padding: 2px;

b

programlisting {
property-group: verbatim-block-style(#EOEOEO);
}

The above example is equivalent to:

programlisting {
display: block;
white-space: pre;
font-family: monospace;
font-size: 0.83em;
margin: 1.33ex O;
border: thin solid #EOEOEO;
padding: 2px;

b

A @property-group can even include a reference to itself. This simply means that the new definition extends (or
partly overrides) the old one. Example:

@property-group verbatim-block-style(border-color, background-color) {
property-group: verbatim-block-style(border-color);
background-color: background-color;

25

Other extensions

}

programlisting {
property-group: verbatim-block-style(rgh(127,127,127), #EEEEEE);
}

The above example is equivalent to:

programlisting {
display: block;
white-space: pre;
font-family: monospace;
font-size: 0.83em;
margin: 1.33ex 0;
border: thin solid rgbh(127,127,127);
padding: 2px;
background-color: #EEEEEE;
}

16.2. @property-value

@property-value allows to defined a named, possibly parametrized, property value. The syntax for defining such
named property value is:

@property-value name(paranl, ..., paranN) value ... value;

Including a @property-value in a property is possible by using the usual pseudo-function syntax:
propertyNane: value ... nanme(argunentl, ..., argunentN) ... value;

Simple example:

@property-value generated-icon-color() gray;

indexterm:after {

content: icon(right-half-disc);
color: generated-icon-color();

}
anchor {
content: icon(right-target);
color: generated-icon-color();
b

The above example is equivalent to:

indexterm:after {
content: icon(right-half-disc);
color: gray;

}

anchor {
content: icon(right-target);
color: gray;

}

A @property-value can have formal parameters. When a @property-value is included in a property, these formal
parameters are replaced by actual arguments. Example:

@property-value attributes-editor(margin, bg)
attributes(margin-top, margin,
margin-bottom, margin,
margin-left, margin,
margin-right, margin,
background-color, bg);

@namespace foo "http://foo.com/ns";

26

Other extensions

foo| target {
content: attributes-editor(2, #COEOEO);
b

The above example is equivalent to:

foo| target {
content: attributes(margin-top, 2,
margin-bottom, 2,
margin-left, 2,
margin-right, 2,
background-color, #COEOEO);
}

Using the argument-list() pseudo-function, it is possible to replace a single formal parameter by a sequence of
several actual arguments. Example:

foo|target {
content: attributes-editor(2, argument-list(#COEOEO, color, navy));
}

The above example is equivalent to:

foo|target {
content: attributes(margin-top, 2,
margin-bottom, 2,
margin-left, 2,
margin-right, 2,
background-color, #COEOEO,
color, navy);

3

The argument-list() pseudo-function may have no arguments at all, which is sometimes useful to suppress a
formal parameter. Example:

@property-value attributes-editor(margin, args)
attributes(margin-top, margin,
margin-bottom, margin,
margin-left, margin,
margin-right, margin,
args);

@namespace bar "http://bar.com/ns";

bar|]target {
content: attributes-editor(2, argument-list());
b

The above example is equivalent to:

bar|]target {
content: attributes(margin-top, 2,
margin-bottom, 2,
margin-left, 2,
margin-right, 2);
}

A @property-value can include other @property-values. Example:

@property-value header(title, bg)
division(content(paragraph(content(col lapser(collapsed-icon,

icon(pop-right),
expanded-icon,
icon(pop-down)), " ",

title,

replace-button(), " ",

insert-before-button(), " ",

insert-button(), " ",

insert-after-button(), " ",

27

Other extensions

convert—button() "y
delete-button(), "
add-attribute- button(
check-has-attributes, yes,
color, navy)),
background-color, bg,
padding-left, 4),
attributes-editor(2, bg)));

@namespace xs "‘http://www.w3.0rg/2001/XMLSchema’;

Xxs|schema > xs|complexType:before,
xs|schema > xs|simpleType:before {
content: header(argument-list(element-name(), " "),
#COEOEO) ;

}
The above example is equivalent to:

xs|schema > xs|complexType:before,
xs|schema > xs|simpleType:before {
content: division(content(paragraph(content(collapser(collapsed-icon,
icon(pop-right),
expanded-icon,
icon(pop-down)),
element-name(), " ",
replace-button(),
insert-before- button() ey
insert-button(),
insert-after- button() ",
convert-button(), ",
delete-button(), " ",
add-attribute-button(
check-has-attributes, yes,
color, navy)),
background-color, #COEOEO,
padding-left, 4),
attributes-editor(2, #COEOE0)));

3

A @property-value can even include a reference to itself. This simply means that the new definition specializes
the old one. Example:

@property-value header(bg)
header (argument-list(element-name(),
label (attribute, name, font-weight, bold), " '),

bg);

xs|schema > xs|element:before {
content: header(#EOCOCO) ;

}
The above example is equivalent to:

xs|schema > xs|element:before {
content: division(content(paragraph(content(collapser(collapsed-icon,
icon(pop-right),
expanded-icon,
icon(pop-down)), " ",
element-name(), " ",
label (attribute, name,
font-weight, bold), "

replace-button(), " ",
insert-before- button(), =y
insert-button(),
insert-after- button() o
convert-button(), ",
delete-button(), " ',

add-attribute-button(

28

Other extensions

check-has-attributes, yes,
color, navy)),
background-color, #EOCOCO,
padding-left, 4),
attributes-editor(2, #EOC0C0)));
}

17. marker-offset: fill

For a content generated at the beginning of an element, with display: marker, this property allows to align the
generated content to the left.

For a content generated at the end of an element, with display: marker, this property allows to align the generated
content to the right.

Example (excerpts from DocBook's structure.css):

set:before,
book:before,
part:before,
reference:before,
preface:before,
chapter:before,
article:before,
appendix:before,
section:before,
sectl:before,
sect2:before,
sect3:before,
sect4:before,
sect5:before {
display: marker;
marker-offset: fill;
content: element-name();
font-size: small;
color: gray;

}

18. If needed, selectors can use default attribute values

By default, as mandated in CSS2, attribute selectors only consider attributes explicitly specified for an element.
However, it is possible to force attribute selectors to also consider default attribute values defined in the DTD,
W3C XML Schema or RELAX NG schema. To do this, simply add "@use-defaul t-attribute-values;" at the
top of the CSS file.

DITA example:
@use-default-attribute-values;

*[class~="topic/body'] {
display: block;
margin-left: 12pt;

b

19. Simple, fast, purely declarative counters

Standard CSS counters, that is counter-reset, counter-increment, counter() and counters(), are fully
supported by XXE. However, for most uses, we also have a simpler, faster because purely declarative, alternative
to standard CSS counters.

Proprietary simple-counter() and simple-counters() may be used everywhere you use counter() and
counters() and this, with a similar syntax: simple-counters(n, *."), simple-counter(n, upper-roman),

29

http://www.w3.org/TR/REC-CSS2

Other extensions

etc. But, being purely declarative, you don't need to specify simple-counter-reset or simple-counter-increment
in order to declare and update them.

Just like counter and counters, simple-counter and simple-counters are supported inside the content
property. However their semantics are very different: the name of the counter specifies the non-formatted value
of the counter.

Example 1 (XHTML):

ol > li:before {
display: marker;
content: simple-counter(n, decimal);
font-weight: bold;

}

In the previous example, the counter name is n (single letter 'n’, any letter is OK) which specifies that the counter
value is the rank of 1i within its parent element (an ol).

Example 2 (DocBook):

sect3 > title:before {
content: simple-counter(nnn-) ™ ";
}

In the previous example, the counter name is nnn- (3 letters followed by a dash) which specifies that the counter
segmented value must be built as follows:

1. Skip (dash means skip) the rank of title within its parent element (a sect3).

2. Prepend (any letter means use) the rank of title parent (a sect3) within its parent (a sect2).

3. Prepend the rank of title grand-parent (a sect2) within its parent (a sectl).

4. Prepend the rank of title grand-grand-parent (a sect1) within its parent (an article or a chapter).

30

Part Il. Reference

Chapter 5. Content objects

XXE_i nstal | _di r /demo/form-sampler.xml is used to demo how standard controls such as buttons, check

boxes, combo boxes, text fields, etc, can be embedded in the styled view. The CSS style sheets used by this
demo are found in sub-directory XXE_i nst al | _di r /demo/form-sampler/.

Most pseudo-functions create objects which can be styled at the object level. Styles are specified using key,

val ue pairs where key is the name of a style property (example: font-size) and val ue is the value of a style

property (example: smaller).

Example:

text-field(columns, 10,

background-color, white,

color, black)

Shorthand properties cannot be used to specify style parameters as described above.

Example: padding-top, padding-left, padding-bottom, padding-right must be used rather than the single

shorthand property padding.

» The above example is conceptually equivalent to (illegal CSS):

{ text-field(columns, 10);
background-color: white;

color: black; }

It is important to keep this is mind because it explains why you can specify:

text-field(columns, attr(cols),

background-color, white,

color, black)

but not:

text-field(columns, 10,

background-color, white,
color, attr(foreground))

The attr) construct can only be used in the value of property content: therefore it is not possible to specify

"color: attr(foreground);

« All pseudo-functions generating controls (text-field [52], list [48], etc) also support the following color specific-

ations:
Key Value Default Description
missing-color Color rgh(0,128,128) | Foreground color used by the control when at-
tribute or element value is missing. Therefore,
this color is used when drawing default value.
missing-background-color |Color None (no spe-|Background color used by the control when at-
cial back- |tribute or element value is missing. Therefore,
ground color) [this color is used when drawing default value.
error-color Color rgh(128,0,0) |Foreground color used by the control when at-
tribute or element value is invalid or when
control is not well suited to edit this kind of
value.
error-background-color Color None (no spe-|Background color used by the control when at-

cial back-
ground color)

tribute or element value is invalid or when

32

Content objects

Key Value Default Description

control is not well suited to edit this kind of
value.

Example:

text-field(columns, 10,
missing-color, gray)

« All pseudo-functions generating content (except icon() [41] and xpath() [53]) accept attr() and xpath() values
as well as literal values for their parameters.

Example:
text-field(columns, 10)
text-field(columns, attr(cols))

text-field(columns, xpath(*5 + 5'))

» Most pseudo-functions are shorthand notations for gadget(i nt er f ace_nane). See gadget [41].

For example, col lapser() is a shorthand notation for gadget(**com.xmlImind.xmledit.form.Col lapser™),
command-button() is a shorthand notation for gadget(**com.xmImind.xmledit.form.CommandButton), etc.

1. add-attribute-button

Inserts a command-button [36] in generated content which can be used to add an attribute to the element for which
the button has been generated.

Optional parameter check-has-attributes may be set to yes (other allowed value is no) to specify that no button
is to be generated when target element has no attributes (attribute wildcards and xsi:* attributes are ignored).

Do not specify command, parameter or menu parameters for this type of command-button. A menu of putAt-
tribute commands is built dynamically each time this button is clicked.

By default, this button has its icon set to icon(plus).

Examples:
add-attribute-button()

add-attribute-button(text, "Add attr.",
check-has-attributes, yes)

2. attributes

attributes(key, val ue, ..., key, val ue)

Inserts in generated content a special purpose container. This special purpose container is populated with generated
content for element attributes specified using :attribute() rules. See styling element attributes [20].

A attributes() container is similar to a table with a row for each attribute. This table has 3 columns: left, middle,
right. No border is drawn around its cells.

Key Value Default Description
Wrap-rows Boolean: yes|no, 1|0, |yes Specifies whether the rows of this tabular
"true"|"false", container are wrapped or not when they are
"on"|"off" too wide for the document view.

33

Content objects

Key, val ue, ..., key, val ue may specify optional style parameters [32].
Examples:
attributes()
attributes(margin-top, 2,
margin-bottom, 2,
margin-left, 2,

margin-right, 2)

attributes(wrap-rows, no)

3. check-box

check-box(key, val ue, ..., key, val ue)

Inserts a check box control in generated content. This control can be used to edit the value of the element which
is the target of the CSS rule. If "attribute, at t ri but e_name" is specified, this control can be used to edit the value
of an attribute of this target element.

Key Value Default Description
attribute Qualified name of at- |No default Without this parameter, the control is used
tribute to be edited to edit the value of the element for which the
control has been generated.
label String None Label used for the check box.
unchecked-value |String None In normal mode, unchecking the control as-

signs this value to the attribute or element
value being edited.

checked-value String None In normal mode, checking the control assigns
this value to the attribute or element value
being edited.
remove-value Boolean: yes|no, 1/0,|no Turns remove value mode on and off.
"true"|"false",
“on"|"off" In remove value mode, if unchecked-value

is not specified, unchecking the control re-
moves the attribute being edited.

In remove value mode, if checked-value is
not specified, checking the control removes
the attribute being edited.

If the value being edited is an element value
rather than an attribute, this value is set to the
empty string.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Examples:

check-box(attribute, value,
label, "On",
unchecked-value, "false",
checked-value, "true')

check-box(label, "Yes",
unchecked-value, ''no",
checked-value, "yes')

check-box(attribute, value,

34

Content objects

label, "Disabled",
checked-value, "disabled”,
remove-value, yes)

check-box(label, "Hidden",
checked-value, ‘“hidden',
remove-value, yes)

4. collapser

collapser (key, val ue, ..., key, val ue)

Inserts a toggle button in generated content which can be used to collapse a collapsible block or table. See collapsible

blocks and tables [16].

Key Value Default Description
collapsed-icon url(), disc, circle,|icon(collapsed-right) [Icon of the button when block or table is
square, icon() collapsed.
expanded-icon url(), disc, circle,|icon(expanded-down) |Icon of the button when block or table is ex-
square, icon() panded.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Examples:
collapser()
collapser(col lapsed-icon,

expanded-icon,
color, navy)

5. combo-box

combo-box(key, val ue, ..., key, val ue)

icon(pop-right),
icon(pop-down),

Inserts a combobox control in generated content. This control can be used to edit the value of the element which
is the target of the CSS rule. If "attribute, at t ri but e_name" is specified, this control can be used to edit the value

of an attribute of this target element.

Key Value

Default

Description

attribute Qualified name of at-

tribute to be edited

No default

Without this parameter, the control is used
to edit the value of the element for which the
control has been generated.

labels List of strings separ-|None (use values as|Labels used for the combobox items. The
ated by new lines|labels) order of labels must match the order of val-
(™A™ ues.

values List of strings separ-|None (dynamically|Clicking on combobox item #N sets the ele-

ated by new lines
(A ")

determined by examin-
ing the data type of
value to be edited)

ment or attribute value being edited to value
string #N.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Examples:

combo-box(attribute, value)

combo-box(labels, "Green\A Blue\A Red",
values, "green\A blue\A red")

35

Content objects

6. command-button

command-button(key, val ue, ..., key, val ue)

Inserts a button in generated content which can be used to execute a command (see Chapter 6, Commands written
in the Java™ programming language in XMLmind XML Editor - Commands) and/or to popup a menu of commands.

Key Value Default Description
icon url(), disc, circle,|No default Icon of the button. A button can have both a
square, icon() label and an icon.
text String No default Label of the button. Can contain newlines
("™\A "in CSS).

Element-*() pseudo functions are allowed
here (see element-name [12]).

command String No default Name of command triggered by the button.
parameter String No default Parameter of command triggered by the but-
ton.

menu A menu of com-|No default Menu of commands triggered by the button.
mands. See syntax A button can have both a command (Click-
below 1) and a menu (Click-3).

icon-gap Length (5px, 3em,|4px Distance between icon and label.
etc)

icon-position right | top | bottom ||left Position of icon relative to the label.
left

select none | element element By default, clicking a button selects the ele-

ment having the generated content before at-
tempting to execute the command. "select,
none" disables this behavior.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Menu syntax:
menu -> “"menu(" item+ ")*

item-> label *," command *," parameter]®0"
| label "," "menu®™ "," menu
| EMPTY_STRING *," EMPTY_STRING *," EMPTY_STRING

* 0 specifies a null parameter.
° uu,nu,nn |S a Sepal’ator

Examples:

command-button(text, "Say hello",
command, "alert",
parameter, "Hello!",
select, none,
font-style, italic)

command-button(icon, icon(pop-right),
menu, menu(Insert tr Before",
"insertNode", ''sameElementBefore",
“Insert tr After",
"insertNode", ''sameElementAfter",

"Delete tr', "delete", O,

36

../commands/commands.pdf#commandref
../commands/commands.pdf#commandref

Content objects

“"Clipboard™, menu, menu(
"Copy tr', "copy", O,
"Cut tr, "cut", O,
"Paste Before tr', '"paste", "before",
"Paste After tr', "paste', "after™)))

command-button(text, "+",

icon, disc,

icon-position, right,

icon-gap, O,

command, "insertNode",

parameter, ''sameElementAfter",

menu, menu(*'Copy li', "copy", O,
“Cut Ii", "cut", O,
"Paste Before li', '"paste", "before",
"Paste After li', "paste', "after'))

/.component

component(className, param, ..., param)
Inserts a standard Java™ AWT Component or Swing JComponent in generated content.

className is the name of a Java class which implements the interface com.xmImind.xmledit.styledview.Com-
ponentFactory (see Chapter 8, Writing style sheet extensions in XMLmind XML Editor - Developer's Guide).

Example (XHTML - excerpt of bundled xhtml-form_css):
input {

content: component(‘'com.xmImind.xmleditapp.xhtml.Input™);

3

8. convert-button

Inserts a command-button [36] in generated content which can be used to convert the element for which the button
has been generated.

Do not specify command, parameter or menu parameters for this type of command-button. A menu of convert
commands is built dynamically each time this button is clicked.

By default, this button has its icon set to icon(convert).

Example:

convert-button()

9. date-field

date-field(key, val ue, ..., key, val ue)

Inserts in generated content a text field control, configured for parsing and formatting dates. This control can be
used to edit the value of the element which is the target of the CSS rule. If "attribute, at t ri but e_nare" is specified,
this control can be used to edit the value of an attribute of this target element.

It is important to understand that a date-field does not validate what the user types in it. It is the schema of the
document which is used for that. The date-field is just useful to convert formatted dates (example: 03/16/60) to/from
the standard dates (example: 1960-03-16) which are stored in the document. In practice, this means that a date-
field is unusable with DTDs which, unlike W3C XML Schema and Relax NG, cannot validate dates.

37

../dev/guide.pdf#styleext

Content objects

Key Value Default Description

attribute Qualified name of at- |No default Without this parameter, the control is used

tribute to be edited to edit the value of the element for which the
control has been generated.

pattern Pattern supported by|A simple pattern|Specifies how date is to be parsed and

java.text.DateFormat |which depends on|formatted.
data-type.

language Lower-case, two-let-|Language of default|Participates in specifying the locale to use.
ter codes as defined |locale.
by 1SO-639. Example:
"eS"_

country Upper-case, two-letter|Country of default|Participates in specifying the locale to use.
codes as defined by |locale.
ISO-3166. Example:
"ES".

variant Vendor or browser-|Variant of default loc- | Participates in specifying the locale to use.
specific code. Ex-|ale.
ample: "Tradition-
al_WIN".

data-type date | time | dateTime |date Base data type of attribute or element value

| gDay | gMonthDay |
gMonth | gMonthYear
| gYear

being edited.

Note that default pattern for gM onthDay is
MM/dd and default pattern for gYear Month

IS yyyy/MM.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Example:

date-field()

date-field(pattern, "yy/MM/dd hh:mm a Z",

data-type, dateTime,
language, en,
country, "US"™)

10. delete-button

A convenient way of specifying command-button [36](icon, icon(delete), command, "delete", para-

meter, 0).

11. drag-source

drag-source(key, val ue, ..., key, val ue)

Inserts a button in generated content which can be used to execute a command (see Chapter 6, Commands written
in the Java™ programming language in XMLmind XML Editor - Commands). Identical to command-button [36]

except that:

A drag-source cannot be used to popup a menu.

» The user cannot click on a drag-source. He/she needs to drag the mouse over it to trigger the command. This
command must return a string.

Example:

38

../commands/commands.pdf#commandref
../commands/commands.pdf#commandref

Content objects

section[id] > title:after {

}

display: inline;
content: drag-source(icon, icon(right-link),
command, "‘dragHref');

where command dragHref is:

<command name="‘dragHref">
<macro xmlns:hrefu="java:com.xmImind.xmleditapp.dita.HrefUtil">
<seguence>
<command name=''selectNode" parameter='"parent section" />
<get expression="hrefu:get-href($selectedElement)" />
</sequence>
</macro>
</command>

12. drop-site

drop-site(key, val ue, ..., key, val ue)

Inserts a button in generated content which can be used to execute a command (see Chapter 6, Commands written
in the Java™ programming language in XMLmind XML Editor - Commands). Identical to command-button [36]
except that:

A drop-site cannot be used to popup a menu.

The user cannot click on a drop-site. He/she needs to drop a string (typically a filename or an URL coming
from a file manager or a Web browser) on it to trigger the command.

The parameter of the command must contain variable %{value} which is substituted with the dropped string.

If the object dropped from an external application is not a string (that is, some text), this object will be automat-
ically converted to a string (when possible). For example, a file is converted to a string by using its absolute fi-
lename.

In addition to w{value}, the following convenience variables are also supported:

%{url}
If %{value} contains an URL or the absolute filename of a file or a directory, this variable contains the
corresponding URL.

%{file}
If w{value} contains a "File:" URL or the absolute filename of a file or a directory, this variable contains
the corresponding filename.

Example:

br|date:after {

}

display: block;
content: drop-site(text, "Drop a screen shot here",
icon, url(drop.gif),
icon-position, right,
command, “paste’,
parameter, "after <?xml version="1.0"7?><screenShot \
xmIns="http://www.xmImind.com/xmleditor/schema/bugreport® \
image="%{value}"/>");

13. file-name-field

file-name-field(key, val ue, ..., key, val ue)

39

../commands/commands.pdf#commandref
../commands/commands.pdf#commandref

Content objects

Inserts in generated content both a text field control and a button which can be used to browse files. These controls
can be used to edit the value of the element which is the target of the CSS rule. If "attribute, att ri but e_nanme"
is specified, these controls can be used to edit the value of an attribute of this target element.

Key Value Default Description
attribute Qualified name of at- |No default Without this parameter, the control is used
tribute to be edited to edit the value of the element for which the
control has been generated.
columns Positive integer None (the text field |Width of the control in characters.
expands when the
document view is res-
ized)
absolute Boolean: yes|no, 1/0,|no Configures the file chooser dialog box.
"true"|"false™,
llonllllloffll yes
Dialog box returns an absolute path.
no
Dialog box returns a path which is relat-
ive to the entity containing the target
element (when possible).
directory Boolean: yes|no, 1/0,|no Configures the file chooser dialog box.
"true"|"false",
llonllllloﬁll yes
Dialog box can only select directories.
no
Dialog box can only select files.
save Boolean: yes|no, 1/0,|no Configures the file chooser dialog box.
"true"|"false",
llonllllloffll yes
Dialog box can select existing files or
directories, as well as files and director-
ies to be created.
no
Dialog box can only select existing files
or directories.
url Boolean: yes|no, 1/0,|yes Configures the file chooser dialog box.
"true"|"false",
"On"l"off" yes
Dialog box returns URLSs
no
Dialog box returns file names.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Examples:

file-name-field(attribute, value,
columns, 40,
font-family, monospaced)

file-name-field(absolute, yes,

40

Content objects

directory, yes,

save, yes,

url, no,

columns, 40,
font-family, monospaced)

14. gadget
gadget(className, param, ..., param).

This pseudo-function is similar to the component [37] pseudo-function except that it creates flightweight gadgets
instead of standard Java™ AWT Components or Swing JComponents.

className is the name of a Java class which implements the interface com.xmImind.xmledit.styledview.Gad-
getFactory (see Chapter 8, Writing style sheet extensions in XMLmind XML Editor - Developer's Guide).

Example (APT - excerpt of apt-col lapsible.css):

caption:before {
content: gadget(‘'com.xmlmind.xmledit.form.Collapser",
collapsed-icon, icon(collapsed-right),
expanded-icon, icon(expanded-up)) " ";

3

When gadget() is used to generate replaced content for a processing-instruction, the specified class must implement
interface com.xmImind.xmledit.styledview.GadgetFactory2 (see Chapter 8, Writing style sheet extensions
in XMLmind XML Editor - Developer's Guide). Example, the following rule is used to style spreadsheet formulas:

*::processing-instruction(xxe-formula) {
content: gadget(*'com.xmImind.xmleditapp.spreadsheet.Formula'™);
display: inline;

}

15.icon
icon(name)
Inserts a built-in image in generated content.

Name must be one of the following identifiers:s* bookmark-left, % bookmark-right, O check-off, &4 check-on, o
circle, 4 collapsed-left, I collapsed-right, ~ convert, x delete, « diamond, e disc, » down, 1" drop2, &= drop,
expand-down, = expanded-down, = expanded-up, #l expand-up, & external-link, = external-link-small, = filled-

square, <1 go-left, &= go-right, (2! help, + hollow-diamond, @ image, + insert-after, « insert-before, + insert, invisible,
launch, « left, « left-half-disc, % left-link, » left-target, « line-break, @ minus-box, = minus, @ no-image,
pin-down, + pin-left, = pin-right, ¥ pin-up, @ plus-box, + plus, = pop-down, 4 pop-left, ¥ pop-ne, ¥ pop-nw, » pop-

right, 4 pop-se, » pop-sw, « pop-up, & radio-off, @ radio-on, .+ replace, # return, » right, » right-half-disc, « right-
link, « right-target, 2= square-3, &%= square-5, o square, 4 up.

16. indicator

indicator (key, val ue, ..., key, val ue)

Inserts in generated content an image (taken from specified set of images) which is determined using the value of
specified attribute or XPath expression.

Similar to label [47] except that indicator is rendered using a set of images rather than text.

41

../dev/guide.pdf#styleext
../dev/guide.pdf#styleext

Content objects

Key Value

Default

Description

attribute Quialified name of an
attribute of the ele-
ment which is the tar-

get of the rule

No default

One of attribute or
Xpath must be spe-
cified.

The value of this attribute is compared to the
values of the state arguments. If one of the
state argument is found equal to this value,
the corresponding icon is displayed. Other-
wise first icon is displayed.

square, icon()

xpath Literal string specify-|No default The value of this XPath expression is com-
ing an XPath expres- _ pared to the values of the state arguments. If
sion using the target|One of attribute or|one of the state argument is found equal to
of the rule as its con- xpgth must be spe-|this value, the corresponding icon is dis-
text node cified. played. Otherwise first icon is displayed.
state Identifier or string No default Specifies one of the states of the indicator.
Must be followed by corresponding icon ar-
gument.
An indicator always contains several
state/icon pairs.
icon url(), disc, circle,|No default Specifies one of the images used to render

the indicator.

Corresponding state must precede this argu-
ment.

An indicator contains several

state/icon pairs.

always

Key, val ue, ..., key, val ue may also specify style parameters [32].

XHTML examples:

p-msg:before {
content:

state, info,

indicator(attribute, title,
icon, url(info.gif),

state, warning, icon, url(warning.gif),

icon(diamond),

state, error, icon, url(error.gif));
display: marker;
b
div.hotel span.with_stars:after {
content: " "
indicator(xpath,
"substring-after(ancestor: :div[@class="hotel "]/@title,\
"stars")",
state, "not_rated", icon,
color, gray,
state, "0", icon, url(Ostar.gif),
state, "1", icon, url(lstar.gif),
state, "2", icon, url(2star.gif),
state, "3", icon, url(3star.gif),
state, "4", icon, url(4star.gif),
state, "5", icon, url(6star.gif));
display: inline;

}

17. insert-after-button

Inserts a command-button [36] in generated content which can be used to insert an element or text node after the
element for which the button has been generated.

42

Content objects

Do not specify command, parameter or menu parameters for this type of command-button. A menu of "insert
after" commands is built dynamically each time this button is clicked.

By default, this button has its icon set to icon(insert-after).

Example:

insert-after-button()

18. insert-before-button

Inserts a command-button [36] in generated content which can be used to insert an element or text node before
the element for which the button has been generated.

Do not specify command, parameter or menu parameters for this type of command-button. A menu of "insert
before" commands is built dynamically each time this button is clicked.

By default, this button has its icon set to icon(insert-before).

Example:

insert-before-button()

19. insert-button

Inserts a command-button [36] in generated content which can be used to insert an element or text node into the
element for which the button has been generated.

Do not specify command, parameter or menu parameters for this type of command-button. A menu of insert
commands is built dynamically each time this button is clicked.

By default, this button has its icon set to icon(insert).

Example:

insert-button()

20. insert-same-after-button

A convenient way of specifying command-button [36](icon, icon(insert-after), command, ‘‘insertNode",
parameter, "sameElementAfter™).

21. insert-same-before-button

A convenient way of specifying command-button [36](icon, icon(insert-before), command, "insert-
Node', parameter, ''sameElementBefore™).

22.1mage
image(source, width, height, smooth|default, fallback_image).

Inserts a user defined, possibly scaled, image in generated content.

source
Mandatory.

URL or path of an image file. Only GIF, JPEG, PNG files will be displayed by XXE but this must not prevent
you from using other formats if your backend processor supports them.

43

Content objects

A relative URL or path is relative to the location of the document being edited and not to the current working
directory.

width, height
Optional.

Dimension of the image in pixels. A length may optionally be followed by a standard CSS unit such as px,
in, cm, mm, pt, pc, em, ex.

A negative length is interpreted as a maximum size. This is useful to display images as thumbnails.
auto specifies intrinsic image size.

smooth|default
Optional.

The name of the algorithm used to change the image size: smooth means high-quality/slow and default means
low-quality/fast.

fallback_image
Optional.

Specifies which fallback image to use when image specified by first argument cannot be loaded. All forms of
image specification supported by XXE (except image()) can be used for this argument: url(), icon(), circle,

etc.
Examples (XHTML):
img {
content: image(attr(src));
}
img {
content: image(attr(src), -600, -400);
}
img {
content: image(attr(src), attr(width), attr(height), default, icon(no-image));
}

23. image-viewport
image-viewport(key, val ue, ..., key, val ue)
Inserts an image in generated content.

The image is displayed, possibly after being scaled, in a viewport (that is, a rectangle possibly larger than the dis-
played image).

This content object, functionally close to the XSL-FO fo:external-graphic element, is a sophisticated variant
of image() [43].

Unless a source parameter is specified (see table below), the image-viewport is associated to an attribute or to an
element (that is, the image-viewport is a ~"view" of the attribute or of the element). This attribute or this element
may reference the URL of an external graphics file or may directly contain image data. In such case, the image-
viewport object can also be used to edit this attribute or this element. To do this, the XXE user needs to double-
click on the image-viewport and then specify a graphics file using a specialized dialog box. Alternatively the XXE
user can also drag and drop a graphics file on the image-viewport.

44

http://www.w3.org/TR/xsl/

Content objects

Key Value Default Description
source url() None. Image data|Specifies the URL of graphics file to be dis-
comes from the ele-|played by the image-viewport.
ment for which this
image-viewport is a|Rarely used. Most image-viewports are asso-
view. ciated to attributes or to elements.
descendant String evaluated asan|None. Image data|Specifies a descendant element of the element
XPath expression re-|comes from the ele-|for which this image-viewport is a view. Ex-
turning a node-set ment for which this|{ample: DocBook 5's imagedata/svg:svg or
image-viewport is a|imagedata/mml:math.
view.
Rarely used. Most image-viewports are asso-
ciated to attributes or to elements.
attribute Qualified name of at- |None. Image data|Specifies the name of the attribute containing
tribute to be edited |comes from the ele-|the URL of graphics file to be displayed by
ment for which this|the image-viewport (data-type=anyURI) or
image-viewport is a|directly containing image data (data-
view. type=hexBinary or base64Binary).
data-type anyURI | hexBinary ||None. If the document |Specifies how the image is ““stored" in the
base64Binary | XML |is conforming to a|attribute or in the element.
W3C XML Schema
or to a RELAX NG |data-type=XML is only allowed for ele-
schema, this data-type | ments (typically an svg:svg element).
can be found automat-
ically. Otherwise
(DTD, no grammar),
specifying this para-
meter is mandatory.
gzip Boolean: yes|no, 1|0, |no Ignored unless data-type=hexBinary or
"true"|"false", base64Binary.
"on"|"off"
If true, image data will be compressed with
gzip before being encoded in hexBinary or
in base64Binary.
viewport-width Length (px, mm, em,|None. Specifies the width of the viewport.
etc) or percentage
A percentage (ex. 50%) is a percentage of the
available space.
viewport-height Length (px, mm, em,|None. Specifies the height of the viewport.
etc) or percentage
A percentage is a percentage of the available
space. This is currently not supported.
content-width Length (px, mm, em,|None. Specifies the width of the image after rescal-

etc) or percentage or
scale-to-fit or a max.
size

ing it.

A percentage is a percentage of the intrinsic
width.

scale-to-fit means change the width of the
image to fit the viewport.

A max. size is specified like this: 200max.
This means: at most 200 pixels. Therefore if
the image is wider than 200 pixels, its width
is scaled down to 200. Otherwise, the intrinsic
width is used as is.

45

Content objects

Key Value Default Description
content-height Length (px, mm, em,|None. Specifies the height of the image after rescal-
etc) or percentage or ing it.
scale-to-fit or a max.
size A percentage is a percentage of the intrinsic
height.
scale-to-fit means change the height of the
image to fit the viewport.
A max. size is specified like this: 400max.
This means: at most 400 pixels. Therefore if
the image is taller than 400 pixels, its height
is scaled down to 400. Otherwise, the intrinsic
height is used as is.
preserve-aspect-ra- |Boolean: yes|no, 1/0, |yes Ignored unless content-width and content-
tio "true"|"false", height are both set to scale-to-fit or are both
"on"|"off" set to a max. size.
If false, the image is scaled non-uniformly
(stretched) to fit the viewport.
smooth Boolean: yes|no, 1/0,|no If true, quality is favored over speed when
"true"|"false™, rescaling the image.
"on"|"off"
horizontal-align left | center | right center Specifies how the image is to be horizontally
aligned in the viewport.
vertical-align top | middle | bottom |middle Specifies how the image is to be vertically

aligned in the viewport.

fallback-image

url(), disc, circle,

square, icon()

Automatically gener-
ated. May contain an
error message dis-
played in red.

Specifies which image to display when the
normal image cannot be displayed (image
format not supported, file not found, corrup-
ted image, etc)

Key, val ue, ..., key, val ue may also specify style parameters [32].

Simple example (XHTML):

img {

display: inline;

content: image-viewport(attribute, src,

}

data-type,

anyURI,

content-width, attr(width),
content-height, attr(height));

Other example (DocBook 5, images displayed as thumbnails):

@namespace svg "http://www.w3.0rg/2000/svg";

imagedata:contains-element(svg|svg) {

content:

3

data-type,

image-viewport(descendant, './svg:svg",

XML,

content-width, 400max,
content-height, 100max);

Complex example (ImageDemo, see XXE_i nst al | _di r /doc/conFfigure/samples/imagedemo):

image_ab {
/*

46

Content objects

* No need to specify data-type. The image-viewport will find it by itself.
*/

content: image-viewport(attribute, data, gzip, true,
viewport-width, attr(width),
viewport-height, attr(height),
preserve-aspect-ratio, attr(preserve_aspect_ratio),

content-width,

xpath(*""if(@content_width="scale_to_fit",\
"scale-to-fit",\
@content_width)"),

content-height,

xpath(*"if(@content_height="scale_to_fit",\
"scale-to-fit",\
@content_height)'),

horizontal-align

xpath(*"if(@anchor="west" or @anchor="north_west" or @anchor="south_west",\
“left™,\
@anchor="center® or @anchor="north® or @anchor="south®,\
"center®,\
@anchor="east" or @anchor="north_east®" or @anchor="south_east®,\
"right”,\
"center")"),

vertical-align,

xpath(*"if(@anchor="north® or @anchor="north_east" or @anchor="north_west",\
“top”,\
@anchor="center® or @anchor="east® or @anchor="west”",\
"middle®,\
@anchor="south"™ or @anchor="south_east®" or @anchor="south_west",\
"bottom®,\
"middle™)™)

)

bs

24. |label

label(key, val ue, ..., key, val ue)

Inserts in generated content the value of specified attribute or XPath expression.

Difference with standard construct attr() and with extension xpath():

xpath() and attr() are evaluated once and this happens when the view of the element is built. This means
that in some cases, manually refreshing the view of the element after a change in the document will be
needed (use Select|Redraw or Ctrl-L).

Unlike xpath() and attr(), label() is automatically updated when the document is modified.

For efficiency reasons, the update of label (xpath, XPat h_expr essi on) is delayed until the editing context

changes.
Key Value Default Description
attribute Qualified name of an |No default Display the value of this attribute as styled
attribute of the ele- . text.
ment which is the tar-|One of attribute or
get of the rule Xpath must be spe-
cified.

47

Content objects

Key Value

Default

Description

xpath Literal string specify-
ing an XPath expres-
sion using the target
of the rule as its con-

text node

No default

One of attribute or
Xpath must be spe-
cified.

Display the value of this XPath expression
as styled text.

Key, val ue, ..., key, val ue may also specify style parameters [32].

XHTML examples:

p-msg:before {
content: label(attribute, title,

text-decoration, underline);

display: marker;

}

a.showtarget {
content: icon(pop-right)

label (xpath, "//a[@name = substring-after(current()/@href, "#")]1",
text-decoration, underline);

}

caption.formal :before {
content: "Table "

label (xpath, "1 + count(../preceding::table[caption])')

display: ialiae;

}

See also indicator [41] which is similar to Iabel except that indicator rendered using a set of images rather than

text.

25. list

list(key, val ue, ..., key, val ue)

Inserts a list control in generated content. This control can be used to edit the value of the element which is the
target of the CSS rule. If "attribute, at t ri but e_nane" is specified, this control can be used to edit the value of

an attribute of this target element.

Key Value

Default

Description

attribute Quialified name of at-

tribute to be edited

No default

Without this parameter, the control is used
to edit the value of the element for which the
control has been generated.

ated by new lines
(A ")

determined by examin-
ing the data type of
value to be edited)

labels List of strings separ-|None (use values as|Labels used for the list items. The order of
ated by new lines|labels) labels must match the order of values.
("\A ")

values List of strings separ-|None (dynamically|In single selection mode, clicking on list item

#N sets the element or attribute value being
edited to value string #N.

In multiple selection mode clicking on list
item #N adds/removes value string #N
to/from the selected set.

The value strings in the selected set are then
joined using the character specified by separ-
ator ("' by default).

48

Content objects

Key Value Default Description
The resulting string is assigned to the element
or attribute value being edited.
rows Positive integer max(10, number of |Maximum number of rows displayed by the
values) list control.
selection single | multiple single Specifies single or multiple selection mode.
separ ator Single character string | None (values are sep- | Character used to join selected value strings

arated by any type of
white space charac-
ters)

in multiple selection mode. The resulting
string is assigned to the element or attribute
value being edited.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Examples:

list(rows, 3)

list(attribute, value,
labels, "Cyan\A Yellow\A Magenta\A Black')

list(rows, 3,

selection, multiple)

list(attribute, value,
labels, "Cyan\A Yellow\A Magenta\A Black",
values, "cyan\A yellow\A magenta\A black",
selection, multiple,

separator,

RN

26. number-field

number-field(key, val ue, ..., key, val ue)

Inserts in generated content a text field control, configured for parsing and formatting numbers. This control can
be used to edit the value of the element which is the target of the CSS rule. If "attribute, attri but e_nane" is
specified, this control can be used to edit the value of an attribute of this target element.

It is important to understand that a number-field does not validate what the user types in it. It is the schema of the
document which is used for that. The number-field is just useful to convert formatted numbers (example:
1,000,000.00) to/from the standard numbers (example: 1000000.0) which are stored in the document. In practice,
this means that a number-field is unusable with DTDs which, unlike W3C XML Schema and Relax NG, cannot

validate numbers.

Key Value Default Description
attribute Qualified name of at- |No default Without this parameter, the control is used
tribute to be edited to edit the value of the element for which the
control has been generated.
pattern Pattern supported by|A simple pattern|Specifies how number is to be parsed and
java.text.Decimal-|which depends on|formatted.
Format data-type.
language Lower-case, two-let-|Language of default|Participates in specifying the locale to use.
ter codes as defined |locale.
by ISO-639. Example:
"es",
country Upper-case, two-letter|Country of default|Participates in specifying the locale to use.
codes as defined by |locale.

49

Content objects

Key

Value

Default

Description

ISO-3166. Example:
"ES".

variant

Vendor or browser-
specific code. Ex-
ample: "Tradition-
al_WIN".

Variant of default loc-
ale.

Participates in specifying the locale to use.

data-type

byte | short | int | long
| float | double

double

Base data type of attribute or element value
being edited.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Example:

number-field()

number-field(data-type, float,

pattern,

0. O##AH#E",

language, en,
country, "US™)

27.radio-buttons

radio-buttons(key, val ue, ..., key, val ue)

Inserts in generated content a panel containing radio button controls (single selection) or check box controls
(multiple selection). These controls can be used to edit the value of the element which is the target of the CSS rule.
If "attribute, attri but e_name" is specified, these controls can be used to edit the value of an attribute of this

target element.

values)

Key Value Default Description
attribute Qualified name of at- |No default Without this parameter, the control is used
tribute to be edited to edit the value of the element for which the
control has been generated.
labels List of strings separ-|None (use values as|Labels used for the radio buttons or the check
ated by new lines|labels) boxes. The order of labels must match the
("Aa ™ order of values.
values List of strings separ- None (dynamically|In single selection mode, clicking on radio
ated by new lines|determined by examin-|button #N sets the element or attribute value
(™A™ ing the data type of|being edited to value string #N.
value to be edited)
In multiple selection mode clicking on check
box #N adds/removes value string #N to/from
the selected set.
The value strings in the selected set are then
joined using the character specified by separ-
ator ("' by default).
The resulting string is assigned to the element
or attribute value being edited.
columns Positive integer max(10, number of |Maximum number of columns used to layout

the panel containing the radio buttons or
check boxes. Do not specify rows and
columns for the same control.

50

Content objects

Key Value Default Description

rows Positive integer None Maximum number of rows used to layout the
panel containing the radio buttons or check
boxes. Do not specify rowsand columnsfor
the same control.

selection single | multiple single Specifies single or multiple selection mode.

separ ator Single character string | None (values are sep- | Character used to join selected value strings
arated by any type of |[in multiple selection mode. The resulting
white space charac-|string is assigned to the element or attribute
ters) value being edited.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Examples:
radio-buttons(rows, 2)

radio-buttons(attribute, value,
labels, ""Cyan\A Yellow\A Magenta\A Black™)

radio-buttons(attribute, value,
labels, "Cyan\A Yellow\A Magenta\A Black",
values, '"'cyan\A yellow\A magenta\A black",
selection, multiple,
separator, ',")

28. remove-attribute-button

remove-attribute-button(attribute, at t ri but e_nane, key, val ue, ..., key, val ue)
Inserts a command-button [36] in generated content which can be used to remove specified attribute.

Optional parameter check-required may be set to yes (other allowed value is no) to specify that no button is to
be generated when specified attribute is required.

By default, this button has its icon set to icon(minus).

Example:

remove-attribute-button(text, '"Remove id",
attribute, id,
check-required, yes)

29. replace-button

Inserts a command-button [36] in generated content which can be used to replace the element for which the button
has been generated.

Do not specify command, parameter or menu parameters for this type of command-button. A menu of replace
commands is built dynamically each time this button is clicked.

By default, this button has its icon set to icon(replace).

Example:

replace-button()

30. set-attribute-button

set-attribute-button(attribute, at t ri but e_nane, key, val ue, ..., key, val ue)

51

Content objects

Inserts a command-button [36] in generated content which can be used to give a value to specified attribute. A
pop-up menu listing all possible values is displayed when this button is clicked.

This pop-up menu cannot be displayed if the type of the specified attribute is not an enumerated type or is not
IDREF or IDREFS. Moreover, when the type of the specified attribute is IDREF or IDREFS, the pop-up menu
cannot be displayed if no attributes of type ID have been added to elements in the document.

Optional parameter unset-attribute may be set to yes (other allowed value is no) to specify that a remove attribute
command is to be added at the end of the pop-up menu.

By default, this button has its icon set to icon(pop-down).

Example:
set-attribute-button(attribute, for,

unset-attribute, yes,
icon, icon(pop-right));

31. text-area

text-area(key, val ue, ..., key, val ue)

Inserts in generated content a (multi-line) text area control. This control can be used to edit the value of the element
which is the target of the CSS rule. If "attribute, at t ri but e_nane" is specified, this control can be used to edit
the value of an attribute of this target element.

Key Value Default Description
attribute Qualified name of at- |No default Without this parameter, the control is used
tribute to be edited to edit the value of the element for which the
control has been generated.
columns Positive integer None (the text field |Width of the control in characters.

expands when the
document view is res-

ized)
rows Positive integer 3 Number of lines displayed by the control
wrap none | line | word none Specifies how text lines are wrapped.

Key, val ue, ..., key, val ue may also specify style parameters [32].

Example:

text-area(attribute, value,
columns, 40,
rows, 2,
wrap, word)

32. text-field

text-field(key, val ue, ..., key, val ue)

Inserts in generated content a (single line) text field control. This control can be used to edit the value of the element
which is the target of the CSS rule. If "attribute, at t ri but e_nane" is specified, this control can be used to edit
the value of an attribute of this target element.

Key Value Default Description
attribute Qualified name of at- |No default Without this parameter, the control is used
tribute to be edited to edit the value of the element for which the

control has been generated.

52

Content objects

Key Value Default Description

columns Positive integer None (the text field |Width of the control in characters.
expands when the
document view is res-
ized)

Key, val ue, ..., key, val ue may also specify style parameters [32].

Example:

text-field(columns, 10)

33. value-editor

value-editor (key, val ue, ..., key, val ue)

Inserts a control in generated content. Which control to insert is found by examining the grammar constraining
the document. This control can be used to edit the value of the element which is the target of the CSS rule. If "at-
tribute, at t ri but e_name" is specified, this control can be used to edit the value of an attribute of this target element.

Note that if value-editor is used to generate an editor for an element value and the content type of the target element
is not data (XML-Schema examples: xs:date, xs:double), no control is generated at all. A generic style sheet
such as xmldata.css takes advantage of this feature.

Key Value Default Description
attribute Qualified name of at- |No default Without this parameter, the control is used
tribute to be edited to edit the value of the element for which the
control has been generated.

Key, val ue, ..., key, val ue may also specify style parameters [32].
Examples:
value-editor()

value-editor(attribute, attribute())

34. xpath

xpath(XPat h_expr essi on)

Generalization of standard construct attr (at t ri but e_name). Inserts in generated content the value of XPat h_ex-
pr essi on, an XPath expression (XPath 1 is fully supported, including id() and document()) using the target of the
CSS rule (element, comment or processing instruction) at its context node.

Example:

xpath(*'id(@1inkend)/@xreflabel™)

Note that xpath(), like attr(), is evaluated once and this happens when the view of the element is built. This means
that in most cases, manually refreshing the view of the element after a change in the document will be needed (use
Select|Redraw or Ctrl-L).

Specifying attr(f oo) in a CSS rule implicitly creates a dependency between the value of attribute f oo and the
element which is the target of the CSS rule: the view of the element is automatically rebuilt when the value of its
attribute f oo is changed.

Similarly, specifying xpath(what ever) in a CSS rule implicitly creates a dependency between the element which
is the target of the CSS rule and all its attributes: the view of the element is automatically rebuilt when the value

53

Content objects

of any of its attributes is changed (which too much or not enough depending on the value of the what ever XPath
expression!).

See also label() [47].

54

Chapter 6. Content layouts

1. division
division(cont ent , key, val ue, ..., key, val ue)
Layout cont ent vertically like ina XHTML div.

Cont ent is either a single content object such as a string or a list of content objects. In the latter case, special
syntax content(cont ent, ..., cont ent) must be used.

Key, val ue, ..., key, val ue specify optional style parameters [32].

Example:

division(content(icon(down), '‘generated content', icon(up)),
border-width, 1,
border-style, solid)

2. paragraph
paragraph(cont ent, key, val ue, ..., key, val ue)

Layout cont ent horizontally like in a XHTML p.

Cont ent is either a single content object such as a string or a list of content objects. In the latter case, special
syntax content(cont ent, ..., cont ent) must be used.

Key, val ue, ..., key, val ue specify optional style parameters [32].

Example:

paragraph(content(icon(right), "generated content", icon(left)),
border-width, 1,
border-style, solid)

3. rows

rows(row_spec, ..., row_spec, key, val ue, ..., key, val ue)

row(cell_spec, ..., cell_spec, key, val ue, ..., key, val ue)

cell(content, key, val ue, ..., key, val ue)

Layout cont ent in a tabular way like in a XHTML tbody. See also rendering repeating elements as a table [14].

Cont ent is either a single content object such as a string or a list of content objects. In the latter case, special
syntax content(cont ent, ..., cont ent) must be used.

Key, val ue, ..., key, val ue specify optional style parameters [32]. Specifying such pairs at the row level is equi-
valent to specifying them for each cell contained in the row. Specifying such pairs at the rows level allows even
more factoring.

Therefore key, val ue, ..., key, val ue specify optional style parameters [32] for cells but not for rows and row.
This is different from the behavior of division [55] and paragraph [55] because unlike division and paragraph
which are true containers, rows and row are just constructs used to group cells.

Example:

55

Content layouts

row(cell("'Category", width, 20ex), cell('Choice #1"),
cell(“"Choice #2"), cell('Choice #3"),
font-weight, bold, color, olive,
padding-top, 2, padding-right, 2,
padding-bottom, 2, padding-left, 2,
border-width, 1, border-style, solid);

56

Chapter 7. Display values supported
for generated content

This section contain the answer to the following question: given the display of normal content (example: display:
block;),

» which types of display (example: display: inline;),
 which types of content layout (example: content: paragraph(content(icon(left), "left™)):),

are supported for :before and :after generated content?

About replaced content

» Replaced content supports all types of content layouts.
 Using generated content for an element having replaced content will give unspecified results.

Content such as content: icon(left) "middle" attr(foo) circle collapser(); which does not use an
explicit layout is said using a list layout.

Generated content not described in this section should not be used in XXE.
1. display: inline
Displays supported for :before and :after generated content:

« display: inline. Supported layouts:

o list.

b.iil:before,

b_.iil:after {
display: inline;
content: icon(right) "generated content" icon(left);
color: navy;

b

Thiz paragraph contains mgenerated content«some bold textegenerated content« of class 441 having
generated content.

 paragraph.

b_iip:before,
b.iip:after {
display: inline;
content: paragraph(content(icon(right), "generated content', icon(left)),
border-width, 1,
border-style, solid);
color: navy;

3

This paragraph contains H;enerated cument{sume hold text}generated cuntenH ofclass i4p having
generated cantent.

« division.

b.iid:before,
b_iid:after {
display: inline;

57

Display values supported for generated
content

content: division(content(icon(down), "generated content', icon(up)),
border-width, 1,
border-style, solid);

color: navy;

) ~generated content penerated content|]
This paragraph contains ome hold text ofclass 14d having

generated content.

« rows, row or cell (all three give a table).

b.iir:before,
b.iir:after {
display: inline;
content: row(cell(icon(right)),
cell('generated content'),
cell(icon(left)),
border-width, 1,
border-style, solid);
color: navy;

}

This paragraph contains Ebenerated cnntentHsume hold textpgenerated contentl« of class 14r having
generated content.

 Other display values are ignored and processed like display: inline.

2. display: block
Displays supported for :before and :after generated content:

« display: inline. Supported layouts:

(The gray frame is used to show that generated content is inside the p block.)

o list.
p-bil {
border: 1 solid gray;
padding: 2;
}

p-bil:before,

p-bil:after {
display: inline;
content: icon(right) "generated content'" icon(left);
color: navy;

}

|bgenerated content«This paragraph of class b4l has generated contentegenerated caontentsa

 paragraph.

p.bip {
border: 1 solid gray;
padding: 2;

(W]

bip:before,
bip:after {
display: inline;
content: paragraph(content(icon(right), ''generated content', icon(left)),
border-width, 1,

P-
P-

58

Display values supported for generated
content

border-style, solid);
color: navy;

3

}generated contents |
This paragraph of class bip has generated content.
}generated contents |

Display: inline, content: paragraph is treated as a special case. The generated paragraph is added before/after
normal content but inside the whole block. This contrasts with what is done for a generated paragraph with
display: block.

« division.
p.bid {

border: 1 solid gray;
padding: 2;

-

bid:before,
bid:after {
display: inline;
content: division(content(icon(down), "generated content', icon(up)),
border-width, 1,
border-style, solid);

P-
P-

color: navy;

¥

v
%enerated content

This paragraph of class bid has generated content.
v

%enerated content

Display: inline, content: division is treated as a special case. The generated division is discarded as a container
and all the ““paragraphs" it contains are added before/after normal content but inside the whole block. This
contrasts with what is done for a generated division with display: block.

« rows, row or cell (all three give a table).

p-bir {
border: 1 solid gray;
padding: 2;

-

bir:before,
bir:after {
display: inline;
content: row(cell(icon(right)),
cell(“'generated content™),
cell(icon(left)),
border-width, 1,
border-style, solid);

P-
P-

color: navy;

¥

|generated u:u:unten his paragraph of class bir has generated content.generated conten

« display: block. Supported layouts:
(The gray frame is used to show that generated content is outside the p block.)

o list.

59

Display values supported for generated

content
p-bbl {
border: 1 solid gray;
padding: 2;
¥

p.bbl:before,
p-bbl:after {
display: block;
content: icon(right) "generated content" icon(left);
color: navy;
margin-top: 1.33ex;
margin-bottom: 1.33ex;

3

rienerated contenty

|ngpamgmphnfﬂassbb1hasgenemmdcnnmnt

rienerated contenty

paragraph.

p.bbp {
border: 1 solid gray;
padding: 2;

¥

p-bbp:before,
p-bbp:after {
display: block;
content: paragraph(content(icon(right), ''generated content', icon(left)),
border-width, 1,
border-style, solid);
color: navy;
margin-top: 1.33ex;
margin-bottom: 1.33ex;

bs

wrienerated contenta

|This paragraph of class bbp has generated content. |

wrienerated contenta

Note that border around generated paragraph is not drawn. It should have been drawn: this is a known deficiency
of XXE styling engine. In order to draw this border, move border styles outside paragraph(), inside the rule
itself.

division.

p-bbd {
border: 1 solid gray;
padding: 2;

¥

p-bbd:before,
p-bbd:after {
display: block;
content: division(content(icon(down), 'generated content', icon(up)),
border-width, 1,
border-style, solid);
color: navy;
margin-top: 1.33ex;
margin-bottom: 1.33ex;

60

Display values supported for generated
content

L
generated content
&

This paragraph of class bkd has generated content.

L
generated content
&

Note that border around generated division is not drawn. It should have been drawn: this is a known deficiency
of XXE styling engine. In order to draw this border, move border styles outside division(), inside the rule

itself.

« rows, row or cell (all three give a table).

p-bbr {
border: 1 solid gray;
padding: 2;

¥

p-bbr:before,
p-bbr:after {
display: block;
content: row(cell(icon(right)),
cell('generated content'),
cell(icon(left)),
border-width, 1,
border-style, solid);
color: navy;
margin-top: 1.33ex;
margin-bottom: 1.33ex;

3
generated u:u:unten

|This paragraph of class bbr has generated cunkent.

generated u:u:unten

« display: marker. Supported layouts:

(The gray frame is used to show that generated content is outside the p block.)

o list.

p-bml {
border: 1 solid gray;
padding: 2;
margin-left: 20ex;
margin-right: 20ex;

}

p-bml:before,

p-bml:after {
display: marker;
content: icon(right) "generated content" icon(left);
color: navy;

wienerated contente | This paragraph of class bml has generated
content. moenerated content+

 paragraph.

p-bmp {
border: 1 solid gray;

padding: 2;

61

Display values supported for generated
content

margin-left: 20ex;
margin-right: 20ex;

3

p-bmp:before,
p-bmp:after {
display: marker;
content: paragraph(content(icon(right), "generated content', icon(left)),
border-width, 1,
border-style, solid);
color: navy;

T
generated contentd | This paragraph of class bmp has generated
content. generated content
« division.
p-bmd {
border: 1 solid gray;
padding: 2;

margin-left: 20ex;
margin-right: 20ex;

}

p.bmd:before,
p-bmd:after {
display: marker;
content: division(content(icon(down), "generated content', icon(up)),
border-width, 1,
border-style, solid);
color: navy;

This paragraph of class bmd has generated
content. nenerated content

denerated cantent

« rows, row or cell (all three give a table).

p-bmr {
border: 1 solid gray;
padding: 2;

margin-left: 20ex;
margin-right: 20ex;

3

p-bmr:before,
p-bmr:after {
display: marker;
content: row(cell(icon(right)),
cell("generated content'),
cell(icon(left)),
border-width, 1,
border-style, solid);
color: navy;

generated u:u:unten This paragraph of class bme has generated

content. generated conten

« Other display values are ignored and processed like display: block.

62

Display values supported for generated
content

3. display: list-item

Display: list-item behaves exactly as display: block [58], except that a content containing the list marker is auto-
matically generated before the list item. Properties list-style-type, list-style-position, list-style-image are used to
parametrize the generation of this content.

Example:
i {
display: list-item;

list-style-type: disc;
b

is equivalent to:
li {
display: block;
margin-left: N; /*make room for the bullet*/

b
li:before {
display: marker;
content: disc;
¥

Note that if the CSS style sheet explicitly specifies a generated content before the list item, display: list-item is
strictly equivalent to display: block [58] because, in such case, no content is automatically generated.

4. display: table

Displays supported for :before and :after generated content:

« display: block. Same behavior as display: block [58].

« display: marker. Same behavior as display: block [58].

« display: table-row-group or display: table-row. Supported layouts:

o list.

table.trl:before,

table.trl:after {
display: table-row;
content: icon(right) "generated content'" icon(left);
color: navy;

Table of class el

eoenerated content+
Column 1 Column 2

1.1 1.2
2.1 2,2
eoenerated content+

 paragraph.

table.trp:before,
table.trp:after {
display: table-row;
content: paragraph(content(icon(right), ''generated content', icon(left)),
border-width, 1,
border-style, solid);

63

Display values supported for generated
content

color: navy;

Tablg of cI’&s fep

poenerated contenta
Column 1 Column 2
1.1 1,2

21 2,2
poenerated contenta

 division

table.trd:before,
table.trd:after {
display: table-row;
content: division(content(icon(down), "generated content', icon(up)),
border-width, 1,

border-style, solid);
color: navy;

Tabie of ciass sed

Eenerated content

Column 1 Column 2
1.1 1,2
21 2,2
Eenerated content

« rows, row or cell (all three give one or several rows).

table.trr:before,
table._trr:after {
display: table-row;
content: row(cell(icon(right)),
cell(“'generated content'),
cell(icon(left)),
border-width, 1,

border-style, solid);
color: navy;

b
Table of class tee
i denerated content
Column 1 Column 2
11 1,2
21 22
a denerated content

Note that generated row has been merged to normal content. See also rendering repeating elements as a
table [14].

 Other display values are ignored and processed like display: block.
5. display: table-row-group
Displays supported for :before and :after generated content:

« display: table-row. Supported layouts:

64

Display values supported for generated
content

list.

thead.grl:before,
thead.grl:after {
display: table-row;

content: icon(right) "generated content" icon(left);
color: navy;
b
eoenerated contenty
Column 1 Column 2
eoenerated contenty
11 1,2
21 2,2

paragraph.

thead.grp:before,
thead.grp:after {
display: table-row;

content: paragraph(content(icon(right), ''generated content', icon(left)),
border-width, 1,
border-style, solid);
color: navy;
3
poenerated contenta
Column 1 Column 2
poenerated contenta
1.1 1,2
21 2,2
division
thead.grd:before,
thead.grd:after {
display: table-row;
content: division(content(icon(down), '‘generated content', icon(up)),

border-width, 1,
border-style, solid);

color: navy;
¥
nenerated content
Column 1 Column 2
nenerated content
11 1,2
21 32

rows, row or cell (all three give one or several rows).

thead.grr:before,
thead.grr:after {
display: table-row;
content: row(cell(icon(right)),
cell(“'generated content'),
cell(icon(left)),
border-width, 1,
border-style, solid);

color: navy;

65

Display values supported for generated

content
ﬂgenermedcnnmnﬂJ
Column 1 Column 2
ﬂgenermedcnnmnﬂJ
11 1,2
21 32

 Other display values are ignored and processed like display: table-row.

6. display: table-row
Displays supported for :before and :after generated content:

« display: table-cell. Supported layouts:

o ist.

tr.rcl:before,

tr.rcl:after {
display: table-cell;
content: icon(right) "generated content" icon(left);
color: navy;

¥

Column 1 Column 2

eoenerated content- 1,1 1.2 Lgenerated cantents
21 2,2

 paragraph.

tr.rcp:before,
tr.rcp:after {
display: table-cell;
content: paragraph(content(icon(right), ''generated content', icon(left)),
border-width, 1,
border-style, solid);
color: navy;

3
Column 1 Column 2
poenerated contenta 1.1 1,2 Fgenerated contenta
2.1 2,2
« division

tr.rcd:before,
tr.rcd:after {
display: table-cell;
content: division(content(icon(down), "‘generated content', icon(up)),
border-width, 1,
border-style, solid);
color: navy;

3

I:Zulumn 1 Column 2

%enerated content %enerated cantent

1,1] 12
21 2,2

 rows, row or cell (all three give a table).

66

Display values supported for generated
content

tr.rcr:before,
tr.rcr:after {
display: table-cell;
content: row(cell(icon(right)),
cell("'generated content'),
cell(icon(left)),
border-width, 1,

border-style, solid);
color: navy;

T

Column 1 Column 2

nenerated cnntemH 1.1 1,2 ngnerated conten
2.1 2,2

» Other display values are ignored and processed like display: table-cell.

7. display: table-cell

Same behavior as display: block [58].

67

