
Oracle→OpenCyc Interface

Yeb Havinga

June 12 2002

Contents

1 Introduction 1
1.1 Overview . 1
1.2 See also . 1

2 Installation 2
2.1 Prerequisites . 2
2.2 Getting the files . 2

2.2.1 Third party jars . 2
2.2.2 Oracle→OpenCyc interface files 3

2.3 Loading the stuff in Oracle . 3
2.3.1 Prepare Oracle . 3
2.3.2 Load the jars into Oracle . 4
2.3.3 Resolve CycAccess . 4
2.3.4 Load CycJsproc.java . 5
2.3.5 Load the CYC package . 5

3 Usage 6
3.1 The first query . 6
3.2 Oracle puts data in OpenCyc . 7
3.3 Oracle gets data from OpenCyc . 8
3.4 Type mapping . 9
3.5 Method summary . 9

3.5.1 askwithvariable . 10
3.5.2 getbackchainrules . 10
3.5.3 converselist . 10

1

Figure 1: architecture

3.6 Debugging . 10
3.7 Exceptions . 10

4 End notes 10
4.1 Quality of this software . 10

1 Introduction

This software is kind of new. Expect procedures and parameters to change.. This
document contains information on how to install and use the Oracle→OpenCyc
interface.

1.1 Overview

The two rectangles with dotted lines are the Oracle→OpenCyc interface.

1.2 See also

• OpenCyc Api Documentation

1

http://www.opencyc.org/doc/cycapi

• OpenCyc Java Api Documentation

• Oracle Java Developer’s Guide

• Oracle Java Stored Procedures Developer’s Guide (especially part 3)

• Oracle JDBC Developer’s Guide and Reference (part 10 and 18 →connecting
to internal driver)

2 Installation

2.1 Prerequisites

You need the following installed on a linux server :

• OpenCyc

• Oracle9i

• J2SDK

2.2 Getting the files

2.2.1 Third party jars

These jars are used by the OpenCyc Java Api interface, and need to be loaded into
Oracle. The list is fairly small, because the oracle-opencyc.jar contains only a
subset of the full org/opencyc tree.

• jakarta-oro-2.0.6.jar

• violinStrings.jar

• jdom.jar (jdom.jar is somewhere in jdom-b8/build after unzip)

• xmlParserAPIs.jar (in xerces 2.0.1 bin)

You can put these files anywhere. This manual is written like you’ve put them in
your opencyc-0.6.0/lib directory.

2

http://www.cyc.com/doc/opencycprotect global let unhbox voidb@x kern .06emvbox {hrule width.3em}api/java_api/
http://download-west.oracle.com/otndoc/oracle9i/901_doc/java.901/a90209/toc.htm
http://download-west.oracle.com/otndoc/oracle9i/901_doc/java.901/a90210/toc.htm
http://download-west.oracle.com/otndoc/oracle9i/901_doc/java.901/a90211/toc.htm
http://www.opencyc.org
http://otn.oracle.com
http://www.blackdown.org
http://jakarta.apache.org/builds/jakarta-oro/release/v2.0.6/
http://members.aol.com/MSchmelng/
http://www.jdom.org/dist/binary/
http://xml.apache.org/dist/xerces-j/

2.2.2 Oracle→OpenCyc interface files

The Oracle→OpenCyc interface consists of the following files :

oracle-opencyc.jar This is a modified version of the official opencyc.jar,
which has a slightly modified CycAccess.java to remove references to
the Fipa Agent classes, and doesn’t contain unused (by Oracle) classes.

oracle-opencyc-src.tgz A gzipped tar file of the java sources in the previous jar.
You only need this if you want to compile the above jar yourself.

loadjars.sh A shell script for easy loading the third party jars into Oracle.
cycjsprocs.jar Contains CycJsprocs.java, which contains the Java Stored Procedures

that wrap the methods in the OpenCyc Java Api to Oracle call and data types.
cyc.pks The PL/SQL CYC package specification.
cyc.pkb The PL/SQL CYC package body, contains call specifications for the

Java Stored Procedures in CycJsprocs.java.
You can get these files with CVS from SourceForge. Look in the org/opencyc/oracle
directory.

2.3 Loading the stuff in Oracle

2.3.1 Prepare Oracle

Create a user to hold the Java classes to be loaded. Though it’s possible to separate
the oracle user who’s schema contains the jars from the users that actually use it,
the examples in this guide put and use all the stuff using the same user. In this guide
you won’t see a TNS connect string either, because I installed Oracle and OpenCyc
on the same server. If you know how to use TNS, you’ll know what to do.

$ sqlplus system/manager (or the right password)

SQL> create user cyctest identified by cyctest

default tablespace users temporary tablespace temp;

SQL> grant connect,resource,javauserpriv to cyctest;

(if you want to execute the examples below, access to the scott demo user tables is
necessary)

SQL> grant select any table to cyctest;

SQL> quit/

3

http://sourceforge.net/projects/opencyc/

IMPORTANT! DON’T FORGET THE JAVAUSERPRIV PRIVILEGE!!

2.3.2 Load the jars into Oracle

Edit the loadjars.sh script so it contains the right place where you put the down-
loaded jar files. Do a chmod +x loadjars.sh if it’s not executable (I don’t know
what CVS does with file permissions, just to be sure), and execute it:

bash$./loadjars.sh

You should now get stuff like

arguments: ’-f’ ’-verbose’ ’-oci8’ ’-u’ ’cyctest/cyctest’ ’/home/yourhome/opencyc-0.6.0/lib/jakarta-oro-2.0.6.jar’

creating : resource META-INF/MANIFEST.MF

arguments: ’-f’ ’-verbose’ ’-oci8’ ’-u’ ’cyct/cyct’ ’/home/yourhome/opencyc-0.6.0/lib/jdom.jar’

creating : class org/jdom/EntityRef

arguments: ’-f’ ’-verbose’ ’-oci8’ ’-u’ ’cyctest/cyctest’ ’/home/yourhome/opencyc-0.6.0/lib/violinStrings.jar’

arguments: ’-f’ ’-verbose’ ’-oci8’ ’-u’ ’cyctest/cyctest’ ’/home/yourhome/opencyc-0.6.0/lib/xmlParserAPIs.jar’

arguments: ’-f’ ’-verbose’ ’-oci8’ ’-u’ ’cyctest/cyctest’ ’oracle-opencyc.jar’

creating : resource META-INF/MANIFEST.MF

creating : resource META-INF/MANIFEST.MF

created :CREATE$JAVA$LOB$TABLE

loading : resource META-INF/MANIFEST.MF

loading : resource META-INF/MANIFEST.MF

loading : class org/jdom/EntityRef

etc..

etc..

on your screen. Ignore the

Error while loading resource META-INF/MANIFEST.MF

ORA-00001: unique constraint (CYCT.SYS_C0012106) violated

because the manifest files are not used. Get a cup of coffee, this will take 15-
30 minutes. Use ps aux | grep loadjava to check if the load has finished. The
loadjava command in loadjars.sh doesn’t contain the -resolve parameter. So
right now, the only check on the classes being done by Oracle is whether they are
Java classes or not.

4

2.3.3 Resolve CycAccess

Connect to Oracle with the schema user you loaded the classes in, and resolve Cy-
cAccess with the following SQL command:

SQL> alter java class "org/opencyc/api/CycAccess" resolve;

If you get the message that there were errors, which probably might occur if you try
this with other jars a while after I write this documentation, you can view the errors
with

SQL> select * from user_errors

This will probably show that there were references to unresolved classes. Find these
classes, load them, and try the resolve command again. You can view the status of
all loaded java classes with the SQL command

SQL> SELECT dbms_java.longname(object_name) as name, status, created

FROM user_objects

WHERE object_type=’JAVA CLASS’

If the status is VALID is means that the class is resolved and can be used (called) by
the database. Status INVALID means that it hasn’t been resolved (yet). Please note:
The order of loading without resolving doesn’t matter. But the order of resolving
can be important, if not all necessary classes are loaded at before the first ’resolve’
attempt. It can happen that errors dissappear after dropping the user and loading
all classes from scratch, though this happens very rarely.

2.3.4 Load CycJsproc.java

Once CycAccess is resolved, the Java Stored Procedure wrapper methods can be
loaded. You’re still in the CVS org/opencyc/oracle directory? Then:

$ jar xvf cycjsprocs.jar CycJsprocs.java

$ loadjava -f -resolve -verbose -oci8 -u cyctest/cyctest CycJsprocs.java

Note that this time a java source instead of class is loaded. Also, the class is now
resolved at load time. If this fails, check the user errors again.

5

2.3.5 Load the CYC package

Once CycJsproc.java is loaded and resolved, you can load the CYC PL/SQL pack-
age. First load the package specification. Note that this file also creates the type
cyclist type

$ sqlplus cyctest/cyctest @cyc.pks

Now load the package body

$ sqlplus cyctest/cyctest @cyc.pkb

You should get the gentle message Package body created.

3 Usage

At this point, the power of OpenCyc is at your Oracle fingertips. Every function
in the CYC package can be used in every SQL query (issued from SQLPlus, or for
example a PHP script in a web page), and in PL/SQL you can call every function
or procedure.

3.1 The first query

All the following commands can be performed in sqlplus in the cyctest schema.
Connect to the database, and in the database session, connect to cyc

SQL> begin cyc.makeconnection(); end;

2 /

Begin and end in SQL? Well, it’s actually PL/SQL. Oracle allows you to give ’anony-
mous’ PL/SQL blocks (a block starts with BEGIN and ends with END) where a SQL
query could be executed. This is the way a PL/SQL procedure is called from an SQL
frontend. Now to the first question is Dog a collection?

SQL> select cyc.isquerytrue(’(#$isa #$Dog #$Collection)’, ’InferencePSC’) from dual

this proceduces the following output

CYC.ISQUERYTRUE(’(#$ISA#$DOG#$COLLECTION)’,’INFERENCEPSC’)

--

1

For the type mapping between the different Cyc and Oracle types, see CycJsproc.java
and cyc.pkb, or the summary below. Note that a query like this could also be put
in e.g. a before trigger, and raise an exception if something is not true.

6

3.2 Oracle puts data in OpenCyc

Before OpenCyc can say anything interesting about your data, you have to put
some information in your database into OpenCyc. This is easy. In the Oracle demo
user SCOTT’s schema is a table EMP. This table contains 14 employees, with the
following names

SQL> select ename from scott.emp;

ENAME

SMITH

ALLEN

WARD

JONES

MARTIN

BLAKE

CLARK

SCOTT

KING

TURNER

ADAMS

JAMES

FORD

MILLER

14 rows selected.

Assert that these people are Employees in OpenCyc’s HumanSocialLifeMt

SQL> select cyc.assertgaf(’(#$isa #$’ || ename || ’ #$Employee)’,

2 ’HumanSocialLifeMt’)

3 from scott.emp;

CYC.ASSERTGAF(’(#$ISA#$’||ENAME||’#$EMPLOYEE)’,’HUMANSOCIALLIFEMT’)

--

(#$isa #$SMITH #$Employee)

(#$isa #$ALLEN #$Employee)

(#$isa #$WARD #$Employee)

7

(#$isa #$JONES #$Employee)

(#$isa #$MARTIN #$Employee)

(#$isa #$BLAKE #$Employee)

(#$isa #$CLARK #$Employee)

(#$isa #$SCOTT #$Employee)

(#$isa #$KING #$Employee)

(#$isa #$TURNER #$Employee)

(#$isa #$ADAMS #$Employee)

(#$isa #$JAMES #$Employee)

(#$isa #$FORD #$Employee)

(#$isa #$MILLER #$Employee)

14 rows selected.

GAF stands for ’Ground Atomic Formula’. Though CYC.ASSERTGAF is a function,
and shouldn’t change anything in the database, it’s very handy that Oracle allows it
to change things outside the database, in this case. It’s very fundamental in Oracle
that functions do not change the database state. And I think if you know a bit
PL/SQL, calling cyc.assertGaf from a procedure in PL/SQL LOOP might be bit
more proper. Assertgaf returns it’s input, because functions are supposed to return
something.

3.3 Oracle gets data from OpenCyc

Now OpenCYC knows about the employees, we can ask stuff... Is Scott a person?

SQL> select cyc.isquerytrue(’(#$isa #$SCOTT #$Employee)’, ’InferencePSC’) from dual

2 /

CYC.ISQUERYTRUE(’(#$ISA#$SCOTT#$EMPLOYEE)’,’INFERENCEPSC’)

--

1

Who are all the employees?

SQL> select column_value from

2 the(select cyc.askwithvariable(

3 ’(#$isa ?X #$Employee)’,

4 ’?X’,

8

5 ’InferencePSC’)

6 from dual);

COLUMN_VALUE

--

SMITH

ALLEN

WARD

JONES

MARTIN

BLAKE

CLARK

SCOTT

KING

TURNER

ADAMS

JAMES

FORD

MILLER

14 rows selected.

Because this is a REAL oracle resultset, it can be used in all wild Oracle SQL
constructs. Union, order, group by etc etc. Don’t forget to end the connection at
the end of the Oracle session

SQL> begin cyc.endconnection(); end;

3.4 Type mapping

OpenCyc Java Oracle
- java.lang.? DATE
- boolean NUMBER in [0,1]

In this case, 1 means true. (yes, Oracle SQL doesn’t know booleans. PL/SQL does
however.)

3.5 Method summary

At this point, you really must check the CycJsproc source.

9

3.5.1 askwithvariable

3.5.2 getbackchainrules

3.5.3 converselist

To get all hypothesized constants.

select column_value from the

(select cyc.converselist(’(constant-complete "HYP-")’) from dual)

select cyc.converselist(’(cyc-kill #$’ || column_value || ’)’) from the

(select cyc.converselist(’(constant-complete "HYP-")’) from dual)

3.6 Debugging

In the beginning of the CycJsprocs.java source you’ll find the method makeConnection().
At the end of this method is the call to CycAccess.traceOn. The trace of CycAc-
cess is default off, so if you comment this call Standard output (System.out.println) is
dumped by oracle in trace files in the directory $ORACLE BASE/admin/<instancename>/udump.

Find the last trace file with ls -l --sort=time -r and then monitor the contents
with less or tail -f.

3.7 Exceptions

All java exceptions are catched and thrown to the caller. In Oracle, all java exceptions
appear as ORA-29532 errors. At the end of the text of the error message you should
see the java error. So, if there is an error in your CYC query, look good at the
ORA-29532 errors!

4 End notes

4.1 Quality of this software

There should be no problems installing this software, I tested the installation proce-
dure while writing this documentation. However, please be aware that this is a very
first version of this interface. The current version must be seen as ’demonstrate that
the interface works’ and nothing more. I did a few tests with bigger result sets and I
haven’t had one strange error yet, both Oracle Java support and the OpenCyc Java

10

API (and OpenCyc ofcourse :) seem so robust that this interface software simply can-
not trigger an ’internal error’ or something. One more note: Cyclists get converted
to java.lang.Arrays, which in turn are converted to a oracle.sql.ARRAY, which then
are converted into a Oracle TABLE OF VARCHAR2. This is the most important
conversion of the whole interface, and is the first I got working, and currently only
supports un nested lists.

11

	Introduction
	Overview
	See also

	Installation
	Prerequisites
	Getting the files
	Third party jars
	OracleOpenCyc interface files

	Loading the stuff in Oracle
	Prepare Oracle
	Load the jars into Oracle
	Resolve CycAccess
	Load CycJsproc.java
	Load the CYC package

	Usage
	The first query
	Oracle puts data in OpenCyc
	Oracle gets data from OpenCyc
	Type mapping
	Method summary
	askwithvariable
	getbackchainrules
	converselist

	Debugging
	Exceptions

	End notes
	Quality of this software

