The application polytope defines the following object types:

FloatPolytope, Framework, Polytope, PropagatedPolytope, RationalPolytope, SchlegelDiagram, TightSpan, VoronoiDiagram

Each type is accompanied with alphabetically sorted lists of properties and public methods, both own and inherited from parent types. The items are links to the detailed descriptions.

Underlined is the default type for this application.

The methods inherited from Poly::Object are described on a separate page, as they are only needed for advanced scripting.


Polytope
A bounded or unbounded pointed polyhedron. Note that a pointed polyhedron is projectively equivalent to a polytope.
properties:
ABSTRACT_OBJECTIVE FAR_FACE POSITIVE
AFFINE_HULL FAR_HYPERPLANE RANDOM_EDGE_EPL
ALTSHULER_DET FATNESS REL_INT_POINT
AMBIENT_DIM FEASIBLE REVERSE_TRANSFORMATION
BALANCE FLAG_VECTOR SCHLEGEL_PARAMS
BALANCED FTV_CYCLIC_NORMAL SELF_DUAL
BOUNDED F_VECTOR SIMPLE
BOUNDED_GRAPH GALE_TRANSFORM SIMPLE_POLYHEDRON
BOUNDED_H_VECTOR GALE_VERTICES SIMPLICIAL
CD_INDEX_COEFFICIENTS GRAPH SIMPLICIALITY
CENTERED GRAPH_SIGNATURE SIMPLICITY
CENTROID G_VECTOR SPLITS
CHIROTOPE HASSE_DIAGRAM STEINER_POINTS
CHIROTOPE_INT H_VECTOR SUBRIDGE_SIZES
COCUBICAL INEQUALITIES TOWARDS_FAR_FACE
COCUBICALITY LATTICE TRIANGLE_FREE
COMPLEXITY LINEAR_OBJECTIVE TRIANGULATION
CONNECTIVITY MAXIMAL_FACE TRIANGULATION_BOUNDARY
CUBICAL MAXIMAL_VALUE TRIANGULATION_INT
CUBICALITY MAXIMAL_VERTEX TRIANGULATION_INT_SIGNS
CUBICAL_H_VECTOR MINIMAL_FACE TRIANGULATION_SIGNS
DIAMETER MINIMAL_VALUE TWO_FACE_SIZES
DIM MINIMAL_VERTEX UNBOUNDED_FACETS
DIRECTED_GRAPH MINIMAL_VERTEX_ANGLE VALID_POINT
DUAL_CONNECTIVITY NEIGHBORLINESS VARIABLE_NAMES
DUAL_DIAMETER NEIGHBORLY VERTEX_BARYCENTER
DUAL_EVEN NEIGHBOR_FACETS_CYCLIC_NORMAL VERTEX_COLORS
DUAL_GRAPH NEIGHBOR_VERTICES_CYCLIC_NORMAL VERTEX_DEGREES
DUAL_GRAPH_SIGNATURE N_01POINTS VERTEX_IN_DEGREES
DUAL_TRIANGLE_FREE N_BOUNDED_VERTICES VERTEX_LABELS
EDGE_COLORED_BOUNDED_GRAPH N_EDGES VERTEX_NORMALS
EQUATIONS N_FACETS VERTEX_OUT_DEGREES
ESSENTIALLY_GENERIC N_INEQUALITIES VERTEX_SIZES
EVEN N_POINTS VERTICES
F2_VECTOR N_RIDGES VERTICES_IN_FACETS
FACETS N_VERTEX_FACET_INC VERTICES_IN_INEQUALITIES
FACETS_THRU_VERTICES N_VERTICES VIF_CYCLIC_NORMAL
FACET_DEGREES ONE_VERTEX VOLUME
FACET_LABELS POINTED WEIGHTS
FACET_SIZES POINTS ZONOTOPE_INPUT_VECTORS
FACE_SIMPLICITY POINTS_IN_FACETS
methods:
CD_INDEX VISUAL VISUAL_GRAPH
DUAL_FACE_LATTICE VISUAL_BOUNDED_GRAPH VISUAL_TRIANGULATION_BOUNDARY
FACE_LATTICE VISUAL_DUAL makeSchlegelDiagram
GALE VISUAL_DUAL_FACE_LATTICE makeSchlegelSteinerPoints
N_FLAGS VISUAL_DUAL_GRAPH
SCHLEGEL VISUAL_FACE_LATTICE

RationalPolytope
A pointed polyhedron realized in Qd.
derived from:
Polytope
properties:
ABSTRACT_OBJECTIVE FAR_FACE POINTS_IN_FACETS
AFFINE_HULL FAR_HYPERPLANE POSITIVE
ALTSHULER_DET FATNESS RANDOM_EDGE_EPL
AMBIENT_DIM FEASIBLE REL_INT_POINT
BALANCE FLAG_VECTOR REVERSE_TRANSFORMATION
BALANCED FTV_CYCLIC_NORMAL SCHLEGEL_PARAMS
BOUNDED F_VECTOR SELF_DUAL
BOUNDED_GRAPH GALE_TRANSFORM SIMPLE
BOUNDED_H_VECTOR GALE_VERTICES SIMPLE_POLYHEDRON
CD_INDEX_COEFFICIENTS GRAPH SIMPLICIAL
CENTERED GRAPH_SIGNATURE SIMPLICIALITY
CENTROID G_VECTOR SIMPLICITY
CHIROTOPE HASSE_DIAGRAM SPLITS
CHIROTOPE_INT H_VECTOR STEINER_POINTS
COCUBICAL INEQUALITIES SUBRIDGE_SIZES
COCUBICALITY LATTICE TOWARDS_FAR_FACE
COMPLEXITY LINEAR_OBJECTIVE TRIANGLE_FREE
CONNECTIVITY MAXIMAL_FACE TRIANGULATION
CUBICAL MAXIMAL_VALUE TRIANGULATION_BOUNDARY
CUBICALITY MAXIMAL_VERTEX TRIANGULATION_INT
CUBICAL_H_VECTOR MINIMAL_FACE TRIANGULATION_INT_SIGNS
DIAMETER MINIMAL_VALUE TRIANGULATION_SIGNS
DIM MINIMAL_VERTEX TWO_FACE_SIZES
DIRECTED_GRAPH MINIMAL_VERTEX_ANGLE UNBOUNDED_FACETS
DUAL_CONNECTIVITY NEIGHBORLINESS VALID_POINT
DUAL_DIAMETER NEIGHBORLY VARIABLE_NAMES
DUAL_EVEN NEIGHBOR_FACETS_CYCLIC_NORMAL VERTEX_BARYCENTER
DUAL_GRAPH NEIGHBOR_VERTICES_CYCLIC_NORMAL VERTEX_COLORS
DUAL_GRAPH_SIGNATURE N_01POINTS VERTEX_DEGREES
DUAL_TRIANGLE_FREE N_BOUNDED_VERTICES VERTEX_IN_DEGREES
EDGE_COLORED_BOUNDED_GRAPH N_EDGES VERTEX_LABELS
EQUATIONS N_FACETS VERTEX_NORMALS
ESSENTIALLY_GENERIC N_INEQUALITIES VERTEX_OUT_DEGREES
EVEN N_NON_NEG_INT VERTEX_SIZES
F2_VECTOR N_POINTS VERTICES
FACETS N_RIDGES VERTICES_IN_FACETS
FACETS_THRU_VERTICES N_VERTEX_FACET_INC VERTICES_IN_INEQUALITIES
FACET_DEGREES N_VERTICES VIF_CYCLIC_NORMAL
FACET_LABELS ONE_VERTEX VOLUME
FACET_SIZES POINTED WEIGHTS
FACE_SIMPLICITY POINTS ZONOTOPE_INPUT_VECTORS
methods:
CD_INDEX VISUAL VISUAL_GRAPH
DUAL_FACE_LATTICE VISUAL_BOUNDED_GRAPH VISUAL_TRIANGULATION_BOUNDARY
FACE_LATTICE VISUAL_DUAL makeSchlegelDiagram
GALE VISUAL_DUAL_FACE_LATTICE makeSchlegelSteinerPoints
N_FLAGS VISUAL_DUAL_GRAPH
SCHLEGEL VISUAL_FACE_LATTICE

FloatPolytope
A pointed polyhedron realized in Rd.
Convex hull and related algorithms use floating-point arithmetics. Due to numerical errors inherent to this kind of computations, the resulting combinatorial description can be arbitrarily far away from the truth, or even not correspond to any valid polytope. You have been warned.
None of the standard construction clients produces objects of this type. If you want to get one, create it with the explicit constructor or "re-bless" an existing RationalPolytope object; the coordinates stored in it don't need to be converted.
derived from:
Polytope
properties:
ABSTRACT_OBJECTIVE FACE_SIMPLICITY POINTS_IN_FACETS
AFFINE_HULL FAR_FACE POSITIVE
ALTSHULER_DET FAR_HYPERPLANE RANDOM_EDGE_EPL
AMBIENT_DIM FATNESS REL_INT_POINT
BALANCE FEASIBLE REVERSE_TRANSFORMATION
BALANCED FLAG_VECTOR SCHLEGEL_PARAMS
BOUNDED FTV_CYCLIC_NORMAL SELF_DUAL
BOUNDED_GRAPH F_VECTOR SIMPLE
BOUNDED_H_VECTOR GALE_TRANSFORM SIMPLE_POLYHEDRON
CD_INDEX_COEFFICIENTS GALE_VERTICES SIMPLICIAL
CENTERED GRAPH SIMPLICIALITY
CENTROID GRAPH_SIGNATURE SIMPLICITY
CHIROTOPE G_VECTOR SPLITS
CHIROTOPE_INT HASSE_DIAGRAM STEINER_POINTS
COCUBICAL H_VECTOR SUBRIDGE_SIZES
COCUBICALITY INEQUALITIES TOWARDS_FAR_FACE
COMPLEXITY LATTICE TRIANGLE_FREE
CONNECTIVITY LINEAR_OBJECTIVE TRIANGULATION
CUBICAL MAXIMAL_FACE TRIANGULATION_BOUNDARY
CUBICALITY MAXIMAL_VALUE TRIANGULATION_INT
CUBICAL_H_VECTOR MAXIMAL_VERTEX TRIANGULATION_INT_SIGNS
DIAMETER MINIMAL_FACE TRIANGULATION_SIGNS
DIM MINIMAL_VALUE TWO_FACE_SIZES
DIRECTED_GRAPH MINIMAL_VERTEX UNBOUNDED_FACETS
DUAL_CONNECTIVITY MINIMAL_VERTEX_ANGLE VALID_POINT
DUAL_DIAMETER NEIGHBORLINESS VARIABLE_NAMES
DUAL_EVEN NEIGHBORLY VERTEX_BARYCENTER
DUAL_GRAPH NEIGHBOR_FACETS_CYCLIC_NORMAL VERTEX_COLORS
DUAL_GRAPH_SIGNATURE NEIGHBOR_VERTICES_CYCLIC_NORMAL VERTEX_DEGREES
DUAL_TRIANGLE_FREE N_01POINTS VERTEX_IN_DEGREES
EDGE_COLORED_BOUNDED_GRAPH N_BOUNDED_VERTICES VERTEX_LABELS
EPSILON N_EDGES VERTEX_NORMALS
EQUATIONS N_FACETS VERTEX_OUT_DEGREES
ESSENTIALLY_GENERIC N_INEQUALITIES VERTEX_SIZES
EVEN N_POINTS VERTICES
F2_VECTOR N_RIDGES VERTICES_IN_FACETS
FACETS N_VERTEX_FACET_INC VERTICES_IN_INEQUALITIES
FACETS_THRU_VERTICES N_VERTICES VIF_CYCLIC_NORMAL
FACET_DEGREES ONE_VERTEX VOLUME
FACET_LABELS POINTED WEIGHTS
FACET_SIZES POINTS ZONOTOPE_INPUT_VECTORS
methods:
CD_INDEX VISUAL VISUAL_GRAPH
DUAL_FACE_LATTICE VISUAL_BOUNDED_GRAPH VISUAL_TRIANGULATION_BOUNDARY
FACE_LATTICE VISUAL_DUAL makeSchlegelDiagram
GALE VISUAL_DUAL_FACE_LATTICE makeSchlegelSteinerPoints
N_FLAGS VISUAL_DUAL_GRAPH
SCHLEGEL VISUAL_FACE_LATTICE

SchlegelDiagram
A Schlegel diagram of a polytope
properties:
FACET Polytope VIEWPOINT
FACET_POINT TRANSFORM ZOOM
INNER_POINT VERTICES
methods:
VISUAL

VoronoiDiagram
For a finite set of SITES S the Voronoi region of each site is the set of points closest (with respect to Euclidean distance) to the given site. All Voronoi regions (and their faces) form a polyhedral complex which is a vertical projection of the boundary complex of an unbounded polyhedron P(S). This way VoronoiDiagram becomes a derived class from RationalPolytope.
derived from:
RationalPolytope
properties:
ABSTRACT_OBJECTIVE FATNESS POSITIVE
AFFINE_HULL FEASIBLE RANDOM_EDGE_EPL
ALTSHULER_DET FLAG_VECTOR REL_INT_POINT
AMBIENT_DIM FTV_CYCLIC_NORMAL REVERSE_TRANSFORMATION
BALANCE F_VECTOR SCHLEGEL_PARAMS
BALANCED GALE_TRANSFORM SELF_DUAL
BOUNDED GALE_VERTICES SIMPLE
BOUNDED_GRAPH GRAPH SIMPLE_POLYHEDRON
BOUNDED_H_VECTOR GRAPH_SIGNATURE SIMPLICIAL
CD_INDEX_COEFFICIENTS G_VECTOR SIMPLICIALITY
CENTERED HASSE_DIAGRAM SIMPLICITY
CENTROID H_VECTOR SITES
CHIROTOPE INEQUALITIES SITE_LABELS
CHIROTOPE_INT ITERATED_DELAUNAY_GRAPH SPLITS
COCUBICAL ITERATED_VORONOI_GRAPH STEINER_POINTS
COCUBICALITY LATTICE SUBRIDGE_SIZES
COMPLEXITY LINEAR_OBJECTIVE TOWARDS_FAR_FACE
CONNECTIVITY MAXIMAL_FACE TRIANGLE_FREE
CRUST_GRAPH MAXIMAL_VALUE TRIANGULATION
CUBICAL MAXIMAL_VERTEX TRIANGULATION_BOUNDARY
CUBICALITY MINIMAL_FACE TRIANGULATION_INT
CUBICAL_H_VECTOR MINIMAL_VALUE TRIANGULATION_INT_SIGNS
DELAUNAY_GRAPH MINIMAL_VERTEX TRIANGULATION_SIGNS
DIAMETER MINIMAL_VERTEX_ANGLE TWO_FACE_SIZES
DIM NEIGHBORLINESS UNBOUNDED_FACETS
DIRECTED_GRAPH NEIGHBORLY VALID_POINT
DUAL_CONNECTIVITY NEIGHBOR_FACETS_CYCLIC_NORMAL VARIABLE_NAMES
DUAL_DIAMETER NEIGHBOR_VERTICES_CYCLIC_NORMAL VERTEX_BARYCENTER
DUAL_EVEN NN_CRUST_GRAPH VERTEX_COLORS
DUAL_GRAPH NN_GRAPH VERTEX_DEGREES
DUAL_GRAPH_SIGNATURE N_01POINTS VERTEX_IN_DEGREES
DUAL_TRIANGLE_FREE N_BOUNDED_VERTICES VERTEX_LABELS
EDGE_COLORED_BOUNDED_GRAPH N_EDGES VERTEX_NORMALS
EQUATIONS N_FACETS VERTEX_OUT_DEGREES
ESSENTIALLY_GENERIC N_INEQUALITIES VERTEX_SIZES
EVEN N_NON_NEG_INT VERTICES
F2_VECTOR N_POINTS VERTICES_IN_FACETS
FACETS N_RIDGES VERTICES_IN_INEQUALITIES
FACETS_THRU_VERTICES N_SITES VIF_CYCLIC_NORMAL
FACET_DEGREES N_VERTEX_FACET_INC VOLUME
FACET_LABELS N_VERTICES VORONOI_BOUNDING_BOX
FACET_SIZES ONE_VERTEX VORONOI_GRAPH
FACE_SIMPLICITY POINTED VORONOI_VERTICES
FAR_FACE POINTS WEIGHTS
FAR_HYPERPLANE POINTS_IN_FACETS ZONOTOPE_INPUT_VECTORS
methods:
CD_INDEX VISUAL_BOUNDED_GRAPH VISUAL_NN_CRUST
DUAL_FACE_LATTICE VISUAL_CRUST VISUAL_TRIANGULATION_BOUNDARY
FACE_LATTICE VISUAL_DUAL VISUAL_VORONOI
GALE VISUAL_DUAL_FACE_LATTICE makeSchlegelDiagram
N_FLAGS VISUAL_DUAL_GRAPH makeSchlegelSteinerPoints
SCHLEGEL VISUAL_FACE_LATTICE
VISUAL VISUAL_GRAPH

TightSpan
Bounded subcomplex of an unbounded polyhedron, which is associated with a finite metric space. The tight span is 1-dimensional if and only if the metric is tree-like. In this sense, the tight span captures the deviation of the metric from a tree-like one.
derived from:
RationalPolytope
properties:
ABSTRACT_OBJECTIVE FATNESS RANDOM_EDGE_EPL
AFFINE_HULL FEASIBLE REL_INT_POINT
ALTSHULER_DET FLAG_VECTOR REVERSE_TRANSFORMATION
AMBIENT_DIM FTV_CYCLIC_NORMAL SCHLEGEL_PARAMS
BALANCE F_VECTOR SELF_DUAL
BALANCED GALE_TRANSFORM SIMPLE
BOUNDED GALE_VERTICES SIMPLE_POLYHEDRON
BOUNDED_GRAPH GRAPH SIMPLICIAL
BOUNDED_H_VECTOR GRAPH_SIGNATURE SIMPLICIALITY
CD_INDEX_COEFFICIENTS G_VECTOR SIMPLICITY
CENTERED HASSE_DIAGRAM SPLITS
CENTROID H_VECTOR STEINER_POINTS
CHIROTOPE INEQUALITIES SUBRIDGE_SIZES
CHIROTOPE_INT LATTICE TAXA
COCUBICAL LINEAR_OBJECTIVE TOWARDS_FAR_FACE
COCUBICALITY MAXIMAL_FACE TRIANGLE_FREE
COMPLEXITY MAXIMAL_VALUE TRIANGULATION
CONNECTIVITY MAXIMAL_VERTEX TRIANGULATION_BOUNDARY
CUBICAL METRIC TRIANGULATION_INT
CUBICALITY MINIMAL_FACE TRIANGULATION_INT_SIGNS
CUBICAL_H_VECTOR MINIMAL_VALUE TRIANGULATION_SIGNS
DIAMETER MINIMAL_VERTEX TWO_FACE_SIZES
DIM MINIMAL_VERTEX_ANGLE UNBOUNDED_FACETS
DIRECTED_GRAPH NEIGHBORLINESS VALID_POINT
DUAL_CONNECTIVITY NEIGHBORLY VARIABLE_NAMES
DUAL_DIAMETER NEIGHBOR_FACETS_CYCLIC_NORMAL VERTEX_BARYCENTER
DUAL_EVEN NEIGHBOR_VERTICES_CYCLIC_NORMAL VERTEX_COLORS
DUAL_GRAPH NODE_COLORS VERTEX_DEGREES
DUAL_GRAPH_SIGNATURE N_01POINTS VERTEX_IN_DEGREES
DUAL_TRIANGLE_FREE N_BOUNDED_VERTICES VERTEX_LABELS
EDGE_COLORED_BOUNDED_GRAPH N_EDGES VERTEX_NORMALS
EQUATIONS N_FACETS VERTEX_OUT_DEGREES
ESSENTIALLY_GENERIC N_INEQUALITIES VERTEX_SIZES
EVEN N_NON_NEG_INT VERTICES
F2_VECTOR N_POINTS VERTICES_IN_FACETS
FACETS N_RIDGES VERTICES_IN_INEQUALITIES
FACETS_THRU_VERTICES N_VERTEX_FACET_INC VERTICES_IN_METRIC
FACET_DEGREES N_VERTICES VIF_CYCLIC_NORMAL
FACET_LABELS ONE_VERTEX VOLUME
FACET_SIZES POINTED WEIGHTS
FACE_SIMPLICITY POINTS ZONOTOPE_INPUT_VECTORS
FAR_FACE POINTS_IN_FACETS
FAR_HYPERPLANE POSITIVE
methods:
CD_INDEX VISUAL VISUAL_GRAPH
DUAL_FACE_LATTICE VISUAL_BOUNDED_GRAPH VISUAL_SPLITS
FACE_LATTICE VISUAL_DUAL VISUAL_TIGHT_SPAN
GALE VISUAL_DUAL_FACE_LATTICE VISUAL_TRIANGULATION_BOUNDARY
N_FLAGS VISUAL_DUAL_GRAPH makeSchlegelDiagram
SCHLEGEL VISUAL_FACE_LATTICE makeSchlegelSteinerPoints

PropagatedPolytope
Polytope propagation means to define a polytope inductively by assigning vectors to arcs of a directed graph. At each node of such a graph a polytope arises as the joint convex hull of the polytopes at the translated sources of the inward pointing arcs.
derived from:
RationalPolytope
properties:
ABSTRACT_OBJECTIVE FAR_HYPERPLANE RANDOM_EDGE_EPL
AFFINE_HULL FATNESS REL_INT_POINT
ALTSHULER_DET FEASIBLE REVERSE_TRANSFORMATION
AMBIENT_DIM FLAG_VECTOR SCHLEGEL_PARAMS
BALANCE FTV_CYCLIC_NORMAL SELF_DUAL
BALANCED F_VECTOR SIMPLE
BOUNDED GALE_TRANSFORM SIMPLE_POLYHEDRON
BOUNDED_GRAPH GALE_VERTICES SIMPLICIAL
BOUNDED_H_VECTOR GRAPH SIMPLICIALITY
CD_INDEX_COEFFICIENTS GRAPH_SIGNATURE SIMPLICITY
CENTERED G_VECTOR SPLITS
CENTROID HASSE_DIAGRAM STEINER_POINTS
CHIROTOPE H_VECTOR SUBRIDGE_SIZES
CHIROTOPE_INT INEQUALITIES SUM_PRODUCT_GRAPH
COCUBICAL LATTICE TOWARDS_FAR_FACE
COCUBICALITY LINEAR_OBJECTIVE TRIANGLE_FREE
COMPLEXITY MAXIMAL_FACE TRIANGULATION
CONNECTIVITY MAXIMAL_VALUE TRIANGULATION_BOUNDARY
CUBICAL MAXIMAL_VERTEX TRIANGULATION_INT
CUBICALITY MINIMAL_FACE TRIANGULATION_INT_SIGNS
CUBICAL_H_VECTOR MINIMAL_VALUE TRIANGULATION_SIGNS
DIAMETER MINIMAL_VERTEX TWO_FACE_SIZES
DIM MINIMAL_VERTEX_ANGLE UNBOUNDED_FACETS
DIRECTED_GRAPH NEIGHBORLINESS VALID_POINT
DUAL_CONNECTIVITY NEIGHBORLY VARIABLE_NAMES
DUAL_DIAMETER NEIGHBOR_FACETS_CYCLIC_NORMAL VERTEX_BARYCENTER
DUAL_EVEN NEIGHBOR_VERTICES_CYCLIC_NORMAL VERTEX_COLORS
DUAL_GRAPH N_01POINTS VERTEX_DEGREES
DUAL_GRAPH_SIGNATURE N_BOUNDED_VERTICES VERTEX_IN_DEGREES
DUAL_TRIANGLE_FREE N_EDGES VERTEX_LABELS
EDGE_COLORED_BOUNDED_GRAPH N_FACETS VERTEX_NORMALS
EQUATIONS N_INEQUALITIES VERTEX_OUT_DEGREES
ESSENTIALLY_GENERIC N_NON_NEG_INT VERTEX_SIZES
EVEN N_POINTS VERTICES
F2_VECTOR N_RIDGES VERTICES_IN_FACETS
FACETS N_VERTEX_FACET_INC VERTICES_IN_INEQUALITIES
FACETS_THRU_VERTICES N_VERTICES VIF_CYCLIC_NORMAL
FACET_DEGREES ONE_VERTEX VOLUME
FACET_LABELS POINTED WEIGHTS
FACET_SIZES POINTS ZONOTOPE_INPUT_VECTORS
FACE_SIMPLICITY POINTS_IN_FACETS
FAR_FACE POSITIVE
methods:
CD_INDEX VISUAL VISUAL_GRAPH
DUAL_FACE_LATTICE VISUAL_BOUNDED_GRAPH VISUAL_TRIANGULATION_BOUNDARY
FACE_LATTICE VISUAL_DUAL makeSchlegelDiagram
GALE VISUAL_DUAL_FACE_LATTICE makeSchlegelSteinerPoints
N_FLAGS VISUAL_DUAL_GRAPH
SCHLEGEL VISUAL_FACE_LATTICE

Framework
A bar and joint framework is a graph with a given embedding.
Responsible author: Thilo Rörig
properties:
DIM FRAMEWORK NODE_LABELS
EMBEDDING GRAPH N_DEGREES_OF_FREEDOM
EXPANSIVE_MOTIONS INFINITESIMALLY_RIGID N_EDGES
EXPANSIVE_MOTION_CONE INFINITESIMAL_MOTIONS N_NODES
EXPANSIVE_MOTION_COORDINATES INFINITESIMAL_MOTION_COORDINATES RIGIDITY_MATRIX
EXPANSIVE_PATTERNS INFINITESIMAL_PATTERNS
EXPANSIVE_RIGID_COMPONENTS INFINITESIMAL_RIGID_COMPONENTS
methods:
VISUAL