
 P A M L  M A N U A L  4 3  

 

9  mcmctree 

Overview  
The program mcmctree may be the first Bayesian phylogenetic program (Yang and Rannala 1997; 
Rannala and Yang 1996) , but was very slow and decommissioned since the release of MrBayes 
(Huelsenbeck and Ronquist 2001). 

Since PAML version 3.15 (2005), mcmctree implements the MCMC algorithms of Yang and 
Rannala (2006) and then of Rannala and Yang (2007) for estimating species divergence times on a 
given rooted tree using multiple fossil calibrations.  This is similar to the multidivtime program of 
Jeff Thorne and Hiro Kishino.  The differences between the two programs are discussed by Yang 
and Rannala (2006) and Yang (2006, Section 7.4); see also below.   

Please refer to any book on Bayesian computation, for example, Chapter 5 in Yang (2006) for the 
basics of MCMC algorithms.   

Here are some notes about the program. 

• Before starting the program, resize the window to have 100 columns instead of 80.  (On 
Windows XP/Vista, right-click the command prompt window title bar and change Properties - 
Layout - Window Size - Width.) 

• The tree, supplied in the tree file, must be a rooted binary tree: every internal node should have 
exactly two daughter nodes.  You should not use a consensus tree with polytomies for 
divergence time estimation using MCMCTREE.  Instead you should use a bifurcating ML tree or 
NJ tree or traditional morphology tree.  Note that a binary tree has a chance of being correct, 
while a polytomy tree has none. 

• The tree must not have branch lengths.  For example, ((a:0.1, b:0.2):0.12, c:0.3) '>0.8<1.0';  does 
not work, while ((a, b), c) '>0.8<1.0';  is fine. 

• Under the relaxed-clock models (clock = 2 or 3) and if there is no calibration on the root, a loose 
upper bound (maximal age constraint) must be specified in the control file (RootAge).  (There 
should be no need to use RootAge if clock = 1, but the program insists that you have it.  I will 
try to fix this.)  

• The time unit should be chosen such that the node ages are about 0.01-10 time units.  If the 
divergence times are around 100-1000MY, then 100MY may be one time unit.  Ideally, one 
would want the biological results to be unchanged when one changes the time unit from 10MY 
to 100MY (and accordingly multiply the rates by 10), but this is not true.  Some components of 
the model (including all the distributions used to represent fossil calibrations and the gamma 
prior on the overall rates µ) are scale-invariant, but the other components are not (the birth-death 
process prior on divergence times, and the log-normal distribution of rates used for clock = 2 
and clock = 3, for example).  The end result is that the model is not invariant to the time scale.  
We hope that the change of the time scale should have minimal impact on the time estimates, 
but we have little experience and we are interested in hearing about your observations from real 
data.  

• It is important that you run the same analysis at least twice to confirm that the different runs 
produced very similar (although not identical) results.  It is critical that you ensure that the 
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acceptance proportions are neither too high nor too low.  See below about the variable 
finetune.   

• This approximate likelihood calculation is unreliable when the MLEs of some branch lengths 
are 0.  You can look at the generated out.BV or in.BV files and check whether some branch 
length estimates are 0.  The branch lengths are on the long line of numbers below the tree.  I 
have not got time to work on a fix.  Right now you should try not to use too many partitions (or 
to partition the data too much). 

• The program right now does a simple summary of the MCMC samples, calculating the mean, 
median and the 95% CIs for the parameters.  If you want more sophisticated summaries such as 
1-D and 2-D density estimates, you can run a small program ds at the end of the mcmctree run, 
by typing    ds mcmc.out. 

• You can compile the program to use hard bounds, which are implemented by setting the tail 
probability to 10–300 instead of 0.025.  Copy the command with the flag -DHardBounds from the 
start of the file mcmctree.c onto the command line to compile an executable named 
mcmctreeHB.     

Fossil calibration 
Fossil calibration information, in the form of statistical distributions of divergence times (or ages of 
nodes in the species tree), is specified in the tree file.  See table 7 for a summary.  Here “fossil” 
means any kind of external calibration data, including geological events.  For a sensible analysis, 
one should have at least one lower bound and at least one upper bound on the tree, even though they 
may not be on the same node.  The gamma, skew normal, and skew t distributions can act as both 
bounds, so one such calibration is enough to anchor the tree to enable a sensible analysis. 

Table 7.  Statistical distributions used as calibration 

Calibration #p Specification Density 
L (lower minimal bound) 3 '>0.06' or  

'L(0.06)' 
'L(0.06, 0.2)' 
'L(0.06, 0.1, 0.5)' 

L(tL, p, c) specifies the 
minimum-age bound tL, with 
offset p, and scale parameter c.  
The default values are p = 0.1 
and c = 1, so >0.06 or L(0.06) 
means L(0.06, 0.1, 1), and 
L(0.06, 0.2) means L(0.06, 0.2, 
1). 

U (upper maximal bound) 1 '<0.08' or 
'U(0.08)' 

Eq. 16 & fig. 2b in YR06 

B (lower & upper bounds) 2 'B(0.06, 0.08)' or  
'>0.06<0.08' 

Eq. 17 & fig. 2c in YR06 

G (Gamma) 2 'G(alpha, beta)' Eq. 18 & fig. 2d in YR06 
SN (skew normal) 3 'SN(location, scale, shape)' Eq. 2 & plots below 
ST (skew t) 4 'ST(location, scale, shape, df)' Eq. 4 & plots below 
S2N (skew 2 normals) 7 'SN2(p1, loc1, scale1, shape1, 

loc2, scale2, shape2)' 
p1: 1 – p1 mixture of two skew 
normals. 

Note .  #p is the number of parameters in the distribution, to be supplied by the user.  Figure 2 in 
YR06 (Yang and Rannala 2006) is figure 7.11 in Yang (2006). 
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(1) Lower bound (minimal age) is specified as '>0.06' or 'L(0.06)', meaning that the node age is at 
least 6MY.  Here we assume that one time unit is 100 million years.  In PAML version 4.2, the 
implementation of the minimum bound has changed.  Instead of the improper soft flat density of 
Figure 2a in YR06 (Yang and Rannala 2006) or figure 7.11a in Yang (2006), a heavy-tailed density 
based on a truncated Cauchy distribution is used  
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 is chosen to make the density continuous at tL.  The Cauchy distribution 

with location parameter tL(1 + p) and scale parameter tLc is truncated at tL, and then made soft by 
adding 2.5% of density mass left of tL.  The resulting distribution has mode at tL(1 + p), and the 2.5% 
and 97.5% limits at tL and 0.0251

2 0.975[1 tan( ( ))]A
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exist, and the variance is infinite.  If the minimum bound tL is based on good fossil data, the true 
time of divergence may be close to the minimum bound, so that a small p and small c should be 
used.  It should be noted that c has a greater impact thatn p on posterior time estimation.  The 
program uses the default values p = 0.1 and c = 1.  However, you are advised to use different values 
of p and c for each minimum bound, based on a careful assessment of the fossil data on which the 
bound is based.  Here are a few plots of this density.  The minimum bound is fixed at tL = 1, but one 
time unit can mean anything like 100Myr or 1000Myr.  For each value of p (0.1 and 0.5), the four 
curves correspond to c = 0.2, 0.5, 1, 2 (from top to bottom nearthe peak).  The 2.5% limit is at 1, 
while the 97.5% limits for those values of c are 5.8, 12.8, 24.4, and 47.8, respectively, when p = 0.1, 
and are 6.2, 13.2, 24.8, and 48.2 when p = 0.5.   

 

(2) Upper bound (maximal age) is specified as '<0.08' or 'U(0.08)', meaning that the node age is at 
most 8MY.   

(3) Both lower and upper bounds on the same node are specified as '>0.06<0.08' or 'B(0.06, 0.08)', 
meaning that the node age is between 6MY and 8MY.   
Note that in all the above three calibrations (L, U, B), the bounds are soft, in that there is a 2.5% 
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probability that the age is beyond the bound (see figure 2 in Yang and Rannala 2006;  or figure 7.11 
in Yang 2006).   

(4) The gamma distribution.  'G(188, 2690)' specifies the gamma distribution with shape 
parameter α = 188 and scale parameter β = 2690.  This has the mean α/β = 0.07 and the 2.5 and 97.5 
percentiles at ### and ###.  In earlier versions (3.15, 4a & 4b), the gamma was specified as 
‘>.06=0.0693<.08’, but this format is not used anymore. 

((((human, (chimpanzee, bonobo)) 'G(188, 2690)', gorilla), (orangutan, sumatran)) 
'>.12<.16', gibbon); 

In the tree above, the human-chimp divergence time has a gamma distribution G(188, 2690), while 
the orang-utan divergence time has soft bounds between 12MY and 16MY.   

The above tree can be read in TreeView, with the calibration information in quotation marks treated 
as node labels. 

You can use the MS Excel function GAMMADIST(X, alpha, beta, 0) to calculate and plot the 
density function (pdf) of the gamma distribution, and the function GAMMAINV(0.025, alpha, beta) 
to calculate the 2.5% percentile.  However, note that beta in Excel is 1/β in MCMCTREE (and other 
PAML programs).  In other words, the mean is α/β in MCMCTREE and αβ in Excel. 

(5) Skew normal distribution SN(location, scale, shape) or SN(ξ, ω, α) (Azzalini and Genton 
2007).   The basic form of the skew normal distribution has density  

 f(z; α) = 2φ(z)Φ(αz), (2) 

where φ() and Φ() are the PDF and CDF of the standard normal distribution respectively.  Then x = 
ξ + ωz, has the skew normal distribution SN(ξ, ω, α) with location parameter ξ, scale parameter ω, 
and shape parameter α.  The density is 
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(6) Skew t distribution, ST(location, scale, shape, df) or ST(ξ, ω, α, ν) (Azzalini and Genton 
2007), with location parameter ξ, scale parameter ω, shape parameter α, and degree of freedom ν, 
has density 

 ( )2
ST

2( ; , , , ) ( ; ) ( 1) ( ); 1f x t z T z zξ ω α ν ν α ν ν ν
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= + + + , (5) 

where z = (x – ξ)/ω, t and T are the PDF and CDF of the standard t distribution, respectively.  These 
are defined as follows. 
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is the beta function. 
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Figure 1. Density functions for skew normal (blue) and skew t (red) distributions.   
Skew t has heavier tails than skew normal. 

Here are a few notes about the skew normal and skew t distributions. 
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• When the shape parameter α = 0, the distributions become the standard (symmetrical) 
normal and t distributions. 

• Changing α to –α flips the density at x = ξ (the location parameter).  Fossil calibrations 

should have long right tails, which means α > 0. 

• A larger |α| means more skewed distributions.  When |α| = ∞, the distribution is called 

folded normal or folded t distribution, that is, the normal or t distribution truncated at ξ from 

the left (α = ∞) or from the right (α = –∞). 

• When the degree of freedom ν = ∞, the t or skew t distribution becomes the normal or skew 

normal distribution.  The smaller ν is, the heavier the tails are.  A small ν (1-4 , say) with a 

large shape parameter α in the skew t distribution represents virtually hard minimal bound 

and very uncertain maximal bound.  When ν = 1, the t distribution is known as Cauchy 

distribution, which does not have mean or variance. 

• Both skew normal and skew t distributions go from –∞ to ∞.  In MCMCTREE, negative 

values are automatically truncated, so only the positive part is used.  If feasible, try to 

construct the distribution so that the probability for negative values is small (<0.1%, say). 

• Please visit the web site http://azzalini.stat.unipd.it/SN/ to plot skew normal and skew t 
distributions.  R routines are also available for such plots.  The equations above are for my 
testing and debugging.  I think I should remove them later on. 

The control file  
You can use the files in the folder examples/SoftBound/ to duplicate the results of Yang and 
Rannala (2006: table 3) and Rannala and Yang (2007: table 2).  Below is a copy of the control file 
mcmctree.ctl.   

          seed = -1234567 
       seqfile = mtCDNApri123.txt 
      treefile = mtCDNApri.trees 
       outfile = out 
 
         ndata = 3 
       usedata = 1    * 0: no data; 1:seq like; 2:use in.BV; 3: out.BV 
         clock = 1    * 1: global clock; 2: independent rates; 3: correlated rates 
 
         model = 0    * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85 
         alpha = 0    * alpha for gamma rates at sites 
         ncatG = 5    * No. categories in discrete gamma 
 
     cleandata = 0    * remove sites with ambiguity data (1:yes, 0:no)? 
 BlengthMethod = 0    * 0: arithmetic; 1: geometric; 2: Brownian 
 
       BDparas = 2 2 .1   * birth, death, sampling 
   kappa_gamma = 6 2      * gamma prior for kappa 
   alpha_gamma = 1 1      * gamma prior for alpha 
 
   rgene_gamma = 2 2     * gamma prior for rate for genes 
  sigma2_gamma = 1 1    * gamma prior for sigma^2     (for clock=2 or 3) 
 
      finetune = 0.04 0.02 0.3 0.1 0.3 * time, rate, mixing, paras, RateParas  
 
         print = 1 
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        burnin = 10000 
      sampfreq = 10 
       nsample = 10000 

 

seed should be assigned a negative or positive integer.  A negative integer (such as –1) means that 
the random number seed is determined from the current clock time.  Different runs will start from 
different places and generate different results due to the stochastic nature of the MCMC algorithm.  
You should use this option and run the program at least twice, to confirm that the results are very 
similar between runs (identical to 1MY or 0.1MY, depending on the desired precision).  If you 
obtain intolerably different results from different runs, you obviously won’t have any confidence in 
the results.  This lack of consistency between runs can be due to many reasons: including slow 
convergence, poor mixing, insufficient samples taken, or errors in the program.  Thus you can check 
to make sure (i) that the chain is at reasonably good place when it reached 0% (the end of burn-in), 
indicating that the chain may have converged; (ii) that the acceptance proportion of all proposals 
used by the algorithm are neither too high nor too low (see below about finetune) indicating that the 
chain is mixing well; (iii) that you have taken enough samples (see nsample and burnin below).   
If you give seed a positive number, that number will be used as the real seed.  Then running the 
program multiple times will produce exactly the same results.  This is useful for debugging the 
program and should not be the default option for real data analysis.  

ndata is the number of loci (or site partitions) in a combined analysis.  The program allows some 
species to be missing at some loci.  The mt primate data included protein-coding genes, and the 
three codon positions are treated as three different partitions.  In the combined analysis of multiple 
gene loci, the same substitution model is used, but different parameters are assigned and estimated 
for each partition.  

usedata.  0 means the sequence data will not be used in the MCMC, so that the posterior 
distribution should equal the prior distribution.  This option is useful for testing and debugging the 
program.  1 means that the sequence data will be used in the MCMC, with the likelihood calculated 
using the pruning algorithm of Felsenstein (1981), which is exact but very slow except for very 
small species trees.  This option is available for nucleotide sequences only, and the most complex 
model available is HKY85+Γ.  usedata = 2 and 3 implement a method of approximate likelihood 
calculation.  They can be used to analyze nucleotide, amino acid, and codon sequences, using 
nucleotide, amino acid, and codon substitution models, respectively.  More details are provided in 
the next subsection: “Approximate likelihood calculation”.  

clock.  The clock variable is used to implement three models concerning the molecular clock: 1 
means global molecular clock, so that the rate is constant across all lineages on the tree (even though 
the rate may vary among multiple genes); 2 means the independent-rates model, and 3 the auto-
correlated rates model.  See Rannala and Yang (2007) and Section §7.4 in Yang (2006) for details. 

model, alpha, ncatG are used to specify the nucleotide substitution model.  These are the same 
variables as used in baseml.ctl.  If alpha ≠ 0, the program will assume a gamma-rates model, while 
alpha = 0 means that the model of one rate for all sites will be used.  Those variables have no effect 
when usedata = 2. 

cleandata = 0 means that alignment gaps and ambiguity characters will be treated as missing data in 
the likelihood calculation (see pages 107-108 in Yang 2006).  = 1 means that any sites at which at 
least one sequence has an alignment gap or ambiguity character will be deleted before analysis.  
This variable is used for usedata = 1 and 3 and has no effect if usedata = 2. 
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BDparas = 2 2 .1 specifies the three parameters  (birth rate λ, death rate µ and sampling fraction ρ) 
in the birth-death process with species sampling (Yang and Rannala 1997), which is used to specify 
the prior of divergence times (Yang and Rannala 2006).  The node times are order statistics from a 
kernel density, which is specified by those parameters.  A few kernel densities are shown in figure 2 
of Yang and Rannala (1997) or figure 7.12 in Yang (2006).  The Mathematica code for plotting the 
density for given parameters λ, µ and ρ is posted at the web site 
http://abacus.gene.ucl.ac.uk/ziheng/data.html.  By adjusting parameters λ, µ and ρ to generate 
different tree shapes, one can assess the impact of the prior on posterior divergence time estimation.  
Intuitively, the node ages and thus the shape of the tree are determined by the parameters as follows.  
There are s – 1 internal nodes and thus s – 1 node ages in the rooted tree of s species.  The age of the 
root is fixed, so the s – 2 node ages are relative to the root age (they are all between 0 and 1).  We 
draw s – 2 independent random variables from the kernel density and order them.  Those ordered 
variables will then be the node ages.  Thus if the kernel density has the L shape, all internal nodes 
tend to be young (relative to the root), and the tree will have long internal branches and short tip 
branches.  In contrast, if the kernel density has the reverse L shape, the node ages are large and the 
nodes close to the root, then the tree will be bush-like.  See pages 250-251 in Yang (2006).  (Strictly 
speaking the above description is accurate if fossil calibration is available for the root only but not 
for any other nodes.  Otherwise the kernel density specifies the distribution of the ages of non-
calibration nodes only, and the impact of the kernel on the joint distribution of all node ages may be 
complex, depending on the locations of the calibration nodes.) 

kappa_gamma = 6 2 specifies the shape and scale parameters (α and β) in the gamma prior for 
parameter κ (the transition/transversion rate ratio) in models such as K80 and HKY85.  This has no 
effect in models such as JC69, which does not have the parameter.  Note that the gamma distribution 
with parameters α and β has the mean α/β and variance α/β2.  Those variables have no effect when 
usedata = 2. 

alpha_gamma = 1 1 specifies the shape and scale parameters (α and β) in the gamma prior for the 
shape parameter for gamma rates among sites in models such as JC69+Γ, K80+Γ etc.  The gamma 
model of rate variation is assumed only if the variable alpha is assigned a positive value.  This prior 
has no effect when usedata = 2. 

rgene_gamma = 2 2 specifies the shape and scale parameters (α and β) in the gamma prior for the 
overall rate parameter µ.  Under the global-clock model (clock=1), the independent-rates model 
(clock = 2), and also the correlated-rates model (clock = 3), µ is the overall rate on the tree specified 
by the prior.  In the example, µ has the prior mean 2/2 = 1, that is, one change per site per time unit.  
If one time unit is 100MY, this means an overall average rate of 10–8 substitutions per site per year.  
The variance (2/22 = 0.5 in the example) of this gamma prior specifies how confident you are about 
the overall rate, or how variable the overall rates are among loci.  It is not about how variable the 
rates are among branches or how wrong the clock is.  

You need to adjust this prior to suit your data and the chosen time scale.  Don’t use the default.  A 
pragmatic way of deriving a rough rate estimate (for use as the prior mean) may be to use baseml or 
codeml under the global clock model (clock = 1), with point calibrations (as in Yoder and Yang 
2000).  If the same species are included in every locus, it is quite easy to do this.  Otherwise it is a 
bit more complex, and here is a possible procedure.  First run mcmctree with usedata = 3, so that the 
program generates tmp1.txt, tmp1.ctl, and tmp1.trees.  The tree is unrooted.  Edit the tree to make it 
rooted by adding a pair of parentheses.  Edit the tree to add one or two point calibrations.  If a node 
has fossil bounds ‘>0.6<0.8’, you can use ‘=0.7’.  Edit tmp1.ctl to add a line   clock = 1, and change 
the value of getSE from 2 to 0.  Then run baseml tmp1.ctl and look at the result file out to get the 

http://abacus.gene.ucl.ac.uk/ziheng/data.html�
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rate.  Do the same thing for another locus.  This way you will get an idea about the overall rates 
among loci and how variable they are among loci, information useful for specifying the prior.   

sigma2_gamma = 1 1 specifies the shape and scale parameters (α and β) in the gamma prior for 
parameter σ2, which specifies how variable the rates are across branches.  This prior is used for the 
two variable-rates models (clock = 2 or 3), with a larger σ2 indicating more variable rates (Rannala 
and Yang 2007).  If clock = 1, this prior has no effect.   

In the independent-rates model (clock = 2), rates for branches are independent variables from a log-
normal distribution (Rannala and Yang 2007: equation 9).   

 ( ){ }22

22 21 1 1
222

( | , ) exp log ,   0
r

f r r r
σπσ

µ σ µ σ = − + < < ∞  . (1) 

Here σ2 is the variance in the logarithm of the rates.  The rate r has mean µ and variance 
2 2(e 1)σ µ− .   

The correlated-rates model (clock = 3) specifies the density of the current rate r, given that the 
ancestral rate time t ago is rA, as  

 ( )22
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(Rannala and Yang 2007: equation 2).  Parameter σ2 here is equivalent to ν in Kishino et al. (2001).  
Thus r has mean rA and variance 

2 2(e 1)t
Ar

σ − . 

Note that σ2 (clock = 2) or tσ2 (clock = 3) is not the variance of the rate; it is the variance of the 
logarithm of the rate.   

The log normal distribution is not scale-invariant.  When one changes the time unit from 10MY to 
100MY (so that the rate, per time unit, is 10 times as large), and changes the priors on times and 
rates accordingly, one may hope that the posterior estimates stay the same.  This is not the case.  The 
log normal may look reasonable on one time scale and not on the other.  It is advisable to plot the 
log-normal density using the prior mean for σ2 and make sure it is not unreasonable. 

finetune.  The following line in the control file  

      finetune = 0.04 0.2 0.3 0.1 0.3 * time, rate, mixing, paras, RateParas  

specifies the step lengths used in the proposals in the MCMC algorithm.  These proposals (a) change 
the divergence times, (b) change the rates, (c) perform the mixing step (page 225 in Yang and 
Rannala 2006), (d) change parameters in the substitution model (such as κ and α in HKY+Γ), and 
(e) change parameters in the rate-drift model (for clock = 2 or 3 only).  You have to adjust those 
finetune parameters manually, by looking at the screen output. 

-20% 0.33 0.01 0.25 0.00 0.00  1.022 0.752 0.252 0.458 0.133 0.843 - 0.074 0.787 -95294.7 
-15% 0.33 0.01 0.25 0.00 0.00  1.021 0.751 0.253 0.457 0.130 0.841 - 0.067 0.783 -95295.4 
-10% 0.33 0.00 0.26 0.00 0.00  1.022 0.752 0.254 0.458 0.129 0.842 - 0.065 0.781 -95294.6 
 -5% 0.33 0.00 0.25 0.00 0.00  1.022 0.751 0.254 0.457 0.128 0.841 - 0.063 0.780 -95292.4 
  0% 0.32 0.00 0.25 0.00 0.00  1.022 0.751 0.254 0.457 0.128 0.841 - 0.063 0.780 -95290.2 
  2% 0.32 0.00 0.27 0.00 0.00  1.014 0.746 0.253 0.453 0.126 0.833 - 0.059 0.784 -95290.4 

A few seconds after you start the program, the screen output will look like the above.  Scroll back to 
check that the tree, fossil calibrations and the sequence alignments are read correctly.  The output 
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here is generated from a run under the JC model and global clock (clock = 1).  The percentage % 
indicates the progress of the run, with negative values for the burn-in.  Then the five ratios (e.g., 
0.33 0.01 0.25 0.00 0.00 on the first line) are the acceptance proportions for the corresponding 
proposals.  The optimal acceptance proportions are around 0.3, and you should try to make them fall 
in the interval (0.2, 0.4) or at least (0.15, 0.7).  If the acceptance proportion is too small (say, <0.10), 
you decrease the corresponding finetune parameter.  If the acceptance proportion is too large (say, 
>0.80), you increase the corresponding finetune parameter.  In the example here, the second 
acceptance proportion, at 0.01 or 0.00, is too small, so you should stop the program (Ctrl-C) and 
modify the control file to decrease the corresponding finetune parameter (change 0.2 into 0.02, for 
example).  Then run the program again (use the up  and down  arrow keys to retrieve past 
commands), observe it for 10 seconds or 1 minute and kill it again if the proportions are still not 
good.  Repeat this process a few times until every acceptance proportion is reasonable.  This is not 
so tedious as it may sound. 

The finetune parameters in the control file are in a fixed order and always read by the program even 
if the concerned proposal is not used.  In the above example, JC does not involve any substitution 
parameters, so that the 4th finetune parameter is not used, and the corresponding acceptance 
proportion is always 0.  Also the use of clock = 1 means that there are no parameters in the rate-drift 
model, which explains why the 5th acceptance proportion is 0 as well. 

Note that the impact of the finetune parameters is on the efficiency of the algorithm, or on how 
precise the results are when the chain is run for a fixed length.  Even if the acceptance proportions 
are too high or too low, reliable results will be obtained in theory if the chain is run sufficiently long.  
This effect is different from the effect of the prior, which affects the posterior estimates. 

print = 1 means that samples will be taken in the MCMC and written to disk and the posterior 
results will be summarized.  0 means that the posterior means will be printed on the monitor but 
nothing else: this is mainly useful for testing the program. 

burnin = 2000, sampfreq = 5, nsample = 10000. In the example here, the program will discard the 
first 2000 iterations as burn-in, and then run the MCMC for 5 × 10000 iterations, sampling (writing 
to disk) every 5 iterations.  The 10000 samples will then be read in and summarized.  I think you 
should take at least 2000 samples. 

Differences between MCMCtree and Multidivtime 

Here are a few differences between the two programs.   

• Soft bounds are used in mcmctree while hard bounds are in multidivtime.   

• MCMCTREE does not use outgroups, and the master species tree supplied by the user should be 
the rooted tree for the ingroup species only.  With multidivtime, one runs estbranches on an 
unrooted tree for both ingroup and outgroup species and then run multidivtime on the rooted tree 
for ingroup species only.   

• Calibration information is supplied by identifying the node numbers on the rooted tree for 
ingroup species for multidivtime, while it is supplied as node labels in the rooted tree in 
mcmctree.   

• In multidivtime, the likelihood is calculated using a normal approximation to the branch lengths 
in the rooted ingroup tree (see Yang 2006, figure 7.10a).  In mcmctree, the likelihood is 
calculated either exactly or approximately for nucleotide sequences, and approximately for 
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amino acid or codon sequences.  The approximation in mcmctree is applied to the branch 
lengths in the unrooted tree of the ingroup species (see Yang 2006, figure 7.10b). 

• Both programs use a few gamma priors, but the specification is different, with multidivtime 
requiring the mean (m) and standard deviation (s) and mcmctree using the shape (α) and scale 
(β) parameters.  There are related as follows.  

 m = α/β,   s = α β ,    

 α = (m/s)2,   β = m/s2.    

• The rate-drift model used in multidivtime is the same as the correlated-rates model (clock = 3) 
in MCMCtree.  The following variables are equivalent in the two programs.  

Prior Multidivtime  
(multicntrl.dat) 

MCMCtree 
(MCMCtree.ctl) 

Gamma prior on root rate  rtrate & rtratesd mu_gamma 

Gamma prior on ν or σ2 brownmean & brownsd sigma2_gamma 

Gamma prior on root age rttm & rttmsd Absent  

In both programs, a gamma prior is assigned on the root rate (overall rate on the tree), and on 
parameter ν or σ2.  Multidivtime also assigns a gamma prior on the age of the root, which is not 
used in MCMCtree. 

Approximate likelihood calculation 

Thorne et al. (1998) suggested the use of the multivariate normal distribution of MLEs of branch 
lengths to approximate the likelihood function.  To implement this approximation, one has to obtain 
the MLEs of the branch lengths and calculate their variance-covariance matrix or equivalently the 
matrix of second derivatives of the log likelihood with respect to the branch lengths (this matrix is 
also called the Hessian matrix).  In Thorne’s multidivtime package, this is achieved using the 
program estbranches.   

I have implemented this approximation using the option usedata = 3.  With this option, mcmctree 
will prepare three temporary files for each locus and then invoke baseml or codeml to calculate the 
MLEs of branch lengths and the Hessian matrix.  These results are generated in the file rst1 and 
copied into the file out.BV by mcmctree.  The three temporary files for each locus are the control 
file tmp#.ctl, the sequence alignment tmp#.txt, and the tree file tmp#.trees, where # means the index 
for the locus.  The tree for the locus is generated by mcmctree by pruning the master tree of all 
species so that only those species present at the locus remain, and by de-rooting the resulting tree.  
You should not edit this tree file.  You can edit the control file tmp#.ctl to use another model 
implemented in baseml or codeml, and this option should allow you to use amino acid or codon 
substitution models.  The calculation of the Hessian matrix may be sensitive to the step length used 
in the difference approximation, and it is advisable that you change the variable Small_Diff in the 
control file tmp#.ctl to see whether the results are stable. 

The output file out.BV from usedata = 3 should then be renamed in.BV.  This file has one block of 
results for each locus.  If you manually edit the control file tmp#.ctl and then invoke baseml or 
codeml from the command line (for example, by typing  codeml tmp2.ctl), you will have to 
manually copy the content of rst1 into in.BV.  
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With usedata = 2, mcmctree will read the MLEs and Hessian matrix from in.BV and apply the 
approximate method for calculating the likelihood in the MCMC.   

In effect, mcmctree/usedata = 3 performs the function of estbranches and you can manually perform 
this step by running baseml or codeml externally after the tree file tmp#.ctl is generated.  Similarly 
mcmctree/usedata = 2 performs the function of mlutidivtime. 

Models of amino acid or codon substitution are not implemented in the mcmctree program for the 
exact likelihood calculation.  The only way to use those models is through the approximate method 
(usedata = 3 and 2).  If is advisable that you edit the intermediate control file tmp#.ctl to choose the 
appropriate model of amino acid or codon substitution in the codeml analysis, and then copy the 
results into the in.BV file.  Finally run mcmctree/usedata = 2. 

In the description here, a gene or locus means a site partition.  For example, since the three codon 
positions typically have very different rates, different base compositions, etc., you may treat them as 
separate partitions.  

This approximate likelihood calculation is unreliable when the MLEs of some branch lengths are 0.  
You can look at the generated out.BV or in.BV files and check whether some branch length 
estimates are 0.  The branch lengths are on the long line of numbers below the tree.  I have not got 
time to work on a fix.  Right now you should try not to use too many partitions (or to partition the 
data too much). 
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