
XMLmind XML Editor - Using the
Integrated Spreadsheet Engine

Hussein Shafie
Pixware

<xmleditor-support@xmlmind.com>

XMLmind XML Editor - Using the Integrated Spreadsheet Engine
Hussein Shafie
Pixware
<xmleditor-support@xmlmind.com>

Published June 21, 2007

Abstract

This guide contains everything you need to know to use the spreadsheet engine integrated in XXE. This document
starts with an easy-to-follow tutorial.

I. Tutorial ... 1
1. Introduction ... 2
2. Tutorial ... 3

1. Basics ... 3
1.1. Three more formulas to finish first version of the invoice ... 4

2. How does this really work? ... 4
3. Relative references .. 5
4. Absolute references ... 6

4.1. Better absolute references .. 7
5. External references ... 8
6. Formatting .. 9

II. Reference .. 14
3. The language used to write formulas ... 15

1. Statements and comment lines ... 15
2. Expressions ... 15
3. Function calls ... 16
4. Literals ... 16

4.1. Numbers ... 16
4.2. Strings .. 16
4.3. Booleans ... 16

5. References ... 16
5.1. Reference to a variable .. 16
5.2. Reference to an element having a specific ID ... 16
5.3. Reference to table cells .. 17

5.3.1. The $[row,column] notation ... 18
5.3.2. Reference to cells in another table of the document 18

6. XPath escapes .. 18
7. Value types .. 19
8. Automatic conversion between different value types .. 19

4. Predefined functions .. 22
1. Date and time functions .. 22

1.1. datevalue .. 22
1.2. timevalue .. 22
1.3. datetimevalue ... 23
1.4. date .. 24
1.5. time ... 24
1.6. datetime .. 24
1.7. year ... 24
1.8. month ... 25
1.9. day .. 25
1.10. weekday .. 25
1.11. hour ... 26
1.12. minute .. 26
1.13. second .. 27
1.14. today .. 27
1.15. now .. 27

2. Logical functions .. 27
2.1. and .. 27
2.2. or .. 27
2.3. not ... 28
2.4. if ... 28
2.5. true .. 28
2.6. false ... 28

3. Mathematical functions .. 28
3.1. numbervalue .. 28
3.2. checknumber ... 29
3.3. sum .. 29
3.4. product ... 30

iii

3.5. abs ... 30
3.6. acos ... 30
3.7. asin .. 30
3.8. atan .. 30
3.9. atan2 .. 30
3.10. cos ... 30
3.11. cosh ... 31
3.12. sin .. 31
3.13. sinh .. 31
3.14. tan ... 31
3.15. tanh .. 31
3.16. degrees ... 31
3.17. radians .. 31
3.18. pi ... 31
3.19. exp ... 31
3.20. acosh .. 31
3.21. asinh .. 32
3.22. atanh .. 32
3.23. log ... 32
3.24. mod ... 32
3.25. ln ... 32
3.26. log10 .. 32
3.27. sign .. 32
3.28. sqrt .. 32
3.29. trunc ... 33
3.30. int .. 33
3.31. rand .. 33
3.32. countif .. 33
3.33. sumif .. 33
3.34. round .. 34
3.35. rounddown .. 34
3.36. roundup .. 35

4. Spreadsheet functions .. 35
4.1. union ... 35
4.2. intersection .. 35
4.3. difference .. 36
4.4. apply .. 36

5. Statistical functions ... 36
5.1. avedev .. 36
5.2. stdev .. 37
5.3. var ... 37
5.4. max ... 38
5.5. min .. 38
5.6. average ... 39
5.7. count .. 39

6. Text functions ... 40
6.1. char ... 40
6.2. code ... 40
6.3. text .. 40
6.4. mid .. 41
6.5. left ... 41
6.6. right ... 41
6.7. trim .. 41
6.8. lower .. 42
6.9. upper .. 42
6.10. len ... 42
6.11. substitute ... 42
6.12. replace .. 42

iv

XMLmind XML Editor - Using the
Integrated Spreadsheet Engine

6.13. find .. 42
6.14. search ... 43

5. Defining custom spreadsheet functions .. 44
1. Registering custom spreadsheet functions with XXE .. 44
2. Specifying custom spreadsheet functions ... 45
3. Custom spreadsheet functions written in the Java™ programming language 47

v

XMLmind XML Editor - Using the
Integrated Spreadsheet Engine

Part I. Tutorial

Chapter 1. Introduction
This feature is available only in XMLmind XML Editor Professional Edition.

An easy to use and yet extremely powerful integrated spreadsheet engine is built into XMLmind XML Editor.
This engine may be described as follows:

• It does not work by embedding an external spreadsheet component in the document. The XML document is the
spreadsheet. That is, a formula can address any part of the XML document using XPath. (More information in
Section 6, “XPath escapes” [18].)

• When an XML element is rendered on screen as a table, a formula can address table cells using the usual ``A1
notation'' (example: "table1"!A1:C3). If the formula is itself inside a table cell, it can even use relative
cell references (example: A1:C3).

• The formula language and the predefined functions are very similar to those found in other spreadsheet software
(Microsoft Office Excel, OpenOffice.org Calc, etc). Example: "sum is " & SUM(A1:A3). More than 80 pre-
defined functions are provided.

• A formula is represented by processing instruction <?xxe-formula>. Using such specific processing instructions
is allowed by the XML standard. <?xxe-formula>s are ignored by XML software other than XXE.

You'll find a demo you can play with in XXE_install_dir/demo/spreadsheet-demo.xhtml.

2

http://www.w3.org/TR/xpath
http://office.microsoft.com/en-us/excel/default.aspx
http://www.openoffice.org/product/calc.html

Chapter 2.Tutorial
Please open XXE_install_dir/doc/spreadsheet/tutorial/invoice_table.html1 and immediately save it
as invoice.html in the same directory.

1. Basics
Use Tools|Spreadsheet|Show Table Labels to make the table look like a spreadsheet.

Click in cell E2 and use Tools|Spreadsheet|Insert/Edit Formula (shortcut Ctrl-Shift-I) to insert a new formula at
caret position.

The Formula Editor is displayed:

After sign '=', type A2*D2 and then click OK (shortcut Ctrl-Enter).

You have inserted your first formula in the document. A formula is visually represented by a small F icon. Don't
worry if you find it ugly: it will disappear when you'll print the document or when you'll convert it to other formats.

Click on the F icon. Notice that:

• The node path bar displays: /html/body/table/tbody/tr/td/#processing-instruction(xxe-formula),
which means that a formula is processing instruction xxe-formula (more on this later).

1In XXE_install_dir/doc/spreadsheet/tutorial/, you'll also find:

• products.html, the product list used in this tutorial.

• invoice_done.html, the invoice after finishing this tutorial.

• invoice_template.html, a ready-to-use, empty, invoice, having all the needed formulas.

3

• A red line is drawn around the F icon, which means that you have explicitly selected this processing instruction.

• The status bar displays: =(A2*D2). The small F icon is in fact a special purpose button (more on this later).

Copy the formula (Ctrl-C) to the clipboard and paste it (Ctrl-V) in cells E3 and E4.

Now type in cell A2: 2, tab to cell B2 to type: xe-1u, tab again to cell D2 and type: 200. Do the same in the next
two rows: 1,xe-5u,800 and 1,fc-uu,3000. Then click in cell E5 to force an update. The table should now look like
this:

1.1.Three more formulas to finish first version of the invoice

1. Click in cell E5 and insert formula: =sum(E2:E4)

2. Click in cell E6 and insert formula: =rounddown(E5 * left(D6, len(D6)-1)%, 2)

left(D6, len(D6)-1) is string "19.6%" without its last character '%'.

Note that you can use spaces in a formula and that a formula is case-insensitive. For example: SUM(e2:e4)
works fine too.

3. Click in cell E7 and insert formula: =E5+E6

2. How does this really work?
In XMLmind XML Editor, a formula is stored as the xxe-formula processing instruction. A processing instruction
such as xxe-formula is allowed by the XML standard. Such processing instructions will be ignored by all XML
software except XMLmind XML Editor.

Unlike in ``real'' spreadsheet software:

4

Tutorial

• A formula is not a ``computed table cell'', which is itself a value you can reference in other formulas. A formula
is a special XML object which can be inserted anywhere in the XML document (including inside a table cell
element, at an arbitrary nesting level).

• A formula computes a value, but is not itself a value you can reference in other formulas. This computed value
is added just after the xxe-formula processing instruction. If there is already some text just after the xxe-formula
processing instruction, this text is replaced.

Optionally the computed value can be used to set/replace the value of an attribute of the element containing the
xxe-formula processing instruction.

• A formula can access any part of the XML document (using XPath escapes [18]). When the formula has an
ancestor element which is formatted as a table cell, using the customary A1 notation to reference table cells is
possible. When no styled view is used to render the XML document or when the formula has no ancestor element
which is formatted as a table cell, A1-style cell references will not work.

In a styled view, a formula is rendered using a special purpose gadget, which is at the same time an indicator and
a button. Its color gives you a hint about the state of the formula.

DescriptionIcon

Unknown state. Formulas contained in document modules included in the document being
edited are ignored by the spreadsheet engine.

Parse error. Should not happen if you use the Formula Editor.

Evaluation error.

OK.

Disabled.

Disabling a formula means passivating it. That is, it is no longer used to update the docu-
ment. In some cases, this is a handy alternative to removing it.

Clicking on the icon triggers special actions:

Simple click
If the formula cannot be parsed (red icon) or evaluated (orange icon), displays the corresponding error message
in the status bar. If the formula is working, displays the last statement of the formula (a formula can contain
several statements, see The language used to write formulas [15]).

Double click
Opens the Formula Editor to edit the formula.

Click with middle button
Disables (gray icon) or enables (green icon) the formula.

3. Relative references
Select row #4 (for example by Ctrl-clicking 3 times in a cell of row #4), copy it to the clipboard (Ctrl-C) and paste
the copied row after row #4 (Ctrl-W).

5

Tutorial

Ouch! SubTotal E6 is wrong. It should be 7200. What happened here?

The first formula we have created was =A2*D2. This formula was inserted in cell E2. This formula uses relative
cell references which means that XXE understands it as: add the cell which is 4 columns to my left to the cell
which is 1 column to my left.

If you really wanted to add cell at (row 2,column A) to cell at (row 2,column D), whichever is the cell containing
the formula, you should have typed =A2*D2.

Using relative references in a formula is handy because it allows the formula to be copied and pasted elsewhere.
Remember that we have copied first formula to E3 and E4 and that we have duplicated row #4, which means that
we have copied the formula of E4 to E5.

If you click on the formula of E3 (which is a copy of the one in E2), you'll see =(A3 * D3). Similarly, on E4, you'll
see =(A4 * D4) and on E5, =(E5 * D5).

No, XXE has not modified the formulas that you have copied. XXE has stored exactly the same formula in E2,
E3, E4, E5 but it displays it differently when you click on different cells.

And because, unlike ̀ `real spreadsheet software'', XXE never modifies your formulas, SubTotal E6 is wrong! Click
on E6 and you'll see =sum(E3:E5). Real spreadsheet software would have modified the formula to be =sum(E2:E5).

Fortunately, there is a way to fix this kind of problem. Double-click on the formula of E6 to open the Formula
Editor and replace =sum(E3:E5) by =sum(difference(E:E,E6:E1000)). This means add everything in column E
(E:E) except all cells after E6 (E6:E1000). Et voilà this is fixed once for all! You can now freely add and remove
purchased products to the table without worrying about the SubTotal.

Duplicate row #5 as we did for row #4. In new row #6, replace 1,fc-uu,3000 by 1,sc-cs,100. Then delete row #5
which is a copy of row #4.

4. Absolute references
Use the Attribute tool to add an ID to the table. Select the table using the node path bar, click on the line starting
with id in the Attribute tool and type invoice_table, then press Enter.

Add a paragraph containing sentence "The VAT rate is the VAT rate of France.". After the "The VAT rate
", use Ctrl-Shift-I to insert a new formula.

Try to specify this formula as ="invoice_table"!D7. This does not work.

Outside a table, relative references are not allowed. Now specify ="invoice_table"!D7.

6

Tutorial

It works because we have used absolute references but this has deleted everything after "The VAT rate ". This
is normal. Remember that the value computed by a formula is added just after the xxe-formula processing instruc-
tion. If there is already some text just after the xxe-formula processing instruction, this text is replaced.

Click on the formula to select it. Use Select|Extend Selection to Following Sibling (shortcut Esc Right-Arrow)
and then Edit|Convert (shortcut Ctrl-T) to convert the two selected nodes to a span.

Now press Insert to insert a new text node after the newly created span and type once again " is the VAT rate
of France.".

What you have learned here is that, unless a formula is inserted in a table cell which contains nothing else, you'll
almost always have to wrap it in its own element (typically span for XHTML and phrase for DocBook).

4.1. Better absolute references

Using ="invoice_table"!D7 to copy the content of cell D7 is not a good idea. Adding and removing purchased
products to the table would change the last sentence to something that does not make sense.

Formulas can very easily reference elements by their ID and that's what we are going to do. Click on cell D7 and
specify an attribute id for it. We have already done that for the table. This time, specify VAT as the value of attribute
id of td D7.

Now double click on the formula contained in last sentence and, using the Formula Editor, change ="in-
voice_table"!D7 to =$(VAT).

Notice that this time, the end of the sentence, "is the VAT rate of France.", has not disappeared.

We are going to double-check this by manually triggering a full calculation of the spreadsheet. Use
Tools|Spreadsheet|Update for that.

About automatic calculation of the spreadsheet

By default, the spreadsheet engine is in auto-update mode.

In auto-update mode, a full calculation is automatically performed, if needed to, when the editing context
changes. For example: type some text in a paragraph, then click in (or tab to) another paragraph to trigger
a spreadsheet calculation.

In manual update mode, only newly inserted formulas are computed. To force a full calculation, the user
has to explicitly use Tools|Spreadsheet|Update.

Note that in both modes, a full calculation is automatically performed, if needed to, before validating or
saving the document.

Using manual update mode is recommended if you have a slow computer or if you have inserted a lot of
formulas in your document or if your formulas access many external documents (more about this in next
section).

7

Tutorial

5. External references
Instead of typing product descriptions, we are going to use a formula to fetch them from an external XML document.
This document is XXE_install_dir/doc/spreadsheet/tutorial/products.html.

Click in cell C2 and use Ctrl-Shift-I to insert a new formula. Enter this multi-line formula:

location = "products.html#" & trim(B2) & "_desc"
=`document($location, .)`

First line is easy to understand. It assigns to local variable location a string built using the code of the product:
"products.html#xe-1u_desc". "product.html" is the URL, relative to the location of the document being edited,
of the external XML document containing product descriptions. "xe-1u_desc" is the ID of the element containing
the description of product xe-1u.

Second line contains an XPath escape [18]. The expression between backquotes '`' , which uses standard XPath
function document(), allows to fetch a node found in an external document. Without the "#xe-1u_desc" fragment
identifier, the whole document node is fetched. With the "#xe-1u_desc" fragment identifier, we fetch the element
node having xe-1u_desc as its ID.

Copy the new formula to the clipboard (Ctrl-C) and paste it (Ctrl-V) into C3, C4, C5.

8

Tutorial

6. Formatting
There is something obviously wrong in our invoice: numbers are very poorly formatted. Replace the unit prices
of column D by $200.00, $800.00, $3,000.00, $100.00.

The problem now is that the formulas no longer work2. The reason is that, if string "3000" can be automatically
be converted to a number when used in formula =A4*D4, a string such as "$3,000.00" cannot be automatically be
converted to a number.

In order to fix this, we need to use spreadsheet function numbervalue(). This function must be used to convert a
string representing a localized number to something usable by the spreadsheet functions and operators. Function
numbervalue() must be passed a number format and optionally, a locale which specifies how to interpret this
format.

First of all, set the xml:lang attribute of the html root element to en. By doing this, all the number formats found
in spreadsheet formulas will by default use the English locale.

Then, click on the formula of cell E2 and replace =(A2 * D2) by =(A2 * numbervalue(D2, "$#,##0.00")).

2NaN is a special number which means "Not a Number".

9

Tutorial

The language of an XML element

Unless explicitly passed a locale argument3, spreadsheet functions which have to interpret formats: number-
value(), datetimevalue(), datevalue(), timevalue(), text(), etc, will use the language of the element containing
the formula.

By default, this language is specified by the standard xml:lang attribute. This attribute is inherited, that is,
the language of an element is also the language of all its descendant elements (of course, unless a descendant
overrides this language using its own xml:lang attribute).

However, not all document types make use of the standard xml:lang attribute. For example, DocBook has
a lang attribute. In such cases, how does XMLmind XML Editor determine the language of an element?
The answer is: this must be specified in the configuration which parametrizes the behavior of XXE for a
given document type.

The configuration element is called spellCheckOptions. Its languageAttribute and defaultLanguage
attributes are used, not only by the integrated spell checker, but also by the integrated spreadsheet engine.
DocBook example:

<cfg:spellCheckOptions xmlns=""
 useAutomaticSpellChecker="true"

languageAttribute="lang"
 skippedElements="address funcsynopsisinfo classsynopsisinfo
 literallayout programlisting screen synopsis" />

More information in the section called “spellCheckOptions” in XMLmind XML Editor - Configuration and
Deployment.

When neither the standard xml:lang attribute nor the spellCheckOptions configuration element are used,
the default language of XML elements is English ("en") and this, whatever the locale of the computer used
to run XMLmind XML Editor.

While we are at it, we'll also make the value computed by the formula of cell E2 good looking. In order to do that:

• Click on the Format toggle below the text area.

• Type "$" in first text field.

• Type "#,##0.00" in second text field.

3Example: numbervalue(D2, "$#,##0.00", "en-US").

10

Tutorial

../configure/configure.pdf#spellCheckOptions

We could have used spreadsheet function text() to accomplish the same formatting task, but separating the calcu-
lation from the formatting of the result by the means of the Format fields will make your formulas easier to read.

Do not bother fixing by hand the formulas of cells E3, E4, E5. Simply copy the formula found in cell E2 (Ctrl-C)
then click to select the formula of cell E3 and finally use paste (Ctrl-V) to replace it by the content of the clipboard.
Repeat the operation with cell E4 and cell E5.

The formula of cell E6 is trickier to fix: =sum(difference(E:E, E6:E1000)). In order to do this, we need to use
spreadsheet function apply().

Function apply() applies a transformation to each node of a nodeset. Here the nodeset is: difference(E:E, E6:E1000).
The transformation that we need to apply is numbervalue(x, "$#,##0.00"), where x represents the string value of
the iterated node. This gives:

11

Tutorial

Note that the transform argument of apply is specified as a string and that we have alternated single and double
quotes to make this string easier to read.

Tip

The documentation of spreadsheet functions is available online. If, for example, you don't remember how
to use function apply(), simply select the word apply in the text area of the Formula Editor and press F1.

Finally fix the formulas found in cells E7 and E8:

• Double-click on the formula of cell E7 and replace =rounddown((E6 * (left(D7, (len(D7) - 1)))%), 2) by
=rounddown((numbervalue(E6, "$#,##0.00") * (left(D7, (len(D7) - 1)))%), 2). Also use the Format fields.

• Double-click on the formula of cell E8 and replace =(E6 + E7) by =(numbervalue(E6, "$#,##0.00") + number-
value(E7, "$#,##0.00")). Also use the Format fields.

The invoice is finished. It is now possible to remove the labels we put around the rows and columns of the table.
This is done by using Tools|Spreadsheet|Hide Table Labels.

12

Tutorial

13

Tutorial

Part II. Reference

Chapter 3.The language used to write
formulas
The language used to write formulas is case insensitive.

1. Statements and comment lines
A formula can contain several statements, blank lines and comment lines. Example:

x = 2

This a comment line

y = 2
= x + y

• Spaces are allowed inside statements.

• Statements must end with a newline.

• All statements except last one are used to assign to local variables the values of intermediate expressions.

• Last statement is the result of the formula. It must start with '='.

• Some identifiers are reserved: TRUE, FALSE and all references to table cells: A1, B2, DC273, etc. Do not use
reserved identifiers for the names of your local variables. Example: x=2 is OK, x1=2 is not.

2. Expressions
Expressions use the following operators to combine primary expressions (function calls, literals, references, etc).
Operators are listed from highest priority to lowest priority.

• -number negation like in -1.

• number% percentage like in 10%

• number1^number2 exponentiation: 2^3=8

• number1*number2 multiplication. number1/number2 division.

• number1+number2 addition. number1-number2 subtraction.

• string1&string2 string concatenation: "black"&"white"="blackwhite".

• value1=value2 (equal). value1<>value2 (different). number1<number2 (less than). number1<=number2 (less
than or equal). number1>number2 (greater than). number1>=number2 (greater than or equal).

Unlike in other spreadsheet software, there are no union and intersection operators. Use the union() and intersection()
functions. (The difference() function is also very useful.)

Unlike in other languages, there are no test, logical and, logical or and logical negation operators. Use the following
functions for that: if(), and(), or(), not().1

Parentheses may be used to group subexpressions. Example:

= 2+2*3

1The documentation of functions is exclusively available online. Use the Paste Function tab of the Formula Editor to browse it.

15

means:

= 2 + (2*3)

because the priority of '*' is higher than the priority of '+'. If, in fact, you did not intended to write this, you must
use parentheses:

= (2 + 2)*3

3. Function calls
The syntax of a function call is: function_name(argument, argument2,, argumentN) whatever is the locale of
the computer running XMLmind XML Editor. Examples:

PI()
sin(x)
log(x, 10)
max(A1, A2, 100.0)

4. Literals

4.1. Numbers

Numbers are always written the same whatever is the locale of the computer running XMLmind XML Editor: 1,
2.3, 314E-2, 0.314e1, 0.314e+1, etc.

4.2. Strings

String must quoted using double quotes (") or single quotes ('). They cannot contain newline characters.

In a string quoted using double quotes, the double quote character must be escaped by doubling it. In a string
quoted using single quotes, the single quote character must be escaped by doubling it.

Examples:

"It doesn't matter"
'It doesn''t matter'
"Did you say ""bizarre""?"
'Did you say "bizarre"?'

4.3. Booleans

TRUE and TRUE() (case insensitive of course) specify logical value true. FALSE and FALSE() specify logical
value false.

5. References

5.1. Reference to a variable

There is nothing special to do to reference a variable, except that a variable needs to have been assigned a value
before being referenced. Example:

x = 2
x = x + 1
= 2*x*x

5.2. Reference to an element having a specific ID

The syntax of this type of reference is: $(ID), where ID is the ID of a element contained in the same document as
the formula. Example taken from the tutorial:

16

The language used to write formulas

= left($(vat), len($(vat)) - 1)

This type of reference returns an XML nodeset containing a single element. If there is no element having specified
ID, the reference returns the empty nodeset. More on this below.

5.3. Reference to table cells

The following references are said to be relative:

• First cell of a table: A1.

• Second row: 2:2.

• Second column: B:B.

• First two rows: 1:2.

• First two columns A:B.

• Four cells in the top/left corner of the table: A1:B2.

The following references are said to be absolute:

• First cell of a table: A1.

• Second row: $2:$2.

• Second column: $B:$B.

• First two rows: $1:$2.

• First two columns $A:$B.

• Four cells in the top/left corner of the table: A1:B2.

Mixed references are possible too: A$1, $A1, 2:$2, $2:2, etc.

What does this mean? Example: cell A3 (first column, third row) contains the following formula:

= A1 + A2

Because the formula uses relative references, XXE translates this to:

= $[-2,0] + $[-1,0]

which means add the cell which is 2 rows above me to the cell which is 1 row above me.

If you copy the formula of A3 to B3 (second column, third row), the copied formula will add B1 to B2
because the cell which is 2 rows above B3 is B1 and the cell which is 1 row above B3 is B2.

On the other hand, if cell A3 contained the following formula:

= A1 + A2

Because the formula uses absolute references, XXE would have translated this to:

= $[1,1] + $[1,2]

which means add the cell which is at first column, first row to the cell which is at first column, second row.

With absolute references, after copying the formula of A3 to B3, the copied formula would still add A1 to
A2.

17

The language used to write formulas

Important

• Relative references are allowed only when the formula is inside a table cell.

• References to cells, whether relative or absolute, are really possible when the XML document is displayed
using a styled view.

A reference such as A3 cannot be evaluated unless the formula has an ancestor element formatted as
a table.

A reference such as "Income"!C4 cannot be evaluated unless element with ID Income is formatted
as a table.

5.3.1.The $[row,column] notation

This notation is the one which is internally used by XXE. You can type $[row,column] references if you want, but
XXE will never show you these references as you typed them. XXE (the status bar, the formula editor, etc) will
automatically display cell references using the customary A1 notation, which is much more readable.

Absolute reference examples: A1 = $[1,1] $2:$2 = $[2,] $B:$B = $[,2] $1:$2 = $[1,]:$[2,] $A:$B = $[,1]:$[,2]
A1:B2 = $[1,1]:$[2,2]

Relative reference examples, the formula being inside cell A3: A1 = $[-2,0] 2:2 = $[-1,] B:B = $[,+1] 1:2 = $[-
2,]:$[-1,] A:B = $[,0]:$[,+1] A1:B2 = $[-2,0]:$[-1,+1]

5.3.2. Reference to cells in another table of the document

The element formatted using CSS property "display:table;" must have an ID. The syntax is: "ID"!cell_reference.
Examples: "Income"!C4, "table-23"!A:A (relative references are allowed too if the formula has itself an ancestor
element formatted as a table).

6. XPath escapes
The language used to write formulas is very close to the one used by other spreadsheet software. The rationale is
of course to make it easy to learn. But in fact, formulas are internally translated to another, less known language:
XPath 1.0. XPath can be considered as the standard, native, expression language of XML.

This design allows to freely mix XPath expressions with ̀ `ordinary'' expressions. This is what we call XPath escapes.

The syntax of XPath escapes is simply: `XPath_expression`. (The character used here is the backquote '`'.)

Inside XPath_expression, the backquote character '`' must be escaped by doubling it. Example: `concat("XXE
", " is ````challenging to learn''.")`.

An XPath expression can reference the local variables of the formula using the usual XPath syntax for that:
$variable_name.

Using XPath escapes is often mandatory. Example 1: add 2 to the value of attribute count of the element containing
the formula:

= `@count` + 1

Example 2 taken from the tutorial: get element with ID B2&"_desc" found in external document "products.html"
(pathname relative to the file containing the document being edited).

location = (("products.html#" & trim(B2)) & "_desc")
=`document($location, .)`

18

The language used to write formulas

http://www.w3.org/TR/xpath

This XPath-based design also allows to use XPath functions as if they were regular spreadsheet functions. In order
to do this, simply add an underscore '_' at the beginning of the XPath function name and, if this name contains
dashes '-', replace them by underscores. Examples:

• _contains("Large", "e") = TRUE

• _substring_before("Large", "e") = "Larg"

7. Value types
Most operators expect their operands to have a specific type and return a result having a specific type. Examples:
+ expects 2 numbers and returns a number, & expect two strings and returns a string.

Most functions expect their arguments to have a specific type and return a result having a specific type. Examples:
left() expects a string and a number and returns a string, cos() expects a number and returns a number.

When the operand or the argument does not have the expected type, an automatic conversion is performed if this
is possible; otherwise an error is reported.

Example that works: cos(B2) where cell B2 contains a string "3.14" which can be parsed as a number.

Example that sort of works: 2 + "two" (gives ``number'' NaN, which is not really a number).

Example that reports an error (because function sum() has been specified to do that): sum(2, "two").

This automatic conversion process is detailed in next section.

The types of values returned by expressions are:

Number
Examples: .23, 3.14, 314E-2, PI(), 2+2, log(A2,10).

String
Examples: "Great", 'Not that great', "black" & "white", mid(D3, 3, 4).

Boolean
Examples: TRUE, FALSE, true(), false(), 1>=0, and(A1 >= 1, A1 <= 99).

Nodeset
A set of XML nodes: Examples: A1, A:A, $2:$3, "table-23"!A1, $(vat), `id("product-list")/*`, apply("x +
1", B:B).

Date
Year/month/day. Examples: today(), date(1960,3,16), datevalue("1960-03-16"), datevalue("3/16/60",
"MM/dd/yy").

Time
Hour/minute/seconds/fraction of a second. Examples: time(13,30,45), timevalue("13:30:45"), timevalue("1:30:45
PM", "hh:mm:ss a").

DateTime
Year/month/day and hour/minute/seconds/fraction of a second: Examples: now(), datetime(1960,3,16,13,30,45),
datetimevalue("1960-03-16T13:30:45"), datetimevalue("1:30:45.250 PM 3/16/60", "hh:mm:ss.SSS a
MM/dd/yy").

8. Automatic conversion between different value types
The behavior of operators such as +, *, =, <>, <=, >, etc, is the one of equivalent XPath operators.

Surprising example: using = and <> to compare node-sets:

19

The language used to write formulas

two1

3two

(A:A = B:B), (A:A = B1) and (A:A <> B2) all work and evaluate to true.

Fortunately the behavior of spreadsheet function such as sum(), rounddown(), etc, is almost identical to the beha-
vior of similar functions found in other spreadsheet software. This behavior has no XPath equivalent.

The automatic conversion process is the one described in the XPath standard.

Date / Time /
DateTime

NodesetBooleanStringNumberFrom\To

A number is taken
to be the number

ERROR0 and NaN are
converted to

Conversion does
not add superflu-

-Number

of seconds sinceFALSE. Otherous zeros after the
January 1, 1970,numbers are con-

verted to TRUE.
point (e.g. it gener-
ates 1, not 1.0). 00:00:00 GMT.

Scientific notation
(e.g. 314E-2) is
never used.

This number is
converted to the
corresponding dat-
etime.

Strings using the
ISO 8601 format

ERRORA string is TRUE
if its length is
non-zero.

-Strings such as
3.14, -2 can be
parsed as num-
bers.

String

(also used by
W 3 C X M L

Strings such as
3 1 4 E - 2 o r

Schema Data-
types) are success-
fully converted to

1,000,000.0 can- date, time and dat-
etime.not be parsed as

numbers (use
Examples: 1960-
03-15Z (date),

function number-
value() to do this).

13:30:00Z (time),
A string which
cannot be parsed

1 9 6 0 - 0 3 -
1 6 T 1 2 : 3 0 : 0 0 Z
(datetime)as a number is

converted to NaN.

ERRORERROR-TRUE is conver-
ted to "true".

TRUE is conver-
ted to 1. FALSE is
converted to 0.

Boolean

FALSE is conver-
ted to "false".

ERROR-A nodeset is
TRUE if it is non
empty.

String value of the
node in the node-
set that is first in
document order.

A nodeset is first
converted to a
string and then
this string is con-

Nodeset

Text contained in
descendant nodes

ve r t ed t o a
boolean.

of this first node is
taken into account.
Except that text
contained in com-
ments and pro-
cessing-instruc-
tions is ignored.

20

The language used to write formulas

http://www.w3.org/TR/xpath

Date / Time /
DateTime

NodesetBooleanStringNumberFrom\To

E x a m p l e :
< u l > < l i > T h e

little

<!--pussy-->cat

< / l i > < l i > i s

chasing a

mouse.

converted to a
string gives "The
little cat is

chasing a

mouse.".

-ERRORDate, time and
datetime are al-
ways TRUE.

Date, time and
datetime are repres-
ented using the

Date, time and
datetime are con-
verted to the num-

Date / Time /
DateTime

ISO 8601 formatber of seconds
(also used bysince January 1,
W 3 C X M L1970, 00:00:00

GMT. Schema Data-
types).

(The ``date used
for a time'' is Janu-
ary 1, 1970 GMT.)

Examples: 1960-
03-15Z (date),
13:30:00Z (time),
1 9 6 0 - 0 3 -
1 6 T 1 2 : 3 0 : 0 0 Z
(datetime)

21

The language used to write formulas

Chapter 4. Predefined functions
1. Date and time functions

1.1. datevalue
datevalue(text, format?, locale?)

Converts text to a date. Unless format is specified, the date must be represented using the ISO 8601 format (also
used by W3C XML Schema Datatypes).

Date format format may be used to parse text using a localized format. Supported formats are described in ht-
tp://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html. The empty string ("") specifies the default
format.

Locale locale may be used to specify how to interpret format format. Without locale argument locale, this format
is interpreted using the current language of the XML document (typically specified using the standard xml:lang
attribute, but this can be configured).

Locales are specified using a standard 2-letter language code, optionally followed by a dash and a standard 2-letter
country code. Examples: en, en-US, de, de-CH, etc.

Examples, (assume that the language of the XML document being edited is "en-US" and that XMLmind XML
Editor is running on a machine in France=GMT+1):

• datevalue("1960-03-16Z") = March 16, 1960 UTC1960-03-16Z

• datevalue("03/16/60", "") = 1960-03-15Z

• datevalue("03/16/60 UTC", "MM/dd/yy z") = 1960-03-16Z

• datevalue("16/03/60", "", "fr") =1960-03-15Z

• datevalue("16 Mars 1960", "dd MMMM yyyy", "fr") = 1960-03-15Z

datevalue can also be used to convert a number to a date. In such case, format must not be specified. A date can
be represented by the number of seconds since January 1, 1970, 00:00:00 GMT.

Example: datevalue(-309139200.000) = March 16, 1960 UTC

See also timevalue [22], datetimevalue [23], numbervalue [28], text [40].

1.2. timevalue
timevalue(text, format?, locale?)

Converts text to a time. Unless format is specified, the time must be represented using the ISO 8601 format (also
used by W3C XML Schema Datatypes).

Date/time format format may be used to parse text using a localized format. Supported formats are described in
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html. The empty string ("") specifies the default
format.

Locale locale may be used to specify how to interpret format format. Without locale argument locale, this format
is interpreted using the current language of the XML document (typically specified using the standard xml:lang
attribute, but this can be configured).

Locales are specified using a standard 2-letter language code, optionally followed by a dash and a standard 2-letter
country code. Examples: en, en-US, de, de-CH, etc.

22

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Examples, (assume that the language of the XML document being edited is "en-US" and that XMLmind XML
Editor is running on a machine in France=GMT+1):

• timevalue("13:30:00Z") = 13:30:00Z

• timevalue("13:30:00") = 12:30:00Z

• timevalue("01:30 pm", "") = 12:30:00Z

• timevalue("01:30:00 pm UTC", "hh:mm:ss a z") = 13:30:00Z

• timevalue("13:30", "", "fr") = 12:30:00Z

• timevalue("13:30:00.123", "HH:mm:ss.SSS", "fr") = 12:30:00.123Z

timevalue can also be used to convert a number to a time. In such case, format must not be specified. A time can
be represented by the number of seconds since 00:00:00 GMT.

Example: timevalue(13.5*3600) = T13:30:00Z

See also datevalue [22], datetimevalue [23], numbervalue [28], text [40].

1.3. datetimevalue
datetimevalue(text, format?, locale?)

Converts text to a date+time. Unless format is specified, the date+time must be represented using the ISO 8601
format (also used by W3C XML Schema Datatypes).

Date/time format format may be used to parse text using a localized format. Supported formats are described in
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html. The empty string ("") specifies the default
format.

Locale locale may be used to specify how to interpret format format. Without locale argument locale, this format
is interpreted using the current language of the XML document (typically specified using the standard xml:lang
attribute, but this can be configured).

Locales are specified using a standard 2-letter language code, optionally followed by a dash and a standard 2-letter
country code. Examples: en, en-US, de, de-CH, etc.

Examples, (assume that the language of the XML document being edited is "en-US" and that XMLmind XML
Editor is running on a machine in France=GMT+1):

• datetimevalue("1960-03-16T13:30:00Z") = 1960-03-16T13:30:00Z

• datetimevalue("03/16/1960 01:30 pm", "") = 1960-03-16T12:30:00Z

• datetimevalue("03/16/60 01:30:00 pm UTC", "MM/dd/yy hh:mm:ss a z") = 1960-03-16T13:30:00Z

• datetimevalue("16/03/60 13:30", "", "fr") =1960-03-16T12:30:00Z

• datetimevalue("13:30:00, 16 Mars 1960", "HH:mm:ss, dd MM yyy", "fr") = 1960-03-16T12:30:00Z

datetimevalue can also be used to convert a number to a date+time. In such case, format must not be specified. A
date+time can be represented by the number of seconds since January 1, 1970, 00:00:00 GMT.

Example: datetimevalue(-309139200 + 13.5*3600) = 1960-03-16T13:30:00Z

See also datevalue [22], timevalue [22], numbervalue [28], text [40].

23

Predefined functions

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

1.4. date
date(year, month, day, time_zone?)

Returns a date representing specified year, month, day. Unless time_zone is specified, the local time zone is used.

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• date(1960, 03, 16) = 1960-03-15Z

• date(1960, 03, 16, "GMT+01:00") = 1960-03-15Z

• date(1960, 03, 16, "GMT") = 1960-03-16Z

Specifying time zones is explained in this document http://java.sun.com/j2se/1.4.2/docs/api/java/util/TimeZone.html.

See also datevalue [22], timevalue [22], datetimevalue [23], time [24], datetime [24].

1.5. time
time(hour, minute, second, time_zone?)

Returns a time representing specified hour, minute, second. Unless time_zone is specified, the local time zone is
used.

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• time(13, 30, 45) = 12:30:45Z

• time(13, 30, 45, "GMT-01:00") = 14:30:45Z

• time(13, 30, 45.123, "GMT") = 13:30:45Z (note that seconds have been rounded)

Specifying time zones is explained in this document http://java.sun.com/j2se/1.4.2/docs/api/java/util/TimeZone.html.

See also datevalue [22], timevalue [22], datetimevalue [23], date [24], datetime [24].

1.6. datetime
datetime(year, month, day, hour, minute, second, time_zone?)

Returns a date+time representing specified year, month, day, hour, minute, second. Unless time_zone is specified,
the local time zone is used.

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• datetime(1960, 03, 16, 13, 30, 45) = 1960-03-16T12:30:45Z

• datetime(1960, 03, 16, 13, 30, 45, "GMT-01:00") = 1960-03-16T14:30:45Z

• datetime(1960, 03, 16, 13, 30, 45, "GMT") = 1960-03-16T13:30:45Z

Specifying time zones is explained in this document http://java.sun.com/j2se/1.4.2/docs/api/java/util/TimeZone.html.

See also datevalue [22], timevalue [22], datetimevalue [23], date [24], time [24].

1.7. year
year(date)

Returns the year in specified date, a date or date+time. This function uses the local calendar (i.e. local time zone)
to compute its result.

24

Predefined functions

http://java.sun.com/j2se/1.4.2/docs/api/java/util/TimeZone.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/TimeZone.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/TimeZone.html

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• year(date(1960,03,16)) = 1960

• year(date(1960,03,16, "UTC")) = 1960

• year("1960-03-16T13:30:45+01:00") = 1960

• year("1960-12-31T23:00:00Z") = 1961

See also month [25], day [25], weekday [25], hour [26], minute [26], second [27].

1.8. month
month(date)

Returns the month in specified date, a date or date+time. This function uses the local calendar (i.e. local time zone)
to compute its result.

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• month(date(1960,03,16)) = 3

• month(date(1960,03,16, "UTC")) = 3

• month("1960-03-16T13:30:45+01:00") = 3

• month("1960-03-31T23:00:00Z") = 4

See also year [24], day [25], weekday [25], hour [26], minute [26], second [27].

1.9. day
day(date)

Returns the day in specified date, a date or date+time. This function uses the local calendar (i.e. local time zone)
to compute its result.

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• day(date(1960,03,16)) = 16

• day(date(1960,03,16, "UTC")) = 16

• day("1960-03-16T13:30:45+01:00") = 16

• day("1960-03-16T23:00:00Z") = 17

See also year [24], month [25], weekday [25], hour [26], minute [26], second [27].

1.10. weekday
weekday(date, option?)

Returns the day in specified date, a date or date+time. This function uses the local calendar (i.e. local time zone)
to compute its result.

DescriptionOption

Returns 1 for Sunday to 7 for Saturday.1 (default)

Returns 1 for Monday to 7 for Sunday2

25

Predefined functions

Returns 0 for Monday to 6 for Sunday3

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• weekday(date(1960,03,16)) = 4 (Wednesday)

• weekday(date(1960,03,16, "UTC")) = 4

• weekday("1960-03-16T13:30:45+01:00") = 4

• weekday("1960-03-16T23:00:00Z") = 5 (Thursday)

With option=2:

• weekday(date(1960,03,16), 2) = 3 (Wednesday)

• weekday(date(1960,03,16, "UTC"), 2) = 3

• weekday("1960-03-16T13:30:45+01:00", 2) = 3

• weekday("1960-03-16T23:00:00Z", 2) = 4 (Thursday)

With option=3:

• weekday(date(1960,03,16), 3) = 2 (Wednesday)

• weekday(date(1960,03,16, "UTC"), 3) = 2

• weekday("1960-03-16T13:30:45+01:00", 3) = 2

• weekday("1960-03-16T23:00:00Z", 3) = 3 (Thursday)

See also year [24], month [25], day [25], hour [26], minute [26], second [27].

1.11. hour
hour(date)

Returns the hours in specified date, a time or date+time. This function uses the local calendar (i.e. local time zone)
to compute its result.

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• hour(time(13,30,45)) = 13

• hour(time(13,30,45, "UTC")) = 14

• hour("1960-03-16T13:30:45+01:00") = 13

• hour("1960-03-16T13:30:45.123") = 13

• hour("1960-03-16T13:30:45.123Z") = 14

See also year [24], month [25], day [25], weekday [25], minute [26], second [27].

1.12. minute
minute(date)

Returns the minutes in specified date, a time or date+time. This function uses the local calendar (i.e. local time
zone) to compute its result.

26

Predefined functions

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• minute(time(13,30,45)) = 30

• minute("1960-03-16T13:30:45+01:00") = 30

See also year [24], month [25], day [25], weekday [25], hour [26], second [27].

1.13. second
second(date)

Returns the seconds in specified date, a time or date+time. This function uses the local calendar (i.e. local time
zone) to compute its result.

Examples (XMLmind XML Editor running on a machine in France=GMT+1):

• second(time(13,30,45)) = 45

• second("1960-03-16T13:30:45.123") = 45 (note that seconds are rounded)

See also year [24], month [25], day [25], weekday [25], hour [26], minute [26].

1.14. today
today()

Returns current date. The time zone used is the local time zone.

Example (XMLmind XML Editor running on a machine in France=GMT+1): today() = 2004-10-15Z

1.15. now
now()

Returns current date+time. The time zone used is the local time zone.

Example (XMLmind XML Editor running on a machine in France=GMT+1): now() = 2004-10-16T11:12:14.155Z

2. Logical functions

2.1. and
and(boolean1, boolean2+)

Returns the logical AND of its arguments (after converting them to booleans, if needed to).

• A number is TRUE if and only if it is neither positive or negative zero nor NaN.

• A string is TRUE if and only if its length is non-zero.

• A date/time is always TRUE.

• An XML nodeset is TRUE if and only if it is non-empty.

See also or [27], not [28].

2.2. or
or(boolean1, boolean2+)

27

Predefined functions

Returns the logical OR of its arguments (after converting them to booleans, if needed to).

Conversion of values to booleans is described here [27].

See also and [27], not [28].

2.3. not
not(boolean)

Returns TRUE if its argument is FALSE, and FALSE otherwise.

Conversion of values to booleans is described here [27].

See also and [27], or [27].

2.4. if
if(test1, value1, alternative*, fallback)

Alternative is: testi valuei.

Evaluates each testi in turn as a boolean, if the result of testi is TRUE, returns corresponding valuei. Otherwise,
if all testi evaluates to FALSE, returns fallback.

Conversion of values to booleans is described here [27].

See also and [27], or [27], not [28].

2.5. true
true()

Returns TRUE. Note that it is also possible to write TRUE instead of TRUE().

2.6. false
false()

Returns FALSE. Note that it is also possible to write FALSE instead of FALSE().

3. Mathematical functions

3.1. numbervalue
numbervalue(text, format?, locale?)

Returns its first argument after converting it to a number.

Unless number format format is specified, values are converted to numbers as follows:

• A string that consists of optional whitespace followed by an optional minus sign followed by a real number
followed by whitespace is converted to the IEEE 754 number that is nearest (according to the IEEE 754 round-
to-nearest rule) to the mathematical value represented by the string; any other string is converted to NaN.

Note that scientific notation (example: 0.314E1) is not supported.

• Boolean TRUE is converted to 1; boolean FALSE is converted to 0.

• A date/time is converted to the number of seconds since January 1, 1970, 00:00:00 GMT. This number can be
negative and can have a fractional part.

28

Predefined functions

• An XML nodeset is first converted to a string and then converted in the same way as a string argument.

Note

An XML nodeset is converted to a string by returning all the text contained in the node in the nodeset
that is first in document order. Text contained in descendant nodes of this first node is taken into account.
Except that text contained in comments and processing-instructions is ignored.

Example: The little <!--pussy-->cat is chasing a
mouse. converted to a string gives "The little cat is chasing a mouse.".

The important thing to remember here is that unless a format is specified, numbers cannot be specified using the
localized notation. For example: in France, write "3.14" to specify number PI and not "3,14".

In order to parse a localized number, number format format must be specified. Without locale argument locale,
this format is interpreted using the current language of the XML document (typically specified using the standard
xml:lang attribute, but this can be configured).

Examples, (assume that the language of the XML document being edited is "en-US"):

• numbervalue("3.14") = 3.14

• numbervalue("3.14", "#.#") = 3.14

• numbervalue("3.14", "") = 3.14 ("" is a shorthand notation for the default format)

• numbervalue("3,14", "#.#") = 3 (everything which is not a number after the number -- that is, the "," after the
"3" -- is ignored)

• numbervalue("3,14", "#.#", "fr") = 3.14

• numbervalue("3,14", "", "fr-FR") = 3.14

Number formats are explained in the following document http://java.sun.com/j2se/1.4.2/docs/api/java/text/Decim-
alFormat.html.

Locales are specified using a standard 2-letter language code, optionally followed by a dash and a standard 2-letter
country code. Examples: en, en-US, fr, fr-CA, etc.

3.2. checknumber
checknumber(value)

Returns TRUE if its argument can be successfully converted to a number (that is, which is not NaN). Otherwise
returns FALSE.

Conversion of values to numbers is explained here [28].

See also numbervalue [28].

3.3. sum
sum(value+)

Returns the sum of all its arguments.

• If an argument is an XML nodeset (example: sum(A1:D4)), each node in the nodeset is converted to a number
and this number is added to the total value. Nodes which cannot converted to numbers are simply ignored.

• If an argument is not a XML nodeset, it is converted to a number if needed to and then added to the total value.
If the argument cannot be successfully converted to a number, an error is reported.

29

Predefined functions

http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html

Conversion of values to numbers is explained here [28].

Example:

A

101

202

Thirty3

• sum(A:A, 30, "40.0", FALSE()) = 100.

• sum(3.1416, "Thirty") reports an error.

3.4. product
product(value+)

Same as sum [29] except that the product all the arguments is returned instead of the sum.

3.5. abs
abs(number)

Returns the absolute value of its argument (after converting it to a number [28], if needed to).

3.6. acos
acos(number)

Returns the arc cosine of its argument (after converting it to a number [28], if needed to). Number number must
be in the 0,PI range.

3.7. asin
asin(number)

Returns the arc sine of its argument (after converting it to a number [28], if needed to). Number number must be
in the -PI/2,PI/2 range.

3.8. atan
atan(number)

Returns the arc tangent of its argument (after converting it to a number [28], if needed to). Number number must
be in the -PI/2,PI/2 range.

3.9. atan2
atan2(x, y)

Converts rectangular coordinates (x, y) to polar coordinates (r, theta). This function returns theta by computing
an arc tangent of y/x. y/x must be in the -PI,PI range.

3.10. cos
cos(number)

Returns the cosine of its argument (after converting it to a number [28], if needed to).

30

Predefined functions

3.11. cosh
cosh(number)

Returns the hyperbolic cosine of its argument (after converting it to a number [28], if needed to).

3.12. sin
sin(number)

Returns the sine of its argument (after converting it to a number [28], if needed to).

3.13. sinh
sinh(number)

Returns the hyperbolic sine of its argument (after converting it to a number [28], if needed to).

3.14. tan
tan(number)

Returns the tangent of its argument (after converting it to a number [28], if needed to).

3.15. tanh
tanh(number)

Returns the hyperbolic tangent of its argument (after converting it to a number [28], if needed to).

3.16. degrees
degrees(angle)

Returns its argument, an angle measured in radians, after converting it to degrees.

3.17. radians
radians(angle)

Returns its argument, an angle measured in degrees, after converting it to radians.

3.18. pi
pi()

Returns the value of PI, the ratio of the circumference of a circle to its diameter.

3.19. exp
exp(number)

Returns Euler's number e raised to the power of its argument (after converting it to a number [28], if needed to).

3.20. acosh
acosh(number)

Returns the inverse hyperbolic cosine of its argument (after converting it to a number [28], if needed to). Number
number must be greater than 1.

31

Predefined functions

3.21. asinh
asinh(number)

Returns the inverse hyperbolic sine of its argument (after converting it to a number [28], if needed to).

3.22. atanh
atanh(number)

Returns the inverse hyperbolic tangent of its argument (after converting it to a number [28], if needed to). Number
number must be in the -1,1 range.

3.23. log
log(number, base)

Returns the log base base of its argument (after converting it to a number [28], if needed to). Number number
must be strictly positive.

See also ln [32], log10 [32].

3.24. mod
mod(dividend, divisor)

Returns the remainder of the division of dividend by divisor. Divisor and dividend are converted to numbers [28]
if needed to. Equivalent to: dividend - divisor*INT [33](dividend/divisor).

Example: mod(3,2) = 1

3.25. ln
ln(number)

Returns the natural logarithm of its argument (after converting it to a number [28], if needed to). Number number
must be strictly positive.

See also log [32], log10 [32].

3.26. log10
log10(number)

Returns the log base 10 of its argument (after converting it to a number [28], if needed to). Number number must
be strictly positive.

See also log [32], ln [32].

3.27. sign
sign(number)

Returns 1 if its argument is strictly positive, -1 if its argument is strictly negative, 0 if its argument is null. The
argument is converted to a number [28] if needed to.

3.28. sqrt
sqrt(number)

32

Predefined functions

Returns the square root of its argument. Number number must be positive. The argument is converted to a num-
ber [28] if needed to.

3.29. trunc
trunc(number)

Returns its argument after removing its fractional part. The argument is converted to a number [28] if needed to.

Example: trunc(-8.9) = 8

See also int [33].

3.30. int
int(number)

Returns the largest value that is not greater than the argument and is equal to a mathematical integer. The argument
is converted to a number [28] if needed to.

Example: int(-8.9) = 9

See also trunc [33].

3.31. rand
rand()

Returns a pseudo-random number between 0 and 1. Use rand()*(b - a) + a to get a random number in the a,b range.

3.32. countif
countif(nodeset, test)

Count each node in nodeset if evaluating boolean expression test returns TRUE for this node.

Boolean expression test must reference variable x, which represents the string value of the node. Other than that,
test may be arbitrarily complex.

French

10

12

09

15

08

Examples (the above XHTML table has attribute id="exams1"):

• Count students having 12/20 or more to their French exam: countif("exams1"!$A:$A, "and(checknumber(x), x
>= 12)") = 2

• Count students having between 9/20 and 12/20 to their French exam: countif("exams1"!$A:$A, "and(checknum-
ber(x), x >= 9, x <= 12)") = 3

3.33. sumif
sumif(nodeset, test, sum_nodeset?)

33

Predefined functions

For each node in nodeset which can be converted to a number, evaluates boolean expression test. If test returns
TRUE adds node converted to a number to the total. Returns the total.

If sum_nodeset is specified, nodes in nodeset are used to evaluate test but it is the corresponding nodes in
sum_nodeset which are added. Ignores nodes in sum_nodeset which cannot be converted to numbers.

Boolean expression test must reference variable x, which represents the string value of the node. Other than that,
test may be arbitrarily complex.

ROIInvestment

1000010000

1500012000

170009000

-2000015000

-10008000

Examples (the above XHTML table has attribute id="roi1"):

• Compute the sum of all investments larger than EUR10000: sumif("roi1"!$A:$A, "x >= 10000") = 37000

• Compute the return on investment for all investments larger than EUR10000: sumif("roi1"!$A:$A, "x >= 10000",
"roi1"!$B:$B) = 5000

3.34. round
round(number, digits)

Returns number number rounded to the specified number of digits digits.

Examples:

• round(33.14159, 0) = 33

• round(33.74159, 0) = 34

• round(33.14159, 2) = 33.14

• round(33.14159, -1) = 30

• round(-33.14159, 0) = -33

• round(-33.14159, 2) = -33.14

• round(-33.14159, -1) = -30

See also rounddown [34], roundup [35].

3.35. rounddown
rounddown(number, digits)

Returns number number rounded down to the specified number of digits digits.

Examples:

• rounddown(33.14159, 0) = 33

• rounddown(33.74159, 0) = 33

34

Predefined functions

• rounddown(33.14159, 2) = 33.14

• rounddown(33.14159, -1) = 30

• rounddown(-33.14159, 0) = -33

• rounddown(-33.14159, 2) = -33.14

• rounddown(-33.14159, -1) = -30

See also round [34], roundup [35].

3.36. roundup
roundup(number, digits)

Returns number number rounded up to the specified number of digits digits.

Examples:

• roundup(33.14159, 0) = 34

• roundup(33.74159, 0) = 34

• roundup(33.14159, 2) = 33.15

• roundup(33.14159, -1) = 40

• roundup(-33.14159, 0) = -34

• roundup(-33.14159, 2) = -33.15

• roundup(-33.14159, -1) = -40

See also round [34], rounddown [34].

4. Spreadsheet functions

4.1. union
union(nodeset1, nodeset2+)

Returns the union of all its nodeset arguments.

References such as A1, A;A, B2:C3,etc, all return nodesets, with one XML node per table cell. For example:
union(A1,A2,A3) is equivalent to A1:A3.

See also intersection [35], difference [36].

4.2. intersection
intersection(nodeset1, nodeset2)

Returns all XML nodes found in both nodeset1 and nodeset2.

References such as A1, A;A, B2:C3,etc, all return nodesets, with one XML node per table cell. For example:
intersection(A:A,2:2) is equivalent to A2.

See also union [35], difference [36].

35

Predefined functions

4.3. difference
difference(nodeset1, nodeset2)

Returns all XML nodes found in nodeset1 but not in nodeset2.

References such as A1, A;A, B2:C3,etc, all return nodesets, with one XML node per table cell. For example:
difference($A:$A,A10) returns all the cells of column $A except cell A10.

See also union [35], intersection [35].

4.4. apply
apply(transform, nodeset, strict?)

Returns a nodeset after transforming each node of its argument nodeset using expression transform.

A node is converted to a string before being passed as argument x to expression transform. Expression transform
computes a value based on x and returns this value. This value is converted to a string and put into a newly created
text node. (This text node is not attached to a document and has no parent or siblings.)

Expression transform must reference variable x, which represents the string value of the node. Other than that,
transform may be arbitrarily complex.

By default apply is lenient. That is, if transform fails to be evaluated, the raw string value of the node is silently
used. Specify strict as TRUE, if you want apply to report an error when transform fails to be evaluated.

Investment

10,000.00

12,000.00

9,000.00

15,000.00

8,000.00

Examples (the above XHTML table has attribute id="roi2"):

• Compute the sum of all investments larger than EUR10000: sumif("roi2"!A2:A6, "x >= 10000") = 0

This does not work because investments such as 10,000.00 use a localized format which cannot be parsed. That
is, "10000.00" can be parsed as a number. "10,000.00" cannot.

• Compute the sum of all investments larger than EUR10000: sumif(apply("numbervalue(x, '', 'en-US')",
"roi2"!A2:A6), "x >= 10000") = 37000

Note that in transform "numbervalue(x, '', 'en-US')", we have used single quotes to quote the default format ''
and the 'en-US' locale. It could have been possible to specify the same transform as "numbervalue(x, """", ""en-
US"")" but this is much less readable.

• sumif(apply("numbervalue(x, '', 'en-US')", "roi2"!$A:$A, TRUE), "x >= 10000") = ERROR

• sumif(apply("numbervalue(x, '', 'en-US')", "roi2"!$A:$A, FALSE), "x >= 10000") = 37000

5. Statistical functions

5.1. avedev
avedev(value+)

36

Predefined functions

Returns the average of the absolute deviation of a sample from the mean. Formula is: (Σ|x - average|)/n.

• If an argument is an XML nodeset, each node in the nodeset is converted to a number and processed. Nodes
which cannot converted to numbers are simply ignored.

• If an argument is not a XML nodeset and cannot be successfully converted to a number, an error is reported.

French

10

12

09

15

08

Examples (the above XHTML table has attribute id="exams2"):

• avedev("exams2"!$A:$A) = 2.16

• avedev("exams2"!$A:$A, "French") = ERROR (String "French" is ignored in column $A but not when passed
directly as an argument)

See also stdev [37], var [37].

5.2. stdev
stdev(value+)

Returns the standard deviation of its arguments. Formula is: √((Σ(x - average)²)/(n - 1)).

• If an argument is an XML nodeset, each node in the nodeset is converted to a number and processed. Nodes
which cannot converted to numbers are simply ignored.

• If an argument is not a XML nodeset and cannot be successfully converted to a number, an error is reported.

French

10

12

09

15

08

Examples (the above XHTML table has attribute id="exams3"):

• stdev("exams3"!$A:$A) = 2.774

• stdev("exams3"!$A:$A, "French") = ERROR (String "French" is ignored in column $A but not when passed
directly as an argument)

See also avedev [36], var [37].

5.3. var
var(value+)

Returns the variance of its arguments. Formula is: (Σ(x - average)²)/(n - 1).

37

Predefined functions

• If an argument is an XML nodeset, each node in the nodeset is converted to a number and processed. Nodes
which cannot converted to numbers are simply ignored.

• If an argument is not a XML nodeset and cannot be successfully converted to a number, an error is reported.

French

10

12

09

15

08

Examples (the above XHTML table has attribute id="exams4"):

• var("exams4"!$A:$A) = 7.69999999

• var("exams4"!$A:$A, "French") = ERROR (String "French" is ignored in column $A but not when passed directly
as an argument)

See also avedev [36], stdev [37].

5.4. max
max(value+)

Returns the maximum of its arguments. Returns 0 if all its arguments cannot be converted to numbers.

• If an argument is an XML nodeset, each node in the nodeset is converted to a number and processed. Nodes
which cannot converted to numbers are simply ignored.

• If an argument is not a XML nodeset and cannot be successfully converted to a number, an error is reported.

French

10

12

09

15

08

Examples (the above XHTML table has attribute id="exams5"):

• max("exams5"!$A:$A) = 15

• max("exams5"!$A:$A, "French") = ERROR (String "French" is ignored in column $A but not when passed
directly as an argument)

5.5. min
min(value+)

Returns the minimum of its arguments. Returns 0 if all its arguments cannot be converted to numbers.

• If an argument is an XML nodeset, each node in the nodeset is converted to a number and processed. Nodes
which cannot converted to numbers are simply ignored.

• If an argument is not a XML nodeset and cannot be successfully converted to a number, an error is reported.

38

Predefined functions

French

10

12

09

15

08

Examples (the above XHTML table has attribute id="exams6"):

• min("exams6"!$A:$A) = 8

• min("exams6"!A1:A1) = 0

• min("exams6"!$A:$A, "French") = ERROR (String "French" is ignored in column $A but not when passed
directly as an argument)

5.6. average
average(value+)

Returns the arithmetic mean of its arguments.

• If an argument is an XML nodeset, each node in the nodeset is converted to a number and processed. Nodes
which cannot converted to numbers are simply ignored.

• If an argument is not a XML nodeset and cannot be successfully converted to a number, an error is reported.

French

10

12

09

15

08

Examples (the above XHTML table has attribute id="exams7"):

• average("exams7"!$A:$A) = 10.8

• average("exams7"!$A:$A, "French") = ERROR (String "French" is ignored in column $A but not when passed
directly as an argument)

5.7. count
count(value+)

Counts its arguments which can be converted to numbers.

• If an argument is an XML nodeset, each node in the nodeset is converted to a number and processed. Nodes
which cannot converted to numbers are simply ignored.

• If an argument is not a XML nodeset and cannot be successfully converted to a number, an error is reported.

French

10

12

39

Predefined functions

09

15

08

Examples (the above XHTML table has attribute id="exams8"):

• count("exams8"!$A:$A, 0, 20) = 7

• count("exams8"!$A:$A, "French") = ERROR (String "French" is ignored in column $A but not when passed
directly as an argument)

6.Text functions

6.1. char
char(code)

Returns a string containing a single character, this character having specified Unicode code. Reports an error if
argument code cannot be converted to a number in the 0,65535 range.

Example: char(65) = "A"

See also code [40].

6.2. code
code(string)

Returns the Unicode code of the first character contained in specified string. Reports an error if argument string
cannot be converted to a non-empty string.

Example: code("ABC") = 65

See also char [40].

6.3. text
text(number_or_date, format?, locale?)

Converts its number or date/time argument to a string.

If the argument is a number and number format format is not specified, a standard, non-localized, format is used.

If the argument is a date/time and date/time format format is not specified, a standard, non-localized, format is
used.

If a format is specified, argument locale may be used to specify the locale of this format. Without locale argument
locale, this format is interpreted using the current language of the XML document (typically specified using the
standard xml:lang attribute, but this can be configured).

Examples, (assume that the language of the XML document being edited is "en-US"):

• text(PI()) = 3.141592653589793

• text(PI(), "0.00") = 3.14

• text(PI(), "") = 3.142 ("" is a shorthand notation for the default format)

• text(PI(), "0.00", "fr") = 3,14

40

Predefined functions

• text(PI(), "", "fr") = 3,142

• text(today()) = 2004-10-12Z

• text(today(), "MMMM dd, yyyy") = October 13, 2004

• text(today(), "") = 10/13/04 ("" is a shorthand notation for the default format)

• text(today(), "MMMM dd, yyyy", "fr") = octobre 13, 2004

• text(today(), "", "fr") = 13/10/04

• text(now()) = 2004-10-13T15:51:59.321Z (today() returns a date. now() returns a date+time)

• text(now(), "") = 10/13/04 5:53 PM

• text(now(), "dd/MM/yyyy HH:mm:ss", "fr-CA") = 13/10/2004 17:53:18

Number formats are explained in the following document http://java.sun.com/j2se/1.4.2/docs/api/java/text/Decim-
alFormat.html.

Date/time formats are explained in the following document http://java.sun.com/j2se/1.4.2/docs/api/java/text/Sim-
pleDateFormat.html.

Locales are specified using a standard 2-letter language code, optionally followed by a dash and a standard 2-letter
country code. Examples: en, en-US, de, de-CH, etc.

6.4. mid
mid(text, from, count)

Returns the substring of text containing count characters, starting at character #from. First character is character
#1.

Example: mid("very long", 5, 4) = "long"

See also left [41], right [41].

6.5. left
left(text, count)

Returns the substring of text containing the first count characters.

Example: left("very long", 4) = "very"

See also mid [41], right [41].

6.6. right
right(text, count)

Returns the substring of text containing the last count characters.

Example: right("very long", 4) = "long"

See also left [41], mid [41].

6.7. trim
trim(text)

41

Predefined functions

http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Removes leading and trailing whitespace from text.

6.8. lower
lower(text)

Returns text converted to lower case.

See also upper [42].

6.9. upper
upper(text)

Returns text converted to upper case.

See also lower [42].

6.10. len
len(text)

Returns the number of characters contained in text.

6.11. substitute
substitute(text, old_text, new_text, occurrence?)

Returns text after substituting in it occurrences of substring old_text by new_text. If occurrence is specified, only
occurrence #occurrence is substituted (first occurrence is occurrence #1). Otherwise all occurrences of old_text
are substituted.

Examples:

• substitute("Element wordasword", "word", "term") = "Element termasterm"

• substitute("Element wordasword", "word", "term", 2) = "Element wordasterm"

• substitute("Element wordasword", "word", "not found") = "Element wordasword"

See also replace [42], find [42], search [43].

6.12. replace
replace(text, from, count, new_text)

Returns text after replacing substring containing count characters and starting at character #from by new_text. First
character of a string is character #1.

Example: replace("one two three", 4, 3, "2") = "one 2 three"

See also substitute [42], find [42], search [43].

6.13. find
find(what, text, from?)

Returns the index of first occurrence of what found in text. Unless from is specified, search is started at character
1. (First character of a string is character #1.)

Reports an error if what is not found.

42

Predefined functions

Unlike with search [43], what cannot contain wildcards and the lookup is case-sensitive.

Examples:

• find("A", "A rainy day.") = 1

• find("a", "A rainy day.") = 4

• find("A", "A rainy day.", 2) = ERROR

• find("a", "A rainy day.", 2) = 4

6.14. search
search(what, text, from?)

Returns the index of first occurrence of what found in text. Unless from is specified, search is started at character
1. (First character of a string is character #1.)

Reports an error if what is not found.

Unlike with find [42], what can contain wildcards and the lookup is case-insensitive.

• Wildcard "*" matches any number of characters.

• Wildcard "?" matches a single character.

• Use "~?" and "~*" if you search a substring containing characters "?" and "*".

Examples:

• search("a", "A rainy day.") = 1

• search("a", "A rainy day.", 2) = 4

• search("It's", "A rainy day.") = ERROR

• search("a*y", "A rainy day.") = 4

• search("~*-tuple", "1-tuple 2-tuple *-tuple") = 17

43

Predefined functions

Chapter 5. Defining custom
spreadsheet functions
1. Registering custom spreadsheet functions with XXE
Custom spreadsheet functions must be defined in an XML document conforming to (XMLmind proprietary) W3C
XML Schema having http://www.xmlmind.com/xmleditor/schema/spreadsheet/functions as its target
namespace.

Example, myspreadsheetfunctions.xml (found in XXE_install_dir/doc/spreadsheet/custom_functions/)

<?xml version="1.0" encoding="ISO-8859-1"?>
<f:functions xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://www.xmlmind.com/xmleditor/schema/spreadsheet/functions">
 <f:function>
 <f:name>factorial</f:name>
 <f:parameters>n</f:parameters>
 <f:category>Mathematical</f:category>
 <f:description>
 <body>
 <p>Returns the factorial of <i>n</i>.</p>
 </body>
 </f:description>
 <f:macro><![CDATA[= if(n = 1, 1, n*factorial(n-1))]]></f:macro>
 </f:function>
</f:functions>

This XML document must be referenced in an XXE configuration file using configuration element spreadsheet-
Functions. See the section called “spreadsheetFunctions” in XMLmind XML Editor - Configuration and Deployment.

• If you add this to XXE_user_preferences_dir/addon/customize.xxe (after copying myspreadsheetfunc-
tions.xml to XXE_user_preferences_dir/addon/):

<spreadsheetFunctions location="myspreadsheetfunctions.xml" />

you'll be able to use custom function factorial() whatever is the type of the document that you open in XXE.
That is, function factorial() and its documentation will always show up in the Formula Editor, just like sin()
or cos().

XXE user preferences directory is:

• $HOME/.xxe/ on Linux, Mac, and more generally, on Unix.

• %APPDATA%\XMLmind\XMLeditor\ on Windows 2000, XP, Vista.

Example: C:\Documents and Settings\john\Application Data\XMLmind\XMLeditor\ on Windows
2000 and XP. C:\Users\john\AppData\Roaming\XMLmind\XMLeditor\ on Windows Vista.

• If you add this to an XXE configuration file which is specific to an XML application, for example XXE_in-
stall_dir/addon/config/docbook/docbook.xxe (after copying myspreadsheetfunctions.xml to
XXE_install_dir/addon/config/docbook/):

<spreadsheetFunctions location="myspreadsheetfunctions.xml" />

you'll be able to use custom function factorial() only when you open a DocBook document.

44

../configure/configure.pdf#spreadsheetFunctions

2. Specifying custom spreadsheet functions
The easiest way to create documents conforming to the http://www.xmlmind.com/xmleditor/schema/spread-
sheet/functions schema, is to download and install the corresponding configuration. After doing this, restart
XXE, use File|New and choose XMLmind XML Editor Spreadsheet Functions|List of functions.

Figure 5.1. Custom function factorial() edited in XXE using the Spreadsheet Functions
configuration

The content model of the documents used to specify spreadsheet functions is:

<functions>
Content: function+

</functions>

<function>
Content: name parameters category description

 (macro | method | runtime | intrinsic)
</function>

<name>
Content: function name (any combination of letter, digit and _

 cannot start with digit or _)
</name>

<parameters>
Content: [parameter name (any combination of letter, digit and _

 cannot start with digit) [?|*|+]?]*
</parameters>

<category>
Content: non empty token

</category>

<description>
Content: an XHTML body (restrict yourself to

 HTML 3.2)
</description>

<macro
xml:space = preserve

>
Content: = definition of the function using the

 spreadsheet language
</macro>

<method>
Content: a Java fully qualified method name

 (ASCII only)
</method>

<runtime
/>

45

Defining custom spreadsheet functions

<intrinsic
/>

name
Name of the custom spreadsheet function.

parameters
Specifies the name and the number of the formal parameters of the custom spreadsheet function.

Function factorial has a single, mandatory, formal parameter called n. Note that parameter n is referenced
by its name in the specification of the macro-function (=if(n=1,1,n*factorial(n-1))).

The parameters element is as important as the ``formula'' of the custom spreadsheet function because it is
used in many places. For example, it is used by the formula parser to check the number of arguments passed
to functions (i.e. using factorial(3, 4) will cause the parse to report an error).

Examples:

• For standard spreadsheet function and: boolean1 boolean2+

• For standard spreadsheet function numbervalue: text format? locale?

• For standard spreadsheet function sumif: nodeset test sum_nodeset?

• For standard spreadsheet function max: value+

• For standard spreadsheet function today: nothing at all: empty parameters element.

• For standard spreadsheet function if: test1 value1 alternative* fallback

Without an occurrence specifier, a single argument must be passed for that parameter. Occurrence specifiers
are:

?
0 or 1 argument corresponding to that parameter.

*
0 or more arguments corresponding to that parameter.

+
1 or more arguments corresponding to that parameter.

category
Category of the custom spreadsheet function.

You can use any of the predefined categories: Logical, Mathematical, Text, etc, or you can define your own
categories.

This category is used by the Formula Editor.

description
Documentation in XHTML (restrict yourself to the HTML 3.2 subset) of the custom spreadsheet function.

This documentation is displayed by the Formula Editor.

macro
Specifies the custom spreadsheet function using the spreadsheet language (macro-function).

This specification must start with =.

This specification can reference the parameter names declared in the parameters sibling.

46

Defining custom spreadsheet functions

This specification can reference any other spreadsheet function, including itself (recursive macro-function).

method
Specifies the fully qualified name of the Java™ method used to implement the custom spreadsheet function.

The method name must be the name of the custom spreadsheet function, after converting it to lower case.

If the custom spreadsheet function has a name which is a reserved Java™ keyword (example: standard function
char), the method name must be '_' (underscore) followed by the lower-case name of the custom spreadsheet
function (example: com.xmlmind.xmleditapp.spreadsheet.FunctionLibrary._char).

More on this in next section.

runtime
Reserved to XMLmind. Do not use.

intrinsic
Reserved to XMLmind. Do not use.

3. Custom spreadsheet functions written in the Java™
programming language
Custom spreadsheet functions written in the Java™ programming language are implemented using static methods
having this signature:

import com.xmlmind.xmledit.doc.XNode;
import com.xmlmind.xmledit.xpath.Variant;
import com.xmlmind.xmledit.xpath.VariantExpr;
import com.xmlmind.xmledit.xpath.EvalException;
import com.xmlmind.xmledit.xpath.ExprContext;

public static Variant method_name(VariantExpr[] args, XNode node,
 ExprContext context) throws EvalException;

There is not much to say about the above static methods. You'll need to read the chapter describing XPath program-
ming1 in Chapter 5, Using XPath in XMLmind XML Editor - Developer's Guide in order to be able to write such
functions.

You'll find a template for spreadsheet functions in XXE_install_dir/doc/dev/templates/FunctionLibraryTem-
plate.java. You'll find a sample static method in XXE_install_dir/doc/dev/samples/MySpreadsheetFunc-
tions.java. (Download developer's documentation and samples from www.xmlmind.com/xmleditor/down-
load.shtml.)

Example:

public final class MySpreadsheetFunctions {
 public static Variant capitalize(VariantExpr[] args, XNode node,
 ExprContext context)
 throws EvalException {
 if (args.length != 1)
 throw new EvalException("bad number of arguments");

 String string = args[0].eval(node, context).convertToString();
 int length = string.length();
 String transformed;

 if (length == 0)
 transformed = string;
 else if (length == 1)
 transformed = string.toUpperCase();
 else

1Remember that the spreadsheet language used by XMLmind XML Editor is basically an easy-to-learn syntax for XPath expressions.

47

Defining custom spreadsheet functions

http://www.w3.org/TR/xpath
../dev/guide.pdf#xpath
http://www.xmlmind.com/xmleditor/download.shtml
http://www.xmlmind.com/xmleditor/download.shtml

 transformed = (Character.toUpperCase(string.charAt(0)) +
 string.substring(1));

 return new StringVariant(transformed);
 }
}

This spreadsheet function needs to be declared in myspreadsheetfunctions.xml as follows:

The code of the capitalize spreadsheet function is found in XXE_install_dir/doc/spreadsheet/custom_func-
tions/myspreadsheetfunctions.jar. Copy this jar file to one of the directories scanned by XXE at startup-
time.

For example, add this to XXE_user_preferences_dir/addon/customize.xxe, after copying both myspread-
sheetfunctions.jar and myspreadsheetfunctions.xml to XXE_user_preferences_dir/addon/.

<spreadsheetFunctions location="myspreadsheetfunctions.xml" />

48

Defining custom spreadsheet functions

