Welcome
db4o is the native Java, .NET and Mono open source object database.

This documentation and tutorial is intended to get you started with db4o and to be a
reliable companion while you develop with db4o. Before you start, please make sure that
you have downloaded the latest db4o distribution from the db4objects website.

You are invited to join the db4o community in the public db4o forums to ask for help at

any time. You may also find the db4o knowledgebase helpful for keyword searches.

Java, .NET and Mono
db4o is available for Java, for .NET and for Mono. This tutorial was written for Mono .
The structure of the other distributions may be considerably different, so please use

the tutorial for the version that you plan to experiment with first.

http://www.db4o.com
http://forums.db4o.com/forums/
http://www.db4o.com/community/ontheroad/solutionlibrary/

Download Contents

The db4o Mono distribution is available from the db4o download center in 3 versions:
db4o-5.0-mono. tar.gz (binary and source tarball), db4o-5.0-mono.noarch.rpm (binary
RPRM), db4o-5.0-mono.src.rpm (source RPM). The noarch RPM can be built from the source
RPM. After installing/unzipping you will find the following directory structure on your

machine:

db4o-5.0-mono.noarch.rpm

== sr
=== lib
-l-[= db4o
db4o.dll db4o core engine
db4o-mono-test.exe db4do regression tests
db4o-mono-tool.dll db4o tools (Defragment)
=l-[-=% share
-] doc
-2 packages
- db4o
== api
2 dbdo.chm CHM API documentation
@ index. html HTML API documentation
=== tutorial
) db4o-5.0-tutorial.pdf PDF tutorial for best searching
@ index.html HTML tutorial

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.db4o.com/community/ontheroad/downloadcenter/

db4o-5.0-mono.tar.gz

== dll
db4ao.dl dbdo core engine
- doc ¥ML help file for tooltips
== api
2 dbdo.chm CHM API documentation
& index.html HTML API documentation
=]-[== tutorial
@ db4o-5.0-tutorial, pdf PDF tutorial for best searching
& index.html HTML tutorial
(= legacy 4.x compatible engines (camelCase)
+-[= src Source code and tools
db4o.spec
Makefile

/usr/share/doc/packages/db4o/tutorial/index.html
The tutorial in HTML format. The Java and .NET db4o distributions also provide the HTML

documentation with live execution capabilities.

/usr/share/doc/packages/db4o/tutorial/db4o-5.x~-tutorial.pdf

The PDF version of the tutorial allows best fulltext search capabilities.

/usr/share/doc/package/db4o/api/index.html
The API documentation for db4o is supplied as a set of HIML pages. While you read

through this tutorial, it may be helpful to look into the API documentation
occasionaly.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

1. First Glance
Before diving straight into the first source code samples let's get you familiar with
some basics.

1.1. The db4o engine...
The db4o object database engine consists of one single DLL. This is all that you need

to program against. The version supplied with the distribution can be found in
/usr/1lib/db4o/.

/usr/lib/db4o/db4o.d11
The standard db4o engine for the Mono environment.

1.2. Installation
To use db4o in a development project, you only need to add the above db4o.dll file to
your project references.

Here is how to do this if you are using MonoDevelop:
- Right-click on "References" in the Solution Tab

- choose "Edit References"

- select the ".NET Assembly" tab and then "Browse"
- select /usr/lib/db4o/db4o.d1l1

- click "Open"

- click "OK"

1.3. db4o Object Manager

db4o Object Manager is a GUI tool to browse and query the contents of any db4o database
file. Object Manager has to be downloaded seperately from the main db4o distributions.

Please visit the db4o Download Center and choose the installation appropriate for your

system. The following distributions are currently available:

- db4o ObjectManager for Windows IKVM (Java VM included)

- db4o ObjectManager for Windows no Java VM

- db4o ObjectManager for Linux

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#ObjectManager
http://www.db4o.com/community/ontheroad/downloadcenter/

1.4. API Overview
Do not forget the API documentation while reading through this tutorial. It provides an
organized view of the API, looking from a namespace perspective and you may find

related functionality to the theme you are currently reading up on.

For starters, the namespace com.db4o and com.db4o.query are all that you need to worry
about.

com.db4o

The com.db4o namespace contains almost all of the functionality you will commonly need
when using db4o. Two objects of note are com.db4o.Db4o, and the

com.db4o.0bjectContainer interface.

The com.db4o.Db4o factory is your starting point. Static methods in this class allow
you to open a database file, start a server, or connect to an existing server. It also

lets you configure the db4o environment before opening a database.

The most important interface, and the one that you will be using 99% of the time is
com.db4o.0bjectContainer: This is your db4o database.

- An ObjectContainer can either be a database in single-user mode or a client
connection to a db4o server.

- Every ObjectContainer owns one transaction. All work is transactional. When you open
an ObjectContainer, you are in a transaction, when you commit() or rollback(), the next
transaction is started immediately.

- Every ObjectContainer maintains it's own references to stored and instantiated
objects. In doing so, it manages object identities, and is able to achieve a high level
of performance.

- ObjectContainers are intended to be kept open as long as you work against them. When
you close an ObjectContainer, all database references to objects in RAM will be
discarded.

com.db4o.ext

In case you wonder why you only see very few methods in an ObjectContainer, here is
why: The db4o interface is supplied in two steps in two namespaces , com.db4o and
com.db4o.ext for the following reasons:

- It's easier to get started, because the important methods are emphasized.

- It will be easier for other products to copy the basic db4o interface.

- It is an example of how a lightweight version of db4o could look.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Every com.db4o.0bjectContainer object is also an com.db4o.ext.ExtObjectContainer. You

can cast it to ExtObjectContainer or you can use the to get to the advanced features.

com.db4o.config

The com.db4o.config namespace contains types and classes necessary to configure db4o.

The objects and interfaces within are discussed in the Configuration section.
com.db4o.query
The com.db4o.query namespace contains the Predicate class to construct Native Queries

. The Native Query interface is the primary db4o querying interface and should be

preferred over the Query API.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Configuration
#NativeQueries
#SODAQueryAPI

2. First Steps

Let's get started as simple as possible. We are going to demonstrate how to store,
retrieve, update and delete instances of a single class that only contains primitive
and String members. In our example this will be a Formula One (F1) pilot whose

attributes are his name and the F1 points he has already gained this season.

First we create a class to hold our data. It looks like this:

nanespace com db4o.f1.chapterl

{

public class Pil ot

{

string _nane;

int _points;

public Pilot(string name, int points)

{
_name = nane;

_points = points;

public string Nane

{
get

{

return _nane;

public int Points

{
get
{
return _points;
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public void AddPoi nts(int points)
{

_points += points;

override public string ToString()
{

return string. Format ("{0}/{1}", _name, _points);

Notice that this class does not contain any db4o-related code.

2.1. Opening the database

To access a db4o database file or create a new one, call Db4o.openFile(), providing the
path to your file as the parameter, to obtain an ObjectContainer instance.
ObjectContainer represents '"The Database”, and will be your primary interface to db4o.
Closing the container with the #.close() method will close the database file and

release all resources associated with it.

[accessDb4o0]

nj ect Cont ai ner db=Db4o. OpenFil e(Util. YapFi | eNane) ;
try

{
/1 do sonething with db4do

}
finally

{
db. d ose();

For the following examples we will assume that our environment takes care of opening

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

and closing the ObjectContainer automagically, and stores the reference in a variable

named 'db’'.

2.2. Storing objects

To store an object, we simply call set() on our database, passing any object as a

parameter.

[storeFirstPilot]

Pilot pilotl = new Pilot("Mchael Schumacher", 100);
db. Set (pilot1);
Consol e. WiteLine("Stored {0}", pilotl);

We'll need a second pilot, too.

[st oreSecondPi | ot]

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
db. Set (pil ot 2);
Consol e. WiteLine("Stored {0}", pilot2);

2.3. Retrieving objects

db4o supplies three different quering systems, Query by Example (QBE), Native Queries

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

(NQ) and the SODA Query API (SODA). In this first example we will introduce QBE. Once
you are familiar with storing objects, we encourage you to use Native Queries, the main

db4o querying interface.

When using Query-By-Example, you create a prototypical object for db4o to use as an
example of what you wish to retrieve. db4o will retrieve all objects of the given type
that contain the same (non-default) field values as the example. The results will be
returned as an ObjectSet instance. We will use a convenience method 'listResult’' to

display the contents of our results:

public static void ListResult(CbjectSet result)

{
Consol e. Wi teLine(result. Count);
foreach (object itemin result)
{
Consol e. WiteLine(item;
}
}

To retrieve all pilots from our database, we provide an 'empty' prototype:

[retrieveAll Pil ot QBE]

Pilot proto = new Pilot(null, 0);
bj ect Set result = db. Get(proto);
Li stResult(result);

Note that we specify 0 points, but our results were not constrained to only those

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#NativeQueries

Pilots with 0 points; 0 is the default value for int fields.

db4o also supplies a shortcut to retrieve all instances of a class:

[retrieveAllPilots]

bj ect Set result = db. Get(typeof (Pilot));
Li stResult(result);

For there also is a generics shortcut, using the query method:

To query for a pilot by name:

[retrievePi | ot ByNane]

Pilot proto = new Pilot ("M chael Schumacher", 0);
bj ect Set result = db. Get(proto);
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

And to query for Pilots with a specific number of points:

[retrievePil ot ByExact Poi nt s]

Pilot proto = new Pilot(null, 100);
bj ect Set result = db. Get(proto);
Li stResult(result);

0f course there's much more to db4o queries. They will be covered in more depth in

later chapters.

2.4. Updating objects

Updating objects is just as easy as storing them. In fact, you use the same set()

method to update your objects: just call set() again after modifying any object.

[updat ePi | ot]

bj ect Set result = db. Get(new Pil ot ("M chael Schumacher", 0));
Pilot found = (Pilot)result.Next();
f ound. AddPoi nts(11);
db. Set (f ound) ;
Consol e. WitelLine("Added 11 points for {0}", found);
RetrieveAl |l Pil ots(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Notice that we query for the object first. This is an importaint point. When you call
set() to modify a stored object, if the object is not 'known' (having been previously
stored or retrieved during the current session), db4o will insert a new object. db4o
does this because it does not automatically match up objects to be stored, with objects
previously stored. It assumes you are inserting a second object which happens to have
the same field values.

To make sure you've updated the pilot, please return to any of the retrieval examples

above and run them again.

2.5. Deleting objects

Objects are removed from the database using the delete() method.

[del et eFi r st Pi | ot ByNane]

bj ect Set result = db. Get(new Pil ot ("M chael Schumacher", 0));
Pilot found = (Pilot)result.Next();
db. Del et e(f ound) ;
Consol e. WitelLine("Deleted {0}", found);
RetrieveAl |l Pil ots(db);

Let's delete the other one, too.

[del et eSecondPi | ot ByNane]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

bj ect Set result = db. Get (new Pil ot ("Rubens Barrichello", 0));
Pilot found = (Pilot)result.Next();
db. Del et e(f ound) ;
Consol e. WitelLine("Deleted {0}", found);
RetrieveAl |l Pil ots(db);

Please check the deletion with the retrieval examples above.

As with updating objects, the object to be deleted has to be 'known' to db4o. It is not

sufficient to provide a prototype object with the same field values.

2.6. Conclusion

That was easy, wasn't it? We have stored, retrieved, updated and deleted objects with a
few lines of code. But what about complex queries? Let's have a look at the

restrictions of QBE and alternative approaches in the next chapter .

2.7. Full source

usi ng System
using System | Q
usi ng com db4o;

usi ng com db4o. f 1;

nanmespace com db4o.f1.chapterl

{
public class FirstStepsExanple : Uil

{
public static void Main(string[] args)

{
File.Delete(Util.YapFil eNare);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Query

AccessDb4o();
File.Delete(Util. YapFil eNane);
bj ect Cont ai ner db = Db4o. OpenFil e(Util. YapFil eNane);
try
{
StoreFirstPilot(db);
St or eSecondPi | ot (db) ;
RetrieveAl |l Pil ot s(db);
Retri evePi | ot ByNanme(db) ;
Retri evePi | ot ByExact Poi nt s(db) ;
Updat ePi | ot (db);
Del et eFi r st Pi | ot ByNane(db) ;
Del et eSecondPi | ot ByNane(db) ;

}
finally

{
db. d ose();

public static void AccessDb4o()

{
nj ect Cont ai ner db=Db4o. OpenFil e(Util. YapFi | eNamne) ;

try

{
/1 do sonething with db4do

}
finally

{
db. d ose();

public static void StoreFirstPil ot (CbjectContainer db)

{
Pilot pilotl = new Pilot ("M chael Schumacher", 100);

db. Set (pilot1l);
Consol e. WitelLine("Stored {0}", pilotl);

public static void StoreSecondPil ot (Obj ect Cont ai ner db)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
db. Set (pil ot 2) ;
Consol e. WitelLine("Stored {0}", pilot2);

public static void RetrieveAll Pil ot QBE(Obj ect Cont ai ner db)

{
Pilot proto = new Pilot(null, 0);
nj ect Set result = db. Get(proto);
Li stResult(result);

}

public static void RetrieveAllPil ots(ObjectContainer db)

nj ect Set result = db. Get(typeof (Pilot));

Li stResult(result);

public static void RetrievePil ot ByNane(Obj ect Cont ai ner db)

{
Pilot proto = new Pilot("M chael Schumacher", 0);
nj ect Set result = db. Get(proto);
Li stResult(result);

}

public static void RetrievePil ot ByExact Poi nt s(Obj ect Cont ai ner

db)
{
Pilot proto = new Pilot(null, 100);
nj ect Set result = db. Get(proto);
Li stResult(result);
}
public static void UpdatePil ot (Obj ect Cont ai ner db)
{
nj ect Set result = db. Get(new Pilot("M chael Schumacher",
0));

Pilot found = (Pilot)result. Next();
f ound. AddPoi nt s(11);
db. Set (f ound) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Consol e. WitelLi ne("Added 11 points for {0}", found);
RetrieveAl |l Pil ot s(db);

public static void Del eteFirstPil ot ByNane(Obj ect Cont ai ner db)

{
nj ectSet result = db. Get(new Pilot("M chael Schumacher",
0));
Pilot found = (Pilot)result. Next();
db. Del et e(f ound) ;
Consol e. WitelLine("Deleted {0}", found);
RetrieveAl |l Pil ot s(db);
}
public static void Del et eSecondPi | ot ByName(Cbj ect Cont ai ner
db)
{
nj ect Set result = db. Get(new Pil ot ("Rubens Barrichello",
0));
Pilot found = (Pilot)result. Next();
db. Del et e(f ound) ;
Consol e. WitelLine("Deleted {0}", found);
RetrieveAl |l Pil ot s(db);
}
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3. Querying
db4o supplies three querying systems, Query-By-Example (QBE) Native Queries (NQ), and
the SODA API. In the previous chapter, you were briefly introduced to Query By Example

(QBE).

Query-By-Example (QBE) is appropriate as a quick start for users who are still

acclimating to storing and retrieving objects with db4o.

Native Queries (NQ) are the main db4o query interface, recommended for general use.

SODA is the underlying internal API. It is provided for backward compatibility and it

can be useful for dynamic generation of queries, where NQ are too strongly typed.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.1. Query by Example (QBE)

When using Query By Example (QBE) you provide db4o with a template object. db4o will
return all of the objects which match all non-default field values. This is done via
reflecting all of the fields and building a query expression where all non-default-
value fields are combined with AND expressions. Here's an example from the previous

chapter:

[retrievePil ot ByNane]

Pilot proto = new Pilot("M chael Schumacher", 0);
nj ect Set result = db. Get(proto);

Li stResult(result);

Querying this way has some obvious limitations:
- db4o must reflect all members of your example object.
- You cannot perform advanced query expressions. (AND, OR, NOT, etc.)

- You cannot constrain on values like 0 (integers), (empty strings), or nulls
(reference types) because they would be interpreted as unconstrained.

- You need to be able to create objects without initialized fields. That means you can
not initialize fields where they are declared. You can not enforce contracts that
objects of a class are only allowed in a well-defined initialized state.

- You need a constructor to create objects without initialized fields.

To get around all of these constraints, db4o provides the Native Query (NQ) system.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.2. Native Queries

Wouldn't it be nice to pose queries in the programming language that you are using?
Wouldn't it be nice if all your query code was 100% typesafe, 100% compile-time checked
and 100% refactorable? Wouldn't it be nice if the full power of object-orientation

could be used by calling methods from within queries? Enter Native Queries.

Native queries are the main db4o query interface and they are the recommended way to
query databases from your application. Because native queries simply use the semantics
of your programming language, they are perfectly standardized and a safe choice for the

future.

Native Queries are available for all platforms supported by db4o.

3.2.1. Concept
The concept of native queries is taken from the following two papers:

- Cook/Rosenberger, Native Queries for Persistent Objects, A Design White Paper

- Cook/Rai, Safe Query Objects: Statically Typed Objects as Remotely Executable Queries

3.2.2. Principle

Native Queries provide the ability to run one or more lines of code against all
instances of a class. Native query expressions should return true to mark specific
instances as part of the result set. db4o will attempt to optimize native query
expressions and run them against indexes and without instantiating actual objects,

where this is possible.
3.2.3. Simple Example
Let's look at how a simple native query will look like in some of the programming

languages and dialects that db4o supports:

C# .NET 2.0

IList <Pilot> pilots = db. Query <Pilot> (del egate(Pilot pilot) {
return pilot.Points == 100;
1)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-23-05.pdf
http://www.cs.utexas.edu/users/wcook/papers/SafeQuery/SafeQueryFinal.pdf

Java JDK 5

List <Pilot> pilots = db.query(new Predicate<Pilot>() {
public bool ean match(Pilot pilot) ({
return pilot.getPoints() == 100;

1)

Java JDK 1.2 to 1.4

List pilots = db. query(new Predicate() ({
public bool ean match(Pilot pilot) ({
return pilot.getPoints() == 100;

1)

Java JDK 1.1

nj ect Set pilots = db. query(new Pil ot Hundr edPoi nts());
public static class PilotHundredPoi nts extends Predicate {

public bool ean match(Pilot pilot) ({
return pilot.getPoints() == 100;

C# .NET 1.1

IList pilots = db. Query(new Pil ot Hundr edPoi nts());

public class Pil ot HundredPoints : Predicate {
public bool ean Match(Pilot pilot) {
return pilot.Points == 100;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

VB .NET 1.1

Dimpilots As |List = db. Query(new Pil ot Hundr edPoi nt s())

Public C ass Pil ot Hundr edPoi nt s
I nherits Predicate
Public Function Match (pilot As Pilot) as Bool ean
If pilot.Points = 100 Then
Return True
El se
Return Fal se
End Functi on

End d ass

A side note on the above syntax:
For all dialects without support for generics, Native Queries work by convention. A
class that extends the com.db4o.Predicate class is expected to have a boolean #match()

or #Match() method with one parameter to describe the class extent:

When using native queries, don't forget that modern integrated development environments
(IDEs) can do all the typing work around the native query expression for you, if you
use templates and autocompletion.

Here is how to configure a Native Query template with Eclipse 3.1:

From the menu, choose Window + Preferences + Java + Editor + Templates + New

As the name type ''nq". Make sure that "java" is selected as the context on the right.
Paste the following into the pattern field:

List <${extent}> list = db.query(new Predicate <${extent}> () {

publ i c bool ean nmat ch(${extent} candi date) {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return true,

1)

Now you can create a native query with three keys: n + q + Control-Space.

Similar features are available in most modern IDEs.

3.2.4. Advanced Example
For complex queries, the native syntax is very precise and quick to write. Let's
compare to a SODA query that finds all pilots with a given name or a score within a

given range:

[storePilots]

db. Set (new Pil ot ("M chael Schumacher", 100));
db. Set (new Pi | ot ("Rubens Barrichello", 99));

[retrieveConpl exSODA]

Query query=db. Query();
query. Constrai n(typeof (Pilot));
Query poi nt Query=query. Descend(" _points");
query. Descend("_name") . Constrai n("Rubens Barrichell o")
. O (poi nt Query. Constrain(99). Geater()
. And(poi nt Query. Constrain(199).Snaller()));
bj ect Set resul t =query. Execut e() ;

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Here is how the same query will look like with native query syntax, fully accessible to

autocompletion, refactoring and other IDE features, fully checked at compile time:

C# .NET 2.0

IList <Pilot> result = db. Query<Pilot> (del egate(Pilot pilot) {
return pilot.Points > 99
&& pilot.Points < 199

|| pilot.Nane == "Rubens Barrichello";

1)

Java JDK 5

List <Pilot> result = db.query(new Predicate<Pilot>() {
public bool ean match(Pilot pilot) {
return pilot.getPoints() > 99
&& pilot.getPoints() < 199
|| pilot.getName().equal s("Rubens Barrichello");

1)

3.2.5. Arbitrary Code

Basically that's all there is to know about native queries to be able to use them
efficiently. In principle you can run arbitrary code as native queries, you just have
to be very careful with side effects - especially those that might affect persistent

objects.

Let's run an example that involves some more of the language features available.

3.2.6. Native Query Performance
One drawback of native queries has to be pointed out: Under the hood db4o tries to
analyze native queries to convert them to SODA. This is not possible for all queries.

For some queries it is very difficult to analyze the flowgraph. In this case db4o will

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

have to instantiate some of the persistent objects to actually run the native query
code. db4o will try to analyze parts of native query expressions to keep object

instantiation to the minimum.

The development of the native query optimization processor will be an ongoing process
in a close dialog with the db4o community. Feel free to contribute your results and
your needs by providing feedback to our db4o forums.

With the current implementation, all above examples will run optimized, except for the

"Arbitrary Code" example - we are working on it.

3.2.7. Full source

usi ng com db4o;
usi ng com db4o. query;

usi ng com db4o. f 1;

nanespace com db4o.f1.chapterl
{
public class NQExanple : Util
{
public static void Main(string[] args)

{
nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane) ;
try
{
StorePi | ot s(db);

Ret ri eveConpl exSODA(db) ;
Retri eveConpl exNQ db) ;

Retri eveArbi traryCodeNQ db);
Cl ear Dat abase(db) ;

}
finally

{
db. d ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://forums.db4o.com/

public static void StorePil ot s(Object Contai ner db)

{
db. Set (new Pi |l ot ("M chael Schumacher", 100));

db. Set (new Pi |l ot ("Rubens Barrichello", 99));

public static void RetrieveConpl exSODA(Obj ect Cont ai ner db)

{
Query query=db. Query();
guery. Constrai n(typeof (Pilot));
Query poi nt Query=query. Descend("_poi nts");
qguery. Descend(" _name"). Constrai n("Rubens Barrichello")
. O (poi nt Query. Constrai n(99). Geater()
. And(poi nt Query. Constrai n(199). Snaller()));
nj ect Set resul t =query. Execut e();
Li stResult(result);
}

public static void RetrieveConpl exNQ Obj ect Cont ai ner db)

{
nj ect Set result = db. Query(new Conpl exQuery());

Li stResult(result);

public static void RetrieveArbitraryCodeNQ Object Cont ai ner
db)

nj ect Set result = db. Query(new ArbitraryQuery(new

int[]1{1, 100}));

Li stResult(result);

public static void C ear Dat abase(Obj ect Cont ai ner db)

{
nj ect Set result = db. Get(typeof (Pilot));
while (result.HasNext())
{
db. Del ete(result. Next());
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.3. SODA Query API

The SODA query API is db4o's low level querying API, allowing direct access to nodes of
query graphs. Since SODA uses strings to identify fields, it is neither perfectly

typesafe nor compile-time checked and it also is quite verbose to write.

For most applications Native Queries will be the better querying interface.

However there can be applications where dynamic generation of queries is required,

that's why SODA is explained here.

3.3.1. Simple queries

Let's see how our familiar QBE queries are expressed with SODA. A new Query object is
created through the #query() method of the ObjectContainer and we can add Constraint
instances to it. To find all Pilot instances, we constrain the query with the Pilot

class object.

[retrieveAl | Pil ots]

Query query = db. Query();
query. Constrai n(typeof (Pilot));
nj ect Set result = query. Execute();

Li stResult(result);

Basically, we are exchanging our 'real' prototype for a meta description of the objects
we'd like to hunt down: a query graph made up of query nodes and constraints. A query
node is a placeholder for a candidate object, a constraint decides whether to add or

exclude candidates from the result.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#NativeQueries

OQur first simple graph looks like this.

" O¢——[ctass . pilot |

We're just asking any candidate object (here: any object in the database) to be of type
Pilot to aggregate our result.

To retrieve a pilot by name, we have to further constrain the candidate pilots by
descending to their name field and constraining this with the respective candidate
String.

[retrievePi | ot ByNane]

Query query = db. Query();
query. Constrai n(typeof (Pilot));

query. Descend(" _nane"). Constrai n("M chael Schumacher");

Obj ect Set result = query. Execute();
Li stResult(result);

What does 'descend' mean here? Well, just as we did in our 'real' prototypes, we can
attach constraints to child members of our candidates.

name

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

So a candidate needs to be of type Pilot and have a member named 'name' that is equal

to the given String to be accepted for the result.
Note that the class constraint is not required: If we left it out, we would query for
all objects that contain a 'name' member with the given value. In most cases this will

not be the desired behavior, though.

Finding a pilot by exact points is analogous.

[retrievePil ot ByExact Poi nt s]

Query query = db. Query();
query. Constrai n(typeof (Pilot));
query. Descend(" _poi nts"). Constrai n(100);

nj ect Set result = query. Execute();
Li stResult(result);

3.3.2. Advanced queries

Now there are occasions when we don't want to query for exact field values, but rather
for value ranges, objects not containing given member values, etc. This functionality

is provided by the Constraint API.

First, let's negate a query to find all pilots who are not Michael Schumacher:

[retrieveByNegati on]

Query query = db. Query();
query. Constrai n(typeof (Pilot));
query. Descend(" _nane"). Constrai n("M chael Schumacher"). Not();
nj ect Set result = query. Execute();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Li stResult(result);

Where there is negation, the other boolean operators can't be too far.

[retrieveByConjunction]

Query query = db. Query();
query. Constrai n(typeof (Pilot));
Constraint constr = query. Descend("_nane")
. Constrai n("M chael Schumacher");
query. Descend(" _poi nts")
. Constrain(99). And(constr);

bj ect Set result = query. Execute();
Li stResult(result);

[retrieveByD sjunction]

Query query = db. Query();
query. Constrai n(typeof (Pilot));
Constraint constr = query. Descend("_nane")
. Constrai n("M chael Schumacher");
query. Descend(" _poi nts")
.Constrain(99). O (constr);
bj ect Set result = query. Execute();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Li stResult(result);

We can also constrain to a comparison with a given value.

[retri eveByConpari son]

Query query = db. Query();
query. Constrai n(typeof (Pilot));

query. Descend(" _poi nts")

.Constrain(99). Geater();
bj ect Set result = query. Execute();
Li stResult(result);

The query API also allows to query for field default values.

[retrieveByDefaul t Fi el dval ue]

Pi | ot sonebody = new Pil ot (" Sonebody el se", 0);
db. Set (sonebody) ;
Query query = db. Query();
query. Constrai n(typeof (Pilot));
query. Descend(" _points"). Constrain(0);
bj ect Set result = query. Execute();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Li stResult(result);
db. Del et e(sonebody) ;

It is also possible to have db4o sort the results.

[retrieveSorted]

Query query = db. Query();
query. Constrai n(typeof (Pilot));
query. Descend(" _nane"). O der Ascendi ng() ;
bj ect Set result = query. Execute();
Li stResult(result);

query. Descend(" _nane") . O der Descendi ng() ;
result = query. Execute();
Li stResult(result);

All these techniques can be combined arbitrarily, of course. Please try it out. There
still may be cases left where the predefined query API constraints may not be
sufficient - don't worry, you can always let db4o run any arbitrary code that you

provide in an Evaluation. Evaluations will be discussed in a later chapter.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Evaluations

To prepare for the next chapter, let's clear the database.

[cl ear Dat abase]

nj ect Set result = db. Get(typeof (Pilot));
foreach (object itemin result)

{
db. Del ete(item;

OUTPUT:

3.3.3. Conclusion
Now you have been provided with three alternative approaches to query db4o databases:

Query-By-Example, Native Queries, SODA.

Which one is the best to use? Some hints:

- Native queries are targetted to be the primary interface for db4o, so they should be
preferred.

- With the current state of the native query optimizer there may be queries that will
execute faster in SODA style, so it can be used to tune applications. SODA can also be
more convenient for constructing dynamic queries at runtime.

- Query-By-Example is nice for simple one-liners, but restricted in functionality. If

you like this approach, use it as long as it suits your application's needs.

0f course you can mix these strategies as needed.

We have finished our walkthrough and seen the various ways db4o provides to pose
queries. But our domain model is not complex at all, consisting of one class only.

Let's have a look at the way db4o handles object associations in the next chapter .

3.3.4. Full source

usi ng System

usi ng com db4o;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Structured

usi ng com db4o. query;

usi ng com db4o. f 1;

nanespace com db4o.f1.chapterl
{
public class QueryExanple : Util
{
public static void Main(string[] args)
{
nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane) ;
try
{
StoreFirstPilot(db);

St or eSecondPi | ot (db) ;

RetrieveAl |l Pil ot s(db);

Retri evePi | ot ByNanme(db) ;

Retri evePi | ot ByExact Poi nt s(db) ;
Retri eveByNegati on(db);

Ret ri eveByConj uncti on(db);

Retri eveByDi sj uncti on(db);

Ret ri eveByConpari son(db);

Retri eveByDef aul t Fi el dVal ue(db);
Retri eveSorted(db);

Cl ear Dat abase(db) ;

}
finally

{
db. d ose();

public static void StoreFirstPil ot (CbjectContainer db)

{
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
db. Set (pilot1l);
Consol e. WitelLine("Stored {0}", pilotl);

}

public static void StoreSecondPil ot (Obj ect Cont ai ner db)

{
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. Set (pil ot 2) ;
Consol e. WitelLine("Stored {0}", pilot2);

public static void RetrieveAllPil ots(ObjectContainer db)

{
Query query = db. Query();
guery. Constrai n(typeof (Pilot));
nj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrievePil ot ByNane(Obj ect Cont ai ner db)

{
Query query = db. Query();
guery. Constrai n(typeof (Pilot));
qguery. Descend(" _name"). Constrain("M chael Schunmacher");
nj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrievePil ot ByExact Poi nt s(Obj ect Cont ai ner

db)

{
Query query = db. Query();
guery. Constrai n(typeof (Pilot));
guery. Descend(" _poi nts"). Constrai n(100);
nj ect Set result = query. Execute();
Li stResult(result);

}

public static void RetrieveByNegati on(Object Cont ai ner db)

Query query = db. Query();

guery. Constrai n(typeof (Pilot));

guery. Descend(" _nane"). Constrai n("M chae
Schumacher™) . Not () ;

nj ect Set result = query. Execute();

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void RetrieveByConjunction(Object Contai ner db)

{
Query query = db. Query();
guery. Constrai n(typeof (Pilot));
Constraint constr = query.Descend("_nane")
. Constrain("M chael Schumacher");
qguery. Descend(" _poi nts")
. Constrain(99). And(constr);
nj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrieveByD sjunction(Object Contai ner db)

{
Query query = db. Query();
guery. Constrai n(typeof (Pilot));
Constraint constr = query.Descend("_nane")
. Constrain("M chael Schumacher");
qguery. Descend(" _poi nts")
. Constrain(99). Or(constr);
nj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrieveByConpari son(Qbject Contai ner db)

{
Query query = db. Query();
guery. Constrai n(typeof (Pilot));
guery. Descend(" _poi nts")

.Constrain(99). Geater();

nj ect Set result = query. Execute();
Li stResult(result);

}

public static void

Retri eveByDef aul t Fi el dVal ue(Obj ect Cont ai ner db)
{

Pil ot sonmebody = new Pil ot (" Sormebody el se", 0);

db. Set (sonebody) ;

Query query = db. Query();
guery. Constrai n(typeof (Pilot));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

guery. Descend(" _poi nts"). Constrain(0);
nj ect Set result = query. Execute();
Li stResult(result);

db. Del et e(sonebody) ;

public static void RetrieveSorted(Object Contai ner db)

Query query = db. Query();

guery. Constrai n(typeof (Pilot));

guery. Descend(" _name"). Order Ascendi ng() ;
nj ect Set result = query. Execute();

Li stResult(result);

guery. Descend(" _name"). Order Descendi ng() ;
result = query. Execute();

Li stResult(result);

public static void C ear Dat abase(Obj ect Cont ai ner db)

{
nj ect Set result = db. Get(typeof (Pilot));
foreach (object itemin result)
{
db. Del ete(item;
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4. Structured objects

It's time to extend our business domain with another class and see how db4o handles

object interrelations. Let's give our pilot a vehicle.

nanespace com db4o.f 1. chapter?2

{

public class Car

{

string _nodel;

Pilot _pilot;

public Car(string nodel)
{

_nmodel = nodel;

_pilot nul | ;

public Pilot Pil ot

{
get

{

return _pilot;

set

_pilot = val ue;

public string Model

{
get
{
return _nodel;
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

override public string ToString()

{
return string. Format ("{0}[{1}]", _nodel, _pilot);

4.1. Storing structured objects

To store a car with its pilot, we just call set() on our top level object, the car. The

pilot will be stored implicitly.

[storeFirstCar]

Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = pilot1;
db. Set (car1);

0f course, we need some competition here. This time we explicitly store the pilot

before entering the car - this makes no difference.

[st oreSecondCar]

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
db. Set (pil ot 2) ;
Car car2 = new Car("BMWV);
car2.Pilot = pilot2;
db. Set (car 2) ;

4.2. Retrieving structured objects

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4.2.1. QBE

To retrieve all cars, we simply provide a 'blank' prototype.

[retrieveAl | Car sQBE]

Car proto = new Car(null);
bj ect Set result = db. Get(proto);
Li stResult(result);

We can also query for all pilots, of course.

[retrieveAll Pil ot sQBE]

Pilot proto = new Pilot(null, 0);
bj ect Set result = db. Get(proto);
Li stResult(result);

Now let's initialize our prototype to specify all cars driven by Rubens Barrichello.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[retrieveCarByPi | ot QBE]

Pilot pilotproto = new Pil ot ("Rubens Barrichello", 0);
Car carproto = new Car(null);

carproto. Pilot = pil otproto;
bj ect Set result = db. Get(carproto);
Li stResult(result);

What about retrieving a pilot by car? We simply don't need that - if we already know

the car, we can simply access the pilot field directly.

4.2.2. Native Queries

Using native queries with constraints on deep structured objects is straightforward,

you can do it just like you would in plain other code.

Let's constrain our query to only those cars driven by a Pilot with a specific name:

[retrieveCarsByPil ot NaneNati ve]

string pilotNane = "Rubens Barrichello";
Obj ect Set results = db. Query(new
Ret ri eveCar sByPi | ot NamePr edi cat e(pi | ot Nane)) ;

Li stResult(results);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4.2.3. SODA Query API

In order to use SODA for querying for a car given its pilot's name we have to descend

two levels into our query.

[retrieveCarByPil ot NameQuery]

Query query = db. Query();
query. Constrai n(typeof (Car));

query. Descend(" _pilot"). Descend("_nane")
. Constrai n("Rubens Barrichello");

bj ect Set result = query. Execute();

Li stResult(result);

We can also constrain the pilot field with a prototype to achieve the same result.

[retrieveCarByPil ot Prot oQuery]

Query query = db. Query();
query. Constrai n(typeof (Car));
Pilot proto = new Pilot("Rubens Barrichello", 0);
query. Descend(" _pilot"). Constrai n(proto);
bj ect Set result = query. Execute();
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We have seen that descending into a query provides us with another query. Starting out
from a query root we can descend in multiple directions. In practice this is the same
as ascending from one child to a parent and descending to another child. We can
conclude that queries turn one-directional references in our objects into true
relations. Here is an example that queries for "a Pilot that is being referenced by a
Car, where the Car model is 'Ferrari'":

[retrievePil ot ByCar Model Query]

Query carQuery = db. Query();
car Query. Constrain(typeof(Car));

car Query. Descend(" _nodel "). Constrain("Ferrari");
Query pilotQuery = carQuery. Descend("_pilot");
bj ect Set result = pil ot Query. Execute();

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4.3. Updating structured objects

To update structured objects in db4o, we simply call set() on them again.

[updat eCar]

bj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();

found. Pil ot = new Pil ot ("Sonebody el se", 0);
db. Set (f ound) ;

result = db. Get(new Car("Ferrari"));

Li stResult(result);

Let's modify the pilot, too.

[updat ePi | ot Si ngl eSessi on]

bj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();
found. Pi | ot. AddPoi nts(1);
db. Set (f ound) ;
result = db. Get(new Car("Ferrari"));
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Nice and easy, isn't it? But wait, there's something evil lurking right behind the
corner. Let's see what happens if we split this task in two separate db4o sessions: In

the first we modify our pilot and update his car:

[updat ePi | ot Separ at eSessi onsPart 1]
bj ectSet result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();

found. Pi | ot . AddPoi nt s(1);
db. Set (f ound) ;

And in the second, we'll double-check our modification:

[updat ePi | ot Separ at eSessi onsPart 2]

Obj ect Set result = db. Get(new Car("Ferrari"));
Li stResult(result);

Looks like we're in trouble: Why did the Pilot's points not change? What's happening

here and what can we do to fix it?

4.3.1. Update depth

Imagine a complex object with many members that have many members themselves. When
updating this object, db4o would have to update all its children, grandchildren, etc.

This poses a severe performance penalty and will not be necessary in most cases -

sometimes, however, it will.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

So, in our previous update example, we were modifying the Pilot child of a Car object.
When we saved the change, we told db4o to save our Car object and asumed that the
modified Pilot would be updated. But we were modifying and saving in the same manner as
we were in the first update sample, so why did it work before? The first time we made
the modification, db4o never actually had to retreive the modified Pilot it returned
the same one that was still in memory that we modified, but it never actually updated
the database. The fact that we saw the modified value was, in fact, a bug. Restarting

the application would show that the value was unchanged.

To be able to handle this dilemma as flexible as possible, db4o introduces the concept
of update depth to control how deep an object's member tree will be traversed on
update. The default update depth for all objects is 1, meaning that only primitive and

String members will be updated, but changes in object members will not be reflected.

db4o provides means to control update depth with very fine granularity. For our current
problem we'll advise db4o to update the full graph for Car objects by setting

cascadeOnUpdate() for this class accordingly.

[updat ePi | ot Separ at eSessi onsl nprovedPart 1]

Db4o. Configure(). Objectd ass(typeof (Car))
. CascadeOnUpdat e(true);

[updat ePi | ot Separ at eSessi onsl npr ovedPart 2]
nj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();

found. Pi | ot . AddPoi nt s(1);
db. Set (f ound) ;

[updat ePi | ot Separ at eSessi onsl nprovedPart 3]

nj ect Set result = db. Get(new Car("Ferrari"));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Li stResult(result);

This looks much better.

Note that container configuration must be set before the container is opened.

We'll cover update depth as well as other issues with complex object graphs and the

respective db4o configuration options in more detail in a later chapter.

4.4. Deleting structured objects

As we have already seen, we call delete() on objects to get rid of them.

[del et eFl at]

bj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();
db. Del et e(f ound) ;
result = db. Get(new Car(null));
Li stResult(result);

Fine, the car is gone. What about the pilots?

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[retrieveAll Pil ot sQBE]

Pilot proto = new Pilot(null, 0);
bj ect Set result = db. Get(proto);
Li stResult(result);

Ok, this is no real surprise - we don't expect a pilot to vanish when his car is
disposed of in real life, too. But what if we want an object's children to be thrown
away on deletion, too?

4.4.1. Recursive deletion
You may already suspect that the problem of recursive deletion (and perhaps its

solution, too) is quite similar to our little update problem, and you're right. Let's

configure db4o to delete a car's pilot, too, when the car is deleted.

[del et eDeepPart 1]

Db4o. Confi gure(). Ooj ect d ass(typeof (Car))
. CascadeOnDel et e(true);

[del et eDeepPart 2]

Obj ect Set result = db. Get (new Car ("BMN));
Car found = (Car)result. Next();
db. Del et e(f ound) ;
result = db. Get(new Car(null));
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Again: Note that all configuration must take place before the ObjectContainer is

opened.

Let's have a look at our pilots again.

[retrieveAllPilots]

Pilot proto = new Pilot(null, 0);
bj ect Set result = db. Get(proto);
Li stResult(result);

4.4.2. Recursive deletion revisited

But wait - what happens if the children of a removed object are still referenced by

other objects?

[del et eDeepRevi si t ed]

bj ect Set result = db. Get(new Pil ot ("M chael Schumacher", 0));
Pilot pilot = (Pilot)result.Next();
Car carl = new Car("Ferrari");
Car car2 = new Car ("BMV);
carl.Pilot = pilot;
car2.Pilot = pilot;
db. Set (carl);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. Set (car 2);

db. Del et e(car 2);

result = db. Get(new Car(null));
Li st Resul t (result);

[retrieveAllPilots]

Pilot proto = new Pilot(null, 0);
bj ect Set result = db. Get(proto);
Li stResult(result);

Houston, we have a problem - and there's no simple solution at hand. Currently db4o
does not check whether objects to be deleted are referenced anywhere else, so please be
very careful when using this feature.

Let's clear our database for the next chapter.

[del eteAll]

bj ect Set result = db. Get (typeof (Ooj ect));
foreach (object itemin result)

{
db. Del ete(item;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4.5. Conclusion

So much for object associations: We can hook into a root object and climb down its
reference graph to specify queries. But what about multi-valued objects like arrays and

collections? We will cover this in the next chapter .

4.6. Full source

usi ng System
using System |1 Q
usi ng com db4o;
usi ng com db4o. f 1;

usi ng com db4o. query;

nanespace com db4o.f1. chapter?2

{
public class StructuredExanple : Util

{
public static void Main(String[] args)

{
File.Delete(Util. YapFil eNane);

bj ect Cont ai ner db = Db4o. OpenFil e(Util. YapFil eNane);
try
{
St or eFi r st Car (db) ;
St or eSecondCar (db) ;
Retri eveAl | Car sQBE(db);
RetrieveAl | Pi |l ot sQBE(db);
Retri eveCar ByPi | ot QBE(db) ;
Retri eveCar ByPi | ot NaneQuer y(db) ;
Retri eveCar ByPi | ot Pr ot oQuery(db);
Retri evePi | ot ByCar Model Query(db);
Updat eCar (db) ;
Updat ePi | ot Si ngl eSessi on(db) ;
Updat ePi | ot Separ at eSessi onsPart 1(db) ;
db. d ose();
db=Db4o. OpenFil e(Util. YapFi | eNane) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Collections

Updat ePi | ot Separ at eSessi onsPart 2(db) ;

db. d ose();

Updat ePi | ot Separ at eSessi onsl nprovedPart 1(db) ;
db=Db4o. OpenFil e(Util. YapFi | eName) ;

Updat ePi | ot Separ at eSessi onsl nprovedPart 2(db) ;
db. d ose();

db=Db4o. OpenFil e(Uti | . YapFi | eName) ;

Updat ePi | ot Separ at eSessi onsl npr ovedPart 3(db) ;
Del et eFl at (db) ;

db. d ose();

Del et eDeepPart 1(db) ;

db=Db4o. OpenFil e(Util. YapFi | eName) ;

Del et eDeepPart 2(db) ;

Del et eDeepRevi si t ed(db);

}
finally

{
db. d ose();

public static void StoreFirstCar(ObjectContainer db)

{
Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = pilot1;
db. Set (carl);
}

public static void StoreSecondCar (Obj ect Cont ai ner db)

{
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

db. Set (pil ot 2) ;

Car car2 = new Car("BMWV);
car2.Pilot = pilot2;

db. Set (car 2) ;

public static void RetrieveAl |l Car sQBE(Obj ect Cont ai ner db)

{
Car proto = new Car(null);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nj ect Set result = db. Get(proto);

Li stResult(result);

public static void RetrieveAll Pil ot sQBE(Ohj ect Cont ai ner db)

{
Pilot proto = new Pilot(null, 0);
nj ect Set result = db. Get(proto);
Li stResult(result);

}

public static void RetrieveCarByPi | ot QBE(Obj ect Cont ai ner db)

{
Pilot pilotproto = new Pilot("Rubens Barrichello", 0);
Car carproto = new Car(null)
carproto. Pilot = pilotproto;
nj ect Set result = db. Get(carproto);
Li stResult(result);
}

public static void

Retri eveCar ByPi | ot NameQuer y(Obj ect Cont ai ner db)

{
Query query = db. Query();
guery. Constrai n(typeof (Car));
qguery. Descend(" _pilot"). Descend("_nane"
. Constrain("Rubens Barrichello");
nj ect Set result = query. Execute();

Li stResult(result);

public static void
Ret ri eveCar ByPi | ot Prot oQuer y(Obj ect Cont ai ner db)

{
Query query = db. Query();
guery. Constrai n(typeof(Car));
Pilot proto = new Pil ot ("Rubens Barrichello", 0);
guery. Descend(" _pilot"). Constrain(proto);
nj ect Set result = query. Execute();

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void

Retri evePi | ot ByCar Mbdel Quer y(Obj ect Cont ai ner db)

{
Query carQuery = db. Query();
car Query. Constrai n(typeof (Car));
car Query. Descend(" _nodel "). Constrain("Ferrari");
Query pilotQuery = carQery. Descend(" _pilot");
nj ect Set result = pil ot Query. Execute();
Li stResult(result);

}

public static void RetrieveAllPil ots(ObjectContainer db)

{
nj ect Set results = db. Get (typeof (Pilot));

Li st Result(results);

public static void RetrieveAll Cars(Cbject Contai ner db)

{
nj ect Set results = db. Get (typeof (Car));

Li st Result(results);

public class RetrieveCarsByPil ot NanePredi cate : Predicate

{
readonly string _pil ot Name;
public RetrieveCarsByPil ot NanePredi cate(string pil ot Nane)
{
_pil ot Nane = pil ot Nane;
}
public bool WMatch(Car candi date)
{
return candi date. Pil ot. Name == _pi |l ot Nane;
}
}

public static void

Retri eveCar sByPi | ot NaneNat i ve(Obj ect Cont ai ner db)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

string pilotNane = "Rubens Barrichell o";

nj ect Set results = db. Query(new

Retri eveCar sByPi | ot NanmePr edi cat e(pi | ot Nane)) ;

publ
{

publ
db)

publ

Li st Result(results);

ic static void Updat eCar (Obj ect Cont ai ner db)

nj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();

found. Pil ot = new Pil ot (" Sonmebody el se", 0);
db. Set (f ound) ;

result = db. Get(new Car("Ferrari"));

Li stResult(result);

ic static void UpdatePil ot Si ngl eSessi on(Qbj ect Cont ai ner

nj ectSet result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();

found. Pi | ot . AddPoi nt s(1);

db. Set (f ound) ;

result = db. Get(new Car("Ferrari"));

Li stResult(result);

ic static void

Updat ePi | ot Separ at eSessi onsPart 1(Obj ect Cont ai ner db)

{

publ

nj ectSet result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();

found. Pi | ot . AddPoi nt s(1);

db. Set (f ound) ;

ic static void

Updat ePi | ot Separ at eSessi onsPart 2(Obj ect Cont ai ner db)

{

nj ectSet result = db. Get(new Car("Ferrari"));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Li stResult(result);

public static void
Updat ePi | ot Separ at eSessi onsl npr ovedPart 1(Obj ect Cont ai ner db)
{
Db4o. Confi gure() . Obj ect C ass(typeof (Car))
. CascadeOnUpdat e(true);

public static void

Updat ePi | ot Separ at eSessi onsl npr ovedPart 2(Obj ect Cont ai ner db)

{
nj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();
found. Pi | ot . AddPoi nt s(1);
db. Set (f ound) ;
}

public static void

Updat ePi | ot Separ at eSessi onsl npr ovedPar t 3(Obj ect Cont ai ner db)

{
nj ectSet result = db. Get(new Car("Ferrari"));

Li stResult(result);

public static void Del et eFl at (Obj ect Cont ai ner db)

{
nj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();
db. Del et e(f ound) ;
result = db. Get(new Car(null));
Li stResult(result);
}

public static void Del et eDeepPart 1(Cbj ect Cont ai ner db)

{
Db4o. Configure(). Objectd ass(typeof (Car))

. CascadeOnbDel et e(true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void Del et eDeepPart 2(Cbj ect Cont ai ner db)

{
nj ect Set result = db. Get(new Car("BMN));
Car found = (Car)result.Next();
db. Del et e(f ound) ;
result = db. Get(new Car(null));
Li stResult(result);
}

public static void Del et eDeepRevi sited(Obj ect Cont ai ner db)

{
nj ectSet result = db. Get(new Pilot("M chael Schumacher",
0));
Pilot pilot = (Pilot)result. Next();
Car carl = new Car("Ferrari");
Car car2 = new Car("BMWV);
carl.Pilot = pilot;
car2.Pilot = pilot;
db. Set (carl);
db. Set (car 2) ;
db. Del et e(car 2) ;
result = db. Get(new Car(null));
Li stResult(result);
}
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

5. Collections and Arrays

We will slowly move towards real-time data processing now by installing sensors to our
car and collecting their output.

usi ng System

usi ng System Text ;

nanespace com db4o.f1. chapter3

{

public class Sensor Readout

{

doubl e[] _val ues;
DateTinme _tinme;

Car _car;

publ i c Sensor Readout (doubl e[] val ues, DateTine tine, Car car)

_val ues = val ues;
_time = tine;
_car = car;

public Car Car

{
get
{
return _car;
}
}

public DateTine Tine

{
get
{
return _time;
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public int NunVal ues

{
get
{
return _val ues. Lengt h;
}
}

public doubl e[] Val ues

{
get
{
return _val ues;
}
}

publ i c doubl e GetVal ue(int idx)
{

return _val ues[i dx];

override public string ToString()

{
StringBuil der builder = new StringBuilder();
bui | der. Append(_car);
bui | der. Append(" : ");
bui | der. Append(_ti ne. Ti neCf Day) ;
bui | der. Append(" : ");
for (int i=0; i<_values.Length; ++i)
{
if (i >0
{
bui | der. Append(", ");
}
bui | der. Append(_val ues[i]);
}
return builder. ToString();
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

A car may produce its current sensor readout when requested and keep a list of readouts

collected during a race.

usi ng System

usi ng System Col | ecti ons;

nanespace com db4o.f 1. chapter3

{

public class Car

{

string _nodel
Pilot _pilot;
I List _history;

public Car(string nodel) : this(nmodel, new Arraylist())

{
}

public Car(string nodel, IList history)

{
_nmodel = nodel
_pilot = null
_history = history;
}

public Pilot Pil ot

{
get

{

return _pilot;

set

_pilot = value

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public string Mde

{
get
{
return _nodel
}
}

public IList History

{
get
{
return _history;
}
}

public void Shapshot ()
{
_history. Add(new Sensor Readout (Pol | (), DateTi me. Now,
this));

prot ected double[] Poll ()
{
int factor = _history.Count + 1
return new double[] { O0.1ld*factor, 0.2d*factor

0. 3d*factor };
}

override public string ToString()

{
return string. Format ("{O0}[{1}]/{2}", _nodel, _pilot,

_history. Count);
}

We will constrain ourselves to rather static data at the moment and add flexibility

during the next chapters.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

5.1. Storing

This should be familiar by now.

[storeFirstCar]

Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = piloti;
db. Set (carl);

The second car will take two snapshots immediately at startup.

[st oreSecondCar]

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);
car2.Pilot = pilot2;
car 2. Snapshot () ;
car 2. Snapshot () ;
db. Set (car 2) ;

5.2. Retrieving

5.2.1. QBE

First let us verify that we indeed have taken snapshots.

[retrieveAl |l Sensor Readout]

nj ect Set result = db. Get (typeof (Sensor Readout)) ;

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

As a prototype for an array, we provide an array of the same type, containing only the
values we expect the result to contain.

[retrieveSensor Readout QBE]

Sensor Readout proto = new Sensor Readout (new double[] { 0.3, 0.1},
Dat eTi me. M nVal ue, null);

bj ect Set result = db. Get(proto);

Li stResult(result);

Note that the actual position of the given elements in the prototype array is
irrelevant.

To retrieve a car by its stored sensor readouts, we install a history containing the
sought-after values.

[retrieveCar QBE]

Sensor Readout prot oReadout = new Sensor Readout (new doubl e[] { O.86,
0.2 }, DateTine.MnValue, null);

I List protoHi story = new ArrayList();

pr ot oHi st ory. Add(pr ot oReadout) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Car protoCar = new Car(null, protoHistory);
Obj ect Set result = db. Get (protoCar);
Li stResult(result);

We can also query for the collections themselves, since they are first class objects.

[retrieveCol |l ections]

bj ect Set result = db. Get (new ArrayList());
Li stResult(result);

This doesn't work with arrays, though.

[retrieveArrays]

Obj ect Set result = db. Get (new double[] { 0.6, 0.4 });
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

5.2.2. Native Queries

If we want to use Native Queries to find SensorReadouts with matching values, we simply

write this as if we would check every single instance:

[retri eveSensor Readout Nat i ve]

bj ect Set results = db. Query(new Retri eveSensor Readout Predi cate());

Li stResult(results);

And here's how we find Cars with matching readout values:

[retrieveCarNative]

bj ect Set results = db. Query(new RetrieveCarPredicate());
Li stResult(results);

5.2.3. Query API

Handling of arrays and collections is analogous to the previous example. First, lets

retrieve only the SensorReadouts with specific values:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[retrieveSensor Readout Query]

Query query = db. Query();
query. Constrai n(typeof (Sensor Readout)) ;
Query val ueQuery = query. Descend("_val ues");
val ueQuery. Constrai n(0. 3);
val ueQuery. Constrai n(0.1);

bj ect Set results = query. Execute();
Li stResult(results);

Then let's get some Cars with matching Readout values:

[retrieveCar Query]

Query query = db. Query();
query. Constrai n(typeof (Car));
Query historyQuery = query. Descend(" _history");
hi st oryQuery. Constrai n(typeof (Sensor Readout)) ;
Query val ueQuery = hi storyQuery. Descend("_val ues");
val ueQuery. Constrai n(0. 3);
val ueQuery. Constrain(0.1);

bj ect Set results = query. Execute();
Li stResult(results);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

5.3. Updating and deleting

This should be familiar, we just have to remember to take care of the update depth.

[updat eCar Part 1]

Db4o. Confi gure(). Qoj ect d ass(typeof (Car)). CascadeOnUpdat e(true);

[updat eCar Part 2]

Obj ect Set result = db. Get(new Car ("BMN, null));
Car car = (Car)result.Next();

car. Snapshot () ;
db. Set (car);
Retri eveAl | Sensor Readout s(db) ;

There's nothing special about deleting arrays and collections, too.

Deleting an object from a collection is an update, too, of course.

[updat eCol | ecti on]

Query query = db. Query();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

query. Constrai n(typeof (Car));

bj ect Set result = query. Descend("_history"). Execute();
IList history = (lList)result.Next();

hi st ory. RenmoveAt (0) ;

db. Set (hi story);

Car proto = new Car(null, null);

result = db. Get(proto);

foreach (Car car in result)

{
foreach (object readout in car.H story)
{
Consol e. Wit eLi ne(readout);
}
}

(This example also shows that with db4o it is quite easy to access object internals we

were never meant to see. Please keep this always in mind and be careful.)

We will delete all cars from the database again to prepare for the next chapter.

[del eteAl |l Part 1]

Db4o. Confi gure(). Ooj ect d ass(typeof (Car)). CascadeOnDel ete(true);

[del et eAl | Part 2]

Obj ect Set result = db. Get(new Car(null, null));

foreach (object car in result)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. Del ete(car);
}
nj ect Set readouts = db. Get (new Sensor Readout (nul |
Dat eTi me. M nVal ue, null));
foreach (object readout in readouts)

{
db. Del et e(readout) ;

5.4. Conclusion

0Ok, collections are just objects. But why did we have to specify the concrete
ArrayList type all the way? Was that necessary? How does db4o handle inheritance? We

will cover that in the next chapter.

5.5. Full source

usi ng System

usi ng System Col | ecti ons;
usi ng System | Q

usi ng com db4o;

usi ng com db4o. query;

nanespace com db4o.f 1. chapter3

{
public class CollectionsExanple : Ui

{
public static void Main(string[] args)

{
File.Delete(Util. YapFil eNane);
nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane) ;
try

{
St or eFi r st Car (db) ;

St or eSecondCar (db) ;
Retri eveAl | Sensor Readout s(db) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Inheritance

publ

publ

Retri eveSensor Readout QBE(db) ;

Retri eveCar (BE(db) ;

RetrieveCol | ecti ons(db);
RetrieveArrays(db);

Ret ri eveSensor Readout Quer y(db) ;
Retri eveCar Query(db);

db. d ose();

Updat eCar Part 1() ;

db = Db4o. OpenFil e(Util . YapFil eNane);
Updat eCar Par t 2(db) ;

Updat eCol | ecti on(db);

db. d ose();

Del eteAl | Part 1();

db=Db4o. OpenFil e(Util. YapFi | eName) ;
Del et eAl | Part 2(db);

Retri eveAl | Sensor Readout s(db) ;

}
finally

{
db. d ose();

ic static void StoreFirstCar(Object Contai ner db)

Car carl = new Car("Ferrari");

Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = pilot1;

db. Set (carl);

ic static void StoreSecondCar ((bject Cont ai ner db)

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);

car2.Pilot = pilot2;

car 2. Snapshot () ;

car 2. Snapshot () ;

db. Set (car 2) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db)

db)

public static void RetrieveAl |l Sensor Readout s(Cbj ect Cont ai ner

nj ect Set result = db. Get (typeof (Sensor Readout)) ;

Li stResult(result);

public static void RetrieveSensor Readout QBE(Obj ect Cont ai ner

Sensor Readout proto = new Sensor Readout (new doubl e[] {

0.3, 0.1}, DateTime.MnValue, null);

nj ect Set result = db. Get(proto);

Li stResult(result);

public static void RetrieveCar QBE(Obj ect Cont ai ner db)
{

Sensor Readout prot oReadout = new Sensor Readout (new

double[] { 0.6, 0.2 }, DateTime.MnValue, null);

db)

I List protoHi story = new Arraylist();

pr ot oHi st ory. Add(pr ot oReadout) ;

Car protoCar = new Car(null, protoH story);
nj ect Set result = db. Get(protoCar);

Li stResult(result);

public static void RetrieveCollections(ObjectContainer db)

{
nj ect Set result = db. Get(new ArrayList());

Li stResult(result);

public static void RetrieveArrays(Object Cont ai ner db)

{
nj ect Set result = db. Get (new double[] { 0.6, 0.4 });

Li stResult(result);

public static void RetrieveSensor Readout Quer y(Obj ect Cont ai ner

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Query query = db. Query();

guery. Const rai n(typeof (Sensor Readout)) ;
Query val ueQuery = query. Descend("_val ues");
val ueQuery. Constrain(0. 3);

val ueQuery. Constrain(0.1);

nj ect Set results = query. Execute();

Li st Result(results);

public static void RetrieveCarQuery(Object Cont ai ner db)

{
Query query = db. Query();
guery. Constrai n(typeof(Car));
Query historyQuery = query. Descend(" _history");
hi st oryQuery. Constrai n(typeof (Sensor Readout)) ;
Query val ueQuery = historyQuery. Descend("_val ues");
val ueQuery. Constrain(0. 3);
val ueQuery. Constrain(0.1);
nj ect Set results = query. Execute();
Li st Result(results);

}

public class RetrieveSensor Readout Predi cate : Predicate

{
publ i c bool WMatch(SensorReadout candi date)
{
return Array. | ndexXf (candi date. Values, 0.3) > -1
&& Array. | ndexXf (candi date. Val ues, 0.1) > -1;
}
}

public static void

Retri eveSensor Readout Nat i ve(Obj ect Cont ai ner db)

{
nj ect Set results = db. Query(new

Retri eveSensor Readout Predi cate());

Li stResult(results);

public class RetrieveCarPredicate : Predicate

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public bool WMatch(Car car)

{
foreach (Sensor Readout sensor in car.Hi story)
{
if (Array.IndexOf (sensor. Values, 0.3) > -1
&& Array. | ndexXf (sensor. Val ues, 0.1) > -1)
{
return true;
}
}
return false;
}

public static void RetrieveCarNative(Object Contai ner db)

{
nj ect Set results = db. Query(new RetrieveCarPredicate());

Li st Result(results);

public static void UpdateCarPart1()

{
Db4o. Configure(). Obj ectd ass(typeof (Car)).CascadeOnUpdat e(true);

}

public static void UpdateCarPart2(Obj ect Cont ai ner db)

{
nj ectSet result = db. Get(new Car("BMN, null));
Car car = (Car)result. Next();
car. Snapshot () ;
db. Set (car);
Retri eveAl | Sensor Readout s(db) ;
}

public static void UpdateCol |l ection(Object Cont ai ner db)
{
Query query = db. Query();
guery. Constrai n(typeof (Car));
nj ect Set result = query. Descend(" _history"). Execute();
IList history = (lList)result.Next();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

hi st ory. RenoveAt (0) ;

db. Set (hi story);

Car proto = new Car(null, null);
result = db. Get(proto);

foreach (Car car in result)

{
foreach (object readout in car.History)
{
Consol e. Wi telLi ne(readout);
}
}

public static void Del eteAll Part1()

{
Db4o. Configure(). Obj ectd ass(typeof (Car)).CascadeOnDel et e(true);

}

public static void Del eteAll Part2(Obj ect Cont ai ner db)
{
njectSet result = db. Get(new Car(null, null));
foreach (object car in result)

{
db. Del et e(car);

}
nj ect Set readouts = db. Get (new Sensor Readout (nul I,

Dat eTi me. M nVal ue, null));

foreach (object readout in readouts)

{
db. Del et e(readout) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

6. Inheritance

So far we have always been working with the concrete (i.e. most specific type of an

object. What about subclassing and interfaces?

To explore this, we will differentiate between different kinds of sensors.

usi ng System

nanespace com db4o.f1. chapter4

{

public class Sensor Readout

{
DateTinme _tinme;
Car _car;

string _description;

publ i c Sensor Readout (DateTinme time, Car car, string

descri ption)

{

_time = tine;

_car = car;

_description = description;
}

public Car Car

{
get
{
return _car;
}
}

public DateTine Tine

{
get

{

return _time;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public string Description

{
get
{
return _description;
}
}

override public string ToString()

{
return string. Format ("{0}:{1}:{2}", _car, _tinme,
_description);

}

usi ng System

nanespace com db4o.f1. chapter4

{

public class TenperatureSensor Readout : Sensor Readout

{

doubl e _tenperature;
publ i c Tenperat ur eSensor Readout (Dat eTi me time, Car car
string description, double tenperature)

base(tinme, car, description)

_tenperature = tenperature;

public doubl e Tenperature

{
get

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return _tenperature;

override public string ToString()

{
return string. Format ("{0} tenp: {1}", base.ToString(),

_temperature);

}

usi ng System

nanespace com db4o.f1. chapter4

{

public class PressureSensor Readout : Sensor Readout

{
doubl e _pressure;
public PressureSensor Readout (DateTime time, Car car, string
descri ption, doubl e pressure)

base(tinme, car, description)

_pressure = pressure,;

public doubl e Pressure

{
get
{
return _pressure;
}
}

override public string ToString()

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return string. Format ("{0} pressure: {1}",

base. ToString(), _pressure);

}

Our car's snapshot mechanism is changed accordingly.

usi ng System

usi ng System Col | ecti ons;

nanespace com db4o.f1. chapter4

{

public class Car

{

string _nodel;
Pilot _pilot;
I List _history;

public Car(string nodel)

{

_nmodel = nodel;

_pilot = null;

_history = new ArraylList();
}

public Pilot Pil ot

{
get

{

return _pilot;

set

_pilot = val ue;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public string Mde

{
get
{
return _nodel
}
}

publ i c Sensor Readout[] GetHistory()
{
Sensor Readout [] history = new
Sensor Readout [_hi story. Count];
_history. CopyTo(hi story, 0);

return history;

public void Shapshot ()

{
_hi story. Add(new Tenper at ur eSensor Readout (Dat eTi me. Now,

this, "oil", Poll QI Tenperature()));

_hi story. Add(new Tenper at ur eSensor Readout (Dat eTi me. Now,
this, "water", PollWaterTenperature()));

_history. Add(new PressureSensor Readout (Dat eTi me. Now,

this, "oil", Poll Gl Pressure()));
}

prot ected double Poll Q| Tenperat ure()

{
return 0.1* history. Count;

prot ect ed doubl e Pol | Wt er Tenper at ur e()

{
return 0.2* history. Count;

prot ected double Poll G| Pressure()
{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return 0.3* _history. Count;

override public string ToString()

{
return string. Format ("{O0}[{1}]/{2}", _nodel, _pilot,

_history. Count);
}

6.1. Storing

Our setup code has not changed at all, just the internal workings of a snapshot.

[storeFirstCar]

Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = pilot1;
db. Set (car1);

[st oreSecondCar]

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);
car2.Pilot = pilot2;
car 2. Snapshot () ;
car 2. Snapshot () ;
db. Set (car 2) ;

6.2. Retrieving

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db4o will provide us with all objects of the given type. To collect all instances of a
given class, no matter whether they are subclass members or direct instances, we just

provide a corresponding prototype.

[retri eveTenper at ur eReadout sQBE]

Sensor Readout proto = new Tenper at ur eSensor Readout (Dat eTi me. M nVal ue,
null, null, 0.0);

bj ect Set result = db. Get(proto);

Li stResult(result);

[retrieveAl | Sensor Readout sQBE]

Sensor Readout proto = new Sensor Readout (Dat eTi ne. M nVal ue, nul |,
nul I');

bj ect Set result = db. Get(proto);

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

This is one more situation where QBE might not be applicable: What if the given type is
an interface or an abstract class? Well, there's a little trick to keep in mind: Type

objects receive special handling with QBE.

[retrieveAl |l Sensor Readout SQBEAl t ernati ve]

bj ect Set result = db. Get (typeof (Sensor Readout));
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

And of course there's our SODA API:

[retrieveAl |l Sensor Readout sQuery]

Query query = db. Query();
query. Constrai n(typeof (Sensor Readout)) ;

bj ect Set result = query. Execute();
Li stResult(result);

6.3. Updating and deleting

is just the same for all objects, no matter where they are situated in the inheritance

tree.

Just like we retrieved all objects from the database above, we can delete all stored

objects to prepare for the next chapter.

[del eteAll]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nj ect Set result = db. Get (typeof (Object));
foreach (object itemin result)

{
db. Del ete(item;

6.4. Conclusion

Now we have covered all basic 00 features and the way they are handled by db4o. We will
complete the first part of our db4o walkthrough in the next chapter by looking at

deep object graphs, including recursive structures.

6.5. Full source

usi ng System
using System |1 Q
usi ng com db4o;
usi ng com db4o. f 1;

usi ng com db4o. query;

nanespace com db4o.f1. chapter4

{

public class InheritanceExanple : Uil

{
public static void Main(string[] args)

{
File.Delete(Util. YapFil eNane);
nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane);
try

{
St or eFi r st Car (db) ;

St or eSecondCar (db) ;

Retri eveTenper at ur eReadout sQBE(db) ;

Retri eveAl | Sensor Readout sQBE(db) ;

Retri eveAl | Sensor Readout sSQBEAI t er nati ve(db);
Retri eveAl | Sensor Readout sQuery(db);
RetrieveAl | bj ect s(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Deep

}
finally

{
db. d ose();

public static void StoreFirstCar(ObjectContainer db)

{
Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = pilot1;
db. Set (carl);
}

public static void StoreSecondCar (Obj ect Cont ai ner db)

{
Pilot pilot2 = new Pil ot ("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);
car2.Pilot = pilot2;
car 2. Snapshot () ;
car 2. Snapshot () ;
db. Set (car 2) ;
}

public static void

Retri eveAl | Sensor Readout sQBE(Obj ect Cont ai ner db)

{
Sensor Readout proto = new
Sensor Readout (Dat eTi ne. M nVal ue, null, null);
nj ect Set result = db. Get(proto);
Li stResult(result);
}

public static void
Ret ri eveTenper at ur eReadout sQBE(Cbj ect Cont ai ner db)
{
Sensor Readout proto = new
Tenper at ur eSensor Readout (Dat eTi me. M nVal ue, null, null, 0.0);
nj ect Set result = db. Get(proto);

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void
Retri eveAl | Sensor Readout sSQBEAI t er nati ve(Qbj ect Cont ai ner db)
{
bj ect Set result = db. Get (typeof (Sensor Readout)) ;

Li stResult(result);

public static void

Retri eveAl | Sensor Readout sQuer y(Obj ect Cont ai ner db)

{
Query query = db. Query();
guery. Const rai n(typeof (Sensor Readout)) ;
nj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrieveAl |l Cbjects(ObjectContainer db)

{
nj ect Set result = db. Get (new object());

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

7. Deep graphs

We have already seen how db4o handles object associations, but our running example is
still quite flat and simple, compared to real-world domain models. In particular we
haven't seen how db4o behaves in the presence of recursive structures. We will emulate
such a structure by replacing our history list with a linked list implicitely provided
by the SensorReadout class.

usi ng System

nanespace com db4o.f1.chapter5

{

public abstract class SensorReadout
{

DateTinme _tinme;

Car _car;

string _description;

Sensor Readout _next;

prot ect ed Sensor Readout (DateTime time, Car car, string

descri ption)

{
_time = tine;
_car = car;
_description = description;
_next = null
}

public Car Car

{
get
{
return _car;
}
}

public DateTine Tine
{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

get

return _time;

publ i c Sensor Readout Next

{
get
{
return _next;
}
}

public void Append(Sensor Readout sensor Readout)

{
if (_next == null)
{
_next = sensor Readout ;
}
el se
{
_next . Append(sensor Readout) ;
}
}

public int CountEl ements()
{

return (_next == null ? 1 : _next.CountEl ements() + 1);

override public string ToString()

{
return string. Format ("{0} : {1} : {2}", _car, _tine,
_description);

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Our car only maintains an association to a 'head' sensor readout now.

usi ng System

nanespace com db4o.f1.chapter5

{

public class Car

{

string _nodel;
Pilot _pilot;

Sensor Readout _hi story;

public Car(string nodel)
{

_nmodel = nodel;
_pilot = null;

_history = null;

public Pilot Pil ot

{
get

{

return _pilot;

set

_pilot = val ue;

public string Model

{
get

{

return _nodel;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

publ i c Sensor Readout Get Hi story()

{

return _history;

public void Shapshot ()

{

AppendToHi st ory(new Tenper at ur eSensor Readout (
t hi s,

Dat eTi nme. Now,

oi |

, Poll O Tenmperature()));

AppendToHi st ory(new Tenper at ur eSensor Readout (
t hi s,

Dat eTi me. Now,
Pol | Wt er Tenperature()));

"wat er",

AppendToHi st ory(new PressureSensor Readout (

this,

Dat eTi nme. Now,

oi |

, Poll1 Gl Pressure()));

prot ected double Poll Q| Tenperat ure()

{

return 0.1*Count Hi st oryEl enent s();

prot ect ed doubl e Pol | Wt er Tenper at ur e()

{

return 0.2*Count Hi st oryEl enent s();

prot ected double Poll G| Pressure()

{

return 0. 3*Count Hi storyEl enent s();

override public string ToString()

{

return string. Format ("{O0}[{1}]/{2}", _nodel, _pilot,

Count Hi st oryEl enents());
}

private int CountHi storyEl ements()

{

return (_history

nul |

? 0 :

_history. Count El ements());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

private void AppendToH st ory(Sensor Readout readout)

{
if (_history == null)
{
_history = readout;
}
el se
{
_hi story. Append(r eadout) ;
}
}

7.1. Storing and updating

No surprises here.

[storeCar]
Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);

car.Pilot = pilot;
db. Set (car);

Now we would like to build a sensor readout chain. We already know about the update

depth trap, so we configure this first.

[set CascadeOnUpdat e]

Db4o. Configure(). Obj ectd ass(typeof (Car)).CascadeOnUpdat e(true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Let's collect a few sensor readouts.

[t akeManySnapshot s]

Obj ect Set result = db. Get (typeof (Car));
Car car = (Car)result.Next();

for (int i=0; i<5; i++)

{

car. Snapshot () ;
}
db. Set (car);

7.2. Retrieving

Now that we have a sufficiently deep structure, we'll retrieve it from the database and

traverse it.

First let's verify that we indeed have taken lots of snapshots.

[retrieveAll Snapshot s]

bj ect Set result = db. Get (typeof (Sensor Readout));
while (result. HasNext())

{

Consol e. WiteLine(result.Next());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

All these readouts belong to one linked list, so we should be able to access them all

by just traversing our list structure.

[retrieveSnapshot sSequenti al | y]

Obj ect Set result = db. Get (typeof (Car));
Car car = (Car)result. Next();
Sensor Readout readout = car.GetH story();
while (readout != null)
{
Consol e. Wit eLi ne(readout);

readout = readout. Next;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Ouch! What's happening here?

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

7.2.1. Activation depth

Deja vu - this is just the other side of the update depth issue.

db4o cannot track when you are traversing references from objects retrieved from the
database. So it would always have to return 'complete' object graphs on retrieval - in
the worst case this would boil down to pulling the whole database content into memory

for a single query.

This is absolutely undesirable in most situations, so db4o provides a mechanism to give
the client fine-grained control over how much he wants to pull out of the database when
asking for an object. This mechanism is called activation depthand works quite similar

to our familiar update depth.

The default activation depth for any object is 5, so our example above runs into nulls

after traversing 5 references.

We can dynamically ask objects to activate their member references. This allows us to

retrieve each single sensor readout in the list from the database just as needed.

[retri eveSnapshot sSequenti al | yl npr oved]

Obj ect Set result = db. Get (typeof (Car));
Car car = (Car)result. Next();
Sensor Readout readout = car.GetH story();
while (readout != null)
{
db. Acti vate(readout, 1);

Consol e. Wit eLi ne(readout);

readout = readout. Next;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Note that 'cut' references may also influence the behavior of your objects: In this

case the length of the list is calculated dynamically, and therefor constrained by
activation depth.

Instead of dynamically activating subgraph elements, you can configure activation depth
statically, too. We can tell our SensorReadout class objects to cascade activation
automatically, for example.

[set Acti vati onDept h]

Db4o. Confi gure(). Qoj ect d ass(typeof (Tenrper at ur eSensor Readout))

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

. CascadeOnActi vate(true);

[retrieveSnapshot sSequenti al | y]

Obj ect Set result = db. Get (typeof (Car));
Car car = (Car)result.Next();
Sensor Readout readout = car.GetHi story();
while (readout != null)

{

Consol e. Wit eLi ne(readout);

readout = readout. Next;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

You have to be very careful, though. Activation issues are tricky. Db4o provides a wide
range of configuration features to control activation depth at a very fine-grained
level. You'll find those triggers in com.db4o.config.Configuration and the associated

ObjectClass and ObjectField classes.

Don't forget to clean up the database.

[del eteAll]

bj ect Set result = db. Get (typeof (Ooj ect));
foreach (object itemin result)

{
db. Del ete(item;

7.3. Conclusion

Now we should have the tools at hand to work with arbitrarily complex object graphs.
But so far we have only been working forward, hoping that the changes we apply to our
precious data pool are correct. What if we have to roll back to a previous state due to

some failure? In the next chapter we will introduce the db4o transaction concept.

7.4. Full source

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Transactions

usi ng System
using System |1 Q

usi ng com db4o;

nanespace com db4o.f1.chapter5

{
public class DeepExanple : Uil

{
public static void Main(string[] args)

{
File.Delete(Util. YapFil eNane);
nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane) ;
try

{
St or eCar (db) ;

db. d ose();

Set CascadeOnUpdat e() ;

db = Db4o. OpenFil e(Util . YapFil eNane);
TakeManySnapshot s(db) ;

db. d ose();

db = Db4o. OpenFil e(Util . YapFil eNane);
Retri eveAl | Snapshot s(db);

db. d ose();

db = Db4o. OpenFil e(Util . YapFil eNane);
Retri eveSnapshot sSequenti al | y(db);
Retri eveSnapshot sSequenti al | yl npr oved(db) ;
db. d ose();

Set Acti vati onDept h() ;

db = Db4o. OpenFil e(Util . YapFil eNane);
Retri eveSnapshot sSequenti al | y(db);

}
finally

{
db. d ose();

public static void StoreCar(ObjectContainer db)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);

car.Pilot = pilot;

db. Set (car);

public static void Set CascadeOnUpdat e()

{

Db4o. Configure(). Objectd ass(typeof (Car)).CascadeOnUpdat e(true);

}

public static void TakeManySnapshot s(Obj ect Cont ai ner db)

{

nj ect Set result = db. Get(typeof (Car));
Car car = (Car)result. Next();
for (int i=0; i<5; i++)
{
car . Snapshot () ;

}
db. Set (car);

public static void RetrieveAll Shapshot s(Qbj ect Cont ai ner db)

{

nj ect Set result = db. Get (typeof (Sensor Readout)) ;
while (result.HasNext())

{
Consol e. WitelLine(result. Next());

public static void

Retri eveSnapshot sSequenti al | y(Obj ect Cont ai ner db)

{

nj ect Set result = db. Get(typeof (Car));
Car car = (Car)result. Next();

Sensor Readout readout = car.GetH story();
while (readout != null)

{
Consol e. Wi telLi ne(readout);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

readout = readout. Next;

public static void

Retri eveSnapshot sSequenti al | yl npr oved(Obj ect Cont ai ner db)

{
nj ect Set result = db. Get(typeof (Car));
Car car = (Car)result. Next();
Sensor Readout readout = car.GetH story();
whil e (readout != null)
{
db. Acti vat e(readout, 1);
Consol e. Wi telLi ne(readout);
readout = readout. Next;
}
}

public static void SetActivati onDepth()

{
Db4o. Configure(). Objectd ass(typeof (Tenrper at ur eSensor Readout))

. CascadeOnActi vat e(true);
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

8. Transactions

Probably you have already wondered how db4o handles concurrent access to a single
database. Just as any other DBMS, db4o provides a transaction mechanism. Before we take
a look at multiple, perhaps even remote, clients accessing a db4o instance in parallel,

we will introduce db4o transaction concepts in isolation.

8.1. Commit and rollback

You may not have noticed it, but we have already been working with transactions from
the first chapter on. By definition, you are always working inside a transaction when
interacting with db4o. A transaction is implicitly started when you open a container,
and the current transaction is implicitly committed when you close it again. So the
following code snippet to store a car is semantically identical to the ones we have
seen before; it just makes the commit explicit.

[storeCar Commit]

Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BMV);
car.Pilot = pilot;
db. Set (car);
db. Commi t () ;

[1istAllCars]

Obj ect Set result = db. Get(typeof (Car));
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

However, we can also rollback the current transaction, resetting the state of our

database to the last commit point.

[st oreCar Rol | back]

Pilot pilot = new Pilot("Mchael Schumacher", 100);
Car car = new Car("Ferrari");
car.Pilot = pilot;
db. Set (car);
db. Rol | back();

[listAll Cars]

Obj ect Set result = db. Get (typeof (Car));
Li stResult(result);

8.2. Refresh live objects

There's one problem, though: We can roll back our database, but this cannot

automagically trigger a rollback for our live objects.

[car Snapshot Rol | back]
Obj ect Set result = db. Get (new Car ("BMN));

Car car = (Car)result. Next();
car. Snapshot () ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. Set (car);
db. Rol | back();

Consol e. Wi teLine(car);

We will have to explicitly refresh our live objects when we suspect they may have

participated in a rollback transaction.

[car Snapshot Rol | backRef r esh]

Obj ect Set resul t =db. Get (new Car ("BMN)) ;
Car car=(Car)result.Next();
car. Snapshot () ;
db. Set (car);
db. Rol | back();
db. Ext (). Refresh(car, int.MaxVal ue);

Consol e. Wi teLine(car);

What is this ExtObjectContainer construct good for? Well, it provides some
functionality that is in itself stable, but the API may still be subject to change. As
soon as we are confident that no more changes will occur, ext functionality will be
transferred to the common ObjectContainer API. We will cover extended functionality in

more detail in a later chapter.

Finally, we clean up again.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[del eteAl l]

nj ect Set result = db. Get (typeof (Object));
foreach (object itemin result)

{
db. Del ete(item;

8.3. Conclusion

We have seen how transactions work for a single client. In the next chapter we will
see how the transaction concept extends to multiple clients, whether they are located

within the same VM or on a remote machine.

8.4. Full source

usi ng System
using System |1 Q
usi ng com db4o;

usi ng com db4o. f 1;

nanespace com db4o.f1.chapter5

{

public class Transacti onExanple : Uil

{
public static void Main(string[] args)

{
File.Delete(Util. YapFil eNane);
nj ect Cont ai ner db=Db4o. OpenFil e(Util. YapFi | eNane) ;
try

{
St or eCar Conmi t (db) ;

db. d ose();

db = Db4o. OpenFil e(Util . YapFil eNane);
Li st Al'l Cars(db);

St or eCar Rol | back(db) ;

db. d ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#ClientServer

db = Db4o. OpenFil e(Util . YapFil eNane);
Li st Al'l Cars(db);

Car Snapshot Rol | back(db) ;

Car Snapshot Rol | backRef resh(db);

}
finally

{
db. d ose();

public static void StoreCarCommt (Object Contai ner db)

Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);

car.Pilot = pilot;

db. Set (car);

db. Commit ();

public static void ListAll Cars(ObjectContainer db)

nj ect Set result = db. Get(typeof (Car));

Li stResult(result);

public static void StoreCarRol | back(Obj ect Cont ai ner db)

Pilot pilot = new Pilot("M chael Schumacher", 100);
Car car = new Car("Ferrari");

car.Pilot = pilot;

db. Set (car);

db. Rol | back();

public static void Car Snapshot Rol | back(Obj ect Cont ai ner db)

nj ect Set result = db. Get(new Car("BMN));
Car car = (Car)result. Next();

car. Snapshot () ;

db. Set (car);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. Rol | back();
Consol e. WitelLine(car);

public static void Car Shapshot Rol | backRef r esh(Obj ect Cont ai ner

db)
{
nj ect Set resul t =db. Get (new Car ("BMV)) ;
Car car=(Car)result.Next();
car. Snapshot () ;
db. Set (car);
db. Rol | back();
db. Ext (). Refresh(car, int.MaxVal ue);
Consol e. WitelLine(car);
}
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

9. Client/Server

Now that we have seen how transactions work in db4o conceptually, we are prepared to

tackle concurrently executing transactions.

We start by preparing our database in the familiar way.

[setFirstCar]

Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);
car.Pilot = pilot;

db. Set (car);

[set SecondCar]

Pilot pilot = new Pilot("M chael Schumacher", 100);
Car car = new Car("Ferrari");
car.Pilot = pilot;

db. Set (car);

9.1. Embedded server

From the API side, there's no real difference between transactions executing
concurrently within the same VM and transactions executed against a remote server. To
use concurrent transactions within a single VM, we just open a db4o server on our
database file, directing it to run on port 0, thereby declaring that no networking

will take place.

[accessLocal Server]

nj ect Server server = Db4o. OpenServer (Util. YapFil eNane, O0);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

try

{
Obj ect Contai ner client = server.OpenClient();
/] Do something with this client, or open nore clients
client.d ose();
}
finally
{
server. C ose();
}

Again, we will delegate opening and closing the server to our environment to focus on

client interactions.

[querylLocal Server]

Obj ect Contai ner client = server.OpenClient();
Li st Result(client.Get(new Car(null)));

client.d ose();

The transaction level in db4o is read committed . However, each client container
maintains its own weak reference cache of already known objects. To make all changes

committed by other clients immediately, we have to explicitly refresh known objects

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

from the server. We will delegate this task to a specialized version of our

listResult() method.

public static void ListRefreshedResul t (Obj ect Cont ai ner cont ai ner,

Obj ectSet itenms, int depth)

{
Consol e. Wi teLine(items. Count);
foreach (object itemin itens)
{
container. Ext().Refresh(item depth);
Consol e. WiteLine(item;
}
}

[denpnstrat eLocal ReadConmi t t ed]

Obj ect Contai ner clientl =server.OpenCient();
Obj ect Contai ner client2 =server.OpenCient();
Pilot pilot = new Pilot("David Coul thard", 98);
Obj ectSet result = clientl. Get(new Car("BMN));
Car car = (Car)result.Next();
car.Pilot = pilot;
clientl. Set(car);
ListResult(clientl. Get(new Car(null)));
Li st Result(client2. Get(new Car(null)));
clientl. Commit();
Li st Result (clientl. Get(typeof(Car)));
Li st RefreshedResul t (client2, client2. Get(typeof(Car)), 2);

clientl. dose();

client2. dose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Simple rollbacks just work as you might expect now.

[denmpnstrat eLocal Rol | back]

Obj ect Container clientl = server.OpenCient();
Obj ect Contai ner client2 = server.OpenCient();
Obj ectSet result = clientl. Get(new Car("BMN));
Car car = (Car)result.Next();
car.Pilot = new Pil ot ("Sonmeone el se", 0);
clientl. Set(car);
ListResult(clientl. Get(new Car(null)));
Li st Result(client2. Get(new Car(null)));
clientl. Rol | back();
clientl. Ext().Refresh(car, 2);
ListResult(clientl. Get(new Car(null)));
Li st Result(client2. Get(new Car(null)));
clientl. dose();

client2. d ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

9.2. Networking

From here it's only a small step towards operating db4o over a TCP/IP network. We just
specify a port number greater than zero and set up one or more accounts for our

client(s).

[accessRennt eSer ver]

Obj ect Server server = Db4o. OpenServer (Uil . YapFil eName, ServerPort);
server. G ant Access(Server User, ServerPassword);
try

{
bj ect Cont ai ner client = Db4o. Opendient ("l ocal host",

ServerPort, ServerUser, ServerPassword);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/] Do something with this client, or open nore clients

client.d ose();

}
finally
{
server. C ose();
}

The client connects providing host, port, user name and password.

[quer yRenot eSer ver]

bj ect Cont ai ner client = Db4o. Opendient ("l ocal host", port, user,
passwor d) ;
Li st Result(client.Get(new Car(null)));

client.d ose();

Everything else is absolutely identical to the local server examples above.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[denpnst r at eRenpt eReadConmi tt ed]

bj ect Container clientl = Db4o. Opendient("local host", port, user,
passwor d) ;

Obj ect Cont ai ner client2 = Db4o. OpenClient ("l ocal host", port,
user, password);

Pilot pilot = new Pilot("Jenson Button", 97);

ObjectSet result = clientl. Get(new Car(null));

Car car = (Car)result.Next();

car.Pilot = pilot;

clientl. Set(car);

ListResult(clientl. Get(new Car(null)));

Li st Result(client2. Get(new Car(null)));

clientl. Commit();

ListResult(clientl. Get(new Car(null)));

Li st Result(client2. Get(new Car(null)));

clientl. dose();

client2. dose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[denpnst r at eRenot eRol | back]

Obj ect Contai ner clientl = Db4o.OpenClient("local host", port, user,

passwor d) ;

Obj ect Cont ai ner client2 = Db4o. OpenClient ("l ocal host", port,

user, password);

Obj ectSet result = clientl. Get(new Car(null));
Car car = (Car)result.Next();

car.Pilot = new Pil ot ("Sonmeone el se", 0);
clientl. Set(car);

ListResult(clientl. Get(new Car(null)));

Li st Result(client2. Get(new Car(null)));
clientl. Rol | back();

clientl. Ext().Refresh(car, 2);
ListResult(clientl. Get(new Car(null)));

Li st Result(client2. Get(new Car(null)));

clientl. dose();

client2. dose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

9.3. Out-of-band signalling

Sometimes a client needs to send a special message to a server in order to tell the
server to do something. The server may need to be signalled to perform a defragment or

it may need to be signalled to shut itself down gracefully.

This is configured by calling setMessageRecipient(), passing the object that will

process client-initiated messages.

public void RunServer()
{
| ock(this)
{
bj ect Server db4oServer = Db4o. OpenServer (FI LE, PORT);
db4oServer. G ant Access(USER, PASS);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/1 Using the nessaging functionality to redirect al
/1 nmessages to this.processMessage

db4oSer ver. Ext (). Confi gure(). Set MessageReci pi ent (t hi s);

try
{
if (! stop)
{
/1 wait forever for Notify() from Cl ose()
Moni t or. Wi t (this);
}
}
catch (Exception e)
{

Consol e. WitelLine(e. ToString());

}
db4oServer. d ose();

The message is received and processed by a processMessage() method:

public void ProcessMessage(nj ect Cont ai ner con, object nessage)

{

if (message is StopServer)

{
d ose();

Db4o allows a client to send an arbitrary signal or message to a server by sending a
plain Java object to the server. The server will receive a callback message, including
the object that came from the client. The server can interpret this message however it

wants.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void Main(string[] args)

{
nj ect Cont ai ner obj ect Contai ner = null;
try
{
/] connect to the server
obj ect Cont ai ner = Db4o. Opend i ent (HOST, PORT, USER
PASS)
}
catch (Exception e)
{
Consol e. WitelLine(e. ToString());
}
if (objectContainer !'= null)
{
/1 get the nessageSender for the ObjectContainer
MessageSender messageSender = obj ect Cont ai ner. Ext ()
. Configure(). Get MessageSender () ;
/1 send an instance of a StopServer object
messageSender . Send(new St opServer());
/1 close the Object Cont ai ner
obj ect Cont ai ner. C ose() ;
}
}

9.4. Putting it all together: a simple but complete db4o server
Let's put all of this information together now to implement a simple standalone db4o
server with a special client that can tell the server to shut itself down gracefully on

demand.

First, both the client and the server need some shared configuration information. We

will provide this using an interface:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nanespace com db4o.f1.chapter5

{
/1] <summary>
/1] Configuration used for StartServer and StopServer.
/1] </sunmmary>
public class Server Configuration
{
/1] <summary>
/1l the host to be used.
/1] 1f you want to run the client server exanples on two
conput ers,
/1l enter the conputer name of the one that you want to use
as server.
/1] </sunmmary>
public const string HOST = "l ocal host";
/1] <summary>
/1l the database file to be used by the server.
/1] </sunmmary>
public const string FILE = "fornul al. yap";
/1] <summary>
/1]l the port to be used by the server.
/1] </sunmmary>
public const int PORT = 4488;
/1] <summary>
/1l the user nanme for access control
/1] </sunmmary>
public const string USER = "db4o";
/1] <summary>
/1l the pasword for access control
/1] </sunmmary>
public const string PASS = "db4o"
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Now we'll create the server:

usi ng System
usi ng System Thr eadi ng;
usi ng com db4o;

usi ng com db4o. nessagi ng;

nanespace com db4o.f1.chapter5
{
/1] <summary>
/1l starts a dbd4o server with the settings from
Server Confi gurati on.
/1l This is a typical setup for a |ong running server.
/1l The Server may be stopped froma renote |ocation by running
/1l StopServer. The StartServer instance is used as a
MessageReci pi ent
/1l and reacts to receiving an instance of a StopServer object.
/1l Note that all user classes need to be present on the server
si de
/1]l and that all possible Db4o. Configure() calls to alter the
db4o
/1l configuration need to be executed on the client and on the
server.
/1] </sunmmary>
public class StartServer : ServerConfiguration, MessageReci pient
{
/1] <summary>
/1l setting the value to true denotes that the server should
be cl osed
/1] </sunmmary>

private bool stop = false

/1] <summary>

/1l starts a dbd4o server using the configuration from
/1l Server Configuration.

/1l </sunmmary>

public static void Main(string[] arguments)

{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

new Start Server (). RunServer ();

/1] <summary>
/1l opens the ObjectServer, and waits forever until C ose()
is called
/1l or a StopServer message is being received.
/1] </sunmmary>
public void RunServer ()
{
[ock(this)
{
nj ect Server db4oServer = Db4o. OpenServer (Fl LE
PORT) ;
db4oServer. G ant Access(USER, PASS);

/1 Using the nessaging functionality to redirect al
/1 nmessages to this.processMessage

db4oServer. Ext (). Confi gure() . Set MessageReci pi ent (t hi s);

try
{
if (! stop)
{
/1 wait forever for Notify() from Cl ose()
Moni t or. Wi t (this);
}
}
catch (Exception e)
{
Consol e. WitelLine(e. ToString());
}
db4oServer. d ose();
}
}
/1] <summary>
/1l messagi ng cal | back
/1l see com db4o. messagi ng. MessageReci pi ent #Pr ocessMessage()
/1l </sunmmary>
public void ProcessMessage(hj ect Cont ai ner con, object
nmessage)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

if (message is StopServer)

{
d ose();

/1] <summary>
I/l closes this server.
/1] </sunmmary>

public void C ose()

{
| ock(this)
{
stop = true;
Moni t or . Pul seAl | (this);
}
}

And last but not least, the client that stops the server.

usi ng System
usi ng com db4o;

usi ng com db4o. nessagi ng;

nanmespace com db4o.f 1. chapter5
{
/1] <summary>
/1l stops the db4o Server started with Start Server.
/1l This is done by opening a client connection
/1l to the server and by sending a StopServer object as
/1] a message. StartServer will react init's
/1l processMessage nethod.
/1l </sunmmary>

public class StopServer : ServerConfiguration

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/1] <summary>

/1l stops a db4o Server started with Start Server.
/1] </sunmmary>

/1l <exception cref="Exception" />

public static void Main(string[] args)

{

nj ect Cont ai ner obj ect Contai ner = null;

try

{
/] connect to the server
obj ect Cont ai ner = Db4o. Opend i ent (HOST, PORT, USER

PASS)

}

catch (Exception e)

{
Consol e. WitelLine(e. ToString());

}

if (objectContainer !'= null)

{
/1 get the nessageSender for the ObjectContainer
MessageSender nmessageSender = obj ect Cont ai ner. Ext ()

. Configure(). Get MessageSender () ;

/1 send an instance of a StopServer object
nmessageSender . Send(new St opServer());
/1 close the Object Cont ai ner
obj ect Cont ai ner. C ose() ;

}

}
}
}

9.5. Conclusion

That's it, folks. No, of course it isn't. There's much more to db4o we haven't covered

yet: schema evolution, custom persistence for your classes, writing your own query

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

objects, etc. The following, more loosely coupled chapters will look into more advanced

db4o features.

This tutorial is work in progress. We will successively add chapters and incorporate

feedback from the community into the existing chapters.

We hope that this tutorial has helped to get you started with db4o. How should you

continue now?

- Browse the remaining chapters.

-(Interactive version only)While this tutorial is basically sequential in nature, try
to switch back and forth between the chapters and execute the sample snippets in
arbitrary order. You will be working with the same database throughout; sometimes you
may just get stuck or even induce exceptions, but you can always reset the database via

the console window.

- The examples we've worked through are included in your db4o distribution in full

source code. Feel free to experiment with it.

- I you're stuck, see if the FAQ can solve your problem, browse the information on our
web site, check if your problem is submitted to Bugzilla or visit our forums at
http://forums.db4o.com/forums/.

9.6. Full source

usi ng System | Q
usi ng com db4o;

usi ng com db4o. f 1;

nanespace com db4o.f1.chapter5

{
public class CientServerExanple : Ui

{
public static void Main(string[] args)

{
File.Delete(Util. YapFil eNane);

AccesslLocal Server () ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.db4o.com/
http://www.db4odev.com/bugzilla
http://forums.db4o.com/forums/

0);

File.Delete(Util. YapFil eNane);
nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane);

try
{
Set Fi r st Car (db) ;
Set SecondCar (db) ;
}
finally
{
db. d ose();
}

Confi gur eDb4o() ;
nj ect Server server = Db4o. OpenServer (Util. YapFil eNamne,

try
{
QuerylLocal Server (server);
Denonstrat eLocal ReadCommi tt ed(server);
Denonstrat eLocal Rol | back(server);
}
finally
{
server. d ose();
}

AccessRenot eServer () ;

server = Db4o. OpenServer(Uil. YapFil eName, ServerPort);
server. Grant Access(ServerUser, ServerPassword);

try

{

Quer yRenot eSer ver (Server Port, ServerUser,

Ser ver Passwor d) ;

Server User,

Denonst r at eRenot eReadConmi t t ed(Ser ver Port ,
Ser ver Passwor d) ;

Denonst r at eRenot eRol | back(Server Port, Server User,

Ser ver Passwor d) ;

}
finally

{

server. d ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void SetFirstCar(ObjectContainer db)

{
Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);
car.Pilot = pilot;
db. Set (car);
}

public static void Set SecondCar (Qbj ect Cont ai ner db)

{
Pilot pilot = new Pilot("M chael Schumacher", 100);
Car car = new Car("Ferrari");
car.Pilot = pilot;
db. Set (car);
}

public static void AccessLocal Server ()

{
nj ect Server server = Db4o. OpenServer (Util. YapFil eNamne,
0);
try
{
nj ect Cont ai ner client = server. OpenCient();
/! Do sonething with this client, or open nore
clients
client.d ose();
}
finally
{
server. d ose();
}
}

public static void QuerylLocal Server (Obj ect Server server)

{
nj ect Cont ai ner client = server. QpenCient();
Li stResult(client.Get(new Car(null)));

client.d ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

server)

2);

server)

publ
{

publ

publ

ic static void ConfigureDb4o()

Db4o. Configure(). Cbj ectd ass(typeof (Car)). Updat eDept h(3);

ic static void Denonstrat eLocal ReadCommi tted(Obj ect Server

nj ect Contai ner clientl =server.QpenCient();
nj ect Cont ai ner client2 =server.QpenCient();
Pilot pilot = new Pilot("David Coul thard", 98);
njectSet result = clientl. Get(new Car("BMN));
Car car = (Car)result. Next();

car.Pilot = pilot;

clientl. Set(car);

ListResult(clientl. Get(new Car(null)));
ListResult(client2. Get(new Car(null)));
clientl. Commit();

ListResult(clientl. Get(typeof(Car)));

Li st RefreshedResul t (client2, client?2.Get(typeof(Car)),

clientl. d ose();
client2.d ose();

ic static void DenonstratelLocal Rol | back(Qbj ect Server

nj ect Contai ner clientl server. Qpendient();

nj ect Cont ai ner client?2
njectSet result = clientl. Get(new Car("BMWN));
Car car = (Car)result. Next();

server. QpenCdient();

car.Pilot = new Pil ot ("Soneone el se", 0);
clientl. Set(car);

ListResult(clientl. Get(new Car(null)));
ListResult(client2. Get(new Car(null)));
clientl. Rol | back();

clientl. Ext().Refresh(car, 2);
ListResult(clientl. Get(new Car(null)));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

ListResult(client2. Get(new Car(null)));
clientl. d ose();
client2.d ose();

public static void AccessRenot eServer ()
{
nj ect Server server = Db4o. OpenServer (Util. YapFil eName,
Server Port);
server. Grant Access(ServerUser, ServerPassword);
try
{
nj ect Cont ai ner client = Dbd4o. Opendient ("l ocal host",

Server Port, ServerUser, ServerPassword);

/! Do sonething with this client, or open nore

clients
client.d ose();
}
finally
{
server. d ose();
}
}

public static void QueryRenoteServer(int port, string user,
string password)
{
nj ect Cont ai ner client = Db4o. Opendient ("l ocal host",
port, user, password);
Li stResult(client.Get(new Car(null)));

client.C ose();

public static void Denpnstrat eRenot eReadCommitted(i nt port,

string user, string password)

{

nj ect Cont ai ner clientl Db4o. Opend i ent ("I ocal host ™",

port, user, password);

nj ect Cont ai ner client?2 Db4o. Opend i ent ("I ocal host ™",
port, user, password);

Pilot pilot = new Pilot("Jenson Button", 97);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

user,

port,

port,

public static void DenpnstrateRenpt eRol | back(int port, string

njectSet result = clientl. Get(new Car(null));
Car car = (Car)result. Next();

car.Pilot = pilot;

clientl. Set(car);

ListResult(clientl. Get(new Car(null)));
ListResult(client2. Get(new Car(null)));
clientl. Commit();

ListResult(clientl. Get(new Car(null)));
ListResult(client2. Get(new Car(null)));
clientl. d ose();

client2.d ose();

string password)

{

user,

user,

nj ect Contai ner clientl Db4o. Opend i ent ("I ocal host ™",

passwor d) ;

nj ect Cont ai ner client?2 Db4o. Opend i ent ("I ocal host ™",
passwor d) ;

njectSet result = clientl. Get(new Car(null));
Car car = (Car)result. Next();

car.Pilot = new Pil ot ("Soneone el se", 0);
clientl. Set(car);

ListResult(clientl. Get(new Car(null)));
ListResult(client2. Get(new Car(null)));
clientl. Rol | back();

clientl. Ext().Refresh(car, 2);
ListResult(clientl. Get(new Car(null)));
ListResult(client2. Get(new Car(null)));
clientl. d ose();

client2.d ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

10. SODA Evaluations

In the SODA API chapter we already mentioned Evaluations as a means of providing user-
defined custom constraints and as a means to run any arbitrary code in a SODA query.

Let's have a closer look.

10.1. Evaluation API

The evaluation API consists of two interfaces, Evaluation and Candidate . Evaluation
implementations are implemented by the user and injected into a query. During a query,

they will be called from db4o with a candidate instance in order to decide whether to

include it into the current (sub-)result.

The Evaluation interface contains a single method only:

public void eval uat e(Candi dat e candi date);

This will be called by db4o to check whether the object encapsulated by this candidate

should be included into the current candidate set.

The Candidate interface provides three methods:

public Object getCbject();
public void include(bool ean fl ag);

publ i c Obj ect Cont ai ner obj ect Cont ai ner () ;

An Evaluation implementation may call getObject() to retrieve the actual object
instance to be evaluated, it may call include() to instruct db4o whether or not to
include this object in the current candidate set, and finally it may access the current

database directly by calling objectContainer().

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#SODAQueryAPI

10.2. Example

For a simple example, let's go back to our Pilot/Car implementation from the
Collections chapter. Back then, we kept a history of SensorReadout instances in a List
member inside the car. Now imagine that we wanted to retrieve all cars that have
assembled an even number of history entries. A quite contrived and seemingly trivial
example, however, it gets us into trouble: Collections are transparent to the query

APT, it just 'looks through' them at their respective members.

So how can we get this done? Let's implement an Evaluation that expects the objects

passed in to be instances of type Car and checks their history size.

usi ng com db4o. f 1. chapt er 3;

usi ng com db4o. query;

nanespace com db4o.f1.chapter6

{
public class EvenHi storyEval uation : Eval uation
{
public void Eval uat e(Candi dat e candi dat e)
{
Car car=(Car)candi date. Get Ovj ect () ;
candi dat e. I ncl ude(car. Hi story. Count % 2 == 0);
}
}
}

To test it, let's add two cars with history sizes of one, respectively two:

[storeCars]
Pilot pilotl = new Pilot ("M chael Schumacher", 100);

Car carl = new Car("Ferrari");

carl.Pilot = pilot1;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Collections

car 1. Snapshot () ;

db. Set (carl);

Pilot pilot2 = new Pil ot ("Rubens Barrichello", 99);
Car car2 = new Car("BMWV);

car2.Pilot = pilot?2;

car 2. Snapshot () ;

car 2. Snapshot () ;

db. Set (car 2);

and run our evaluation against them:

[quer yWt hEval uati on]

Query query = db. Query();
query. Constrai n(typeof (Car));

query. Constrai n(new EvenH st oryEval uation());

nj ect Set result = query. Execute();
Util.ListResult(result);

10.3. Drawbacks

While evaluations offer you another degree of freedom for assembling queries, they come
at a certain cost: As you may already have noticed from the example, evaluations work
on the fully instantiated objects, while 'normal' queries peek into the database file
directly. So there's a certain performance penalty for the object instantiation, which

is wasted if the object is not included into the candidate set.

Another restriction is that, while 'normal’' queries can bypass encapsulation and

access candidates' private members directly, evaluations are bound to use their

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

external API, just as in the language itself.

10.4. Conclusion
With the introduction of evaluations we finally completed our query toolbox.
Evaluations provide a simple way of assemble arbitrary custom query building blocks,

however, they come at a price.

10.5. Full source

using System |1 Q
usi ng com db4o. f 1. chapt er 3;

usi ng com db4o. query;

nanespace com db4o.f1.chapter6

{
public class Eval uati onExanple : Util
{
public static void Main(string[] args)
{
File.Delete(Util. YapFil eNane);
nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane) ;
try
{
St or eCar s(db) ;
Quer yW t hEval uati on(db) ;
}
finally
{
db. d ose();
}
}

public static void StoreCars(Object Contai ner db)

{
Pilot pilotl = new Pilot ("M chael Schumacher", 100);

Car carl = new Car("Ferrari");

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

carl.Pilot = pilot1;

car 1. Snapshot () ;

db. Set (car1);

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);

car2.Pilot = pilot2;

car 2. Snapshot () ;

car 2. Snapshot () ;

db. Set (car 2) ;

public static void QueryWthEval uati on(Obj ect Cont ai ner db)

Query query = db. Query();

guery. Constrai n(typeof (Car));

guery. Const rai n(new EvenHi st oryEval uati on());
nj ect Set result = query. Execute();
Util.ListResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

11. Constructors

Sometimes you may find that db4o refuses to store instances of certain classes, or
appears to store them, but delivers incomplete instances on queries. To understand the
problem and the alternative solutions at hand, we'll have to take a look at the way

db4o "instantiates" objects when retrieving them from the database.

11.1. Instantiating objects

Db4o currently knows three ways of creating and populating an object from the database.

The approach to be used can be configured globally and on a per-class basis.

11.1.1. Using a constructor

The most obvious way is to call an appropriate constructor. Db4o does not require a
public or no-args constructor. It can use any constructor that accepts default (null/0)
values for all of its arguments without throwing an exception. Db4o will test all
available constructors on the class (including private ones) until it finds a suitable

one.
What if no such constructor exists?

11.1.2. Bypassing the constructor

Db4o can also bypass the constructors declared for this class using platform-specific
mechanisms. (For Java, this option is only available on JREs >= 1.4.) This mode allows
reinstantiating objects whose class doesn't provide a suitable constructor, However, it

will (silently) break classes that rely on the constructor to be executed, for example

in order to populate transient members.

If this option is available in the current runtime enviromment, it will be the default

setting.

11.1.3. Using a translator

If none of the two approaches above is suitable, db4o provides a way to specify in
detail how instances of a class should be stored and reinstantiated by implementing the

Translator interface and registering this implementation for the offending class.

We'll cover translators in detail in the next chapter .

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Translators

11.2. Configuration

The instantiation mode can be configured globally or on a per class basis.

Db4o. configure().call Constructors(true);

This will configure db4o to use constructors to reinstantiate any object from the
database. (The default isfalse).

Db4o. configure(). obj ectd ass(Foo. cl ass).call Constructor(true);

This will configure db4o to use constructor calls for this class and all its
subclasses.

11.3. Troubleshooting
At least for development code, it is always a good idea to instruct db4o to check for

available constructors at storage time. (If you've configured db4o to use constructors
at all.)

Db4o. configure(). excepti onsOnNot St or abl e(true);

If this setting triggers exceptions in your code, or if instances of a class seem to
lose members during storage, check the involved classes (especially their constructors)

for problems similar to the ones shown in the following section.

11.4. Examples

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

class Cl1 {

private String s;

private C1(String s) {

this.s=s;

public String toString() {

return s;

The above class is fine for use with and without callConstructors set.

class C2 {
private transient String x;

private String s;

private C2(String s) {
t his. s=s;

this.x="x";

public String toString() {

return s+x.length();

The above C2 class needs to have callConstructors set to true. Otherwise, since
transient members are not stored and the constructor code is not executed, toString()

will potentially run into a NullPointerException on x.length().

class C3 {

private String s;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

private int i;

private C3(String s) {
t his. s=s;

this.i=s.length();

public String toString() {

return s+i;

The above C3 class needs to have callConstructors set to false (the default), since the

(only) constructor will throw a NullPointerException when called with a null value.

class &4 {
private String s;

private transient int i;
private CA4(String s) {

this.s=s;

this.i=s.length();

public String toString() {

return s+i;

This class cannot be cleanly reinstantiated by db4o: Both approaches will fail, so one

has to resort to configuring a translator.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

12. Translators

In the last chapter we have covered the alternative configurations db4o offers for
object reinstantiation. What's left to see is how we can store objects of a class that

can't be cleanly stored with either of these approaches.

12.1. An example class

For this example we'll be using a hypothetical LocalizedItemList class which binds

together culture information with a list of items.

System.Globalization.CultureInfo is particularly interesting because it internally
holds a native pointer to a system structure which in turn cannot be cleanly stored by
db4o.

usi ng System d obal i zati on

nanespace com db4o.f1.chapter6
{
/1] <summary>
/1l A Culturelnfo aware |ist of objects.
/1] Culturelnfo objects hold a native pointer to
/1]l a system structure.
/1] </sunmmary>
public class Localizedlteniist
{
Culturelnfo _culture;

string[] _itemns;

public Localizedltenlist(Culturelnfo culture, string[] itemns)

{

_culture = culture;

_items = itens;

override public string ToString()
{

return

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

string.Join(string. Concat (_cul ture. Textl nfo. Li st Separator, " "),
_items);

}

We'll be using this code to store and retrieve and instance of this class with

different configuration settings:

public static void TryStoreAndRetrieve()

{
nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane) ;
try
{
string[] chanmps = new string[] { "Ayrton Senna", "Nel son
Pi quet" };

Local i zedl tenli st LocalizedltenList = new
Local i zedl t emli st (Cul t urel nfo. Creat eSpeci fi cCul ture("pt-BR"),
chanps) ;

System Consol e. WiteLine("ORI G NAL: {0}",
Local i zedl t enii st) ;

db. Set (Local i zedl tenLi st);

}
catch (Exception x)
{
Syst em Consol e. Wit eLi ne(x);
return;
}
finally
{
db. d ose();
}
db = Db4o. OpenFil e(Util . YapFil eNane);
try
{

nj ect Set result = db. Get(typeof (LocalizedltenList));
while (result.HasNext())

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Local i zedl tenli st LocalizedltenList =
(Localizedltemnlist)result.Next();

System Consol e. WiteLi ne("RETRI EVED: {0}",
Local i zedl t enli st) ;

db. Del et e(Local i zedl t enli st);

}
}
finally
{
db. d ose();
}

Let's verify that both approaches to object reinstantiation will fail for this class.

12.1.1. Using the constructor

[tryStoreWthCal |l Constructors]
Db4o. Configure(). Excepti onsOnNot St or abl e(true);
Db4o. Configure(). Obj ect d ass(typeof (Cul turel nfo))

.Cal | Constructor(true);
TrySt oreAndRet ri eve();

At storage time, db4o tests the only available constructor with null arguments and

runs into a NullPointerException, so it refuses to accept our object.

(Note that this test only occurs when configured with exceptionsOnNotStorable -
otherwise db4o will silently fail when trying to reinstantiate the object.)

12.1.2. Bypassing the constructor

[tryStoreWthout Cal | Constructors]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Db4o. Configure(). Obj ectd ass(typeof (Cul turel nfo))
.Cal | Constructor(fal se);
/1 trying to store objects that hold onto
/1 systemresources can be pretty nasty
/1 uncoment the following line to see
/1 how nasty it can be

[/ TrySt oreAndRetri eve();

This still does not work for our case because the native pointer will definetely be

invalid. In fact this example crashes the Common Language Runtime.

12.2. The Translator API

So how do we get our object into the database, now that everything seems to fail? Db4o
provides a way to specify a custom way of storing and retrieving objects through the
ObjectTranslator and ObjectConstructor interfaces.

12.2.1. ObjectTranslator

The ObjectTranslator API looks like this:

public Object onStore(ObjectContainer container,
nj ect applicationObject);
public void onActivate(Obj ect Cont ai ner cont ai ner,
nj ect applicationOject,
nj ect storednject);

public d ass storedd ass ();

The usage is quite simple: When a translator is configured for a class, db4o will call
its onStore method with a reference to the database and the instance to be stored as a
parameter and will store the object returned. This object's type has to be primitive
from a db4o point of view and it has to match the type specification returned by
storedClass().

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

On retrieval, db4o will create a blank object of the target class (using the configured
instantiation method) and then pass it on to onActivate() along with the stored object

to be set up accordingly.

12.2.2. ObjectConstructor

However, this will only work if the application object's class provides some way to
recreate its state from the information contained in the stored object, which is not

the case for CultureInfo.

For these cases db4o provides an extension to the ObjectTranslator interface,

ObjectConstructor, which declares one additional method:

public Object onlnstantiate(ObjectContainer container,

nj ect storednject);

If db4o detects a configured translator to be an ObjectConstructor implementation, it
will pass the stored class instance to the onInstantiate() method and use the result as

a blank application object to be processed by onActivate().

Note that, while in general configured translators are applied to subclasses, too,
ObjectConstructor application object instantiation will not be used for subclasses
(which wouldn't make much sense, anyway), so ObjectConstructors have to be configured

for the concrete classes.
12.3. A translator implementation
To translate CultureInfo instances, we will store only their name since this is enough

to recreate them later. Note that we don't have to do any work in onActivate(), since

object reinstantiation is already fully completed in onInstantiate().

usi ng System d obal i zati on
usi ng com db4o;

usi ng com db4o. confi g;

nanespace com db4o.f1.chapter6

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public class CulturelnfoTransl ator : bject Constructor

{

public object OnStore(ObjectContainer container, object
appl i cati onCbj ect)
{
System Consol e. WiteLine("onStore for {0}",
appl i cati onbj ect) ;
return ((Cul turel nfo)applicati onCbject). Namne;

public object Onlnstantiate(ObjectContainer container, object

st oredQbj ect)
{

System Consol e. WiteLine("onlnstantiate for {0}",
st oredObj ect) ;
string nane = (string)storedject;

return Cul turel nfo. CreateSpecificCulture(nane);

public void OnActivat e(Obj ect Cont ai ner contai ner, object

appl i cati onCbj ect, object storedCbject)

{
System Consol e. WiteLi ne("onActivate for {0}/{1}",

appl i cati onCbj ect, storedObject);
}

public j4o.lang.C ass Storedd ass()

{
return j4o.1ang. C ass. Get A assFor Type(typeof (string));

Let's try it out:

[storeWthTransl at or]

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Db4o. Confi gure() . Ooj ect d ass(typeof (Cul turelnfo))
. Transl at e(new Cul turel nfoTransl ator());
TrySt oreAndRetri eve();
Db4o. Confi gure() . Ooj ect d ass(typeof (Cul turelnfo))
.Transl ate(null);

12.4. Conclusion

For classes that cannot cleanly be stored and retrieved with db4o's standard object
instantiation mechanisms, db4o provides an API to specify custom reinstantiation
strategies. These also come in two flavors: ObjectTranslators let you reconfigure the
state of a 'blank' application object reinstantiated by db4o, ObjectConstructors also

take care of instantiating the application object itself.

12.5. Full source

usi ng System
usi ng System d obal i zati on;
usi ng com db4o;

usi ng com db4o. f 1;

nanmespace com db4o.f1.chapter6

{

public class Transl atorExanple : Uti

{
public static void Main(string[] args)

{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

TryStoreWthCal | Constructors();
TrySt oreW t hout Cal | Constructors();
StoreWt hTransl ator();

public static void TryStoreWthCal |l Constructors()

{
Db4o. Configure(). Excepti onsOnNot St or abl e(true);
Db4o. Configure(). Obj ectd ass(typeof (Cul turel nfo))
. Cal | Constructor(true);
TrySt oreAndRetri eve();
}

public static void TryStoreWthoutCal |l Constructors()

{
Db4o. Configure(). Obj ectd ass(typeof (Cul turel nfo))
.Cal | Constructor(false);
/1 trying to store objects that hold onto
/1 systemresources can be pretty nasty
/1 uncoment the following line to see
/1 how nasty it can be
/1 TrySt oreAndRetri eve();
}

public static void StoreWthTransl at or ()

{
Db4o. Configure(). Objectd ass(typeof (Cul turel nfo))
. Transl at e(new Cul turel nfoTransl ator());
TrySt oreAndRetri eve();
Db4o. Configure(). Objectd ass(typeof (Cul turel nfo))
.Transl ate(nul 1) ;
}

public static void TryStoreAndRetrieve()

nj ect Cont ai ner db = Db4o. OpenFil e(Util . YapFil eNane) ;
try
{

string[] chanps = new string[] { "Ayrton Senna",
“"Nel son Piquet" };

Local i zedl tenLi st Local i zedltenli st = new

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Local i zedl t emli st (Cul t urel nf o. Creat eSpeci fi cCul ture("pt-BR"),
chanps) ;

System Consol e. WiteLine("ORI G NAL: {0}",
Local i zedl t enli st) ;

db. Set (Local i zedl tenLi st);

}
catch (Exception x)
{
Syst em Consol e. Wit eLi ne(x);
return;
}
finally
{
db. d ose();
}
db = Db4o. OpenFil e(Util . YapFil eNane);
try
{

nj ect Set result = db. Get(typeof (LocalizedltenList));
while (result.HasNext())
{
Local i zedl tenli st LocalizedltenList =
(Localizedltemnlist)result.Next();
System Consol e. Wi teLi ne("RETRI EVED: {0}",
Local i zedl t enii st) ;
db. Del et e(Local i zedl t enli st);

}
}
finally
{
db. d ose();
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

13. Configuration

db4o provides a wide range of configuration methods to request special behaviour. For a
complete list of all available methods see the API documentation for the

com.db4o.config package/namespace.
Some hints around using configuration calls:

13.1. Scope
Configuration calls can be issued to a global VM-wide configuration context with

Db4o. confi gure()

and to an open ObjectContainer/ObjectServer with

obj ect Cont ai ner. ext (). confi gure()

obj ect Server. ext (). configure()

When an ObjectContainer/ObjectServer is opened, the global configuration context is
cloned and copied into the newly opened ObjectContainer/ObjectServer. Subsequent calls
against the global context with Db4o.configure() have no effect on open

ObjectContainers/ObjectServers.

13.2. Calling Methods
Many configuration methods have to be called before an ObjectContainer/ObjectServer is
opened and will be ignored if they are called against open

ObjectContainers/ObjectServers. Some examples:

Configuration conf = Db4o.configure();
conf . obj ect Cl ass(Foo. cl ass) . obj ect Fi el d("bar").i ndexed(true);
conf . obj ect O ass(Foo. cl ass) . cascadeOnUpdat e() ;
conf. obj ect O ass(Foo. cl ass) . cascadeOnDel et e();
conf . obj ect Cl ass(typeof (System Draw ng. | mage))
.transl ate(new TSeri alizable());
conf . gener at eUUl Ds(| nt eger. MAX_VALUE) ;
conf . gener at eVer si onNunber s(I nt eger. MAX_VALUE) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

conf . aut omat i cShut Down(f al se) ;
conf .| ockDat abaseFi | e(fal se);
conf. singl eThreadedd i ent (true);

conf . weakRef er ences(fal se);

Configurations that influence the database file format will have to take place, before

a database is created, before the first #openXXX() call. Some examples:

Configuration conf = Db4o.configure();
conf. bl ockSi ze(8) ;

conf.encrypt(true);

conf . passwor d("your Encrypti onPasswor dHer e") ;

conf . uni code(f al se);

Configuration settings are not stored in db4o database files. Accordingly all
configuration methods have to be called every time before an
ObjectContainer/ObjectServer is opened. For using db4o in client/server mode it is
recommended to use the same global configuration on the server and on the client. To
set this up nicely it makes sense to create one application class with one method that
does all the db4o configuration and to deploy this class both to the server and to all

clients.

Further reading

Some configuration switches are discussed in more detail in the following chapters:
-Tuning

-Indexes

-Encryption

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Tuning
#Indexes
#Encryption

14. Indexes

db4o allows to index fields to provide maximum querying performance. To request an
index to be created, you would issue the following API method call in your global

db4o configuration method before you open an ObjectContainer/ObjectServer:

/1 assum ng
cl ass Foo{

String bar;

Db4o. configure(). obj ectd ass(Foo. cl ass).objectField("bar").indexed(tr

ue) ;

If the configuration is set in this way, an index on the Foo#bar field will be created
(if not present already) the next time you open an
ObjectContainer/ObjectServer and you use the Foo class the first time

in your applcation.
Contrary to all other configuration calls indexes - once created - will remain in a
database even if the index configuration call is not issued before opening an

ObjectContainer/ObjectServer.

To drop an index you would also issue a configuration call in your db4o configuration
method:

Db4o. configure(). objectd ass(Foo. cl ass) . objectField("bar").indexed(fa

I se);

Actually dropping the index will take place the next time the respective class is used.

db4o will tell you when it creates and drops indexes, if you choose a message level of
1 or higher:

Db4o. configure(). messagelLevel (1);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Configuration
#Configuration

For creating and dropping indexes on large amounts of objects there are two possible
strategies:

(1) Import all objects with indexing off, configure the index and reopen the
ObjectContainer/ObjectServer.

(2) Import all objects with indexing turned on and commit regularly for a fixed amount
of objects (~10,000).

(1) will be faster.

(2) will keep memory consumption lower.
Further reading

To improve performance even further, consider reading about some of the Tuning options

discussed elsewhere in this tutorial.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Tuning

15. IDs

The db4o team recommends, not to use object IDs where this is not necessary. db4o keeps
track of object identities in a transparent way, by identifying "known" objects on
updates. The reference system also makes sure that every persistent object is
instantiated only once, when a graph of objects is retrieved from the database, no
matter which access path is chosen. If an object is accessed by multiple queries or by
multiple navigation access paths, db4o will always return the one single object,
helping you to put your object graph together exactly the same way as it was when it
was stored, without having to use IDs.

The use of IDs does make sense when object and database are disconnected, for instance
in stateless applications.

db4o provides two types of ID systems.
15.1. Internal IDs
The internal db4o ID is a physical pointer into the database with only one indirection

in the file to the actual object so it is the fastest external access to an object db4o

provides. The internal ID of an object is available with

obj ect Cont ai ner. ext (). getl D(obj ect);

To get an object for an internal ID use

obj ect Cont ai ner. ext (). getByl D(id);

Note that #getByID() does not activate objects. If you want to work with objects that
you get with #getByID(), your code would have to make sure the object is activated by
calling

obj ect Cont ai ner. acti vat e(obj ect, depth);

db4o assigns internal IDs to any stored first class object. These internal IDs are
guaranteed to be unique within one ObjectContainer/ObjectServer and they will stay the

same for every object when an ObjectContainer/ObjectServer is closed and reopened.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Activation

Internal IDs will change when an object is moved from one ObjectContainer to another,

as it happens during Defragment .

15.2. Unique Universal IDs (UUIDs)

For long term external references and to identify an object even after it has been
copied or moved to another ObjectContainer, db4o supplies UUIDs. These UUIDs are not
generated by default, since they occupy some space and consume some performance for

maintaining their index. UUIDs can be turned on globally or for individual classes:

Db4o. configure(). generateUU Ds(Integer. MAX VALUE) ;
Db4o. configure(). objectd ass(typeof (Foo)).generateUUl Ds(true);

The respective methods for working with UUIDs are:

Ext Obj ect Cont ai ner #get Obj ect | nf o(Cbj ect)
nj ect | nf o#get UUI () ;
Ext Qbj ect Cont ai ner #get By UUl D(Db4oUUI D) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Defragment

16. Callbacks

Callback methods are automatically called on persistent objects by db4o during certain

database events.

For a complete list of the signatures of all available methods see the

com.db4o.ext.0ObjectCallbacks interface.

You do not have to implement this interface. db4o recognizes the presence of individual
methods by their signature, using reflection. You can simply add one or more of the

methods to your persistent classes and they will be called.

Returning false to the #objectCanXxxx() methods will prevent the current action from

being taken.

In a client/server environment callback methods will be called on the client with two
exceptions:
objectOnDelete(), objectCanDelete()

Some possible usecases for callback methods:

- setting default values after refactorings

- checking object integrity before storing objects

- setting transient fields

- restoring connected state (of GUI, files, connections)
- cascading activation

- cascading updates

- creating special indexes

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

17. Classloader issues

Db4o needs to know its own classes, of course, and it needs to know the class

definitions of the objects it stores. (In Client/Server mode, both the server and the
clients need access to the class definitions.) While this usually is a non-issue with
self-contained standalone applications, it can become tricky to ensure this condition
when working with plugin frameworks, where one might want to deploy db4o as a shared

library for multiple plugins, for example.

17.1. Classloader basics

Classloaders are organized in a tree structure, where classloaders deeper down the tree
(usually) delegate requests to their parent classloaders and thereby 'share' their

parent's knowledge.

A typical situation might look like this:

. ancther LL T
- knows dbdo only
Thread ContextCL
frmay be any mﬁ*ﬂflﬁaﬂﬁﬁ': 7= Plugin CL 1 Plugin CL 2
i i
i ' '
rull knows dbdo + plugin 1 knows dbdo + plugin 2

An in-depth explanation of the workings of classloaders is beyond the scope of this

tutorial, of course. Starting points might be found here:

http://www.javaworld.com/javaworld/javaga/2003-06/01-qa-0606-1oad.html

http://java.sun.com/developer/technicalArticles/Networking/classloaders/

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

17.2. Configuration

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html
http://java.sun.com/developer/technicalArticles/Networking/classloaders/
http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

Db4o can be configured to use a user-defined classloader.

Db4o. configure().reflect Wt h(new JdkRef | ect or (cl assl oader));

This line will configure db4o to use the provided classloader. Note that, as with most
db4o configuration options, this configuration will have to occur before the respective

database has been opened.

The usual ways of getting a classloader reference are:

- Using the classloader the class containing the currently executed code was loaded
from. (this.getClass().getClassLoader())

- Using the classloader db4o was loaded from. (Db4o.class.getClassLoader())

- Using the classloader your domain classes were loaded from. (
SomeDomainClass.class.getClassLoader())

- Using the context classloader that may have been arbitrarily set by the execution

environment. (Thread.currentThread().getContextClassLoader()).

To choose the right classloader to use, you have to be aware of the classloader
hierarchy of your specific execution environment. As a rule of thumb, one should
configure db4o to use a classloader as deep/specialized in the tree as possible. In the
above example this would be the classloader of the plugin db4o is supposed to work
with.

17.3. Typical Environments

In your average standalone program you'll probably never have to face these problems,
but there are standard framework classics that'll force you to think about these

issues.

17.3.1. Servlet container

In a typical servlet container, there will be one or more classloader responsible for
internal container classes and shared libraries, and one dedicated classloader per
deployed web application. If you deploy db4o within your web application, there should
be no problem at all. When used as a shared library db4o has to be configured to use

the dedicated web application classloader. This can be done by assigning the

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

classloader of a class that's present in the web application only, or by using the
context classloader, since all servlet container implementations we are aware of will

set it accordingly.

You will find more detailed information on classloader handling in Tomcat, the

reference servlet container implementation, here:

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/class-loader-howto.html

17.3.2. Eclipse

Eclipse uses the system classloader to retrieve its core classes. There is one
dedicated classloader per plugin, and the classloader delegation tree will resemble the
plugin dependency tree. The context classloader will usually be the system classloader
that knows nothing about db4o and your business classes. So the best candidate is the

classloader for one of your domain classes within the plugin.

17.4. Running without classes

Recently db4o has started to learn to cope with missing class definitions. This is a
by-product of the work on our object manager application. However, this feature is
still quite restricted (read-only mode, etc.), incomplete and is under heavy
development. If you like to play with this feature and help us with your feedback to
enhance it, you are welcome, but we strongly recommend not to try to use this for

production code of any kind.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://jakarta.apache.org/tomcat/tomcat-4.1-doc/class-loader-howto.html
#ObjectManager

18. Servlets

Running db4o as the persistence layer of a Java web application is easy. There is no
installation procedure - db4o is just another library in your application. There are
only two issues that make web applications distinct from standalone programs from a
db4o point of view. One is the more complex classloader environment - db4o needs to
know itself (of course) and the classes to be persisted. Please refer to the

classloader chapter for more information.

The other issue is configuring, starting and shutting down the db4o server correctly.
This can be done at the servlet API layer or within the web application framework you

are using.

On the servlet API layer, you could bind db4o server handling to the servlet context

via an appropriate listener. A very basic sketch might look like this:

public class Db4oServl et Cont ext Li st ener
i mpl enents Servl et Cont ext Li st ener {
public static final String KEY_DB40O FILE NAME = "db4oFi | eNanme";
public static final String KEY_DB40O SERVER = "db4oServer";

private Object Server server=nul |

public void contextlnitialized(ServletContextEvent event) ({
cl ose();
Servl et Cont ext cont ext =event . get Ser vl et Cont ext () ;
String fil ePat h=cont ext. get Real Pat h(
"V\EB- | NF/ db/ " +cont ext . get | ni t Par anet er (KEY_DB40O FI LE_NAME)) ;
server =Db40. openServer (fil ePat h, 0);
context.set Attri but e(KEY_DB40O SERVER, server) ;
context.l og("db4o startup on "+fil ePath);

public void contextDestroyed(Servl et Cont ext Event event) {

Servl et Cont ext context = event.get Servl et Cont ext () ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Classloader

cont ext.renmoveAttri but e(KEY_DB40O SERVER) ;
cl ose();

cont ext .| og("db4o shutdown");

private void close() {
i f(server!=null) {
server.close();

}

server =nul |

This listener just has to be registered in the web.xml.

<cont ext - par an»
<par am nanme>db4oFi | eNane</ par am nane>
<par am val ue>db4oweb. yap</ par am val ue>
</ cont ext - par anp
<li stener>
<listener-cl ass>
com db4o. sanpl e. web. Db4oSer vl et Cont ext Li st ener
</listener-class>

</l|istener>

Now db4o should be available to your application classes.

nj ect Server server=

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

(Obj ect Server) context.getAttribute("db4oServer");

A more complex and 'old school' example without using context listeners comes with the
samples section of the db4o3 distribution that's still available from our web site.

However, We strongly suggest that you use the features provided by your framework and
that you consider not exposing db4o directly to your application logic. (There is
nothing db4o-specific about these recommendentations, we would vote for this in the
presence of any persistence layer.)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

19. Encryption

db4o provides built-in encryption functionality. This feature is easy to turn on or

off, and must be configured before opening a database file.

db4o currently provides two different encryption algorithms, in in addition to

providing the ability for you to plug in your own encrypting IO Adapters.

19.1. eXtended Tiny Encryption Algorithm

The first included encryption algorithm is XTEA (eXtended Tiny Encryption Algorithm).
We have choosen XTEA because this block cipher operates on a 64-bit block size with a
128-bit key. This is an extremely tiny but very fast (with cycles less than 32 rounds)
encryption algorithm. It is supposed to be as secure as DES or IDEA. Since cryptography
is beyond the scope of this tutorial you can find further information about XTEA here:
http://en.wikipedia.org/wiki/XTEA

In order to encipher your data just perform the following steps:

1 Ensure you have downloaded at least db4o Version 5.1. This is the first version
which includes the XTeaEncryptionFileAdapter (the encryption IoAdapter plug-in for db4o

file I0 that realizes XTEA).

2) Configure db4o to add this encryption mechanism:

Db4o. configure ().io(new XTeaEncryptionFil eAdapt er (password));

This is the simplest way to add the encryption adapter. But the

XTEAEncryptionFileAdapter can also wrap other custom IoAdapters to use:

Db4o. configure ().io(new XTeaEncryptionFil eAdapt er (new
nyl oAdapt er (), "password")) ;

3) Choose your own password and number of cycles. The security of XTEA can be

enhanced by increasing the number of iterations. There are four possible values:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://en.wikipedia.org/wiki/XTEA

- 8 rounds guarantee highest speed of db4o and lowest security (iterations =
XTEA.ITERATIONSS).

- 16 rounds assure high speed of db4o and sufficient security in the same time
(iterations = XTEA.ITERATIONS16).

- 32 rounds are ample for most applications, this is the default value (iterations =
XTEA.ITERATIONS32).

- 64 rounds achieve the best security but db4o will be about 20 per cent slower then
without encryption (iterations = XTEA.ITERATIONS64).

Db4o. configure ().io(new XTeaEncryptionFil eAdapt er(password,

iteraions));

Or, if you wish to use your own IoAdapter:

Db4o. configure ().io(new XTeaEncryptionFil eAdapt er (new nyl oAdapter (),

password, iteraions));

Keep in mind that all configurations must be set before opening the ObjectContainer.

Note that there are some limitations you should keep in mind:

There is no possibility of changing the password on an existing file. You will not be
able to access your data if you lose the password. Thus please keep your key! And make
sure that you always use the same password when subsequently opening your encrypted
files. You can, however open a new file with a different password and replicate (or

defragment) your objects from one database to the other.

Feel free to use XTeaEncryptionFileAdapter for your own purposes. You may modify the
class XTEA (which implement the XTEA encryption algorithm) and KeyGenerator (for key
generation), and replace them with other algorithms if you like. Feel free to post
your own IoAdapters to thedb4o Community Fourm.

19.2. Built-In Simple Encryption

The other encryption methods built-into db4o, is called simple encryption. To use it,

the following two methods have to be called, before a database file is created:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Replication
#Defragment
http://forums.db4o.com/forums

Db4o. configure().encrypt(true);

Db4o. configure(). password("your Encrypti onPasswor dHere") ;

The security standard of the built-in encryption functionality is not very high, not
much more advanced than "substract 5 from every byte". This is great for systems with

limited resources, or where the encryption needs to be done as quickly as possible.

19.3. Custom Encryption Adapters

db4o still provides a solution for high-security encryption by allowing any user to
choose his own encryption mechanism that he thinks he needs. The db4o file I0 mechanism
is pluggable and any fixed-length encryption mechanism can be added. All that needs to
be done is to write an IoAdapter plugin for db4o file IO.

This is a lot easier than it sounds. Simply:

- take the sources of com.db4o.io.RandomAccessFileAdapter as an example

- write your own IoAdapter implementation that delegates raw file access to another
adapter using the GoF decorator pattern.

- Implement the #read() and #write() methods to encrypt and decrypt when bytes are
being exchanged with the file

- plug your adapter into db4o with the following method:

Db4o. configure().io(new M/Encrypti onAdapter());

However, you'll have to keep in mind that db4o will write partial udates. For example,
it may write a full object and then only modify one field entry later one. Therefore it
is not sufficient to en-/decrypt each access in isolation. You'll rather have to make
up a tiling structure that defines the data chunks that have to be en-/decrypted
together.

Another method to inject encryption capabilities into db4o for instances of specific

classes only is to implement and configure an en-/decrypting translator.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

20. Refactoring and "Schema Evolution"
20.1. Introduction

By Refactoring, we mean anything that will change the shape of the class as it is
stored on the disk. In the context of other databases (where the database structure is

said to be a "Schema"), refactoring is also called Schema Evolution.
20.2. What db4objects does today automatically or easily

Db4o automaticaly handles the most common refactoring or schema evolution changes for

you.

- Changing the interface or API to a class
- Adding a field

- Removing a field
In addition, Db4o can rename classes and fields simply:

- Db4o.configure().objectClass("package.class").rename(" 'newPackage.newClass");
Db4o.configure().objectClass("package.class").objectField("oldField").rename("newField"
);

If you modify a field's type, db4o will internally create a new field of the same name,
but with the new type. The values of the old typed field will still be present, but be
hidden. If you change the type back to the old type the old values will still be

there.
20.3. What is not yet automated

If you want to move a class to a new place in the inheritence hierarchy, you will need

to follow the following procedure:

Create the new class in the proper location using a temporary name

Write manual code to create objects of the new class from the old ones

Delete the old objects

Run Defragment

Rename the temporary class name back to the correct name

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

21. Tuning

The following is an overview over possible tuning switches that can be set when working
with db4o. Users that do not care about performance may like to read this chapter also
because it provides a side glance at db4o features with Alternate Strategies and some

insight on how db4o works.

21.1. Enable Field Indexes
The fastest way to improve the performance of your queries is to enable indexing on

some of your class's key fields. Indexing is discussedelsewherein this tutorial.

21.2. Discarding Free Space

Db4o. configure(). di scardFreeSpace(byt eCount) ;

Recommended settings for byteCount:

- Integer.MAX VALUE will turn freespace management off
- Moderate range: 10 to 50

- Default built-in setting: 0

Advantage
will reduce the RAM memory overhead and the speed loss from maintaining the freespace

lists.

Effect

When objects are updated or deleted, the space previously occupied in the database file
is marked as "free", so it can be reused. db4o maintains two lists in RAM, sorted by
address and by size. Adjacent entries are merged. After a large number of updates or
deletes have been executed, the lists can become large, causing RAM consumption and
performance loss for maintenance. With this method you can specify an upper bound for

the byte slot size to discard.

Alternate Strategies

Regular defragment will also keep the number of free space slots small. See:

com db4o. t ool s. Def r agnment

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Indexes

(supplied as source code insrc/com/db4o/tools)
If defragment can be frequently run, it will also reclaim lost space and decrease the
database file to the minimum size. Therefore #discardFreeSpace() may be a good tuning

mechanism for setups with frequent defragment runs.

21.3. Calling constructors

Db4o. configure().call Constructors(true);

Advantage

will configure db4o to use constructors to instantiate objects.

Effect

On VMs where this is supported (Sun Java VM > 1.4, .NET, Mono) db4o tries to create
instances of objects without calling a constructor. On Java VMs db4o is using
reflection for this feature so this may be considerably slower than using a
constructor. For the best performance on Java it is recommended to add a public zero-
parameter constructor to every persistent class and to turn constructors on. Benchmarks
on .NET have shown that the default

setting (#callConstructors(false)) is faster.

Alternate Strategies

Constructors can also be turned on for individual classes only with

Db4o. configure(). obj ectd ass(Foo. cl ass).call Constructor(true);

There are some classes (e.g. java.util.Calendar) that require a constructor to be

called to work. Further details can be found in the chapter on Constructors.

21.4. Turning Off Weak References

Db4o. configure().weakRef erences(fal se);

Advantage

will configure db4o to use hard direct references instead of weak references to control

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Constructors

instantiated and stored objects.

Effect

A db4o database keeps a reference to all persistent objects that are currently held in
RAM, whether they were stored to the database in this session or instantiated from the
database in this session. This is how db4o can "know" than an object is to be updated:
Any "known" object must be an update, any "unknown" object will be stored as "new".
(Note that the reference system will only be in place as long as an ObjectContainer is
open. Closing and reopening an ObjectContainer will clean the references system of the
ObjectContainer and all objects in RAM will be treated as "new" afterwards.) In the
default configuration db4o uses weak references and a dedicated thread to clean them up
after objects have been garbage collected by the VM. Weak references need extra
ressources and the cleanup thread will have a considerable impact on performance since
it has to be synchronized with the normal operations within the ObjectContainer.
Turning off weak references will improve speed.

The downside: To prevent memory consumption from growing consistantly, the application
has to take care of removing unused objects from the db4o reference system by itself.

This can be done by calling

Ext Qbj ect Cont ai ner . pur ge(obj ect) ;

Alternate Strategies

Ext Qbj ect Cont ai ner . pur ge(obj ect) ;

can also be called in normal weak reference operation mode to remove an object from the
reference cache. This will help to keep the reference tree as small as possible. After
calling #purge(object) an object will be unknown to the ObjectContainer so this feature

is also suitable for batch inserts.

21.5. Defragment

new Defragnent (). run("db. yap", delete);

Advantage

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

It is recommended to run Defragment frequently to reduce the database file size and to

remove unused fields and freespace slots.

Effect

db4o does not discard fields from the database file that are no longer being used.
Within the database file quite a lot of space is used for transactional processing.
Objects are always written to a new slot when they are modified. Deleted objects
continue to occupy 8 bytes until the next Defragment run. Defragment cleans all this up
by writing all objects to a completely new database file. The resulting file will be

smaller and faster.

Alternate Strategies

Instead of deleting objects it can be an option to mark objects as deleted with a
"deleted" boolean field and to clean them out (by not copying them to the new database
file) during the Defragment run. Two advantages: (1) Deleted objects can be restored.
(2) In case there are multiple references to a deleted object, none of them would point
to null. To clean out objects during the Defragment run, the Defragment source code
would have to be modified. com.db4o.tools.Defragment is only supplied as source code to

encourage embedding maintenance tasks.

21.6. No Shutdown Thread

Db4o. configure(). aut omati cShut Down(fal se);

Advantage

can prevent the creation of a shutdown thread on some platforms.

Effect

On some platforms db4o uses a ShutDownHook to cleanly close all database files upon
system termination. If a system is terminated without calling ObjectContainer#close()
for all open ObjectContainers, these ObjectContainers will still be usable but they
will not be able to write back their freespace management system back to the database

file. Accordingly database files will be observed to grow.

Alternate Strategies

Database files can be reduced to their minimal size with

com db4o. t ool s. Def r agnment

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

(supplied as source code in /src/com/db4o/tools)

21.7. No callbacks

Db4o. configure().call backs(fal se);

Advantage
will prevent db4o from looking for callback methods in all persistent classes on system

startup.

Effect

Upon system startup, db4o will scan all persistent classes for methods with the same
signature as the methods defined in com.db4o.ext.ObjectCallbacks, even if the interface
is not implemented. db4o uses reflection to do so and on constrained environments this
can consume quite a bit of time. If callback methods are not used by the application,

callbacks can be turned off safely.

Alternate Strategies
Class configuration features are a good alternative to callbacks. The most recommended

mechanism to cascade updates is:

Db4o. configure(). obj ectd ass("your Package. your d ass"). cascadeOnUpdat e
(true);

21.8. No schema changes

Db4o. configure(). det ect SchemaChanges(fal se);

Advantage
will prevent db4o from analysing the class structure upon opening a database file.

Effect
Upon system startup, db4o will use reflection to scan the structure of all persistent

classes. This process can take some time, if a large number of classes are present in

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

the database file. For the best possible startup performance on "warm" database files

(all classes already analyzed in a previous startup), this feature can be turned off.

Alternate Strategies
Instead of using one database file to store a huge and complex class structure, a
system may be more flexible and faster, if multiple database files are used. In a

client/server setup, database files can also be switched from the client side with

((Extdient)obj ect Container).swtchToFil e(dat abaseFil e);

21.9. No lock file thread

Db4o. configure() .l ockDat abaseFi | e(fal se);

Advantage
will prevent the creation of a lock file thread on Java platforms without NIO (< JDK
1.4.1).

Effect

If file locking is not available on the system, db4o will regularily write a timestamp
lock information to the database file, to prevent other VM sessions from accessing the
database file at the same time. Uncontrolled concurrent access would inevitably lead to
corruption of the database file. If the application ensures that it can not be started

multiple times against the database file, db4o file locking may not be necessary.

Alternate Strategies
Database files can safely be opened from multiple sessions in readonly

mode. Use:

Db4o. configure().readOnl y(true)

21.10. No test instances

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Db4o. configure().testConstructors(fal se);

Advantage
will prevent db4o from creating a test instance of persistent classes upon opening a

database file.

Effect

Upon system startup, db4o attempts to create a test instance of all persistent classes,
to ensure that a public zero-parameter constructor is present. This process can take
some time, if a large number of classes are present in the database file. For the best

possible startup performance this feature can be turned off.

Alternate Strategies

In any case it's always good practice to create a zero-parameter constructor. If this
is not possible because a class from a third party is used, it may be a good idea to
write a translator that translates the third party class to one's own class. The
dowload comes with the source code of the preconfigured translators in
src/com/db4o/samples/translators.

The default configuration can be found in the above folder in the file

Default. java/Default.cs

Take a look at the way the built-in translators work to get an idea how to write a
translator. It just requires implementing 3 (4 for ObjectConstructors) methods and

configuring db4o to use a translator on startup with

Db4o. configure(). objectd ass("yourPackage. yourd ass").transl ate()

21.11. Increasing the maximum database file size

Db4o. configure(). bl ockSi ze(newBl ockSi ze) ;
Def ragment . mai n(new String[] {"nydb.yap"});

Advantage

Increasing the block size from the default of 1 to a higher value permits you to store

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

more data in a db4o database.

Effect

By default db4o databases can have a maximum size of 2GB. By increasing the block size
that db4o should internally use, the upper limit for database files sizes can be raised
to multiples of 2GB. Any value between 1 byte (2GB) to 127 bytes (254GB) can be chosen

as the block size.

Because of possible padding for objects that are not exact multiples in length of the
block size, database files will naturally tend to be bigger if a higher value is
chosen. Because of less file access cache hits a higher value will also have a negative

effect on performance.

A very good choice for this value is 8 bytes, because that corresponds to the slot

length of the pointers (address + length) that db4o internally uses.

Alternate Strategies
It can also be very efficient to use multiple ObjectContainers instead of one big one.

Objects can be freely moved, copied and replicated between Objectcontainers.

21.12. FlushFileBuffers(false)

Db4o. Configure(). FlushFil eBuf fers(fal se);

Advantage
Setting FlushFileBuffers to false can considerably improve the performance saving time

on physical disk access.

Effect
FlushFileBuffers setting is provided to ensure correct transaction flow in cases of
hardware, power or operating system failures.

ACID transaction is ensured when disc writes are fulfilled in the following order.

1 a list of "pointers that are to be modified" is written to the database file;
2) the database file is switched into "in-commit" mode;

3) the pointers are actually modified in the database file;

4) the database file is switched to "not-in-commit" mode.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Replication

2) “in-commit” 3) Modification of 4) "not-in-commit”
the database file mode

the commit is restarted when the database file is opened the next time,
all pointers will be read from the "pointers to be modified” list

and all of them will be modified to the state they are intended

to have after commit

The Configuration.FlushFileBuffers(true) setting ensures that after each stage of
commit process all the buffered data is written to the database file. The write process

is comparatively slow and can have a strong impact on performance.

Setting FlushFileBuffers(false) reduces the time spent on transaction commit. From the
other side this setting can be potentially dangerous on systems using in-memory file
caching. The buffer cache is usually used to improve writing performance. Instead of
carrying out all writes immediately, the kernel stores data temporally in the buffer
cache, waiting to see if it is possible to group several writes together. Cached file
changes can also be reversed. For example, if the same place in a file was changed

several times it is enough to write only the final change.

In case of transaction commit such cache management means that transaction data may be
lost. Lets consider the case when crash occurs on stage 2-4 and list of "pointers to be
modified" is still in cache (completely or partly). After the database file is reopened
the commit will be restarted using the list of pointers that is supposed to be written
to disc. But in fact we do not know, whether the list was written to disc completely or
part of it was still in cache and lost during restart, - so the database can be
corrupted.

Alternate Strategies
On operating systems that cache file access, this configuration has to be set to true

to ensure each step of transaction being written in order.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Db4o. Configure().FlushFil eBsuffers(true);

Otherwise file caching can be switched off in 0S settings.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

22. Native Query Optimization

Native Queries will run out of the box in any environment. If optimization is turned
on, Native Queries will be converted to SODA queries whenever possible, allowing db4o

to use indexes and optimized internal comparison algorithms.

If optimization is turned off or not possible for some reason, a Native Query will be
executed by instantiating all objects, using SODA Evaluations. Naturally performance

will not be as good in this case.

The Native Query optimizer is still under development to eventually "understand" all

valid C# constructs. Current optimization supports the following constructs well:

- compile-time constants

- simple member access

- primitive comparisons

- equality operator

- #Contains()/#StartsWith()/#EndsWith() for Strings

- boolean expressions

- arbitrary method calls (including property accessors) on predicate fields (without
any arguments)

- candidate methods composed of the above

- chained combinations of the above

This list will constantly grow with the latest versions of db4o.

Note that the current implementation doesn't support polymorphism yet.
22.1. Enabling Native Query optimization on the CompactFramework 2.0

Due to some platform limitations, CompactFramework 2.0 users using the more convenient
delegate based Native Query syntax that want their queries to be optimized are required
to run the Db4oAdmin.exe command line utility on their assemblies prior to deploying
them.

The utility which can be found in the /bin folder of this distribution is required
because the CompactFramework API does not expose any of the delegate metadata needed by
the Native Query optimizer. The tool works by augmenting the bytecode with the
necessary delegate metadata and replacing ObjectContainer#Query<Extent> invocations

with invocations to a lower level method that makes use of the additional information.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Evaluations

The tool can be easily integrated inside Visual Studio.NET 2005 as a Post Build tool
by following the simple steps below:

Right click the project you want to enable Native Query optimization for

Select'Properties’

In the Properties Page select the'Build Events'tab

In the'Post-build event command line'text box insert the following text "<path-to-
your-db4o-installation>/bin/Db4oAdmin.exe -cf2-delegates $(TargetPath)" without the
quotes and replacing <path-to-your-db4o-installation> to the correct value for your

system.

A complete example can be found in the /src/instrumentation/Db4oAdmin.Example

directory of this distribution.

22.2. Build Time Optimization for Native Queries

Db4oAdmin.exe can also be used to pre optimize the Native Queries in a given assembly.
This makes it possible to deploy an application without Db4oTools.dll (the assembly
where the Native Query runtime optimizer lives) while also possibly reducing Native

Query execution time by dropping runtime analysis completely.

Execute the Db4oAdmin.exe command line utility without any arguments and check out the

help information.

IMPORTANT: the tool is still in constant development and it currently does not support

pre optimization of Native Queries expressed as delegates.

22.3. Monitoring optimization

This feature still is quite basic but it will soon be improved. Currently you can only

attach event handlers to the ObjectContainer:

Nat i veQuer yHandl er handl er = ((YapStrean)db). Get Nati veQueryHandl er () ;
Nat i veQuer yHandl er handl er
((YapStream cont ai ner) . Get Nat i veQuer yHandl er () ;
handl er. Quer yExecuti on += OnQuer yExecuti on;

handl er. QueryQOpti m zati onFail ure += OnQueryOpti ni zati onFai | ure;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

23. Maintenance

db4o is designed to minimize maintenance tasks to the absolute minimum. The stored

class schema adapts to the application automatically as it is being developed. db4o
"understands" the addition and removal of fields which allows it to continue to work
against modified classes without having to reorganize the database file. Internally

db4o works with a superset of all class versions previously used.

However there are two recommended maintenance tasks, that can both be fully automated
remotely with API calls:

23.1. Defragment

Defragment creates a new database file and copies all objects from the current database
file to the new database file. All indexes are recreated. The resulting database file
will be smaller and faster.

com.db4o.tools.Defragment is only supplied as source code to encourage embedding
custom maintenance tasks on objects.

23.2. Backup

db4o supplies hot backup functionality to backup single-user databases and client-

server databases while they are running.

The respective API calls for backups are:

obj ect Cont ai ner. ext (). backup(String path)

obj ect Server. ext (). backup(String path)

The methods can be called while an ObjectContainer/ObjectServer is open and they will
execute with low priority in a dedicated thread, with as little impact on processing

performance as possible.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

It is recommended to backup the current development state of an application (ideally
source code and bytecode) along with the database files since the old code can make it

easier to work with the old data.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

24. Replication

db4o provides replication functionality to periodically synchronize databases that work
disconnected from eachother, such as remote autonomous servers or handheld devices

synchronizing with central servers.

In order to use replication, the following configuration settings have to be called

before a database file is created or opened:

Db4o. configure(). generateUU Ds(Integer. MAX VALUE) ;
Db4o. configure(). generat eVer si onNunber s(| nt eger. MAX_VALUE)

(See the section below on how to enable replication for existing databases)

Both settings can also be configured on a per-class basis:

Db4o. configure(). obj ectd ass(Foo. cl ass) . generat eUU Ds(true);

Db4o. configure(). obj ect d ass(Foo. cl ass) . gener at eVer si onNunber s(true);

Now suppose we have opened two ObjectContainers from two different databases called

"handheld" and "desktop', that we want to replicate. This is how we do it:

Repl i cati onProcess replication =
deskt op. ext (). replicati onBegi n(handhel d, new
Repl i cati onConflictHandl er() ({
public Object resol veConflict(

Repl i cati onProcess replicationProcess,

hj ect a,

nj ect b) {

return a;

1)

replication.setDirection(desktop, handhel d);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#ReplicatingExisting

For conflict resolution the ObjectContainer on which replicationBegin() was called, is
treated as container "A", the other one is container "B". Both ObjectContainers are

treated equally in all other respects.

db4o replication is bi-directional by default. The setDirection() call above is used
to ensure that changes will only be replicated from the "desktop” to the "handheld".

In that case, replication is said to be "directed".

A conflict occurs when an object to be replicated has been modified in both
ObjectContainers. db4o cannot arbitrarily pick one side, so the
ReplicationConflictHandler we passed is called to resolve the conflict. If the
ReplicationConflictHandler returns null, no changes are replicated. In the case of
directed replication, such as our example above, a conflict also occurs when an object
has been modified only in the destination container. In our example, the
ReplicationConflictHandler always determines that the object from container "A"
(desktop) will "win" the conflict, thus overriding any changes made in container "B"
(handheld).

Do all objects always get replicated? No. How do we decide which objects get

replicated? Like this:

Query q = desktop. query();

replication. wherehodi fied(q);

nj ect Set replicationSet = qg.execute();
while (replicationSet.hasNext()) {

replication.replicate(replicationSet.next());

}

replication.commt();

That's all there is to it.

We are using a query that will return all objects but we could use any query we like to

constrain the objects we want.
Calling whereModified() will add a constraint to the query so that it only returns the

objects that have actually been modified since the last replication between both the

containers in question.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

After replication commit, all modified objects (INCLUDING THE ONES THAT WERE NOT
REPLICATED) are considered to be "in sync" and will not show up in future "where

modified" queries, unless they are modified again.

24.1. Under the Hood

Let's take a look at the necessary configuration calls to tell db4o to generate

version numbers and UUIDs:

(1) An object's version number indicates the last time an object was modified. It is
the database version at the moment of the modification. The database version starts at

zero and is incremented every time a transaction is commited.

(2) UUIDs are object IDs that are unique across all databases created with db4o. That
is achieved by having the database's creation timestamp as part of its objects' UUIDs.

Manually copying db4o database files can produce duplicate UUIDs, of course.

When the replication process is commited, the lowest database version number among both
databases is set to be equal to the highest. After replication commit, therefore, both

databases have the same version number and are "in sync".

24.2. Replicating Existing Data Files

As we learned in the last sections, Db4o.configure().generateUUIDs() and
Db4o.configure().generateVersionNumbers() (or its objectClass counterparts) must be
called before storing any objects to a data file because db4o replication needs object
versions and UUIDs to work. This implies that objects in existing data files stored

without the correct settings can't be replicated.
Fortunately enabling replication for existing data files is a very simple process:

We just need to use the Defragment tool in com.db4o.tools (source code only) after

enabling replication:

Db4o. configure(). obj ect d ass(Task. cl ass). enabl eReplication(true);

new Defragnment (). run(currentFil eName(), true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

After a successful defragmentation our data files are ready for replication.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

25. Semaphores

db4o Semaphores are named flags that can only be owned by one client/transaction at one
time. They are supplied to be used as locks for exclusive access to code blocks in
applications and to signal states from one client to the server and to all other
clients.

The naming of semaphores is up to the application. Any string can be used.

Semaphores are freed automatically when a client disconnects correctly or when a
clients presence is no longer detected by the server, that constantly monitors all

client connections.

Semaphores can be set and released with the following two methods:

Ext Qbj ect Cont ai ner #set Semaphore(String nane, int waitMI1i Seconds);

Ext Qbj ect Cont ai ner #r el easeSemaphore(String name);

The concept of db4o semaphores is very similar to the concept of synchronization in 00

programming languages:

Java

synchroni zed(nmoni t or Obj ect) {

/] excl usive code bl ock here

C#

| ock(noni t or Obj ect) {

/] excl usive code bl ock here

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db4o semaphore

i f (obj ect Cont ai ner. ext (). set Semaphor e(semaphor eNane, 1000) {

/] excl usive code bl ock here

obj ect Cont ai ner. ext (). rel easeSemaphor e(semaphor eNarne) ;

Although the principle of semaphores is very simple they are powerful enough for a wide

range of usecases:

25.1. Locking objects

i mport com db4o. *;

i mport com db4o. ext. *;

| **
* This class denmponstrates a very rudi mentary inplenmentation
* of virtual "locks" on objects with db4o. Al code that is
* intended to obey these locks will have to call |ock() and
* unl ock().
*/

public class LockManager {
private final String SEMAPHORE NAME = "l ocked: ";
private final int WAIT_FOR AVAI LABILITY = 300; // 300
m | |iseconds

private final ExtCbjectContainer _objectContainer

publ i c LockManager (oj ect Cont ai ner obj ect Cont ai ner) {

_obj ect Cont ai ner = obj ect Cont ai ner. ext();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public bool ean | ock(Cbj ect obj){
long id = _objectContainer.getlD(obj);
return _obj ect Cont ai ner. set Semaphor e(SEMAPHORE_NAME + i d,
WAl T_FOR_AVAI LABI LI TY)

}

public void unl ock(Onject obj){
long id = _objectContainer.getlD(obj);
_obj ect Cont ai ner. rel easeSenmaphor e(SEVAPHORE _NAME + id);

25.2. Ensuring Singletons

i mport com db4o. *;
i mport com db4o. query. *;

/**

* This class denmponstrates the use of a semaphore to ensure that only
* one instance of a certain class is stored to an Obj ect Cont ai ner

*

* Caution !'l! The getSingleton nmethod contains a conmit() call

*/

public class Singleton {

| %
* returns a singleton object of one class for an

nj ect Cont ai ner .
*
Caution !!! This method contains a conmt() call.
*/
public static Object getSingleton(ObjectContainer

obj ect Cont ai ner, C ass clazz) {

nj ect obj = queryFor Si ngl et onCl ass(obj ect Cont ai ner, clazz);

if (obj !=null) {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return obj;

String semaphore = "Singl et on#get Si ngl eton_" +

cl azz. get Name() ;

i f (!objectContainer.ext().setSemaphore(semaphore, 10000)) {
t hrow new Runti meExcepti on("Bl ocked semaphore " +
semaphore) ;

}

obj = queryFor Si ngl et onCl ass(obj ect Cont ai ner, clazz);

if (obj == null) {

try {
obj = clazz. new nstance();

} catch (InstantiationException e) {
e.printStackTrace();
} catch (111l egal AccessException e) {

e.printStackTrace();

obj ect Cont ai ner . set (obj) ;

[* 111 CAUTION !'!'!

* There is a commt call here.

*

* The commt call is necessary, so other transactions
* can see the new i nserted object.
*/

obj ect Cont ai ner.commit();

obj ect Cont ai ner. ext (). rel easeSemaphor e(semaphore) ;

return obj;

private static Object queryFor Singl etonC ass(Obj ect Cont ai ner

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

obj ect Cont ai ner, C ass clazz) {
Query q = obj ect Cont ai ner. query();
g.constrain(clazz);
hj ect Set obj ect Set = q. execute();
if (objectSet.size() == 1) {
return objectSet.next();
}
if (objectSet.size() > 1) {
t hrow new Runti meExcepti on(
"Singleton problem Miltiple instances of: " +
clazz. get Nane());
}

return null;

25.3. Limiting the number of users

i mport java.io.*;

i mport com db4o. *;

/**

* This class demponstrates the use of semaphores to limt the
* nunber of logins to a server.
*/

public class LimtLogins {
static final String HOST = "l ocal host";
static final int PORT = 4455;
static final String USER = "db4o";
static final String PASSWORD = "db4o";
static final int MAXI MUM USERS = 10;

public static QbjectContainer |ogin()({

nj ect Cont ai ner obj ect Cont ai ner;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

try {

obj ect Cont ai ner = Db4o. opend i ent (HOST, PORT, USER

PASSWORD) ;
} catch (1 OException e) {

return null;

bool ean al | owedToLogi n = fal se;

for (int i = 0; i

< MAXI MUM_USERS

i ++) {

i f (obj ect Cont ai ner. ext (). set Semmaphore("nmax_user_check " +

i, 0)){
al | owedToLogi n = true;

br eak;

if(! allowedToLogi n){
obj ect Cont ai ner . cl ose() ;

return null;

return object Cont ai ner

25.4. Controlling log-in information

i mport java.util.*;

i mport com db4o. *;

i mport com db4o. confi g. *;
i mport com db4o. ext. *;

i mport com db4o. query. *;

/**

* This cl ass denmonstrates how semaphores can be used

* to rul e out

race conditions when providi ng exact and

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

* up-to-date information about all connected clients

* on a server. The class also can be used to nake sure
* that only one login is possible with a give user nane
* and i pAddress conbi nati on.

*/

public class ConnectedUser {

static final String SEMAPHORE CONNECTED = " Connect edUser ";
static final String SEMAPHORE LOCK ACCESS =
"Connect edUser Lock ";

static final int TI MEOUT = 10000; // concurrent access tineout

10 seconds

String userNamne;

String i pAddress;

publ i c ConnectedUser(String userNane, String i pAddress){
t hi s. user Name = user Nane;

thi s.i pAddress = i pAddress;

/1 make sure to call this on the server before opening the
dat abase
/1 to inprove querying speed
public static void configure(){
nj ect A ass obj ectd ass =
Db4o. configure(). obj ect d ass(Connect edUser. cl ass);
obj ect Cl ass. obj ect Fi el d("user Nanme") . i ndexed(true);

obj ect Cl ass. obj ect Fi el d("i pAddress") . i ndexed(true);

/1 call this on the client to ensure to have a Connect edUser
record

/1 in the database file and the semaphore set

public static void | ogin(CbjectContainer client, String userNane,
String i pAddress){

if(! client.ext().setSemaphore(SEMAPHORE LOCK ACCESS,
TI MEQUT)) {
t hrow new Runti meException("Ti neout trying to get access

to Connect edUser | ock")

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

}

Query q = client.query();

g. constrai n(Connect edUser . cl ass) ;

g. descend(" user Nane") . constrai n(user Nane) ;

g. descend("i pAddress"). constrain(i pAddress);

i f(g.execute().size() == 0){
client.set(new Connect edUser (user Nanme, i pAddress));
client.comit();

}

String connect edSemaphor eName = SEMAPHORE _CONNECTED +

user Name + i pAddress;

bool ean uni que =

client.ext().setSemaphore(connect edSemaphor eNane, 0);
client.ext().rel easeSemaphor e(SEMAPHORE LOCK ACCESS)

i f(! unique){

t hrow new Runti meException("Two clients with sane

user Name and i pAddress");

}

/1l here is your list of all connected users, callable on the
server
public static List connectedUsers(ObjectServer server){
Ext Qbj ect Cont ai ner server Cbj ect Cont ai ner =
server.ext (). objectContainer().ext();
i f(server Obj ect Cont ai ner. set Semaphor e(SEMAPHORE L OCK_ACCESS,
TI MEQUT)) {
t hrow new Runti meException("Ti neout trying to get access
to Connect edUser | ock")
}
List list = new ArrayList();
Query q = server Obj ect Cont ai ner. query();
g. constrai n(Connect edUser . cl ass) ;
hj ect Set obj ect Set = q. execute();
whi | e(obj ect Set . hasNext ()) {
Connect edUser connect edUser =
(Connect edUser) obj ect Set . next () ;
String connect edSemaphor eNanme =
SEMAPHORE_CONNECTED +
connect edUser . user Name +

connect edUser . i pAddr ess;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

i f(server Obj ect Cont ai ner. set Semaphor e(connect edSemaphor eNanme, TI MEQUT
)){

server bj ect Cont ai ner. del et e(connect edUser) ;
}el se{

list.add(connectedUser);

}

server Qbj ect Cont ai ner.commit () ;
server Qbj ect Cont ai ner. r el easeSemaphor e(SEMAPHORE L OCK_ACCESS) ;

return |ist;

}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

26. Messaging

In client/server mode the TCP connection between the client and the server can also be

used to send messages from the client to the server.

Possible usecases could be:

- shutting down and restarting the server

- triggering server backup

- using a customized login strategy to restrict the number of allowed client

connections
Here is some example code how this can be done.

First we need to decide on a class that we want to use as the message. Any object that
is storable in db4o can be used as a message, but strings and other simple types will
not be carried (as they are not storable in db4o on their own). Let's create a

dedicated class:

cl ass Myd i ent Server Message {
private String info;

public Myd i ent Server Message(String info){

this.info = info;

public Strint toString()({

return "Myd i ent Ser ver Message: + info;

Now we have to add some code to the server to react to arriving messages. This can be
done by configuring a MessageRecipient object on the server. Let's simply print out all
objects that arrive as messages. For the following we assume that we already have an

ObjectServer object, opened with Db4o.openServer() .

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#ClientServer

obj ect Server. ext (). configure().set MessageReci pi ent (
new MessageReci pient () {

public void processMessage(
nj ect Cont ai ner obj ect Cont ai ner,

nj ect nessage) {

/1 message objects will arrive in this code bl ock

System out . printl n(message) ;

1)

Here is what we would do on the client to send the message:

MessageSender sender =

cl i ent Obj ect Cont ai ner. ext (). configure().get MessageSender () ;

sender . send(new MyCl i ent Server Message("Hello fromclient.");

The MessageSender object on the client can be reused to send multiple messages.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

27. Data Binding

One common question we get from our users is:

Can I still take advantage of data aware control mechanisms with my objects?

The answer is quite simply yes. .NET data binding also works with plain objects.
This is also to say that using db4o is completely orthogonal to the use of data
binding.

The usual pattern would be something like the following:

* the code asks db4o to retrieve the objects that must be presented to the user;

* the UI controls are bound to the objects (no interaction with db4o here);

* the user interacts with the objects through the controls (no interaction with db4o
here);

* when the user is done interacting with the objects or by his request, the application
will ask db4o to persist his changes;

Let's take a very simple example that illustrates the points above.

Our business class:

nanespace CSDat aBi ndi ng
{
/1] <summary>
/1l A sinple business class.
/1] </sunmmary>
public class Custoner
{
string _nane;

string _phoneNunber;
public Customer(string name, string phoneNunber)
{

_nane = nane,;

_phoneNunber = phoneNumnber ;

public string Nane

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

The Form class:

usi
usi
usi
usi
usi
usi

usi

ng
ng
ng
ng
ng
ng
ng

get

return _nane;

set

_nane = val ue;

public string PhoneNunber
{

get

{

return _phoneNunber;

set

_phoneNunber = val ue;

System

Syst em Dr awi ng;
System Col | ecti ons;
Syst em Conponent Model ;
System | G,

Syst em W ndows. For 1rs;

com db4o;

nanespace CSDat aBi ndi ng

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/1] <summary>
/1] DataBi ndi ng form exanpl e
/1] </sunmmary>
public class MiinForm: System W ndows. Forns. Form
{
i nternal System W ndows. For ms. Text Box _t xt PhoneNunber ;

i nternal System W ndows. For ns. ComboBox _cnbCust omers;

/1] <summary>
/1l Required designer variable.
/1] </sunmmary>

private System Conmponent Model . Cont ai ner conponents = nul | ;

i nternal System W ndows. For nms. Label _| abel Phone;

i nternal System W ndows. For ns. Label _I| abel Nane;

private ObjectContainer _container = null;

private ArraylList _customers = new Arraylist();

publ i c Mi nForm()

{
/1

/1l Required for Wndows Form Desi gner support
/1
InitializeConmponent();

OpenDat aFi |l e();
Set UpDat aBi ndi ngs() ;

voi d OpenDat aFi | e()
{

string dataFile =
Pat h. Conbi ne(Appl i cati on. User AppDat aPat h, "data. yap");

_contai ner = Db4o. openFil e(dataFile);

voi d Set UpDat aBi ndi ngs()
{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nj ect Set os = _contai ner. get (typeof (Custoner));
if (0 == os.size())

{
/] Cenerate some initial data
_customers. Add(new Cust omer ("John Cl eese", "55-
98763333"));
_cust omers. Add(new Cust omrer (" Her man Hesse", "32-
33335555")) ;
_cust omers. Add(new Cust orrer (" Dougl as Adans", "42-
42424242"));
}
el se
{
whi | e (0s. hasNext ())
{
_customers. Add(os. next());
}
}
_cnbCust onmer s. Di spl ayMenber = "Nanme";
_cnbCust oners. Dat aSource = _cust omers;
_t xt PhoneNunber . Dat aBi ndi ngs. Add(" Text", _customners,
"PhoneNumnber ") ;

}

voi d Persi st Changes()

{
foreach (Customer custoner in _custoners)
{
_cont ai ner. set (cust oner);
}
}

protected override void OnC osi ng(Cancel Event Args e)

{
Per si st Changes() ;
_container.close();
base. OnCl osing (e);
}

/1] <summary>

/1]l O ean up any resources being used.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Syst em W ndows.

48) ;

/1] </sunmmary>

protected override void D spose(bool disposing)

{
i f(disposing)
{
if (components !'= null)
{
conponent s. Di spose() ;
}
}
base. Di spose(di sposing);
}

#regi on W ndows Form Desi gner generated code

/1] <summary>

/1l Required nethod for Designer support - do not nodify

/// the contents of this nmethod with the code editor.

/1] </sunmmary>
private void Initial
{
t hi s. _I abel Phone
t hi s. _txt PhoneNu

this. | abel Nare
this. _cnbCust one
t hi s. SuspendLayo
/1

/1 | abel Phone
/1

this. | abel Phone

this. | abel Phone.

this. | abel Phone
this. | abel Phone

this. | abel Phone
/1
/1 _txt PhoneNunb
/1

t hi s. _txt PhoneNu

Syst em Dr awi ng. Poi nt (96, 48)

t hi s. _txt PhoneNu

i zeConponent ()

= new System W ndows. For ns. Label () ;

nmber = new

For ms. Text Box() ;

= new System W ndows. For ns. Label () ;

rs = new System W ndows. For nms. ComboBox() ;

ut () ;

. Location = new System Draw ng. Poi nt (8,

Nane " | abel Phone";

new System Draw ng. Si ze(72, 16);
. Tabl ndex = 9;

. Text = "Phone#:";

.Si ze

er

nber. Locati on = new

nber. Nane = " _t xt PhoneNunber";

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

t hi
20) ;
t hi
t hi
/1
/1
/1
t hi
16);
t hi
t hi
t hi
t hi
/1
/1
/1
t hi

s. _txt PhoneNunber. Si ze = new System Draw ng. Si ze(184,

s. _t xt PhoneNunber. Tabl ndex = 8;
s. _txt PhoneNunber. Text = "";

_| abel Narre

s. | abel Name. Locati on = new System Draw ng. Poi nt (8,

s. | abel Nane. Nare

" | abel Name";
new System Draw ng. Si ze(72, 16);
s. | abel Nane. Tabl ndex = 7;

s. | abel Nane. Si ze

s. | abel Nane. Text = "Custoner:";

_cnbCust oner s

s. _cnbCust omers. Anchor =

((System W ndows. For ns. Anchor Styl es) (((Syst em W ndows. For ms. Anchor Sty
| es. Top | System W ndows. Fornms. Anchor Styl es. Left)

t hi
Syst em W ndows.
t hi
Syst em Dr awi ng.
t hi
t hi
21);
t hi
/1
/1
/1
t hi
t hi
t hi
t hi
t hi
t hi
t hi
Syst em W ndows.
t hi
t hi

| System W ndows. For ms. Anchor Styl es. Right)));
s. _cnbCust oners. DropDownStyl e =
For ms. ConboBox St yl e. Dr opDownlLi st ;
s. _cnbCustoners. Location = new

Poi nt (96, 16);

s. _cnbCust orrer s. Nane " cnbCustonmers”;

s. _cnbCust oners. Si ze new System Draw ng. Si ze(186,

s. _cnbCust oners. Tabl ndex = 6;

Mai nFor m

s. Aut oScal eBaseSi ze = new System Draw ng. Si ze(5, 13);
s.CientSize = new System Drawi ng. Si ze(290, 79);

s. Control s. Add(this. _| abel Phone) ;

s. Control s. Add(t his. _txtPhoneNunber);

s. Control s. Add(t his. _| abel Narme) ;

s.Control s. Add(this._cnbCustoners);

s. FormBorder Styl e =

For ms. For mBor der St yl e. Fi xedSi ngl e;

s. Name = "Mai nFor ni';

s. Text = "Db4o Data Bi nding";

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

t hi s. ResuneLayout (f al se);

}

#endr egi on

/1] <summary>

/1] The main entry point for the application.
/1] </sunmmary>

[STAThr ead]

static void Min()

{
Appl i cati on. Run(new Mai nForm());

There are also some good tutorials on the

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

the use of Forms data binding [1], unfortunately most of them are focused only on
binding controls to relational databases.

We - the software development community - still suffer from database atrophy[2] after
all.

We - the db4o team along with the object oriented community - are working to change
that so we can finally move on to the next level.

[1] http://samples.gotdotnet.com/quickstart/winforms/doc/winformsdata.aspx
[2] http://www.peopledobjects.org/Klaus/2005/01/database-atrophy.html

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

28. Object Manager

The db4o Object Manager is a GUI tool to browse and query the contents of any db4o
database file. Object Manager currently provides the following features:

- Open either a local database file or a db4o database server

- Browse objects in a database

- Query for objects using a simple graphical query by example.
28.1. Installation

Object Manager has to be downloaded seperately from the main db4o distributions. Please
visit the db4o Download Center and choose the installation appropriate for your system.
The following distributions are currently available:

- db4o ObjectManager for Windows IKVM (Java VM included)

- db4o ObjectManager for Windows no Java VM

- db4o ObjectManager for Linux

Once you have downloaded the appropriate Object Manager build, create a folder called

Object Manager in any location of your choice and unpack the downloaded zip file there.

28.1.1. Running

28.1.1.1. Windows IKVM
Object Manager for Windows IKVM includes the open-source IKVM Java virtual machine in
the download. Simply double-click the objectmanager.bat file to start Object Manager.

28.1.1.2. Windows no Java VM

This build assumes that your computer already has a Sun Java Virtual Machine version
1.3 or later installed and that your operating system path already lists the directory
containing your java.exe file. If this is true, you can simply double-click the
objectmanager.bat file to start Object Manager. Otherwise, you will need to edit
objectmanager.bat and specify the full path and file name for your java.exe file on the

first line.

28.1.1.3. Linux

This build assumes that your computer already has a Sun Java Virtual Machine version
1.3 or later installed and that your PATH variable already lists the directory
containing the java binary. If this is not the case, you will

need to edit the objectmanager.sh file and specify the full path and file name of the
Java binary on the "export VMEXE" line". Since the zip archive does not preserve the

executable permissions for objectmanager.sh, you will need

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.db4o.com/community/ontheroad/downloadcenter/

to 'chmod +x objectmanager.sh'. Once this is complete, running objectmanager.sh will

start Object Manager.

28.1.1.4. Mac 0S X

Currently there is no dedicated ObjectManager build for Mac 0S X. To prepare the Linux
or Windows NoVM build to run on 0S X, you'll have to copy the respective native SWT
files from an 0S X Eclipse install to ObjectManager's lib directory. This list might
look like this (but may vary depending on the Eclipse/SWT version):

- Jjava_swt

- libswt-carbon-xxxx.jnilib

- libswt-pi-carbon-xxxx.jnilib

- libswt-webkit-carbon-xxxx.jnilib
- swt-pi.jar

- swt.jar

The startup script has to be modified to include the correct library path and the 0S X
specific jars on the classpath. If ObjectManager seems to hang on startup, you may also

have to provide the VM parameter '-XstartOnFirstThread'.

28.2. Object Manager Tour

Upon opening, the Object Manager will look like the following:

At this point, you can either
- Open a db4o database file
- Open a connection to a db4o database server

In order to open a db4o database file, simply choose "File | Open..." and choose the

db4o database file to open.

In order to open a connection to a db4o database server, choose '"File | Connect to

server...", then enter a host name, port number, username, and password into the

resulting dialog box.

When the database is open, the Object Manager will list all classes stored in the
database in the left-hand tree pane. Expanding a tree item will show instances of
objects in the class, then fields within the instance, etc. The right-hand pane will

show the next level of detail for the item that is currently selected in the tree.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

» Object Manager e Ll |
File Help

' + | Seanch :|| i

For example, loading the formulal database created by chapter 4 of this tutorial

produces the following:

28.2.1. Generic reflector versus the JDK reflector

You will notice in the screen shot that all objects have (G) in front of them. This is
because the Object Manager does not know the correct classpath in order to load the
actual Java classes that these objects represent, so it is displaying them generically

(using the generic reflector).

The Object Manager can display some data types more naturally if it has the class
definitions available, so it provides a way to extend its classpath at runtime so that
it can find the Java or .NET class definitions. This is done through the preferences

dialog, accessed through "File | Preferences..."
Let's add the classpath of the db4o chapter 4 tutorial classes:
- Choose "File | Preferences..."

- Select the "Classpath" page of the preferences dialog box

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

| com.d b4o.fl.chapterd. Car—=Ferrari[Michael Schumacher 10010 (id=331)—=¢

File Help
(][] search 71|
P com.dbdo.config. ObjectAttnbute ‘alpame: Michael Schumacher
P com.dbo. DboTypelmpl — points: 100

= com.dblofl.chaptesd. Car
= (G) com.dbdo fl.chapterd.Car (id=3
model: Ferrari i
* pilot: (L) com.dbdofl.chaptend.
histony; java.util. Arraylist (id=28
= (G com.dbda. (1. c hapterd . Car (d=3
meodel: BMW
= pilot: (G) com.dbdo.f1.c haptend. |
name: Rubens Bamchello

points: 99
P history: java.util. ArrayList fid=34
P com.dbofl.chaptert. Pilot e

L] *]

- Choose the "Add directory..."
- Select the directory you have selected as your output directory for compiling the
db4o tutorial files and click OK.

(You can add a Jar or zip file similarly.)

Your preferences dialog should look something like the following when you are done:

Click OK to close the Preferences dialog box. Now your tree will be refreshed, and you
will notice that all of the (G)'s are gone. All of your preference settings, including
your preferred classpath, are stored in a db4o database called .objectmanager.yap in

your home directory.

28.2.2. Querying for objects

You may now want to query your object database for objects based on some criteria.

This will work using either the generic or the JDK reflector.

You can open a query editor using any of the following methods:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

e —— T ——— i
Ciigect Activation Classpath

Clazspath : .
Thamefdjo'wark 5 paceswork space. new/dbdaylin |Mdmmlm-.-

| Remove entry

Festans Delauls | Apply

R |

- Double-click a class name in the tree view.
- Click the query button at the right side of the tool bar.

- Choose "File | Query..." from the menu.

If you choose either of the latter two options, you will then be presented with a
dialog box allowing you to choose a class to query. Select a class and click OK to

proceed. Your new query will open in a new tab.

Let's query for Car objects in our formulal.yap file. Open a query editor using your

favorite of the methods listed above. By default it will look like the following:

You may now query for a model name, or you can descend on the "pilot" field by clicking
the button next to the pilot field to expand the query editor to include a Pilot
object. If you accidentally expand a class that you didn't intend to expand, that
isn't a problem. Just leave all of the fields blank and they will be ignored.

At this point, you can query for any combination of field values simply by filling
appropriate values into each field. You can change the constraint type using the combo
boxes next to each field. And you can run the query using the green "run" button at

the top-left of the tool bar.

28.3. Known bugs and limitations

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

com.db4o.fl.chapters. Car

File Help

| Tormulal.yap [&~EE00 T EVER TR
Iﬂ' [] I Seanch: j

8 plot com.dblofl.chapterd. Pilol ==

' Feran|Michael Schumacher100]/0 (id=33
FBEMWIRubens Barrichello9]% (d=3436)

The following are known bugs and limitations in Object Manager and their workarounds:

- Object Manager currently operates in read-only mode only.

- If a database includes fields that have been renamed, Object Manager correctly
browses both the old and new versions of the fields. However, queries on fields that
have been refactored will randomly select the old or the new version of the field. The
workaround is to browse a backup or defragmented database.

- The Generic Reflector still has trouble expanding certain types of objects.
Currently, we recommend running Object Manager with all classes available at all times

by using the Classpath preference page to set an appropriate classpath.

If something goes wrong when using Object Manager, there almost certainly will be
detailed error messages in the Object Manager log file. This file is named
.objectmanager.log and is stored in your user's home directory. If you post a question
on the db4o newsgroups concerning a crash or failure in Object Manager, please also
attach a copy of your Object Manager log file, so that we can efficiently diagnose the
problem. This file is overwritten each time you run Object Manager, so please make a

copy of it after an error occurs so that this diagnostic information is not lost.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

29. RegressionTests

29.1. The built-in db4o regression tests

Db4o includes a fairly comprehensive suite of regression tests to help prevent errors
from creeping into the code over time. Since no regression test suite is perfect, we
are documenting how to work with our tests in the hope that customers will benefit from
seeing the test suite improve.

29.2. Running the regression tests

The easiest way to run the regression tests for Mono is to download the .tar.gz
distribution of db4o. After untarring the tarball, simply change into the created

directory and run "make".

The Makefile will automatically compile db4o and run the test suite.

29.3. Switching individual tests on or off

Individual tests may be turned on or off by commenting or uncommenting lines
corresponding to each individual test in the suite. The test suite is defined by
classes beginning with com.db4o.test.AllTestsConf*. Each test class is listed in an

array returned by the tests() method in the *Conf* class.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

30. License

db4objects Inc. supplies the object database engine db4o under a dual licensing regime:
30.1. General Public License (GPL)

db4o is free to be used:

- for development,

- in-house as long as no deployment to third parties takes place,

- together with works that are placed under the GPL themselves.

You should have received a copy of the GPL in the file db4o.license.txt together with
the db4o distribution.

If you have questions about when a commercial license is required, please

read our GPL Interpretation policy for further detail, available at:
http://www.db4o.com/about/company/legalpolicies/gplinterpretation.aspx

30.2. Commercial License

For incorporation into own commercial products and for use together with redistributed
software that is not placed under the GPL, db4o is also available under a commercial

license.

Visit the purchasing area on the db4o website or contact db4o sales for licensing terms

and pricing.

30.3. Bundled 3rd Party Licenses

The db4o distribution comes with the following 3rd party libraries:

-Apache Ant(Apache Software License)

Files: lib/ant.jar, lib/ant.license.txt

Ant can be used as a make tool for class file based optimization of native

queries at compile time.

This product includes software developed by the Apache Software Foundation

(http://www.apache.org/).

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.db4o.com
http://www.db4o.com
mailto:sales@db4o.com
http://ant.apache.org/

-BLOAT(GNU LGPL)

Files: lib/bloat-1.0.jar, lib/bloat.license.txt

Bloat is used for bytecode analysis during native queries optimization. It
needs to be on the classpath during runtime at load time or query execution

time for just-in-time optimization. Preoptimized class files are not dependent

on BLOAT at runtime.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.cs.purdue.edu/s3/projects/bloat/

31. Contacting db4objects Inc.

db4objects Inc.

1900 South Norfolk Street
Suite 350

San Mateo, CA, 94403

UsA

Phone
+1 (650) 577-2340

Fax
+1 (650) 240-0431

Sales
Fill out our sales contact form on the db4o website
or

mail to sales@db4o.com
Support
Visit our free Community Forums

or log into your dDN Member Portal (dDN Members Only).

Careers

career@db4o.com

Partnering

partner@db4o.com

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.db4o.com/commercial/purchase/enquiry.aspx
mailto:sales@db4o.com
http://forums.db4o.com/forums/
http://db4o.com/commercial/memberzone/
mailto:career@db4o.com
mailto:partner@db4o.com

	Welcome
	Download Contents
	1. First Glance
	1.1. The db4o engine...
	1.2. Installation
	1.3. db4o Object Manager
	1.4. API Overview

	2. First Steps
	2.1. Opening the database
	2.2. Storing objects
	2.3. Retrieving objects
	2.4. Updating objects
	2.5. Deleting objects
	2.6. Conclusion
	2.7. Full source

	3. Querying
	3.1. Query by Example (QBE)
	3.2. Native Queries
	3.2.1. Concept
	3.2.2. Principle
	3.2.3. Simple Example
	3.2.4. Advanced Example
	3.2.5. Arbitrary Code
	3.2.6. Native Query Performance
	3.2.7. Full source

	3.3. SODA Query API
	3.3.1. Simple queries
	3.3.2. Advanced queries
	3.3.3. Conclusion
	3.3.4. Full source

	4. Structured objects
	4.1. Storing structured objects
	4.2. Retrieving structured objects
	4.2.1. QBE
	4.2.2. Native Queries
	4.2.3. SODA Query API

	4.3. Updating structured objects
	4.3.1. Update depth

	4.4. Deleting structured objects
	4.4.1. Recursive deletion
	4.4.2. Recursive deletion revisited

	4.5. Conclusion
	4.6. Full source

	5. Collections and Arrays
	5.1. Storing
	5.2. Retrieving
	5.2.1. QBE
	5.2.2. Native Queries
	5.2.3. Query API

	5.3. Updating and deleting
	5.4. Conclusion
	5.5. Full source

	6. Inheritance
	6.1. Storing
	6.2. Retrieving
	6.3. Updating and deleting
	6.4. Conclusion
	6.5. Full source

	7. Deep graphs
	7.1. Storing and updating
	7.2. Retrieving
	7.2.1. Activation depth

	7.3. Conclusion
	7.4. Full source

	8. Transactions
	8.1. Commit and rollback
	8.2. Refresh live objects
	8.3. Conclusion
	8.4. Full source

	9. Client/Server
	9.1. Embedded server
	9.2. Networking
	9.3. Out-of-band signalling
	9.4. Putting it all together: a simple but complete db4o server
	9.5. Conclusion
	9.6. Full source

	10. SODA Evaluations
	10.1. Evaluation API
	10.2. Example
	10.3. Drawbacks
	10.4. Conclusion
	10.5. Full source

	11. Constructors
	11.1. Instantiating objects
	11.1.1. Using a constructor
	11.1.2. Bypassing the constructor
	11.1.3. Using a translator

	11.2. Configuration
	11.3. Troubleshooting
	11.4. Examples

	12. Translators
	12.1. An example class
	12.1.1. Using the constructor
	12.1.2. Bypassing the constructor

	12.2. The Translator API
	12.2.1. ObjectTranslator
	12.2.2. ObjectConstructor

	12.3. A translator implementation
	12.4. Conclusion
	12.5. Full source

	13. Configuration
	13.1. Scope
	13.2. Calling Methods

	14. Indexes
	15. IDs
	15.1. Internal IDs
	15.2. Unique Universal IDs (UUIDs)

	16. Callbacks
	17. Classloader issues
	17.1. Classloader basics
	17.2. Configuration
	17.3. Typical Environments
	17.3.1. Servlet container
	17.3.2. Eclipse

	17.4. Running without classes

	18. Servlets
	19. Encryption
	19.1. eXtended Tiny Encryption Algorithm
	19.2. Built-In Simple Encryption
	19.3. Custom Encryption Adapters

	20. Refactoring and "Schema Evolution"
	20.1. Introduction
	20.2. What db4objects does today automatically or easily
	20.3. What is not yet automated

	21. Tuning
	21.1. Enable Field Indexes
	21.2. Discarding Free Space
	21.3. Calling constructors
	21.4. Turning Off Weak References
	21.5. Defragment
	21.6. No Shutdown Thread
	21.7. No callbacks
	21.8. No schema changes
	21.9. No lock file thread
	21.10. No test instances
	21.11. Increasing the maximum database file size
	21.12. FlushFileBuffers(false)

	22. Native Query Optimization
	22.1. Enabling Native Query optimization on the CompactFramework 2.0
	22.2. Build
	22.3. Monitoring optimization

	23. Maintenance
	23.1. Defragment
	23.2. Backup

	24. Replication
	24.1. Under the Hood
	24.2. Replicating Existing Data Files

	25. Semaphores
	25.1. Locking objects
	25.2. Ensuring Singletons
	25.3. Limiting the number of users
	25.4. Controlling log-in information

	26. Messaging
	27. Data Binding
	28. Object Manager
	28.1. Installation
	28.1.1. Running
	28.1.1.1. Windows IKVM
	28.1.1.2. Windows no Java VM
	28.1.1.3. Linux
	28.1.1.4. Mac OS X

	28.2. Object Manager Tour
	28.2.1. Generic reflector versus the JDK reflector
	28.2.2. Querying for objects

	28.3. Known bugs and limitations

	29. RegressionTests
	29.1. The built-in db4o regression tests
	29.2. Running the regression tests
	29.3. Switching individual tests on or off

	30. License
	30.1. General Public License (GPL)
	30.2. Commercial License
	30.3. Bundled 3rd Party Licenses

	31. Contacting db4objects Inc.

