ﬁ

Spring

The Spring Framework - Reference Documentation

Version 2.5.5

Copyright © 2004-2008 Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack, Thierry
Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau,

Mark Fisher, Sam Brannen, Ramnivas Laddad

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

IR g4 oo (U T o o O PPPRPPPPRPN 16
0 L= Y= PSR 16
L2, USAQESCENGITOS ...coeeeeiiiiiieeee e e e e e ettt e e e e e e e sttt et e e e e e e e ee bbb e e e e eaeeeessasntsaeeeeaeessaanassaaneeeaaeesans 18

2.What'snewin SPring2.0aNnd 2.57oooeiiiiiiiiie e 21
P28 I 1 L1 0o (1 o o) o PRSP 21
2.2. Thelnversion of Control (10C) CONEAINETc.uvieiiiieeeeeiiiiee e e st e et e e e e nieneeeen 21

2. 2. 1. NEWDEANSCOPESceeeeeeeei ittt e e e e e e ettt e e e e e e e et b ee e e e e aeeesaanntseeeeaaeeseaannsnneeeeeaaeeaans 21
2.2.2.Easier XML CONfIQUIALION.......uueiiiieee ittt e e e e s et e e e e e e e 21
2.2.3. EXtensibl XML GUENOTTNGceveiiiiie et 22
2.2.4.Annotation-drivenconfiguration..............cceeeiiiiiiiiiiir e e 22
2.2.5. Autodetectingcomponentsintheclasspath ... 22
2.3. Aspect Oriented ProgramminNg(AOP)ocoviiiiiiiiiieeeeeee e 22
2.3.1.Easier AOPXML CONFIQUIBLION ...ceoiiviieieiitiiee ettt 23
2.3.2.SuppOrtfOr @A SPECIIASPECES ... eeeeeieeiee e et e e e e e e e e e e eneaeeeeeaens 23
2.3.3. Support for bean namepoiNtCUt ElEMENtcceviiiiiie e 23
2.3.4. Supportfor ASPect0ad-tiMEWEBVINGccoiiiriieiiiiie e 23
P2 o I 1= T o = I RSP SP 23
2.4.1. Easier configuration of declarativetransactionSin XMLccccoeviiiieeiniiiee e 23
2.4.2. Full WebSpheretransaction management SUPPOITuuueueueummrnmmennnnnnnnnnnnnnnnnnnnnnnnnnnnns 23
2A.3IPA oo e e e et e e e e e e e a——— e e e e aaeeearaaeaeaas 24
24 4. ASYNCAIONOUSIMS..... ..ottt et e e e e e e et e e e e e e e e e eeeaaaeeeeannnneees 24
2A5JIDBC ...t e e e e e b e s nbareeeaas 24
R I 0=V L o I = RS 25
2.5.1. SensibledefaultinginSPringMV C ... 25
2.5. 2. POrtIEtframMEWOIK ... et e e a e e 25
2.5.3.Annotation-basedControll€rS..........ceeeeee e 25
2.5.4. Aformtaglibrary for SpriNgMV C ...oeveeiiee e 25
2.5.5. THES2SUPPONT ...ttt ettt e e e e e e s e e e s s e e e e e nnrreeeens 25
2.5.6.JSF 1.2 SUPPION ...ttt et a et ranar 26
2.5. 7. JAX-WSSUPPIOI .ceeeeeeiiiiee et ee e e e sttt e e e e st e e e e s s r e e e e e s s e s b e e e e e e e e e s s annrnnes 26
2.6, EVENYININGEISE ... e e e e e e e aaaas 26
2.6.1.DYNamiClanguUageSUPPONTcouureeeiiieeeeeiiieeeeaaieeeeesibse e e s sber e e e s asnreeesssneeeesnnbeeeeeans 26
2.6.2. ENhancedteStiNngSUPPOITuuuuuuurururniirnnniunnnnnnnnnnnnnnnnrnnnsnsnnnrnrnnnennnnnnnnnnnnnnnnnnnnnnnnnne 26
B ST TN 1Y/ B o] o 1 26
2.6.4. Deploying aSpring application context aSJCA adapterccvevevriiiieeniiiiee e 27
2.6.5.TASKSCNEAUIING ...eiieeeiiiieee e e e e e e e e e e e st e e e e e e e e s ennnneees 27
2.6.6.JaVA5 (TIQEN) SUPPOIT ...c..eveeee ettt e e ettt e e et e ettt e et e e e e e s e e e e e e e e e e nnr e e e e ennees 27
2.7.MigralingtoSPriNg2.5.....ccov e 27
2.7 L.CNANGES. ... ee ettt ettt e b e e e b e e e e e e e e e e e e 28
2.8.Updatedsampl€appliCatioNS..........uuuuureiiiiiiiiiiie e aeaaaenrnrasesnsanasannrarnnnnnnnrnrnnes 30
2.9.1MpProveddOCUMENTALIONeiiiiee e e s e e e e e e e e e e e e e e s s st r e e e e e e e s s annrrreeeeaeas 30

|.COrETECNNOIOTIES.ttt e e et e e ek e e e e e nb e e e e s e e e e e e e nnr e e e e e nnes 31

T I =] o[@ oo g - T o = PRSPPI 32
10 350 I8 1 11 0o 1o o U SUPRSRR 32
3.2.BasiCs- containersandbeansueiiiiiiiii s 32

G0t T I = Tot 0 1 = 11 = RSO PRSRRR 33
3.2.2.INStantiatingacCoNtai NENcceeiiieiiee et e e e e e e e e e e e e e e s eneeees 34
2.3 TNEDEANSeeiiiiiiie et e e 35
3.2.4.USINGTNECONTAINEYieieeeeeite ettt e e es 39
3.3. L. INJeCtingAEPENTENCIES......cueeeeee ettt 40

Spring Framework (2.5.5)

The Spring Framework - Reference Documentation

3.3.2. Dependenciesand configurationindetailccccooviiiiiiiniiiieeiiieec e 45
G TG 0 g o o F=Y L= o T LT o o PP 54
3.3.4.Lazily-INStantialedDEANS.ceeiiiiiiee it 54
3.3.5. AUtOWIrNGCOHADOIEIOISuuuuieeiiniiiiiii e raraenrararnrnnnennnnnnes 55
3.3.6.Checkingfor dependenCiES.oouiiiie et 57
IO C I A1 1= 1 oo | =" 1) o USRI 58
T 1S 0] - 61
4. 1. TheSINGIEIONSCOPE ...ttt e e et e e as 62
3.4.2. TNEPIOLOLYPESCOPE .vvveiieeeeiieiiiiieree e e e e e e ettt e e e e e e e e s st bbb e e e e e e e e s s e satrreeereeeeessananeeens 63
3.4.3. Singleton beanswith prototype-beandependencies ..., 64
34.4. ThEOthEr SCOPES. .. oo i 64
4. 5. CUSIOMSCOPES ...ceteeeeiiiiititet et e e e e e ettt e e e e e e s e bbb et e e e e e s e st b b e et e e e e e aaansbbrreeeaaeeanans 68
3.5. Customizingthenatureof aDEANooo i 70
3.5.1.LifecyclecallDacks..........ccuuviiiiiiie 70
3.5. 2. KNOWINGWRNOYOUBIEcoiiiieeiiiiiee ettt ettt e e e s anen e e 74
3.6.BeandefinitioniNheritanCeoooiiieiie s 76
3.7.CoNtaiNEr EXTENSIONPOINTSci..eeeieeiiteee e ettt ettt a b e e e e e e e e s anbnn e e e e nnnreeas 77
3.7.1. CustomizingbeansSuSiNgBeanPoSt Pr 0CESSOr S wuvvrrrrrrrrrrrrererereeereeerereeerereereereeeeeens 77
3.7.2. Customizing configuration metadatawith BeanFact or yPost Processors 80
3.7.3. Customizinginstantiation|0giCUSINGFact 0F YBEANScccorvrrreerireeeessiineeeessnneees 83
3.8. THEADPPI | CALT ONCONE EXT wevvrvunniiieeiiieritieseeeeeseeeeabi e e eesseeeesra s eesseseestrbaeeeesseeeserannans 84
3.8.1.BeanFact or y Or Appl i cat i ONCONt Xt 2.ciiiveuiiuiiiieeeeeeiiiiies e e e e e e e eetate e e e e e e eeeanenaaes 84
3.8.2.Internationali zatiONUSINGMES SAGESOUN CES .vvrrrrrireeriiiiiurirereeeeeesiiiisrreeeeeeeessannenens 85
BB S IS L. nnnnas 87
3.8.4. Convenient accessto | OW-1eVel FESOUICESeeiiiieei i 89
3.8.5. Convenient Appl i cat i onCont ext instantiationforwebapplications....................... 20
3.9. Gluecodeandthe Vil SINGIEIONoviiiiiieiee e 20
3.10. Deploying aSpring ApplicationContext asaJ2EE RARTIlEooooeeiiiiiciiiieiii, 91
3.11. Annotation-basedCONfIQUIBLION.coiiiiieiiii et 92
G 200 I I 22 =Y T T =1 92
T N NG YT 1 I =1 I PP 93
3.11.3. Fine-tuning annotation-based autowiringwithqualifiers 95
3.11.4.Cust OMAUL OWI T ECONT i QU B wuuveiieriieeiiriieeeertieeeesaieseesaseeresssesessasesrsrnresessans 99
BT B TG 2 Yo YU o= T, 100
3.11.6.@ 05t Const r UCt ANA@Pr €DESE T OV ..ieeeiieeriiieeeeeeeeeeeeite e e e e e s e e eeab s e e e s e e eeeaaaaaes 101
3.12. Classpath scanning for managed COMPONENLScceorurrieriiiriee e e sieeee s e 101
3.12.1. @onponent andfurther stereotypeannotationsccccoeeeee . 101
3.12.2. AUtO-deteCtiNngCOMPONENTSvvieiiitiie et e sttt e e e 102
3.12.3. Usingfiltersto CUStOMIZESCANNINGcooiiieiiieieie e e e e e e 103
3.12.4. NamingautodeteCted COMPONENES...........cuvviiieiiee e s e e e 104
3.12.5. Providing ascopefor autodetected COMPONENESccoivereeerinieeeniiiieeeenineeeenns 104
3.12.6. Providingqualifier metadatawithannotationscccccceeveeiiiiiiiiieeee e, 105
3.13.ReQiStEriNGAL0AATi MBVMBAVET ...eiiiiirreeeeiirreeeaaisreeesasteeeesanbneeeeasnseeeeanbeeeesansnneeeannnneeas 106
AR ESOUI GBS ... e e e e oo e e s e as 107
g T g1 0o 1o o PSPPI 107
4.2. THhEeResOUr CEINTEITACE ... ciii it e e e e e e e eeaens 107
4.3.Built-inResour ce IMPIEMENLALIONSccoiiiiiiieiiiee e 108
. 3.0 | RESOUN 8 truuneiiitunieeeitieeeettt e e e ettt e e s eateeeeata e e e e st e esesann e sesannaesetanaaesetanaaserannns 108
4.3.2.00 ASSPAt NRESOUN CE ..eiivruuieeiiitieeetteeesettaeesett e eeett s eeeeranaesetnaesetaaeeeetanaeererannns 108
A.3.3.Fi | ©SY St EITRESOUI CE eevrrrruiieeerererrtutiseeeeseeeretunaseeeeeeeestanaaaeeeereastnnaaaeeeeeeeesnnnnns 109
4.3.4.Ser VI €1 CONt @XE RESOUI CO.urirrunieeeitieeeeitteeeeettaeeeettaeeseraeesetaaeesstaeareraaeererannns 109
4.3.5.1 NPUL St T @AMRESOUI C vuvurunieeeeeietititieeeeeeeeertttaaaeeeeseeeestaa s aeeesereastrnaeeeeeeeeesrnnnns 109

Spring Framework (2.5.5)

The Spring Framework - Reference Documentation

N N = YA =Y Y 1Y =Yoo TV o oY 109

4.4, TNERES OUI CELOAUET .uvvvurururursrrrurssnssrssnsnnns 109
4.5. TheResour ceLoader AWAr @ INMTEITACEcooeiiiieiiee e 110
4.6.Resour ces 8SAEPENAENCIES..........cooo e i e 111
4.7. ApplicationcontextsandResour ce PAINSeeeiiiiiiii i 111
4.7.1.ConstructingappliCatioNCONEEXESoeieiiiiieiee e 111
4.7.2. Wildcardsin application context constructor resourcepathsccccceevvecvvvvenennn. 112
4.7.3.Fi | eSyst eMReSOUr CECAVEALSceuuruuieieeeeieiittiias s e e eeeeeaatnasseeeeeeeaetnnaeeeeaaeenenns 114
5.Validation, Data-binding, theBeanw apper ,and Propert yEdi t 0r'Scccovevciviveeeeeeeesieiiniveeeeenn. 116
o300 I 1 1o [o o) SRS 116
5.2.Validationusing Spring'sval i dat or INEEITACEe.........ccceiiiiiiiiiiii e 116
5.3. Res0IViNg COUESTO EITON MESSATESeveeeiiurreeeeiirieeeaaiieieeasbeeeeessbreee s s ssbeeeessbeeeeesannneeas 118
5.4.Beanmanipulation andtheBeanW appereeeeeeeeiiiiciieiieeiee et e e e e e e e e aae e 118
5.4.1. Setting and getting basic and nested Propertiescccoeccvvveeeiee e iciciiieiee e 118
5.4.2.Built-inProperty Editorimplementations..............oooieeeiiiiieeeiieee e 120

6. Aspect Oriented ProgrammingWith SPringceoooiiiiiiiiieeiie e 126
200 I 1 1o [o o SR 126
L O N @ o0 0 o £ 126
6.1.2. Spring AOP capabilitiesandgoalSc.uvveeeiiee i 128

TR I AN @ o o) (=SSR 129

A (0N o= o LS U o] o 1 PR 129
6.2.1.Enabling @A SPECLISUPPONTceeiuieeeee et aiit ettt e e e 129
6.2.2. DEClariNg@ANASPECE.......cce it ee et a e et a s 130
6.2.3.DeClaringapOiNECULcoiurieeeiiieie et s e e e e n 130
A <o = T e =0 V7 o= 136
B.2.5.INErOTUCTIONS.eeieiiieii ettt e e e e e s nabeeeeeaae 142
6.2.6. ASPeCtinstantiatiONMOAES............ueiiiiiiii e 143
B.2. 7. EXAMPIE ... s aa e 143

6.3. SChemMa-DASEUA OPSUPPONTeeieiiieiee et e e et e et e et e e s r e e s s e e e s nnrneeenan 145
6.3.1. DEClariNgaANasPEC.......ccoi ittt e e aas 145
6.3.2.DeClaringapOiNECULcoiuriieeiiiiie ettt e e e e e 145
G TC B <o = T e =0 V7 o= 147
6.3 4. NEFOUCTIONS.eei ettt s et e e s e e e s nnbaeeeeaae 151
6.3.5. ASpectinstantiatiONMOCES.veiiiiiiiii e 152
B.3.6. A TVISOIS ...t iiteiee ettt ettt et e ettt e et e e e et e e e e e e nbe e e e e nnraeeeeaan 152
B.3. 7. EXAMPIE ... e 153

6.4. Choosingwhich AOPdeclaration styl€tOUSEccovvvviviiiiiiiieiiieieeeeeeeeeeeeeee e 154
6.4.1. SPring AOPOr TUIT ASPECEI? ..o 154
6.4.2. @AspectJor XML for SPrNGAOP? ...ttt 155

B.5. MiXINQASPDECIIYPES. ...eeiieeeei ettt e e et e e e e e s e e e e e e s e st e e e e e e e s e aantarareeaaeeeeans 156
6.6.ProXYiNgMECNANISIMIS.eeiiiiiiie ettt e e r e e s e e e e b e e e e anrneeeean 156
6.6.1. UNderstandiNngA OPPIOXIESueiiieeei i ittt ee e e e e e esettee e e e e e e e s st e e e e e e e s e snrrraeeeeeas 157

6.7. Programmatic creation of @A SPECLIPIOXIESvvvieiiiiiiee ettt 159
6.8. Using AspectIJwith SpringappliCationscccccciiiiiiiiiriiii e 159
6.8.1. Using AspectJto dependency inject domain objectswith Springcceeeeeecevvneeen. 159
6.8.2. Other Spring aspectSTOr ASPECE ..ot 162
6.8.3. Configuring AspectJaspectsusing SpringloCcccceveeeiiiiciiiieree e 163
6.8.4. Load-timeweaving with AspectJinthe Spring Frameworkccccoociveeeiiinnen. 163

B.9. FUINEIr RESOUITESiieeie ittt ettt e et e e e et e e s sbbe e e e e snsb e e e e e nnbaeeeeans 170
T SPIINGAOPAPIS ..ottt e e et e e e b e e e e e et e et e e s 171
80 1 L1 0o (1 o ' o S 171
7.2. POINTCUL APIINSPIING ..t eitiee ettt e ibe e e 171

Spring Framework (2.5.5)

The Spring Framework - Reference Documentation

T 2.1 CONCEPLS.eeeeieeeee e e ettt e e e r e e e e e e e e e e e e e e e e s e e e e an 171
7.2.2.0peratioNSONPOINTCULSuvvvieeieeeeiiiiiiiieeee e e e e e ssiir e e e e e e e s s santrre e e e e e e s s esnraraeeeaeas 172
7.2.3. ASPECLIEXPIESSI ONPOINTCULS ...ttt e e e e e e s e e e e e e e eas 172
7.2.4.Conveniencepoi NtCutimplemMeNtationSurururermininieiie—————. 172
7.2.5.POINTCULSUPEICIASSES ...ttt e 174
7.2.6.CUSIOMPOINTCULS. ... eeeeeee e e e e e ettt e e e e e e s ettt e e e e e e s s s nee e e eeaaeeeaaansnaneeneaaeeaaans 174

7.3. AQVICEAPIINSPIING .uuviiiiiiiie et e e e e e e e e e s st e e e e e e e s aanntrreeeeaens 174
7. 3. L AQVICEITECYCIES ...t 174
7.3.2. A0VICEIYPESINSPIING ..uvveeieee et e e e e e e e e s e e e e e e e e e e e e aans 175

T4 AQVISOT AP TNSPIING .ottt e e e e e 180
7.5. Using the ProxyFactoryBean to Create AOP PIOXIEScccvvvvvvieiiieiiiiieiieeeeeeeeeeeeeeeeeeeeeeeees 180
AT TS o= PSP POPPPRPPPPPPPRS 181
7.5.2.JaV8BEANPIOPEITIES. ... e e ettt e et e e e e e e e e e e e e e e e eeeaaeeaean 181
7.5.3.JDK-and CGLIB-baSEdPrOXI€Suvvieiieeeiiiciiiiieiee e e e eeccitree e e e e e s s e e e e e e e e 182
7.5.4. ProXYiNgiNTEITACES.ceiiiiiiie et 183
7.5, 5. PrOXYINGCIASSES ..o e e 184
7.5.6.USING'GIODEI A0VISOIScooiiiiiie e 185
7.6.CoNCISEProXY AEFINITIONSuuuuiiuiueiriiiiiirar s rarararnrernrannnnrnsnnnsnsnnnnnnns 185
7.7. Creating AOP proxiesprogrammatically withthe ProxyFactorycccccvvvveveee i, 186
7.8.ManipulatingaoViSEAODJECEScooiiiii e 187
7.9.Usingthe" autoproXy" faCilityccuuviiiie e e 188
7.9.1. AUtOProxXy DEANAEFINITIONSccoiuriiieiiiie et e e 188
7.9.2.Usingmetadata-drivenauto-ProXyingeeeeeeeeeeieciiiieeeeeeeeeisiiiineeeeeeeessessnsnneeeeeens 190

7. 10.USINGTAIGEESOUITESeeeiitiieeeiiieeeeeaitete e s et ee e s sttt e e e s s e e e s asbe e e e s anbne e e e s annbeeeeennsneeeeans 192
7.10.1. Hot swappabl etarget SOUICES.........ccovvviviiiiieiceeeeeeeeee et 192
7.10.2. P00l NGLArgEL SOUMCESevvieeeeiee e e e e ettt e e e e e s e e e e e e e e s s st e e e e e e s s e nntaraeeeaeas 193
7.10.3. ProtOtYPEargELSOUICESueeeiieeeeiiiiirrree e e e e e s s st e e e s e e e e e e ees 194
7.10.4.Thr eadLocal targEISOUMCEScveueiuiieeeeeieeeeiiis e s e e e e e e eeeira s s e e e e e e e aetaanneeeeeeeennes 194

7.11. DEfININGNEW AQVI CETYPES ..eiiiiiieieeiiitie e e ettt e sttt et e s e et e e s e e e e e 195
7. L2 FUMNEI TESOUICES. ...ttt e ettt e ettt e e e ettt e e e e e e e sttt e e e e sttt e e e e nbe e e e e annseeeeeennteaeeennraneeeans 195
S 1= A1 o PP PP OPPPPPUPPPRPNS 196
2300 I 1 L1 0o [o ' o U 196
S U L o] 1= 1 o RPN 196
8. 2. L. MOCKODJECES.ceeeiteee ettt 196
8.2.2.UNittestiNg SUPPOITCIBSSEScccviiiiiei e e e ettt e e e e s e e e e e e e e e eans 197

8.3 INLEGIALTIONTESLING ...eeiuveeeeeeiie ettt e e e et e e s st e e e e e b e e e e anrneeeeans 197
B3 LLOVEIVIBIW ...ttt ettt e e e et e e e ettt e e e st e e e e st e e e e e enbe e e e e nnraeeeeann 197
8.3.2.Whichsupport frameworktOUSEocueiiiiiiiiie e 198
8.3.3.COMMONGOBIS ...ceeieeee ittt e e e ettt e e e e e e s ettt e e e e e e e ettt e e e e e e e e e e annnrreeeeaaeeeaans 198
8.3.4.IDBCLEStINGSUPPON ...t ee e e e ettt e e e e e e e e e e e e e e e s s st e e e e e e e e s e entnraeeeaaas 200
8.3.5.C0MMONANNOLALIONSeuveiiieeee e it e e e e e e s s et e e e e e s e st e e eeeessssseeneeeaeaeeeaans 200
8.3.6.JUNIt3.81E0ACY SUPPOIeeeeeeeiieeiiiieie e e e e e e s eettre e e e e e e e et ee e e e e e e s seanrbreeeeeaeeeaanns 202
8.3.7.Spring TestConteXt FrameWOrKoociiiieiiiiie et 206
GRS I o = (O 1] T o= 7o) = 216
B.4.FUMNEIRESDUICEScce ittt e e e ettt e e e e e e et e e e e e s s et e e e e e e e s asssnraaeeaaaeessannnneees 218
Y Lo (o Lo Y= g - v Y oo S PRRRT 219
9. TranSaCtioNMANAGEMENTuuiiiieee i e ittt e e e e s s e e e e ae e e s s enb e e e eaeesssasntstarereaaeessannrrreeeeeens 220
S 00 I 1 1100 [o o o U 220
O.2.MOLIVALIONS ...eeeiiiiiee ettt ettt s e e e e e bbbt e e e e bt e e s enbe e e e e nba e e e e annbeeeeeansaeeeeans 220
0.3 KEYADSITBCLTIONS. ...ttt e e e s e e e e e nrn e e 222
9.4. ResourcesynchronizationwithtranSactionsccccvvvviviiiiiceeeeeeeeeeeee e, 224
0.4. 1. High-1evel GpProaChccuueiiiiiiiie e 224

Spring Framework (2.5.5)

The Spring Framework - Reference Documentation

9.4.2.LOW-1EVEIBPPIOBCH ..ot 225
9.4.3.Tr ansact i ONAWAT €Dt ASOUF CEPT OXY «.evvuueerurerrrneeeseerrrersneersniersreessaeesrnrerreersnns 225

9.5. DeclarativetransactionManageMENTuuviiiiiiiie et e e snbeee e 226
9.5.1. Understanding the Spring Framework's decl arativetransactionimplementation 227

0.5, 2. ATITSEEXAMPIE. ...t 227
9.5.3.ROIINGDACKceeiieeee et e e e e e e e e e 230
9.5.4. Configuring different transactional semanticsfor differentbeans............................ 232
9.5.5.<t x: @dVi €O/ >SEIINGS ..eoiiiieiee ittt 233
9.5.6.USINQG@IT ANSACE i ONAI .vvvvveiiieeeeiiiiiiieieeeeeeesssiitrreeeeeeessssntrteseeeeeesssssnrnreeaeaessaans 234
9.5.7. TranSaCti ONPIrOPAGELION.......ceeeiiiieee et e et ee e sttt e e e e e et e e e e e s anne e e e eaees 239
9.5.8. Advisingtransactional OPEratioNSuururururmrumurnrninnnrnnnnnnnrnrenrrra—————— 240
9.5.9.Using@r ansact i onal WItNASPECEcovuiiiiiiiiiiie e 243

9.6. Programmeati CtransactionmanagemeNtcoereeeiiiiiiieier e e e e e e eeiieee e e e e e s e eeeeieeeeeeeaeeeeaas 243
9.6.1.UsiNgtheTr ansact i oNTemPl @ @ ...cccciicuviiiiiieeeeeeicciiieee e e e e s e st e e e e e e e e sarrreeeeeeas 244
9.6.2.UsingtheP! at f or nTr anSact i ONMANAGET ...eeeiurrreeeriireeesiiireeesiieeeesenreeeeesneeeeeas 245

9.7. Choosing between programmatic and decl arativetransaction management 246
9.8.Applicationserver-speCifiCiNtegratioN............coieeieeiiiieee et 246
O0.8. L IBMWEDSPRENE ...ttt e e e e e e e e 246

0.8. 2. BEAWEDLOGIC. ...ccecii ittt e e s e e e e e e a e e e e 247
0.8.3.0rACIEOCATeeeeeeeeee ettt et a e e e e e e e nees 247

9.9. SOlutioNStOCOMMONPIODIEMSuiiiiiiie e e 247
9.9.1. Useof thewrong transaction manager for aspecific Dat aSour ceoccvveeerrernnen. 247

O.10. FUMNEIRESOUICES. ... et e eeiitiee e esiteee e e ettt e e e et e e sttt e e e et e e e e st e e e e annseeeeesnnteeeeennnaneeeans 247
OB TN @ 1= ¥] o] oo PP PP P PP PTOPPPPPRPPPT 248
0 80 T 1 0T 1 ' o U 248
10.2.Consistent eXCEPLiONNIEIArCNYcceeiiiiiie e 248
10.3. Consistent abstract classeSTor DAO SUPPOITcooivrieeiiiiiee et 249
11.DataaccesSUSINGIDBC ...t e e e s e e e e e e e e e e e e s 250
T g 0T 1 ' PR 250
I I I @ o To = g To = 1= L= PSSR 250
11.1.2. ThepaCkagehi€rarChyoooueiiiiiiiie e 251

11.2. Using the IDBC Core classesto control basic JDBC processing and error handling 251
2 e 1o Yo =1 o T = 251
11.2.2.NanedPar amet €r JADCTENP] @ € .oveeevererrriiiieeeeereeeetiiass e e e eeererer e e e e e e eeeeernn e eeeees 254
G RS o =N [Yo =T o L A= 256

L. 2.4.D81 AS0UI CO evvvrueeeiitiiee ettt e e e ettt e e e et et e e e et et e e e e st eeeea b e eeeataeeesetaaeerstanaeererannnns 257
11.2.5.SQLEXCEPt i ONTE ANST AL OF 1vvvniirnieieieeeneeeteeee e e e s e et e e eb e raaeeran e eebeeraneerans 258
11.2.6.EXECULINGSIAIEMENESeveieeiiiiiee ettt e e 259
11.2.7.RUNNINGQUENIES.coeee ettt e e e e e e e e e e e e e e e 259
11.2.8.Updatingthedatabaseeviieeiiiiiiiieiicee et 260
11.2.9. Retrievingauto-generatedeysS.couuviiiiiiiiieeiieie e 260
11.3.ControllingdatabaSeConNECLIONSueeeiiieiiiiiiiiiee e 261
11.3.0.D81 @SOUF CEUL i | S civvrruieiiiiiiieeeietieeee et e e ee et e e e e et e e e e et e e e e et e e e sebaeeesataeeererannnns 261
11.3.2.SIBI 1 DAL ASOUI CE tevvrruneeeittieeerieteeeseetseeeestaaeaeestaaeeeataaeeretaaeeestaaeseetnnaeerernnaes 261
11.3.3.ADSt r ACE DAL ASOUI CO tuuerrrruierietieeeereteeeeeesteeeeeetateeesetaeessstaeeeretaeesssrnaeererananns 261
11.3.4.Si ngl @CoNNECt i ONDAL ASOUI C@ eevuueriiriieeiiiieeeeetteeeeeetaeeeeetaeeeeetaaeeeetaeeaeerannnns 261
11.3.5.0r i VEr MANaAger Dat @S0UN CE ..uevrrrunieerereeeereraeeererseesretaeesrereesrsraeesserneessernees 261
11.3.6.Tr ansact i oNAWATr €Dat @SOUF CEPT OXY wuvvuuuiieeerererriniisseeererersnnnsaeeesseressnnnaaeeeeees 262
11.3.7.Dat aSour ceTr anSact i ONMANAGETuueeerniiernierrieerrtierereertieeeteerreerseereraeeraeeesns 262
11.3.8.NatiVEIADCEXIIACLONevvviieeeiiieiiiiiiiee e e e e ettt e e e e e e e s sreare e e e e e e s ennnnbeaeeeaaeeeeans 262

I B TS0 o ot g o o L= = 0] 1 263
11.4.1. BatchoperationswiththeJAbCTemMPlate.oveiiiiiiieiiie e 263

Spring Framework (2.5.5)

The Spring Framework - Reference Documentation

11.4.2. BatchoperationswiththeSimpleddbcTemplatecoccveeiiiiiii i 264

11.5. Simplifying JDBC operationswiththe Simpleddbc Classescoccvvvveeeie e icciiiieee, 265
11.5.1. Insertingdatausing SimpleJdbCINSart ... 265
11.5.2. Retrievingauto-generated keysusing Simpleddbclnsert............eieeninininnnnnnn. 265
11.5.3. Specifying thecolumnsto usefor aSimpleddbcinsertcccceevviiveeiiiiieeenien, 266
11.5.4. Using Sgl Parameter Sourceto provide parameter ValUEScoovvecciieeeereeeeenns 266
11.5.5. Callingastored procedureusing SimpleddbcCall ..., 267
11.5.6. Declaring parameterstouseforaSimpleddbcCall ..., 269
11.5.7. HowtodefineSOIParameters.........ccooei it 270
11.5.8. Cdllingastored functionusing SimpleddbcCall ... 270
11.5.9. Returning ResultSet/REF Cursor fromaSimpleddbcCallcccovvvvvvivevevenennnnn. 271

11.6. Modeling IDBC 0perationsasJaVaohjECLSccuveeeiiiireeeiiiiiee et 272
T RS To T I @ V=Y Y PO URPPROR 272
Y =Y oY o TI A To 1o N =T AP 272
TG B o U o - = 273
N T S oY =Yoo Yo=Y [V O =N 274
T o I 0T Yo T 277

11.7. Commonissueswith parameter and datavaluehandlingccccccoeieiiiiiiiiiciiiinnnnnnns 277
11.7.1. Providing SQL typeinformation for parameters............ccccvvvveveeeeeseciciiineeeeee e 277
11.7.2. HandlingBLOB and CLOB ODJECSccoiiiiiiieiiiieie e 277
11.7.3. Passinginlistsof valuesfor IN Clauseccovieiiiiiiiiiieiiee e 279
11.7.4. Handling complex typesfor stored procedurecallscccccoviiiiiiiniiiieeeniinenn. 279
12.Object Relational M apping (ORM) dataaCCeSS......cccceiviiiiiiiieiiee ettt e et e e e e 281
2250 T 1 0o 1 o ' o SRR 281
A o T o= 1 = = SR 282
12.2.1.RESOUrCEMAaNaJEIMENTeeiiiiiiiieeiii ettt ettt ettt ettt et e e e e e e e e e e e e eeeeeeeeeeeeeeeees 282
12.2.2. Sessi onFact or y SEtUPINASPIING CONMTAINETvvveeeiiiieeee e 283
12.2.3. ThEH DEr Nat ETENPI AL € covvieeerereeeieieeeieeetie e e e e e e e e e eeer e s e e e s e s eeeabb e e eesseesreraanaes 283
12.2.4. 1mplementing Spring-based DAOswithout callbacks ..., 285
12.2.5. Implementing DAOsbased onplain Hibernate3APIcoooiiiiiieeieeeeiien, 285
12.2.6. Programmati CtransactiondemarCationeeeirueeeeeinieiee e e e sieeee e 286
12.2.7.DeclarativetransactiondemarCationo.eioiceeeeeieee e 287
12.2.8. Transactionmanagement StralEgIESuvvrereeeee i ee e e e e e e e e e e e earraeeee e 288
12.2.9. Container resourcesversuS|OCal FESOUICEScuvvveiiireeeeieeciiieeee e e e e e eeeeieeeee s 290
12.2.10. Spuriousapplication server warningswhenusing Hibernatec.c.ccoeeeee. 291
2 05 1@ T PSPPSR 292
12.3.1.Per si st enceManager Fact or Y SEIUP ...ovveevrvenieieeereeeeiiiien s e e e e e e eeetnnn e e e e e e eeeneens 292
12.3.2.3doTenpl at @ ANAIAODAOSUDPPOT T wevvrrrrrerrrrrerrererererereeeeererererrrererererererererrrerereeeen: 293
12.3.3. Implementing DAOsbased ontheplain IDO APooiviiiiiiiiiiieeee e 293
12.3.4. TransactioNMaNageMENt..........cccuviriieeeee e e s e e e e e e e s s r e e e e e e e e e ereaaeeeaans 295
12.3.5.30A0D0 @l BCE 1eeiiitiieeeiiii et e e e e e e e et 296

A N @ = To =0 o] o I o PSR 296
12.4.1.Sessi onFact or yaDSraCtioNcoovvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 297
12.4.2.TopLi nkTenpl at e ANATOPLI NKDAOSUPPOT T ..veeverunieeieraieereraeeereraseeeeeraseeseesaseeeees 297
12.4.3. Implementing DAOsbased onplain TOPLINK APoooiiiiiiiiiiiiieec e 299
12.4.4. TransactioNMaNagEMENT.........oii e ee e e e ettt e e e e e e e s et e e e e e e e s e asneeeeeeeaeaeeeen 300

125 iBATISSQLMEPSeeiieiiiiiiee et ettt sttt e et e e s sbb et e e s snbbe e e e ennbaeeeeans 301
12.5.1. SettingUPTNESYl MBPCH i €N ..vvvieiiiiiie et e ettt 301
12.5.2.Usingsql Mapd i ent Tenpl at e andSgl Mapd i ent DAOSUPPOTt ccuevvvvveereeeeesiennnnnn 302
12.5.3. Implementing DAOsbased onplainiBATISAPIooviiiiiiiiiiieeeee e 303
L2, 8. JPA et e e e e e e e e e e e —— et e e e nte e e e e e taee e e e nnneeeeanreaeeennnes 303
12.6.1. JPA setupinaSpring €NVIFONIMENTcooiurreeiiirieeeanireeeseiieee e sireeeesnnreeeeenees 304

Spring Framework (2.5.5) Vii

The Spring Framework - Reference Documentation

12.6.2.JpaTenpl at @ ANAIPADAOSUDPPOT T wevverrrrerrererererreereeererererererererererereeerrrererrrererereee 309
12.6.3. Implementing DAOsbasedonplaiNnJPAccvviiiie e 310
12.6.4. EXCEPtONTIANSIATON ...ttt 312
A W =01 o o 1LY == 1= 1= | 312
L12.8.IPADI Al BCL eeeiiieiiiiiie e e e e e e eeee e e e e e e e e e e e e e e e e e et e e e e e e ee et — e eeeeaeeeaataaaaaeenrrrns 313
I == o SRS 314
L3 WEDMV CTTAMEBIWOTKeieiiiiiie ettt e e et e e e st e e e s snbbe e e e e nnbneeeean 315
G 50 T 1 11 0o 1o ' o PR 315
13.1.1. Pluggability of other MV Cimplementations...........ccccceeeeeieiiciiiieeeee e 316
13.1.2. Featuresof SpringWeEDMV Cooiiiiiieiie e 316

13.2. THEDI SPAt ChEr SEI VI @1 ..ieieieiiiiieeeeeeeee et e e e e e e e et e e e e e e e e e e et e e e e e e e e e eesbabaeeeeeeeeeeees 317
GG H o 11 7] 1 = = SRR 321
13.3.1.Abstract Cont rol | er aNAWEbCont €Nt GENEr AL OF .uvuueeeeeeeeeeriiiieeeeeeeeeerrrieeeeeenan 322
13.3.2.0ther SIMPIECONLIOIEISvveeiie e 323
13.3.3.ThEMUI ti ACti ONCONE T Ol | I wuvvueeieieeeiieeriiieeeeeeeeee et ee e e e e e e e e e et e e e e e e e eeeraraanans 323
13.3.4.CommMEaNACONLIOIENS.eeiieiiiiie et e e 326

13. 4. HaNAI €I MEBPPINGSeeeeeiiteiee ettt e e et e et e e et e e et e e e e anbb e e e e e e e e e e nees 327
13.4.1.BeanNanmeUr | Handl €F MBPPI NG ceuuunieeiiiieeeeiiieee e et e e e eeteeeeeetn e e e eate e e e e et e eaeanannnns 327
13.4.2.Si npl @Ur | Handl €5 MBPPI N .evveriieeiiriieeeetieeeeeetieeesetaeeessetaeessetaeesssraeesserannns 328
13.4.3. Intercepting requests- theHand! er I nt er cept or interfacec.cccveeviiieeeenne. 329
13.5.ViewsandresolVINGNEM 330
13.5.1. Resolvingviews-theVi ewResol ver iNEITaCEccociiviiiiiiiieiee e 331
13.5.2.ChaiNiNgVIEWRESDIVEIS.......ccco ittt e e e e 332
13.5.3. REINECHINGLOVIEIWSoeiiiiiiie ittt e e e e 333
13.6.USINGIOCAIESccoeeeeeeeeeeee et 334
13.6.1.Accept Header LOCAl ERESOI VET cuvuiiiieriiieiiiiieeeeieteeeeeeteeeeeeb e e e seba e e e s et e e s sebananas 334
13.6.2.C00Ki €LOCAI BRESOI VET iiviuiiiiiiiieeeiiiie e e e e e e e ettt e e e et e e e et e e e e et e e e e et e e e e erannas 334
13.6.3.56551 0NLOCAI ERESOI VI civtuuiiiiiiiieeeeiiie e e et e e e et e e e e et e e e e et e e e e et e e e e et e e e eetan s 335
13.6.4.Local €Changel Nt €F CEPL OF .uuuuiiieeereeereiiiiieeeeeeeeeestnaasseeeeersasnnnaaeeeesererrrnnaaaeeaees 335
L13.7.USINGNEIMES ..ot e e e e e e e e e e e e s s st b e e e e e e e e e s e ntbreneeeeas 336
G 00 T [11 0o 1 T i o o USSR 336
13.7.2.DEfiNINGINEMEScooeieieeeeeeeee e 336
13.7.3. THEMEIESOIVEN'Seeiiiiieie et 336
13.8. Spring'smultipart (fileupl 0ad) SUPPOIToeeiiriiieiiiiie e 337
GRS 30 g (0o 1 o o PRSP 337
13.8.2.USINGINEMUI t i PAr t RESOI VET ..uiviiieiiiiiie e ettt 337
13.8.3. Handlingafileuploadinaformccccc i, 338

13.9. HaNAIINGEXCEPLIONS ...ttt et e et e et e e e e e e e nees 340
13.10.ConventionoVer CONFIQUIALTIONueeiiiiiee e e e e et e e e e e e ee e e e e e e e e enneees 341
13.10.1. TheController-Cont rol | er A assNameHandl er MBpPi NG «...ooevvvvvvvieeiieeeereeeeennnnn. 341
13.10.2. TheModel - Model Map (Model ANdVi W) ...ceuvveeeeiiiieieesiiieeeesiiieeeeesneeeeesieeee e 342
13.10.3. TheView-Request ToVi @WNAMBTF ANS| At OF ...veeeeiieveiriiieeeereeereieeeeeeeseeeeenannns 343
13.11. Annotation-based controller CONfiQUIatioN.............cuueeieiiiiiie e 344
13.11.1. Setting up thedispatcher for annotation SUpPPOrtcooeeeeeeeiieie e, 345
13.11.2. Definingacontroller With @Cont 1 0l | €5ouveeeeiiiiiieeeiieee e 345
13.11.3. MappingrequestsSwith @Request MAPPI NG «.veeeeeeeeerireuiiieieeeaeeeeeeiiieeeeeeeeeseeeneeees 346
13.11.4. Supported handler method argumentsand returntypescccccvvveereeeeescecnnnnee, 348
13.11.5. Binding request parametersto method parameterswith @equest Par am.............. 349
13.11.6. Providing alink to datafrom the model with @bdel Attributeocccvvvveeeeeenn. 350
13.11.7. Specifying attributesto storein aSession with @essi onAttri but €s 350
13.11.8.CustomizingwebDat aBi nder INitialiZalioNccevvvvivieieieeeiciceceeeeeeeeeeeeeeeeeeee 351
13,12, FUINEIRESOUICES. tvteeieee e e e ettt e e e e e ettt et e e e e s e st ba e e e aaeesssesstebeeeaaeeessenssraneeaaas 351

Spring Framework (2.5.5)

viii

The Spring Framework - Reference Documentation

LA VIBWEECHNOIOGIES ...t s e e e nees 353
I g (0o 1 (o o PSRRI 353
N S </ Y I P 353

L1421 VIBWIESOIVES ...ttt ettt e e e e e st e e e e e e s e st bbeeeeeaeeeeens 353
14.2.2."Plain-0ld' JSPSVEISUSISTLuvviiiiieeiiiiiiiiiieeee e e e s eeiitee e e e e e e e s snianee e e e e e e s ennnneees 353
14.2.3. Additional tagsfacilitatingdevel Opmentoooiiiiiiiieie e 354
14.2.4.Using Spring'sformtaglibrarycccoveeiieeiiiiiie e 354
I T 1= PSSR 362
14.3.1.DEPENAENCIES. ... e ceeieeee et e e e e e e e e s st e e e e e e e e s e s atrrraeeeaaeeaaan 362
14.3. 2. HOWLOINIEGIratE TIl Sceeiiiieie ettt 362
144 VElOCItY & FIEEMAIKENceeieieeeeeeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e e e eeeeeeereeeeeeereeeees 364
144 1. DEPENUENCIES. ...ttt ettt ettt e et e e et e e e st e e e et e e e s annb e e e e e nees 364
14.4.2.CONLEXLCONTIGUIBLIONeeiieeesiiiiiiiiie e e e e e e ettt e e e e e e e e e ee e e e e e e s e e eneneeeeeeaaeeeen 364
14.4.3.CreatingteMPIaLeSuuveiiie e e e e aa e e e 365
14.4.4. AdvanCedCONTIQUIELIONcocuurreeiiiieie ettt e e 365
14.4.5.Bindsupportandformhandling............ccceeeeeii i 366
3 I PSSP 371
T I Y Y 1 6 YA] (0 LS 371
T S W 0117 Y P 374
14.6.Document VIEWS(PDF/EXCE]) ..ottt 374
G0 B g (0o 1 o o SRR 374
14.6.2.CoNfiguratioNaNASEIUDeeeeeiieeeeeeiiieee et e e e e et e e e e e e e nnereeeaa 374
N = s o oo £ TSP 376
14.7. 1. DEPENUENCIES. ...ttt ettt e ettt e e et e e e et e e e s b e e e e e nnnes 377
X o o 8 = (o o [377
14.7.3. Popul atingtheModel ANAVi Wccoocuviiiiiiieee e sttt e e r e e e e e s earaaeeeeaeas 379
14.7. 4. WOrkingWith SUD-REPOITS ...t 380
14.7.5.Configuring EXPOrter Parameters..........ueeeieeeeiiiiiiiiieeeee e ccciiee e e e 381

15. Integratingwith other Web frameworksc..oooiiiiiii e 382
IS0 I g 10T 1 1 o o PRSPPI 382
15.2.COMMONCONTIQUIBIION ...ttt e s e e e e e e e e nees 382
15.3. JavaServer FaCeS1.1an0 1.2ccceeiieeiiiee e eiiiee e e et e e et e e e st e e e e enaeeeeens 384

15.3.1.DelegatingV ariableResolver (JSFL.L/1.2)ccoccviiieieie e 384
15.3.2.SpringBeanV ariabl eResoIVEr (JSFL.L/1.2)oveiiiiiiiee e 385
15.3.3.SpringBeanFacesEL ReSOIVEr (JSFL.2+)ocooiiiiiiieeeee e 385
15.3.4.FaceSCONLEXIULISeviiiieiie et e e e e reae e e e e e e e 385
15.4. APaCheSITULS L. X @NA2.X ..vvvvuirrrriiiieiiiuueinrenurnrannrnenrnrrrerraaerraeaanraaaraeannnnannnnnnaennnnnnnnnnnnns 385
15.4.1.ContextLOaderPIUGINcoiiiiiiiie et 386
15.4.2. ACtiONSUPPOITCIBSSESeevieeei it e e e ettt e e e e e e st e e e e e e e e e e eeeaaeeeen 388
L5 5. WEDWOIKZ2.X .ttt ettt et e e e et e e et e e e e e e e e e 388
T 1= 10 1= S VR 10 0 SRR 389
15.6.1.Injecting Spring-managedbeans ... 389
15, 7. FUMNEIRESOUICES.eiiiiiiie e ettt et e e e e e e e et r e e e e e s s snnteaeeeeeeeessnnssraeeeaeas 395

16.POrtlet MV CEIramMEWOI Keeiiiiieiiiieee et e e e e e e s e e reeeeeens 396

300 I g1 0o 1 o ' o PSSR 396
16.1.2. Controllers-TheCiNMV C ... e e e 397
16.1.2.VIiews-TheV iINMVC ...ttt 397
16.1.3.WED-SCOPEADEANS ...t 397

16.2. THEDI SPAt Cher POI t 1 @1 iiiiiieiiriiieseeeeiietetiie e s e e e s eeetebaeeseessessssbaba s eesseseessbbaanseasssssnsses 397

16.3. THEVI @WRENAET €5 SEI VI BT iiivviiriiieieeeieietiiee e e e e e e et et ee e e e e e e eeeesbaaseeeeeessesbaaaseeeeeeeenees 399

3 o 11 0] = = RS OUPRSRRSRRR” [0 0
16.4.1.Abstract Control | er andPort| et Cont ent GENEI At OFceeevvvvvriereeerererrriieeeeeenss 401

Spring Framework (2.5.5)

The Spring Framework - Reference Documentation

16.4.2.0ther SIMPIECONLIOIENSeeieieee e 402
16.4.3.ComMMENACONIIONEIS........eiieiiiiiee ettt e e e e nees 402
16.4.4.Port] et Wappi NGCONE F Ol | €F vuuvieeeeieiiiiiiiiieeeeeeeeeeiiiiin e e e e e e seessnnnneeeeeeeeennnnnnnnnn . 403
SR o F=To 1o | = o) o] Lo 403
16.5.1.Port | et ModeHandl er MBPPI NQ.uuueeeeeiiieiiiiiiiieeeeeeeeeeiiiiseeeeeeeeesnsnnneeeeeeseennnnnnnnnn . 404
16.5.2.Par anet er Handl €r MBPPI NG ..eeeviniieeiiiiieeeeiiieeeeeeie e eeeee e eeeeteeeeenrn e eennn e ennnnn . 404
16.5.3.Por t | et ModePar anet er Handl €F MBPPI NG . .cvvreevrneernieeiriieerieeriiiererieeenneeernneennnnnnn. 404
16.5.4. AddingHANA] €r 1 Nt €I CEPL OF Suvvrreiiuiiiieeiaiieiee et e e e st e e e st e e et e e e s e e e eeees 405
16.5.5.Handl er 1 nt er Cept 0r AAPL €F ..vvvuiiernieiiiieiiiieieieeeeneeerirereeeesiesereeessneesrneesenennn. 40D
16.5.6.Par amret er Mappi NGl Nt €r CEPL OF ovvevveieiriiiiieeeeeeeeeeiiiie e e e e eeeeennnnnneeeeeeeeennnnnnnnns . 400
16.6.ViewsandresolVingthem ..., 406
16.7.Multipart (fileupl0ad) SUPPOITc.ueeieiiiiiie e 406
16.7.2.UsingthePor t | et Mul ti part RESOl VEI ..eeiiiieiiiiiciiiiieieeeeeeeeeiiieeeeeee e e e e eenenaeeeeeens 407
16.7.2. Handling afileupload inaformcccoieiiii e 407
16.8. HaNAIINGEXCEPLIONScouiieeeeiteee ettt e e s e e e e e nnes 410
16.9. Annotation-basedcontroller configurationcccveveeeiiiiiiiiiieiee e 410
16.9.1. Setting up thedispatcher for annotati ON SUPPOITeevvveeiriiiiie e 410
16.9.2. Definingacontroller With @Cont r ol | €eeeeeeiieiieiieieiiiieennn.———. 411
16.9.3. Mapping requestswith @Request MBPPi NGvvvereeeeeiiciiiieeee e e e ceeiireee e e e e e e s 411
16.9.4. Supportedhandler methodargumMEeNtscceeveeiiiiieeeiiiiee e 412
16.9.5. Binding request parametersto method parameterswith @request Par am 414
16.9.6. Providing alink to datafromthemodel with @bdel Attribute .cooeeeeriiciviieeennnn.. 414
16.9.7. Specifying attributesto storein aSession with @essi onAttributescc.ee..... 415
16.9.8. CustomizingwebDat aBi nder iNItI@lIZaliON..........ooiuveieiiiiiiee e 415
16.10. PortletapplicationdeplOyMENteeveiiiiiiiiieieieeeeeeee e e e e ee e e e e e e e e e ererererereeerereeeees 416
Y g 1= o = 4 o o T PRSP PPRRPRRSSPR” & I £
17.Remotingand web ServiCESUSING SPIINGocuvvveeeiiiieee et 418
0 T 0o 1 o o I PO PPPPPPPRRPY” o £
17.2. EXpOSINGSErVIiCESUSINGRIMIcoiiiiiiiiiiiiiee et 419
17.2.1. ExportingtheserviceusingtheRm Ser vi CEEXPOrt € ...cccvvvieieeeeeiiiiiiinneeeeeeeeeeans 419
17.2.2.Linkingintheserviceat theClientccccooviiiiiiiie e 420
17.3. UsingHessian or Burlaptoremotely call servicesViaHTTPvvvviviiiiiiiiniiiiiinnnininnn. 420
17.3.1. Wiringupthebi spat cher Ser vl et for Hessianandco.ccccvvveeeeeeeeiiicnnnne, 420
17.3.2. Exposing your beansby usingtheHessi anSer vi CEEXPOrt €rcccveevvcvveeeeniuvnnns. 421
17.3.3.Linkingintheserviceontheclientcccoeeeeiii e, 421
17. 3.4 USINGBUITED ...ttt ettt 422
17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or
104 = o PSP OUPPRT 422
17.4. Exposing serviceSUSINGHT TRPINVOKENSoooiiiiiiiiiiiieee et 422
17.4.1. EXposingtheserviCeOhjECtcooviiiiiiiieee e 423
17.4.2.Linkingintheserviceat theclient ..o 423
L7 5. WEDSEIVICES.cee ettt ettt e et e e e ab bt e e e e st e e e anbb e e e e nnne e e e e nees 424
17.5.1. Exposing servlet-based web servicesusing JAX-RPCoocviiiiiiiiieeiiiieee e 424
17.5.2. Accessingweb servicesusing JAX-RPC ... 425
17.5.3. Registering JAX-RPCBEaNMaPPINGSvvveiiiiiieeiiiiee sttt 426
17.5.4. Registeringyour ownJAX-RPCHaNdIercccuiviiiiiieeiiiieee e 427
17.5.5. Exposing servlet-basedweb servicesusing JAX-WSccovvveeiiiiiiiiinieeeee e, 427
17.5.6. Exporting standaloneweb servicesusing JAX-WS ... 428
17.5.7. Exporting web servicesusing the JAX-WSRI's Spring sUpportcccccoeeevvvneeen. 429
17.5.8. Accessingweb servicesUSINGJAX-WS ...t 429
17.5.9. EXposingWeb ServiCeSUSING X FITEuuuuuuiiiiiiiiiiiiiiiiiiinniinrnnnnnnnnnnnennnnnnnnnnnnnnnnnnes 430

Spring Framework (2.5.5)

The Spring Framework - Reference Documentation

17.6.1.Server-SideCONTIGUIELIONvveeeeiiiiee ettt e e 431
17.6.2.Client-Sideconfiguration............ccuviiiiiie e 432
17.7. Auto-detectionisnot implemented for remoteinterfacesvvvvvvieeeeiniieee e 433
17.8. Considerationswhen choosingateChnolOgyuuuveriiiieimiiiiiiiiiiieeeeanaees 433
18.EnterpriseJavaBeansS(EJB) INtEgralionc..eeeiiiiiiieiiiiiie ettt 434
IS 00 T 1 0o 1o ' o PP 1.7
18.2. ACCESSINGEIBS. ...t e e e 434
N I g0l o = O OPPPPPURRPPPY 7
18.2.2. ACCESSINGIOCAI SLSBSouviiiiiieeeiiciiiieiee et e e e 434
18.2.3. ACCESSINGIEMOLESLSBSoeiiiiiiiiie e 436
18.2.4. AccessingEJB 2.X SLSBSVErSUSEIB 3SLSBS.....cccvviieiiiiiie e 436
18.3. Using Spring'sEJB implementation SUPPOIt ClaSSeSvvvveiiiiiieiiiiiiee e 437
18.3. 1. EIB 2.XDASECIASSES ...oiieeeeiiieiiiiiie e ettt e e e 437
18.3.2.EIB 3iNjECtiONTNLEICEPLONuvviieieeiee et e et e e e e e e e e e aaneees 438
19.IM S(JAVAM ESSAGESEN VICE) ...t eiiieee ettt e ettt e et e e e ettt e e et e e e e e e et e e e e e e e e e ennnes 440
IS0 I (0T 1 o o OO SROPPRSRY” 72 ¢
19.2.USINGSPIINGIMS ...ttt ettt e et e e st e e e e e 441
T T3 =Y oo B U= YRR 72 ¥
19.2.2.CONMNECLIONSceeiiiiiieeeeiieie ettt siire e siree e snree e s snnneesssnneeesssnneees e D41
19.2.3.Destinati ONMaNagEMENTveiieiiiiiee et 442
19.2.4.MessageLiStener CONAINEISc.occuriiiieee e e e e e et e e e e e e e e s s et rreeeeeeas 442
19.2.5. TranSaCtiONMEBNAGEMENTcouveiee ettt e e e e e s e e aees 443
19.3. SENUINGAMES SAGE .eeeeeeeiuiiirieeeee e e s e eiittre e e e e e e e e s s ettt e e e e eaeessaaatareeeeaaeesaasassrareeeaeesssansnrrens 444
19.3.1.USINGM ESSAGECONVEITEN'Sccouiieieeiiieee ettt eite e sttt e e e e e eeeen 445
19.3.2.Sessi onCal | back @ndPr oducer Cal | BACKeevvvvuiiiiieeeieeiiceee e 445
19.4. RECEIVINGAMESSAOE. ... uevvveeeeeeee s e ettt ee e e e e et s sttt aeeeaeeessasatareaeeaaeessassnraaeeeaeeessansnrnees 446
19.4.1.SyNChIrONOUSRECEDLION......ceeiiiiiiie ittt e e 446
19.4.2. AsynchronousReception- Message-DrivenPOJOScoccvvvveveeee e 446
19.4.3. TheSessi onAnar eMessageli st ener INEEITACE........covvviiiviiiiiiiiiiiiiiiiieeeeeeeeeee 447
19.4.4. TheMessageLi St @NEr ADAPL ©F .uuu.iiieeeiiierrriieieeeeieeesriaeseesseseeera e eeesseesseranaas 447
19.4.5. ProcessingmessageswithiNtranSaCtionseeeevieeeeiiiiieee s 449
19.5. Supportfor JCA MeSsageENAPOINES........uuuuririiiiiiiiiiiiiiriirrrrreeeaenenaaranaaaaa 449
19.6. IM SNaMESPECESUPIONT ..evvveeeeerereerreeeeeeereeeeeeereeeeereeereeeeereeeeeeerrrererrerrrrerrrrrererrrrrerer 451
240 0 I 1 oo [0 ('] o O PP PROPPRRY” .o (o)
20.2. EXportingyour BEANSTOIM Xccoiiiiiieiiiie ettt 455
20.2.1. CreatiNganNMBEANSET VEIuuuuurururusunesnsnsnsnsnsnsnsssnnssnsnsnsssnsnsnsnsnsnsssnsnsnsnsnsnsnsnnnnns 456
20.2.2. ReuSiNgan €Xi StINGMBEANSET VT ..uuvrreeiiiiieeeesaiireeesaiieeeessneeeesssnsneesssnsnseeesannees 457
20.2.3.Lazy-initialiZEdMBEENSceeeiiiieieieieeeeeeeeeeeeeee e 457
20.2.4. Automaticregistrationof MBEANScoooviiiiiiiiec e 458
20.2.5.ControllingtheregistrationDENAVIONoviiiiiiiieiiiee e 458

20.3. Controllingthemanagementinterfaceof yourbeans ..o, 459
20.3.1. TheMBean! nf oAssenbl er INTEITACEuuuiuiiiii s 459
20.3.2.Usingsource-Level metadata............cccccuururuiuiiiiiiiiiiiineeennenennnennennnnnnes 459
20.3.3.USINGIDK 5.0 ANNOLALTIONScvveeiiiiiiee ettt 461
20.3.4.S0urce-Level MetadataTYPESceeeiiieieieeee e e e ettt e e e e e e e eenaeeeeeeas 463
20.3.5.TheAut odet ect Capabl eMBean! nf oAssenbl er INTEACE......ccovvivviiiiiviiiiiieeeeeiiiias 464
20.3.6. Defining Management interfacesusing Javainterfacesocovvveviieeeeiiineeenns 465
20.3.7.UsingMet hodNanmeBasedMBean! nNf 0ASSEMBI €5veieeeeeriiiiiiieeeeeeesssiiiiinneeeeaeesnns 466
20.4. Controllingthetbj ect NameSTOr your DEaNSocuviiiiiiiiiiec e 466
20.4.1.Readingj ect NameSTrOMPr 0perti €S ..ucvvvvvviiiiieiiiiiiiiiiiiceeeceeeeeeeeeeeeee e 466
20.4.2.UsingtheMet adat aNam NGSE T AL €QY uvvvrrrrereeeeeiiiirrrrerreeeesssssnnnrrrereesssinnennereeees 467

Spring Framework (2.5.5)

Xi

The Spring Framework - Reference Documentation

20.4.3. The<cont ext : nhean- export/ >El@MENtcccciiiiiiiiii s 468
20.5.JSR-160CONNECLONSceeeeeieeiiiieees 468
20.5.1.SerVer-SIdECONNECIONSeviieee e e ieiiieiet e e e e e e s eitae e e e e e e s s st eaaeeeeeeesssnnssanrereaaeesaans 468
20.5.2.ClIeNt-SIdECONNECLOIS......ceiieiei ittt e ettt e e e e e e e e e e s s eebeeeeeeeaeeaens 469
20.5.3.IMX overBurlap/HESSIan/SOARPceeiiieiieie et 469
20.6. AccessiNgMBEANSVIAPIOXIESuueiiiiee e 470
20.7.NOUTICAIIONSeeeieiiiiiie et ssree e s snneesssnnnneeessnneeeeenn s O
20.7.1. Registering Listenersfor NOtifiCatioNSoocvveeeiiiiiieeiiiieee e 470
20.7.2.PublishingNOtIfiCalIONS.........ccoiiiiiiiiiii e 473
20.8. FUMNEINRESOUITES.ceiiiiiieieeiiieeseeeseesseeesesesererereeeeeeseeeeeeees 474
1220 T [7 X SRRSO 475
b2 I I g {0 o (U Tox 1o o R OO PP OPPPPPPPPPPPPPPRP ¥ o1
P2 2 ©o o 111 1 oo [o TR 475
21.2.1.CoNNECLOr CONFIQUIBLIONceiieeiiiiiieiee e e e e e s s et e e e e e s et e e e e e e s s b rrr e e e e aeeeens 475
21.2.2.Connect i onFact ory CONfigUrationiNnSPriNgcvveeirivrieeriiieee e 476
21.2.3.ConfiguringCCI CONNECLIONScooiiiiiiiiiiie e et 476
21.2.4.UsiNgasingleCCl CONNECTIONceeeiiiiieeeieiieie et e et e et nireee e 477
21.3.Using Spring'SCCl aCCESSSUPPONTuuuuuuuuununnnnnnnnnnnnnnnnnnnnnnnnnnnnsnsnnnsnsnnnnnsnnnnnnnsnnnsnsnnnnns 477
21.3. 1. RECOMTCONVEISION ...eieiiiiieeeeittee e e ettt e e e sttt e e e sttt e e e e et e e s snbn e e e aebs e e e s nnnneeeeenees 478

A R 1= o i =Y 11 o O = 478
ARG R B YN @ L= U o o] 1 SR 480
21.3.4. Automati COUtPUL reCOrd gENENatioNcuuveeeiiireieeaiiiie e et e e 480

2L 3.5.SUMMAIY ..ot e e e e e eeare s e e e e s eeeennnnnneeeeeeesnssnnnnneeeeeeees DO0
21.3.6.UsingaCCl connectionandinteracti ondireCtlycccoocvvveeiiiiiieiiiiiieeene 481
21.3.7.Examplefor Coi Templ at @ USA0Ecevvviviiiiieieeeeeee ettt 482
21.4.Modeling CCl accessasoperation ODJECEScuvviieiie e 484
21.4.1.Mappi NGRECOr dOPEI AL ON wuuuuieeeereeeiriiieeeeeeeeeerrrnesseeeeeereennnnnneeeeeeessssnnnnneeeeenen. 484
21.4.2.Mappi NGCONMMAr €80DETI AL T ON .vvvuiirnieiiieeriieeeieeereeeriersteeesnneesrsersneeesneeennneennn. 484
21.4.3. Automati COUtPUL reCOrd gENENatioNcuuveeeiiirreeeiiireeeesiire e e e e 485

A N] 0= Y UPPPUPRRSPPPRY” |- Lo
21.4.5. Examplefor Mappi ngRecor dOper at i ONUSAQE ..vvvveeeeeeeieerrrriereeeeessanrrnneeesaeasannns 485
21.4.6. Examplefor Mappi ngCommAr eaCper ati 0NUSAQEccvvvvveeieiieeiieiieeeeeeeeeeeeeeeeeeeeees 487

P R I === o 1 o OO PPUPPPPPPRPRY. o<
P78 =1 1 - 1 SO SPSRSSURSRRSSRRRY o O
22 1.INErOAUCTION ...t eee e sieee e s snneeessnneeesssnnneesssnnnneeesnnnneeeennns 490
22.2.USAGCcieeii ittt ettt snrnrneen e e e s s snnnnnneeeneesssnnnnnneeeeesessnnnnn s AO0
22.2.1.BasicMai | Sender andSi npl eMai | MeSSage USA0Euuuuuuuuurnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 490
22.2.2.UsingtheJavamai | Sender andtheM meMessagePr epar at oreeeeervecevvveeennnn. 491
22.3.UsingtheJavaMail M meMessageHel PErcccvvvviiiiiiiiiiiiicececeeeeeeee et 492
22.3.1. Sending attachmentsandinliNEreSOUICEScccuvvieeieeee e 493
22.3.2. Creating email content usingatemplatinglibrarycccooooiiiiiiie 493
23.Schedulingand Thread POOIINGuueiiiei i 496
b2 T I g 1 {0 o (U Tox 1o o SO OOPRPPPPPPPPPPPPPPPPPRP 1o o
23.2. Usingthe OpenSymphony Quartz SCheduUlero 496
23.2.1.UsiNgtheJODDELal BEANccoiviiie ettt 496
23.2.2.UsingtheMet hodl nvoki ngJobDet @i | FACT OF YBEAN ...eeevieeeeiiiiiiiiieeaaeeeeeeiiieeeeeans 497
23.2.3. Wiringupjobsusingtriggersandtheschedul er Fact oryBeanccccceeeeriinnnene. 497
23.3.USINGIDK TIMEN SUPPOITceeiiieieeesiiieeeeaite ettt e s e e e e e e e e 498
23.3.1.CreatingCUSIOMIIMENSuviiiiieeeei ittt ee e e e e se e e e e e s s st r e e e e e s s et reeeeeeas 498
23.3.2.UsingtheMet hodl nvoki ngTi mer TaskFact OF YBEANevveeeeseeeviiireereeesseneennneeeeens 499
23.3.3. Wrapping up: setting up thetasksusingtheTi ner Fact oryBeanccceeeeeeeeeennn. 499

23.4. TheSpringTaskExecut or 8SIFACHIONcocviiiiiiiiiiee e 499

Spring Framework (2.5.5) Xii

The Spring Framework - Reference Documentation

23.4. 1. TaSKEXECUL OF LY PESuuiiiiiieiee e ettt e e e e et e e e e s e e e e e e s s rnreeeeeeesaa 500
23.4.2.USINQATASKEXECUL OF ceeiiuuvvirieeeeeeesiiiuitreeeseaessssissssaseseseessssasssssnssseessssnsnssseseeees 501
24.DYyNamiClangUAgESUPPON Teeeeiiiereeeiaiieeee e ettt e e e st e e e et e e s ssbee e e s sbee e e e e snb e e e e e anbneeeeannnneeas 503
P22 W g 1 oo 8o £ o PR 503
24. 2. ATITSEEXAIMPIE. ...t e e 503

24.3. Defining beansthat are backed by dynamiclanguagescccccevoiiciiiieeie e 505
24.3.1.COMIMONCONCEPLS ..evvvveveeeeeieeereeeeeeeeeeeeerereeeeeeerereeeeeeeeereeerereeererererererrrererererereees 505
24.3.2.JRUDYDEENS ...t 509
24.3.3.GIO0VYDEANScocoei ittt e e a e e e 511
24.3.4.BeaNSNEIDEANS ...t e e 513
S o< g = 1 0L U 514
24.4.1. Scripted SpringMV C CONIOHErSvvveeiiiiee e 514

24.4.2 SCHPtedV alidatOrSt e e e e e e e e 515
24.5.BitSANADODSveiiiiiiiiie e 516
24.5.1. AOP-adviSiNgSCrptedDEANScooiiiiiiie e 516
IS wo o)1 1o RSP 516

24, 6. FUINEIRESOUITES. ... ittt et e e e e e ettt et e e e e e s ettt e e aae e s s s sntaaaeeeeaeeeaasnsstanneeaaeessannnsnees 517

25. Annotationsand Sour ceL evel M etadata SUPPOItuvurueiinininieimrmiiinininrnrnn.—.. 518
P30 L oo (8ot (o] o SRS OUPPPPPPPPRR 518
25.2.5pring'SMEtadalaSUDPONTccoiiureieeiitiee e et e e r e e s s e e e e e e e en 519
PR A o100 = 1[0 P OUPPRPPTPRR 520
e T G 2 =Y [V LI =1 E O PP UPUPOPRPPIIN 520
25.3.2.Other @ANNOLAti ONSINSPIINGvvveiiiieeeei it e e e e eeccrree e e e e s e e e e e e e e e aans 521

25.4. Integrationwith JakartaCommONSALIITDULESccovviiee i 521

25.5. Metadataand Spring AOP AULOPIOXYINGuuueuuurununnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnsnsnsnnns 523

25.5. 1. FUNGAMENTAIS.....ociiiieiie ettt 523

25.5.2. DeclarativetransactionmanagemeNntcoovvereeriireeeeniieee e e e e sieeee e 524

A. XML SchemarbasedCONfIQUIALIONccoieiiiiiiiiiie e e s e e e e s e et reeeeeeas 525
N I T 11 o o RS 525
A.2. XML Schemarbased CONfIgUIAtioNccoiiiiiiiiieiii et e e e 525
A.2.1. ReferenCingtheSChEMASc.uiiiii i 525

F N I =YL I o1 o = P 526
YR T I 1 ST Y=Y o211 1= P 532
A.24.Thel angSChemMa ... 535
YR I 1 ST 1 s o111 11T P 535
A.2.6.Thet x (transaction) SCHEMAeiiiiiiiie e 536

YN A I ¢ ST Yo X 1< 1 0 F= 536
A.2.8. ThECoNt @Xt SCNEIMA......ccciiieiiiie et e e e e e et s e e e e e e eeabb e e e eeeseenees 537
A.2.9.ThEt 001 SCNEIMA et e e e e e e e e s e et e e e e e e e e s nenneeeeeens 538
A.2.10.Thebeans SChEMAoooviiiiiiiiieeeeeeee e 538

A 3.SEINGUPYOUN IDE ...ttt e s e e e e e e et e e e e annreee s 539
F R IS = 1 1] Lo U o] =l 1T o= PSR 539
A.3.2.SattingUPINEEITIIIDEA ..ottt 542
A3 INEEGIaliONISSUES......ccc e 545
B.EXteNSIDIE@XIML BULNOIIING ...ttt e e et e e s e e e e anbneeeen 546
= 10 1T [o1 o o TR SSUPPRRRR 546
B.2. AUthOrNGtheSChEmMaoiieeeeeec e e 546
B.3.COodiNGANAMESPACEHANTI 5 ...eiiiiiiiiieiiiiitee ettt e e ettt et e e e e e e et e e e e asb e e e e e annne e e e s anneeeeen 547
B.4.CodiNgaBeanDef i Ni ti ONPAI SEI ...cciiicuiiieieeeeesieiitirreeeeeeeessainrrrereeaeesssastrrraereeeesssannrrreneeeens 548
B.5. Registeringthehandler andthesChema...........c..ovie i 549
B.5.1. META- I NF/ SPring. RANdl € S' couuuiiiiiiiiieeiiiii e et ee et e et e e e e e e e e e e e e et e e e e eaan s 549
B.5.2." META- | NF/ SPIi NQ. SCHEITAS' .uuuiiiieeiiiiiiiiie i e e e e e e eeeti e e e e e e e e e e et st e e e e e e seeeastaa e eeeeeensenns 549

Spring Framework (2.5.5)

Xiii

The Spring Framework - Reference Documentation

B.6. Using acustom extensioninyour Spring XML configurationcccuvveeniieeeeinineeessiieeenn 549
B.7. MEAErEXAMPIES ... e e e e e e e e e e e e e e e e e r e e e e e e e e et raarraaaeaaans 550
B.7.1. Nesting custom tagSWithin CUSLOMTAgSccoviiriieiiiiiiiieiiiee e 550
B.7.2. Customattributeson'normal’ el ements...........cccccuviiiiiiiiiin i 553
B.8.FUMNEIRESOUITES.......ccuiiiiiiii e 554
ORI 1ol oJ=Y: 1 TR O e | A IO USRI 556
)R 10T 1 o SRR 565
[0 g1 oo (3 1o o TP TR OURPPURPTN 565
T2 N o= T I T L = o [P 565
D.3. TheescapeBody Ta0ceiiiieiiieiiiee e e e e s ettt e e e e s e e e e e e e e e s e st e e e e e e e e s e ssasraaaeeeaeeessannnssnnneeeens 565
[T T = Vo = o R = o 566
D.5. TNt M ESCAPETAY .. uvteeee it ettt s ettt ettt e e et e e e st e e e e asb b e e e e ansbe e e e e anbneeeean 566
DR I 0 T= T e T = TS 566
D.7.Thenest @dPat hTAQcccuiiiiiiii et e e e s e e e e e e e s s et e e e e e e e e s s anntaraneeaeas 567
D.8. TNEE NEIMBTAT ... teeee ettt ettt e et e et e e ekt e e e e asb e e e e annn e e e e e anrneeeean 567
(DR R N 0Tl oLy Ao 1 = o [PR SP 568
[o] 0o T o700 0 01 [0 TP PO PP PUPPROPPPRT 569
E.LINErOQUCTION. ...t s e s 569
R I L= 1o Yoy 4 1o = SRR 569
E.3. TNECHECKDOXES TAY «.ueteeee ittt e et e e e e e e e e e e snnneeeen 571
R I LT o Y - o [P 572
B 5. TNEE OF MBI ..ottt et e e ekttt e e e e e e e e annn e e e s nnnneeeen 574
S I L= T s LY = o RS E PR OO 575
E.7.TNEI NPUL T8O ..ttt ettt e e e e e e e st e e e et e e e e e annbe e e e e nnbneeeen 575
RS I 0= VoY = o S 577
e R I L= Lo oL A T = o [PPSO 578
E.10. TNEOPE i ONSTAG -+ +eteitteeee ettt ettt e e e e e e e e e st e e e e asb e e e e annne e e e s annneeeen 579
o I 1o T T Y T = o [SRR 581
E.12.TNEr adi ODUL T ONTAO .. ueeieiitiiieeiiiieiee ettt s e e e e et e e e e e e e e s annn e e e e e nnnnneeean 582
E.13.Ther adi 0bUt t ONSTA0uuviiiiieiee e e it ce e e e s e e e e e e e e s s et re e e e e e e e e e s satbbr e e e eeeeessannntarnneeeens 584
E.L14. TNESEI €CE LAY .vveeeiiiiiiee ettt ettt e et e e e st e e e et e e e e sttt e e e abbb e e e e annbe e e e e nntneeeean 585
TN I 1= =3 A= Y =YX - o 587

Spring Framework (2.5.5) Xiv

Preface

Developing software applications is hard enough even with good tools and technologies. Implementing
applications using platforms which promise everything but turn out to be heavy-weight, hard to control and not
very efficient during the development cycle makes it even harder. Spring provides a light-weight solution for
building enterprise-ready applications, while still supporting the possibility of using declarative transaction
management, remote access to your logic using RMI or web services, and various options for persisting your
data to a database. Spring provides a full-featured MV C framework, and transparent ways of integrating AOP
into your software.

Spring could potentially be a one-stop-shop for al your enterprise applications, however, Spring is modular,
allowing you to use just those parts of it that you need, without having to bring in the rest. Y ou can use the |oC
container, with Struts on top, but you could also choose to use just the Hibernate integration code or the JDBC
abstraction layer. Spring has been (and continues to be) designed to be non-intrusive, meaning dependencies on
the framework itself are generally none (or absolutely minimal, depending on the area of use).

This document provides a reference guide to Spring's features. Since this document is still to be considered
very much work-in-progress, if you have any requests or comments, please post them on the user mailing list or
on the support forums at http://forum.springframework.org/.

Before we go on, a few words of gratitude are due to Christian Bauer (of the Hibernate team), who prepared
and adapted the DocBook-XSL software in order to be able to create Hibernate's reference guide, thus aso
allowing usto create this one. Also thanks to Russell Healy for doing an extensive and valuable review of some
of the material.

Spring Framework (2.5.5) XV

http://forum.springframework.org/
http://www.hibernate.org/

Chapter 1. Introduction

Background

In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the
guestion is, what aspect of control are [they] inverting?’. Fowler then suggested renaming the principle
(or at least giving it a more self-explanatory name), and started to use the term Dependency Injection. His
article then continued to explain the ideas underpinning the Inversion of Control (1oC) and Dependency
Injection (DI) principle.

If you need a decent insight into loC and DI, please do refer to said article
http://martinfowl er.com/articles/injection.html.

Java applications (aloose term which runs the gamut from constrained applets to full-fledged n-tier server-side
enterprise applications) typically are composed of a number of objects that collaborate with one another to form
the application proper. The objects in an application can thus be said to have dependencies between themselves.

The Java language and platform provides a wealth of functionality for architecting and building applications,
ranging all the way from the very basic building blocks of primitive types and classes (and the means to define
new classes), to rich full-featured application servers and web frameworks. One area that is decidedly
conspicuous by its absence is any means of taking the basic building blocks and composing them into a
coherent whole; this area has typically been left to the purvey of the architects and developers tasked with
building an application (or applications). Now to be fair, there are a number of design patterns devoted to the
business of composing the various classes and object instances that makeup an all-singing, al-dancing
application. Design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service Locator (to
name but a few) have widespread recognition and acceptance within the software development industry
(presumably that is why these patterns have been formalized as patternsin the first place). Thisis all very well,
but these patterns are just that: best practices given a name, typically together with a description of what the
pattern does, where the pattern is typically best applied, the problems that the application of the pattern
addresses, and so forth. Notice that the last paragraph used the phrase “... a description of what the pattern
does...”; pattern books and wikis are typically listings of such formalized best practice that you can certainly
take away, mull over, and then implement yourself in your application.

The 10C component of the Spring Framework addresses the enterprise concern of taking the classes, objects,
and services that are to compose an application, by providing a formalized means of composing these various
disparate components into a fully working application ready for use. The Spring Framework takes best
practices that have been proven over the years in numerous applications and formalized as design patterns, and
actually codifies these patterns as first class objects that you as an architect and developer can take away and
integrate into your own application(s). This is a Very Good Thing Indeed as attested to by the numerous
organizations and institutions that have used the Spring Framework to engineer robust, maintainable
applications.

1.1. Overview

The Spring Framework contains a lot of features, which are well-organized in six modules shown in the
diagram below. This chapter discusses each of the modulesin turn.

Spring Framework (2.5.5) 16

http://martinfowler.com/articles/injection.html

Introduction

ORM Web

DAO

Hibernate Sorina Web MVC
pring We
Spring JD_BC Tc;J:)DL'?nk J E E Framework Integratior
Transaction JDO Struts
management 0JB WebWork
iBatis JMX Tapestry
JMS JSF
JCA Rich View Support
Remoting JSPs
EJBs Velocity
Email FreeMarker
PDF
Jasper Reports
AOP

Spring Portlet MVC

Spring AOP
Aspectd integration

Core

The loC container

Overview of the Spring Framework

Spring Framework (2.5.5) 17

Introduction

The Core package is the most fundamental part of the framework and provides the 10C and Dependency
Injection features. The basic concept here is the BeanFact ory, which provides a sophisticated implementation
of the factory pattern which removes the need for programmatic singletons and allows you to decouple the
configuration and specification of dependencies from your actual program logic.

The Context package build on the solid base provided by the Core package: it provides away to access objects
in a framework-style manner in a fashion somewhat reminiscent of a JNDI-registry. The context package
inherits its features from the beans package and adds support for internationalization (118N) (using for example
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for
example, a serviet container.

The DAQO package provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding and
parsing of database-vendor specific error codes. Also, the JDBC package provides away to do programmatic as
well as declarative transaction management, not only for classes implementing specia interfaces, but for all
your POJOs (plain old Java objects).

The ORM package provides integration layers for popular object-relational mapping APIs, including JPA, JDO,
Hibernate, and iBatis. Using the ORM package you can use all those O/R-mappers in combination with all the
other features Spring offers, such as the simple declarative transaction management feature mentioned
previoudly.

Spring's AOP package provides an AOP Alliance-compliant aspect-oriented programming implementation
allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code implementing
functionality that should logicaly speaking be separated. Using source-level metadata functionality you can
also incorporate all kinds of behavioral information into your code, in a manner similar to that of .NET
attributes.

Spring's Web package provides basic web-oriented integration features, such as multipart file-upload
functionality, the initialization of the 1oC container using servlet listeners and a web-oriented application
context. When using Spring together with WebWork or Struts, this is the package to integrate with.

Spring's MVC package provides a Model-View-Controller (MVC) implementation for web-applications.
Spring's MV C framework is not just any old implementation; it provides a clean separation between domain
model code and web forms, and allows you to use al the other features of the Spring Framework.

1.2. Usage scenarios

With the building blocks described above you can use Spring in al sorts of scenarios, from applets up to
fully-fledged enterprise applications using Spring's transaction management functionality and web framework
integration.

Spring Framework (2.5.5) 18

Introduction

Form Controllers . Dynamic binding of Integration with JSP,
handling form LTS (RSl data to the domain Velocity, XSLT, PDF,
3 . to handle file uploads
interaction model Excel
Spring Web MVC
} WebApplicationContext providing e.g. messaging I
Spring Web
—‘ Declarative transaction management for POJOs Ii Remote
Sending access via
Email . Hession,
Spring Context Burlap, SOAP
—‘ Custom business logic
Spring AOP Spring ORM
Hibernate mappings
Custom Hibernate DAOs
Spring Core Spring DAO
Servlet Container (Tomcat / Jetty)

Typical full-fledged Spring web application

By using Spring's declarative transaction management features the web application is fully transactional, just as
it would be when using container managed transactions as provided by Enterprise JavaBeans. All your custom
business logic can be implemented using ssimple POJOs, managed by Spring's 10C container. Additional
services include support for sending email, and validation that is independent of the web layer enabling you to
choose where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and standard
Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-layer with the domain
model, removing the need for Act i onFor ms or other classes that transform HT TP parameters to values for your
domain model.

Web frontend using
Struts or WebWork

Spring WEB

Spring AOP Spring ORM

Transaction management
Using Spring decl. trans.

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Spring middle-tier using a third-party web framework

Sometimes the current circumstances do not allow you to completely switch to a different framework. The

Spring Framework (2.5.5) 19

Introduction

Spring Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built using WebWork, Struts, Tapestry, or other Ul frameworks can be integrated perfectly well with
a Spring-based middle-tier, allowing you to use the transaction features that Spring offers. The only thing you
need to do is wire up your business logic using an Appl i cati onCont ext and integrate your web layer using a
WebAppl i cati onCont ext .

RMI

JAX RPC client Hessian client Burlap client .
client

Transparent remote access (using remote package)

Custom logic contained by beans

Spring Core Spring Context

Servlet Container (e.g. Tomcat / Jetty)

Remoting usage scenario

When you need to access existing code via web services, you can use Spring's Hessi an-, Burl ap-, Ri- Or
JaxRpcProxyFactory classes. Enabling remote access to existing applications suddenly is not that hard

anymore.

EJB Access layer using
Slsbinvokers

Spring-managed EJBs ST G

Spring Core Spring DAO

Application Server (e.g. JBoss, WebLogic)

EJBs - Wrapping existing POJOs

The Spring Framework also provides an access- and abstraction- layer for Enterprise JavaBeans, enabling you
to reuse your existing POJOs and wrap them in Stateless Session Beans, for use in scalable, failsafe web
applications that might need declarative security.

Spring Framework (2.5.5) 20

Chapter 2. What's new in Spring 2.0 and 2.5?

2.1. Introduction

If you have been using the Spring Framework for some time, you will be aware that Spring has undergone two
major revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in November 2007.

Java SE and Java EE Support

The Spring Framework continues to be compatible with all versions of Java since (and including) Java
1.4.2. This means that Java 1.4.2, Java 5 and Java 6 are supported, although some advanced functionality
of the Spring Framework will not be available to you if you are committed to using Java 1.4.2. Spring 2.5
introduces dedicated support for Java 6, after Spring 2.0's in-depth support for Java 5 throughout the
framework.

Furthermore, Spring remains compatible with J2EE 1.3 and higher, while at the same time introducing
dedicated support for Java EE 5. This means that Spring can be consistently used on application servers
such as BEA WebL ogic 8.1, 9.0, 9.2 and 10, IBM WebSphere 5.1, 6.0 and 6.1, Oracle OC4J 10.1.3 and
11, JBoss 3.2, 4.0 and 4.2, as well as Tomcat 4.1, 5.0, 5.5 and 6.0, Jetty 4.2, 5.1 and 6.1, Resin 2.1, 3.0
and 3.1 and GlassFish V1and V2.

This chapter is a guide to the new and improved features of Spring 2.0 and 2.5. It is intended to provide a
high-level summary so that seasoned Spring architects and developers can become immediately familiar with
the new Spring 2.x functionality. For more in-depth information on the features, please refer to the
corresponding sections hyperlinked from within this chapter.

2.2. The Inversion of Control (IoC) container

One of the areas that contains a considerable number of 2.0 and 2.5 improvementsis Spring's |oC container.

2.2.1. New bean scopes

Previous versions of Spring had 10C container level support for exactly two distinct bean scopes (singleton and
prototype). Spring 2.0 improves on this by not only providing a number of additional scopes depending on the
environment in which Spring is being deployed (for example, request and session scoped beans in a web
environment), but also by providing integration points so that Spring users can create their own scopes.

It should be noted that athough the underlying (and internal) implementation for singleton- and
prototype-scoped beans has been changed, this change is totally transparent to the end user... no existing
configuration needs to change, and no existing configuration will break.

Both the new and the original scopes are detailed in the section entitled Section 3.4, “Bean scopes’.

2.2.2. Easier XML configuration

Spring XML configuration is now even easier, thanks to the advent of the new XML configuration syntax
based on XML Schema. If you want to take advantage of the new tags that Spring provides (and the Spring

Spring Framework (2.5.5) 21

What's new in Spring 2.0 and 2.5?

team certainly suggest that you do because they make configuration less verbose and easier to read), then do
read the section entitled Appendix A, XML Schema-based configuration.

On arelated note, there is a new, updated DTD for Spring 2.0 that you may wish to reference if you cannot take
advantage of the XML Schema-based configuration. The DOCTY PE declaration is included below for your
convenience, but the interested reader should definitely read the * spri ng- beans-2. 0. dtd* DTD included in
the' di st/resources' directory of the Spring 2.5 distribution.

<! DOCTYPE beans PUBLIC "-//SPRI NG/ DTD BEAN 2. 0//EN'
"http://ww. springframework. org/ dtd/ spring-beans-2.0.dtd">

2.2.3. Extensible XML authoring

Not only is XML configuration easier to write, it is now also extensible.

What 'extensible’ means in this context is that you, as an application developer, or (more likely) as athird party
framework or product vendor, can write custom tags that other developers can then plug into their own Spring
configuration files. This allows you to have your own domain specific language (the term is used loosely here)
of sorts be reflected in the specific configuration of your own components.

Implementing custom Spring tags may not be of interest to every single application developer or enterprise
architect using Spring in their own projects. We expect third-party vendors to be highly interested in
devel oping custom configuration tags for use in Spring configuration files.

The extensible configuration mechanism is documented in Appendix B, Extensible XML authoring.

2.2.4. Annotation-driven configuration

Spring 2.0 introduced support for various annotations for configuration purposes, such as @r ansacti onal ,
@Requi r ed and @er si st enceCont ext /@er si st encelnit.

Spring 2.5 introduces support for a complete set of configuration annotations: @ut owi r ed in combination with
support for the JSR-250 annotations @esour ce, @ost Const ruct and @r eDest r oy .

Annotation-driven bean configuration is discussed in Section 3.11, “Annotation-based configuration”. Check
out annotation support for Spring MV C aswell: Section 2.5.3, “ Annotation-based controllers”

2.2.5. Autodetecting components in the classpath

Spring 2.5 introduces support component scanning: autodetecting annotated components in the classpath.
Typicaly, such component classes will be annotated with stereotypes such as @onponent, @repository,
@er vi ce, @ontrol | er. Depending on the application context configuration, such component classes will be
autodetected and turned into Spring bean definitions, not requiring explicit configuration for each such bean.

Annotation-driven bean configuration is discussed in Section 3.12.1, “@onponent and further stereotype
annotations’.

2.3. Aspect Oriented Programming (AOP)

Spring 2.0 has a much improved AOP offering. The Spring AOP framework itself is markedly easier to
configure in XML, and significantly less verbose as a result; and Spring 2.0 integrates with the Aspect]

Spring Framework (2.5.5) 22

What's new in Spring 2.0 and 2.5?

pointcut language and @Aspect] aspect declaration style. The chapter entitled Chapter 6, Aspect Oriented
Programming with Spring is dedicated to describing this new support.

2.3.1. Easier AOP XML configuration

Spring 2.0 introduces new schema support for defining aspects backed by regular Java objects. This support
takes advantage of the AspectJ pointcut language and offers fully typed advice (i.e. no more casting and
vj ect[] argument manipulation). Details of this support can be found in the section entitled Section 6.3,
“ Schema-based AOP support”.

2.3.2. Support for @AspectJ aspects

Spring 2.0 also supports aspects defined using the @A spectJ annotations. These aspects can be shared between
Aspectd and Spring AOP, and require (honestly!) only some simple configuration. Said support for @AspectJ
aspectsis discussed in Section 6.2, “ @A spectJ support”.

2.3.3. Support for bean name pointcut element

Spring 2.5 introduces support for the bean(. . .) pointcut element, matching specific named beans according to
Spring-defined bean names. See Section 6.2.3.1, “ Supported Pointcut Designators” for details.

2.3.4. Support for AspectJ load-time weaving

Spring 2.5 introduces explicit support Aspect] load-time weaving, as aternative to the proxy-based AOP
framework. The new context: | oad-time-weaver configuration element automatically activates AspectJ
aspects as defined in AspectJs META- | NF/ aop. xnd descriptor, applying them to the current application context
through registering a transformer with the underlying ClassLoader. Note that this only works in environments
with class transformation support. Check out Section 6.8.4, “Load-time weaving with Aspectd in the Spring
Framework” for the capabilities and limitations.

2.4. The Middle Tier

2.4.1. Easier configuration of declarative transactions in XML

The way that transactions are configured in Spring 2.0 has been changed significantly. The previous 1.2.x style
of configuration continues to be valid (and supported), but the new style is markedly less verbose and is the
recommended style. Spring 2.0 also ships with an AspectJ aspects library that you can use to make pretty much
any object transactional - even objects not created by the Spring 10C container.

Spring 2.5 supports convenient annotation-driven transaction management in combination with load-time
weaving, through the use of context:load-tine-weaver in combination with tx:annotation-driven
node="aspectj".

The chapter entitled Chapter 9, Transaction management contains all of the details.

2.4.2. Full WebSphere transaction management support

Spring 2.5 explicitly supports IBM's WebSphere Application Server, in particular with respect to WebSphere's

Spring Framework (2.5.5) 23

What's new in Spring 2.0 and 2.5?

transaction manager. Transaction suspension is now fully supported through the use of WebSphere's new
uomvanager API, whichisavailable on WAS 6.0.2.19+ and 6.0.1.9+.

So if you run a Spring-based application on the WebSphere Application Server, we highly recommend to use
Spring 2.5's WebSpher eUowTr ansact i onManager @S YOUr Pl at f or nilr ansact i onManager Of choice. Thisis aso
IBM's official recommendation.

For automatic detection of the underlying JTA-based transaction platform, consider the use of Spring 2.5's new
tx:jta-transacti on-manager configuration element. This will autodetect BEA WebLogic and IBM
WebSphere, registering the appropriate Pl at f or nTr ansact i onManager .

2.4.3. JPA

Spring 2.0 ships with a JPA abstraction layer that is similar in intent to Spring's JDBC abstraction layer in
terms of scope and general usage patterns.

If you are interested in using a JPA-implementation as the backbone of your persistence layer, the section
entitled Section 12.6, “JPA” is dedicated to detailing Spring's support and value-add in this area.

Spring 2.5 upgrades its OpenJPA support to OpenJPA 1.0, with support for advanced features such as
savepoints.

2.4.4. Asynchronous JMS

Prior to Spring 2.0, Spring's JMS offering was limited to sending messages and the synchronous receiving of
messages. This functionality (encapsulated in the JnsTenpl ate class) is great, but it doesn't address the
requirement for the asynchronous receiving of messages.

Spring 2.0 now ships with full support for the reception of messages in an asynchronous fashion, as detailed in
the section entitled Section 19.4.2, “ Asynchronous Reception - Message-Driven POJOS”.

As of Spring 2.5, the JCA style of setting up asynchronous message listeners is supported as well, through the
Gener i cMessageEndpoi nt Manager facility. Thisis an aternative to the standard JMS listener facility, allowing
closer integration with message brokers such as ActiveMQ and JORAM. See Section 19.5, “Support for JCA
Message Endpoints”.

Spring 2.5 adso introduces an XML namespace for simplifying JMS configuration, offering concise
configuration of a large numbers of listeners. This namespace supports both the standard IMS listener facility
as well as the JCA setup style, with minimal changes in the configuration. See Section 19.6, “JMS Namespace
Support”.

2.4.5.JDBC

There are some small (but nevertheless notable) new classes in the Spring Framework's JDBC support library.
The first, NanedPar anet er JdbcTenpl at e, provides support for programming JDBC statements using named
parameters (as opposed to programming JDBC statements using only classic placeholder (' ?*) arguments.

Another of the new classes, the Si npl eJdbcTenpl at e, iSamed at making using the JdbcTenpl at e even easier
to use when you are developing against Java 5+ (Tiger).

Spring 2.5 significantly extends the functionality of Si npl eJdbcTenpl at e and introduces Si npl eJdbccCal | and
Si npl eJdbcl nsert operation objects.

Spring Framework (2.5.5) 24

What's new in Spring 2.0 and 2.5?

2.5. The Web Tier

The web tier support has been substantially improved and expanded in Spring 2.0, with annotation-based
controllers introduced in Spring 2.5.

2.5.1. Sensible defaulting in Spring MVC

For alot of projects, sticking to established conventions and having reasonable defaultsis just what the projects
need... this theme of convention-over-configuration now has explicit support in Spring MV C. What this means
isthat if you establish a set of nhaming conventions for your Control | ers and views, you can substantially cut
down on the amount of XML configuration that is required to setup handler mappings, view resolvers,
Model AndVi ew instances, etc. Thisis a great boon with regards to rapid prototyping, and can also lend a degree
of (always good-to-have) consistency across a codebase.

Spring MVC's convention-over-configuration support is detailed in the section entitled Section 13.10,
“Convention over configuration”

2.5.2. Portlet framework

Spring 2.0 ships with a Portlet framework that is conceptually similar to the Spring MV C framework. Detailed
coverage of the Spring Portlet framework can be found in the section entitled Chapter 16, Portlet MVC
Framework.

2.5.3. Annotation-based controllers

Spring 2.5 introduces an annotation-based programming model for MV C controllers, using annotations such as
@request Mappi ng, @Request Par am @bdel At tri but e, etc. This annotation support is available for both Servlet
MVC and Portlet MV C. Controllers implemented in this style do not have to extend specific base classes or
implement specific interfaces. Furthermore, they do not usually have direct dependencies on Servlet or Portlet
API's, athough they can easily get access to Servlet or Portlet facilities if desired. For further details, see
Section 13.11, “ Annotation-based controller configuration”.

2.5.4. A form tag library for Spring MVC

A rich JSP tag library for Spring MV C was the JIRA issue that garnered the most votes from Spring users (by a
wide margin).

Spring 2.0 ships with a full featured JSP tag library that makes the job of authoring JSP pages much easier
when using Spring MV C; the Spring team is confident it will satisfy all of those developers who voted for the
issue on JIRA. The new tag library isitself covered in the section entitled Section 14.2.4, “Using Spring's form
tag library”, and a quick reference to al of the new tags can be found in the appendix entitled Appendix E,
spring-form.tld.

2.5.5. Tiles 2 support

Spring 2.5 ships support for Tiles 2, the next generation of the popular Tiles templating framework. This
supersedes Spring's former support for Tiles 1, asincluded in Struts 1.x. See Section 14.3, “Tiles’ for details.

Spring Framework (2.5.5) 25

What's new in Spring 2.0 and 2.5?

2.5.6. JSF 1.2 support

Spring 2.5 supports JSF 1.2, providing a JSF 1.2 variant of Spring's Del egat i ngVar i abl eResol ver inthe form
of the new Spri ngBeanFacesELResol ver .

2.5.7. JAX-WS support

Spring 2.5 fully supports JAX-WS 2.0/2.1, as included in Java 6 and Java EE 5. JAX-WS is the successor of
JAX-RPC, allowing access to WSDL/SOAP-based web services as well as JAX-WS style exposure of web
services.

2.6. Everything else

Thisfinal section outlines al of the other new and improved Spring 2.0/2.5 features and functionality.

2.6.1. Dynamic language support

Spring 2.0 introduced support for beans written in languages other than Java, with the currently supported
dynamic languages being JRuby, Groovy and BeanShell. This dynamic language support is comprehensively
detailed in the section entitled Chapter 24, Dynamic language support.

Spring 2.5 refines the dynamic languages support with autowiring and support for the recently released JRuby
1.0.

2.6.2. Enhanced testing support

Spring 2.5 introduces the Spring TestContext Framework which provides annotation-driven unit and integration
testing support that is agnostic of the actual testing framework in use. The same techniques and
annotation-based configuration used in, for example, a JUnit 3.8 environment can also be applied to tests
written with JUnit 4.4, TestNG, etc.

In addition to providing generic and extensible testing infrastructure, the Soring TestContext Framework
provides out-of-the-box support for Spring-specific integration testing functionality such as context
management and caching, dependency injection of test fixtures, and transactional test management with default
rollback semantics.

To discover how this new testing support can assist you with writing unit and integration tests, consult
Section 8.3.7, “ Spring TestContext Framework” of the revised testing chapter.

2.6.3. IMX support

The Spring Framework 2.0 has support for Noti fi cati ons; it is aso possible to exercise declarative control
over the registration behavior of MBeans with an MBeanSer ver .

» Section 20.7, “Notifications
e Section 20.2.5, “Controlling the registration behavior”

Furthermore, Spring 2.5 provides a cont ext : nbean- expor t configuration element for convenient registration

Spring Framework (2.5.5) 26

What's new in Spring 2.0 and 2.5?

of annotated bean classes, detecting Spring's @anagedResour ce annotation.

2.6.4. Deploying a Spring application context as JCA adapter

Spring 2.5 supports the deployment of a Spring application context as JCA resource adapter, packaged as a
JCA RAR file. This allows headless application modules to be deployed into J2EE servers, getting access to all
the server'sinfrastructure e.g. for executing scheduled tasks, listening for incoming messages, etc.

2.6.5. Task scheduling

Spring 2.0 offers an abstraction around the scheduling of tasks. For the interested devel oper, the section entitled
Section 23.4, “The Spring TaskExecut or abstraction” contains all of the details.

The TaskExecut or abstraction is used throughout the framework itself as well, e.g. for the asynchronous IMS

support. In Spring 2.5, it isalso used in the JCA environment support.

2.6.6. Java 5 (Tiger) support

Find below pointers to documentation describing some of the new Java 5 support in Spring 2.0 and 2.5.

e Section 3.11, “Annotation-based configuration”
e Section 25.3.1, “@requi r ed”

e Section 9.5.6, “Using @r ansact i onal ”

* Section 11.2.3, “Si npl eJdbcTenpl at e”

e Section 12.6, “JPA”

» Section 6.2, “ @A spectJ support”

» Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring”

2.7. Migrating to Spring 2.5

Thisfinal section details issues that may arise during any migration from Spring 1.2/2.0 to Spring 2.5.

Upgrading to Spring 2.5 from a Spring 2.0.x application should simply be a matter of dropping the Spring 2.5
jar into the appropriate location in your application's directory structure. We highly recommend upgrading to
Spring 2.5 from any Spring 2.0 application that runs on JDK 1.4.2 or higher, in particular when running on Java
5 or higher, leveraging the significant configuration conveniences and performance improvements that Spring
2.5 hasto offer.

Whether an upgrade from Spring 1.2.x will be as seamless depends on how much of the Spring APIs you are
using in your code. Spring 2.0 removed pretty much al of the classes and methods previously marked as
deprecated in the Spring 1.2.x codebase, so if you have been using such classes and methods, you will of course
have to use alternative classes and methods (some of which are summarized below).

With regards to configuration, Spring 1.2.x style XML configuration is 100%, satisfaction-guaranteed
compatible with the Spring 2.5 library. Of courseif you are still using the Spring 1.2.x DTD, then you won't be
able to take advantage of some of the new Spring 2.0 functionality (such as scopes and easier AOP and

Spring Framework (2.5.5) 27

What's new in Spring 2.0 and 2.5?

transaction configuration), but nothing will blow up.

The suggested migration strategy isto drop in the Spring 2.5 jar(s) to benefit from the improved code present in
the release (bug fixes, optimizations, etc.). Y ou can then, on an incremental basis, choose to start using the new
Spring 2.5 features and configuration. For example, you could choose to start configuring just your aspects in
the new Spring 2 style; it is perfectly valid to have 90% of your configuration using the old-school Spring 1.2.x
configuration (which references the 1.2.x DTD), and have the other 10% using the new Spring 2 configuration
(which references the 2.0/2.5 DTD or XSD). Bear in mind that you are not forced to upgrade your XML
configuration should you choose to drop in the Spring 2.5 libraries.

2.7.1. Changes

For a comprehensive list of changes, consult the ' changel og. t xt* file that is located in the top level directory
of the Spring Framework distribution.

2.7.1.1. Supported JDK versions

As of Spring 2.5, support for JDK 1.3 has been removed, following Sun's official deprecation of JDK 1.3 in late
2006. If you haven't done so already, upgrade to JDK 1.4.2 or higher.

If you need to stick with an application server that only supports JDK 1.3, such as WebSphere 4.0 or 5.0, we
recommend using the Spring Framework version 2.0.7/2.0.8 which still supports JDK 1.3.

2.7.1.2. Jar packaging in Spring 2.5

As of Spring 2.5, Spring Web MV C is no longer part of the ' spring.jar' file. Spring MVC can be found in
"spring-webmvc.jar' and ' spring-webnvc-portlet.jar' inthelib/mdul es directory of the distribution.
Furthermore, the Struts 1.x support has been factored out into * spri ng- webnmve-struts.jar' .

Note: The commonly used Spring's bi spat cher Servl et is part of Soring's Web MVC framework. As a
consequence, you heed to add ' spring-webnmvc.jar' (Or ‘spring-webnvc-portlet/struts.jar') t0o a
"spring.jar' scenario, even if you are just using Di spat cher Servl et for remoting purposes (e.g. exporting
Hessian or HTTP invoker services).

Spring 2.0's 'spring-jnmx.jar' and 'spring-remoting.jar’ have been merged into Spring 2.5's
"spring-context.jar' (for the IMX and non-HTTP remoting support) and partly into* spri ng-web. j ar' (for
the HTTP remoting support).

Spring 2.0's * spring-support.jar’ has been renamed to ' spring-cont ext - support.jar', expressing the
actual support relationship more closely. 'spring-portlet.jar' has been renamed to
"spring-webmvc-portlet.jar', since it is technicaly a submodule of Spring's Web MVC framework.
Anaogoudly, ' spring-struts.jar' hasbeenrenamedto' spri ng-webnvc-struts.jar'.

Spring 2.0's'spring-jdo.jar', 'spring-jpa.jar', ' spring-hibernate3.jar', ' spring-toplink.jar' and
"spring-ibatis.jar' havebeen combined into Spring 2.5's coarse-granular * spring-ormjar'.

Spring 2.5's" spring-test.jar' supersedesthe previous' spri ng-mock. j ar' , indicating the stronger focus on
the test context framework. Note that ' spring-test.jar' contains everything ' spri ng- nock. j ar' contained
in previous Spring versions; hence it can be used as a straightforward replacement for unit and integration
testing purposes.

Spring 2.5's 'spring-tx.jar' supersedes the previous 'spring-dao.jar’ and 'spring-jca.jar' files,
indicating the stronger focus on the transaction framework.

Spring Framework (2.5.5) 28

What's new in Spring 2.0 and 2.5?

Spring 2.5 shipsits framework jars as OSGi-compliant bundles out of the box. This facilitates use of Spring in
OSGi environments, not requiring custom packaging anymore.

2.7.1.3. XML configuration

Spring 2.0 ships with XSDs that describe Spring's XML metadata format in a much richer fashion than the
DTD that shipped with previous versions. The old DTD is till fully supported, but if possible you are
encouraged to reference the XSD files at the top of your bean definition files.

One thing that has changed in a (somewhat) breaking fashion is the way that bean scopes are defined. If you are
using the Spring 1.2 DTD you can continue to use the ' si ngl eton' attribute. You can however choose to
reference the new Spring 2.0 DTD which does not permit the use of the' si ngl et on' attribute, but rather uses
the' scope' attribute to define the bean lifecycle scope.

2.7.1.4. Deprecated classes and methods

A number of classes and methods that previously were marked as @lepr ecat ed have been removed from the
Spring 2.0 codebase. The Spring team decided that the 2.0 release marked a fresh start of sorts, and that any
deprecated 'cruft’ was better excised now instead of continuing to haunt the codebase for the foreseeable future.

As mentioned previoudly, for a comprehensive list of changes, consult the' changel og. t xt ' file that is located
in the top level directory of the Spring Framework distribution.

The following classes/interfaces have been removed as of Spring 2.0:

e Resul t Reader : Usethe Rowvapper interface instead.

e BeanFact or yBoot st rap : Consider using aBeanFact or yLocat or Or acustom bootstrap class instead.

2.7.1.5. Apache 0OJB

As of Spring 2.0, support for Apache OJB was totally removed from the main Spring source tree. The Apache
OJB integration library is still available, but can be found in it's new home in the Spring Modules project.

2.7.1.6. iIBATIS

Please note that support for iBATIS SQL Maps 1.3 has been removed. If you haven't done so already, upgrade
to IBATIS SQL Maps 2.3.

2.7.1.7. Hibernate

As of Spring 2.5, support for Hibernate 2.1 and Hibernate 3.0 has been removed. If you haven't done so
already, upgrade to Hibernate 3.1 or higher.

If you need to stick with Hibernate 2.1 or 3.0 for the time being, we recommend to keep using the Spring
Framework version 2.0.7/2.0.8 which still supports those versions of Hibernate.

2.7.1.8.3DO

As of Spring 2.5, support for JDO 1.0 has been removed. If you haven't done so already, upgrade to JDO 2.0 or
higher.

If you need to stick with JDO 1.0 for the time being, we recommend to keep using the Spring Framework

Spring Framework (2.5.5) 29

https://springmodules.dev.java.net/

What's new in Spring 2.0 and 2.5?

version 2.0.7/2.0.8 which still supports that version of JDO.

2.7.1.9. Url Fi | enanmeVi ewControl | er

Since Spring 2.0, the view name that is determined by the Ur | Fi | enanmeVi ewCont r ol | er now takes into account
the nested path of the request. This is a breaking change from the origina contract of the
Url Fi | enanmeVi enCont rol | er, and means that if you are upgrading from Spring 1.x to Spring 2.x and you are
using this class you might have to change your Spring Web MV C configuration slightly. Refer to the class level
Javadocs of the UrlFilenameViewController to see examples of the new contract for view name
determination.

2.8. Updated sample applications

A number of the sample applications have also been updated to showcase the new and improved features of
Spring 2.0. So do take the time to investigate them. The aforementioned sample applications can be found in
the' sanpl es' directory of the full Spring distribution (* spri ng-wi t h- dependenci es. [zi p| tar. gz]).

Spring 2.5 features revised versions of the PetClinic and PetPortal sample applications, reengineered from the
ground up for leveraging Spring 2.5's annotation configuration features. It also uses Java 5 autoboxing,
generics, varargs and the enhanced for loop. A Java 5 or 6 SDK is now required to build and run the sample.
Check out PetClinic and PetPortal to get an impression of what Spring 2.5 has to offer!

2.9. Improved documentation

The Spring reference documentation has also substantially been updated to reflect al of the above features new
in Spring 2.0 and 2.5. While every effort has been made to ensure that there are no errors in this documentation,
some errors may nevertheless have crept in. If you do spot any typos or even more serious errors, and you can
spare afew cycles during lunch, please do bring the error to the attention of the Spring team by raising an issue.

Special thanks to Arthur Loder for his tireless proofreading of the Spring Framework reference documentation
and JavaDocs.

Spring Framework (2.5.5) 30

http://opensource.atlassian.com/projects/spring/

Part |. Core Technologies

This initial part of the reference documentation covers all of those technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (10C) container. A thorough treatment
of the Spring Framework's 1oC container is closely followed by comprehensive coverage of Spring's
Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP framework,
which is conceptually easy to understand, and which successfully addresses the 80% sweet spot of AOP
requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly most
mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is certainly
advocated by the Spring team, and so coverage of Spring's support for integration testing is covered (alongside
best practices for unit testing). The Spring team have found that the correct use of 10C certainly does make both
unit and integration testing easier (in that the presence of setter methods and appropriate constructors on classes
makes them easier to wire together on a test without having to set up service locator registries and suchlike)...
the chapter dedicated solely to testing will hopefully convince you of this aswell.

e Chapter 3, The loC container

¢ Chapter 4, Resources

« Chapter 5, Validation, Data-binding, the Beanw apper , and Pr oper t yEdi t or s
e Chapter 6, Aspect Oriented Programming with Spring

e Chapter 7, Soring AOP APIs

» Chapter 8, Testing

Spring Framework (2.5.5) 31

Chapter 3. The loC container

3.1. Introduction

This chapter covers the Spring Framework's implementation of the Inversion of Control (1oC) 1 principle.

BeanFact ory Of Appl i cati onCont ext ?

Users are sometimes unsure whether a BeanFact ory Or an Appl i cat i onCont ext iS best suited for usein a
particular situation. A BeanFactory pretty much just instantiates and configures beans. An
Appl i cationContext also does that, and it provides the supporting infrastructure to enable lots of
enterprise-specific features such as transactions and AOP.

In short, favor the use of an Appl i cat i onCont ext .

(For the specific details behind this recommendation, see this section.)

The org. springframewor k. beans and or g. spri ngf ramewor k. cont ext packages provide the basis for the
Spring Framework's |0C container. The BeanFact ory interface provides an advanced configuration mechanism
capable of managing objects of any nature. The ApplicationContext interface builds on top of the
BeanFactory (it is a sub-interface) and adds other functionality such as easier integration with Spring's AOP
features, message resource handling (for use in internationalization), event propagation, and application-layer
specific contexts such asthe webAppl i cati onCont ext for use in web applications.

In short, the BeanFactory provides the configuration framework and basic functionality, while the
Appl i cati onCont ext adds more enterprise-centric functionality to it. The Appl i cati onCont ext IS a complete
superset of the BeanFact ory, and any description of BeanFact ory capabilities and behavior is to be considered
to apply to the Appl i cati onCont ext aswell.

This chapter is divided into two parts, with the first part covering the basic principles that apply to both the
BeanFact ory and Appl i cati onCont ext , and with the second part covering those features that apply only to the
Appl i cati onCont ext interface.

3.2. Basics - containers and beans

In Spring, those objects that form the backbone of your application and that are managed by the Spring 10C
container are referred to as beans. A bean is simply an object that is instantiated, assembled and otherwise
managed by a Spring 10C container; other than that, there is nothing special about a bean (it is in all other
respects one of probably many objects in your application). These beans, and the dependencies between them,
are reflected in the configuration metadata used by a container.

Why... bean?

The motivation for using the name 'bean’, as opposed to ‘component’ or 'object’ is rooted in the origins of
the Spring Framework itself (it arose partly as a response to the complexity of Enterprise JavaBeans).

1See the section entitled Background

Spring Framework (2.5.5) 32

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/BeanFactory.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/ApplicationContext.html

The 1oC container

3.2.1. The container

The org. springfranmewor k. beans. factory. BeanFactory IS the actual representation of the Spring 10C
container that is responsible for containing and otherwise managing the aforementioned beans.

The BeanFactory interface is the central 10C container interface in Spring. Its responsibilities include
instantiating or sourcing application objects, configuring such objects, and assembling the dependencies
between these objects.

There are a number of implementations of the BeanFact ory interface that come supplied straight out-of-the-box
with Spring. The most commonly used BeanFactory implementation is the Xm BeanFactory class. This
implementation allows you to express the objects that compose your application, and the doubtless rich
interdependencies between such objects, in terms of XML. The Xni BeanFact ory takes this XML configuration
metadata and uses it to create a fully configured system or application.

Your Business Objects (PO.JOs)

» The Sprin
Configuration Cuntapine:’g
Metadata
oroduces

Fully configured system

Ready for Use

The Spring 1oC container

3.2.1.1. Configuration metadata

As can be seen in the above image, the Spring |10C container consumes some form of configuration metadata;
this configuration metadata is nothing more than how you (as an application developer) inform the Spring
container as to how to “instantiate, configure, and assemble [the objects in your application]”. This
configuration metadata is typically supplied in a simple and intuitive XML format. When using XM L-based
configuration metadata, you write bean definitions for those beans that you want the Spring 10C container to
manage, and then let the container do it's stuff.

Note
e

XML-based metadata is by far the most commonly used form of configuration metadata. It is not
however the only form of configuration metadata that is allowed. The Spring 10C container itself is
totally decoupled from the format in which this configuration metadata is actually written. The

Spring Framework (2.5.5) 33

The 1oC container

XML-based configuration metadata format really is ssimple though, and so the mgjority of this
chapter will use the XML format to convey key concepts and features of the Spring 10C container.

You can find details of another form of metadata that the Spring container can consume in the
section entitled Section 3.11, “ Annotation-based configuration”

Resources

The location path or paths supplied to an Appl i cat i onCont ext constructor are actually resource strings
that allow the container to load configuration metadata from a variety of externa resources such as the
local file system, from the Java CLASSPATH, €tc.

Once you have learned about Spring's |oC container, you may wish to learn a little more about Spring's
Resour ce abstraction, as described in the chapter entitled Chapter 4, Resources.

In the vast majority of application scenarios, explicit user code is not required to instantiate one or more
instances of a Spring 10C container. For example, in a web application scenario, a simple eight (or so) lines of
boilerplate J2EE web descriptor XML in the web. xm file of the application will typically suffice (see
Section 3.8.5, “Convenient Appl i cat i onCont ext instantiation for web applications”).

Spring configuration consists of at least one bean definition that the container must manage, but typically there
will be more than one bean definition. When using XML-based configuration metadata, these beans are
configured as <bean/ > elements inside atop-level <beans/ > element.

These bean definitions correspond to the actual objects that make up your application. Typically you will have
bean definitions for your service layer objects, your data access objects (DAOs), presentation objects such as
Struts Act i on instances, infrastructure objects such as Hibernate Sessi onFact ori es, IMS Queues, and so forth.
Typicaly one does not configure fine-grained domain objects in the container, because it is usualy the
responsibility of DAOs and business logic to create/l oad domain objects.

Find below an example of the basic structure of XML-based configuration metadata.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
ht t p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd" >

<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</ bean>
<I-- nore bean definitions go here -->
</ beans>

3.2.2. Instantiating a container

Instantiating a Spring 10C container is straightforward.

Appl i cati onCont ext context = new C assPat hXm Appl i cati onCont ext (
new String[] {"services.xm", "daos.xm"});

Spring Framework (2.5.5) 34

The 1oC container

/] an ApplicationContext i S al so a BeanFactory (Vi a inheritance)
BeanFactory factory = context;

3.2.2.1. Composing XML-based configuration metadata

It can often be useful to split up container definitions into multiple XML files. One way to then load an
application context which is configured from all these XML fragments is to use the application context
constructor which takes multiple Resour ce locations. With a bean factory, a bean definition reader can be used
multiple times to read definitions from each filein turn.

Generaly, the Spring team prefers the above approach, since it keeps container configuration files unaware of
the fact that they are being combined with others. An alternate approach is to use one or more occurrences of
the <i mpor t / > element to load bean definitions from another file (or files). Let'slook at a sample:

<beans>
<i nport resource="services.xm"/>

<i mport resource="resources/ messageSource. xm "/ >
<i nmport resource="/resources/themeSource. xm "/ >

<bean i d="beanl" class="..."/>
<bean i d="bean2" class="..."/>
</ beans>

In this example, externa bean definitions are being loaded from 3 files, servi ces. xm , messageSour ce. xni ,
and t hemeSour ce. xm . All location paths are considered relative to the definition file doing the importing, so
servi ces. xnl in this case must be in the same directory or classpath location as the file doing the importing,
while nessageSource. xni and t hemeSour ce. xmi must be in aresources location below the location of the
importing file. As you can see, aleading slash is actually ignored, but given that these are considered relative
paths, it is probably better form not to use the slash at all. The contents of the files being imported must be valid
XML bean definition files according to the Spring Schema or DTD, including the top level <beans/ > element.

Note
e

It is possible to reference files in parent directories using arelative "../" path. However, thisis not
recommended because it creates a dependency on afile that is outside the current application. This
isin particular not recommended for "classpath:" URLSs (e.g. "classpath:../services.xml") where the
runtime resolution process will pick the "nearest" classpath root and then look into its parent
directory. This is fragile since classpath configuration changes may lead to a different directory
being picked.

Note that you can always use fully qualified resource locations instead of relative paths. e.g.
"file:C:/config/servicesxml" or "classpath:/config/servicesxml”. However, be aware that you are
coupling your application's configuration to specific absolute locations then. It is generally
preferable to keep an indirection for such absolute locations, e.g. through "${ ...} " placeholders that
areresolved against VM system properties at runtime.

3.2.3. The beans

A Spring 1oC container manages one or more beans. These beans are created using the configuration metadata
that has been supplied to the container (typicaly in the form of XML <bean/ > definitions).

Within the container itself, these bean definitions are represented as BeanDef i ni ti on objects, which contain

Spring Framework (2.5.5) 35

The 1oC container

(among other information) the following metadata:

a package-qualified class name: typicaly thisisthe actual implementation class of the bean being defined.

» bean behaviora configuration elements, which state how the bean should behave in the container (scope,

lifecycle callbacks, and so forth).

» references to other beans which are needed for the bean to do its work; these references are also called

collaborators or dependencies.

« other configuration settings to set in the newly created object. An example would be the number of

connections to use in a bean that manages a connection pool, or the size limit of the pool.

The concepts listed above directly translate to a set of properties that each bean definition consists of. Some of

these properties are listed below, along with alink to further documentation about each of them.

Table 3.1. The bean definition

Feature

class

name

scope

constructor arguments

properties

autowiring mode

dependency checking mode

lazy-initialization mode

initialization method

destruction method

Explained in...

Section 3.2.3.2, “Instantiating beans’

Section 3.2.3.1, “Naming beans’

Section 3.4, “Bean scopes’

Section 3.3.1, “Injecting dependencies’

Section 3.3.1, “Injecting dependencies’

Section 3.3.5, “Autowiring collaborators’

Section 3.3.6, “ Checking for dependencies’

Section 3.3.4, “Lazily-instantiated beans’

Section 3.5.1.1, “Initialization callbacks’

Section 3.5.1.2, “Destruction callbacks’

Besides bean definitions which contain information on how to create a specific bean, certain BeanFact ory
implementations also permit the registration of existing objects that have been created outside the factory (by
user code). The Def aul tLi st abl eBeanFactory class supports this through the registerSingleton(..)

method. (Typical applications solely work with beans defined through metadata bean definitions though.)

3.2.3.1. Naming beans

Spring Framework (2.5.5)

36

The 1oC container

Bean naming conventions

The convention (at least amongst the Spring development team) is to use the standard Java convention for
instance field names when naming beans. That is, bean names start with a lowercase letter, and are
camel-cased from then on. Examples of such names would be (without quotes) ' account Manager' ,
"account Service',' userDao','loginController',and soforth.

Adopting a consistent way of naming your beans will go along way towards making your configuration
easier to read and understand; adopting such naming standards is not hard to do, and if you are using
Spring AOP it can pay off handsomely when it comes to applying advice to a set of beans related by
name.

Every bean has one or more i ds (also called identifiers, or names; these terms refer to the same thing). These
i ds must be unique within the container the bean is hosted in. A bean will aimost always have only one id, but
if abean has more than one id, the extra ones can essentially be considered aliases.

When using XML-based configuration metadata, you use the *id' or ' nanme' attributes to specify the bean
identifier(s). The 'id' attribute allows you to specify exactly one id, and as it is a real XML element 1D
attribute, the XML parser is able to do some extra validation when other elements reference the id; as such, it is
the preferred way to specify a bean id. However, the XML specification does limit the characters which are
legal in XML IDs. This is usually not a constraint, but if you have a need to use one of these special XML
characters, or want to introduce other aliases to the bean, you may also or instead specify one or more beani ds,
separated by acomma (,), semicolon (;), or whitespace in the' narme' attribute.

Please note that you are not required to supply a name for a bean. If no name is supplied explicitly, the
container will generate a unique name for that bean. The motivations for not supplying a name for a bean will
be discussed later (one use case isinner beans).

3.2.3.1.1. Aliasing beans

In a bean definition itself, you may supply more than one name for the bean, by using a combination of up to
one name specified viathei d attribute, and any number of other names via the nane attribute. All these names
can be considered equivalent aliases to the same bean, and are useful for some situations, such as allowing each
component used in an application to refer to a common dependency using a bean name that is specific to that
component itself.

Having to specify all aiases when the bean is actually defined is not always adequate however. It is sometimes
desirable to introduce an alias for a bean which is defined elsewhere. In XML-based configuration metadata
this may be accomplished viathe use of the <al i as/ > element.

<al i as nanme="fronmNane" alias="toNane"/>

In this case, a bean in the same container which is named ' fronNane' , may also after the use of this alias
definition, bereferred to as' t oNane' .

As a concrete example, consider the case where component A defines a DataSource bean called
componentA-dataSource, in its XML fragment. Component B would however like to refer to the DataSource as
componentB-dataSource in its XML fragment. And the main application, MyApp, defines its own XML
fragment and assembles the final application context from al three fragments, and would like to refer to the
DataSource as myApp-dataSource. This scenario can be easily handled by adding to the MyApp XML
fragment the following standal one aliases:

Spring Framework (2.5.5) 37

The 1oC container

<al i as nanme="conponent A- dat aSour ce" al i as="conponent B- dat aSour ce"/ >
<al i as nane="conponent A- dat aSour ce" al i as="nyApp-dat aSource" />

Now each component and the main application can refer to the dataSource via a name that is unique and
guaranteed not to clash with any other definition (effectively there is a namespace), yet they refer to the same
bean.

3.2.3.2. Instantiating beans

Inner class names

If for whatever reason you want to configure a bean definition for ast ati ¢ inner class, you have to use
the binary name of the inner class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo classhasastati c
inner class called Bar , the value of the' cl ass' attribute on a bean definition would be...

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer class name.

A bean definition essentially is arecipe for creating one or more objects. The container looks at the recipe for a
named bean when asked, and uses the configuration metadata encapsulated by that bean definition to create (or
acquire) an actual object.

If you are using XML-based configuration metadata, you can specify the type (or class) of object that is to be
instantiated using the ' cl ass' attribute of the <bean/> element. This ' cl ass' attribute (which internally
eventually boils down to being a d ass property on a BeanDefi ni ti on instance) is normally mandatory (see
Section 3.2.3.2.3, “Instantiation using an instance factory method” and Section 3.6, “Bean definition
inheritance” for the two exceptions) and is used for one of two purposes. The class property specifies the class
of the bean to be constructed in the common case where the container itself directly creates the bean by calling
its constructor reflectively (somewhat equivalent to Java code using the 'new' operator). In the less common
case where the container invokes a st ati ¢, factory method on a class to create the bean, the class property
specifies the actual class containing the st ati ¢ factory method that is to be invoked to create the object (the
type of the object returned from the invocation of the st ati ¢ factory method may be the same class or another
class entirely, it doesn't matter).

3.2.3.2.1. Instantiation using a constructor

When creating a bean using the constructor approach, all normal classes are usable by and compatible with
Spring. That is, the class being created does not need to implement any specific interfaces or be coded in a
specific fashion. Just specifying the bean class should be enough. However, depending on what type of 10C you
are going to use for that specific bean, you may need a default (empty) constructor.

Additionally, the Spring 10C container isn't limited to just managing true JavaBeans, it is also able to manage
virtually any class you want it to manage. Most people using Spring prefer to have actual JavaBeans (having
just a default (no-argument) constructor and appropriate setters and getters modeled after the properties) in the
container, but it is also possible to have more exotic non-bean-style classes in your container. If, for example,
you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring
can manage it aswell.

When using XML -based configuration metadata you can specify your bean class like so:

Spring Framework (2.5.5) 38

The 1oC container

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean name="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo"/ >

The mechanism for supplying arguments to the constructor (if required), or setting properties of the object
instance after it has been constructed, is described shortly.

3.2.3.2.2. Instantiation using a static factory method

When defining a bean which isto be created using a static factory method, along with the cl ass attribute which
specifies the class containing the st at i ¢ factory method, another attribute named f act or y- net hod is needed to
specify the name of the factory method itself. Spring expects to be able to call this method (with an optional list
of arguments as described later) and get back alive object, which from that point on is treated as if it had been
created normally via a constructor. One use for such a bean definition isto call st at i ¢ factoriesin legacy code.

The following example shows a bean definition which specifies that the bean is to be created by calling a
factory-method. Note that the definition does not specify the type (class) of the returned object, only the class
containing the factory method. In this example, the cr eat el nst ance() method must be a static method.

<bean i d="exanpl eBean"
cl ass="exanpl es. Exanpl eBean2"
factory- met hod="creat el nst ance"/ >

The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object
instance after it has been returned from the factory, will be described shortly.

3.2.3.2.3. Instantiation using an instance factory method

In afashion similar to instantiation via a static factory method, instantiation using an instance factory method is
where a non-static method of an existing bean from the container is invoked to create a new bean. To use this
mechanism, the ' cl ass' attribute must be left empty, and the' f act ory- bean' attribute must specify the name
of abean in the current (or parent/ancestor) container that contains the instance method that is to be invoked to
create the object. The name of the factory method itself must be set using the' f act ory- net hod' attribute.

<I-- the factory bean, which contains a method called createlnstance() -->
<bean i d="servi ceLocator" class="com foo. Def aul t Servi ceLocat or">

<I'-- inject any dependencies required by this |ocator bean -->
</ bean>

<l-- the bean to be created via the factory bean -->
<bean i d="exanpl eBean"

factory-bean="servi ceLocat or"

factory- met hod="creat el nst ance"/ >

Although the mechanisms for setting bean properties are still to be discussed, one implication of this approach
isthat the factory bean itself can be managed and configured viaDI.

Note

“a
When the Spring documentation makes mention of a ‘factory bean', this will be a reference to a
bean that is configured in the Spring container that will create objects via an instance or static
factory method. When the documentation mentions a Fact or yBean (notice the capitalization) thisis
areference to a Spring-specific Fact or yBean .

3.2.4. Using the container

Spring Framework (2.5.5) 39

The 1oC container

A BeanFact ory is essentially nothing more than the interface for an advanced factory capable of maintaining a
registry of different beans and their dependencies. The BeanFact ory enables you to read bean definitions and
access them using the bean factory. When using just the BeanFact ory you would create one and read in some
bean definitions in the XML format as follows:

Resource res = new Fil eSyst emResour ce("beans. xm ") ;
BeanFactory factory = new Xm BeanFactory(res);

Basically that is al there is to it. Using get Bean(String) Yyou can retrieve instances of your beans,; the
client-side view of the BeanFactory is simple. The BeanFact ory interface has just a few other methods, but
ideally your application code should never use them... indeed, your application code should have no callsto the
get Bean(String) method at all, and thus no dependency on Spring APIs at all.

3.3. Dependencies

Y our typical enterprise application is not made up of a single object (or bean in the Spring parlance). Even the
simplest of applications will no doubt have at least a handful of objects that work together to present what the
end-user sees as a coherent application. This next section explains how you go from defining a number of bean
definitions that stand-alone, each to themselves, to a fully realized application where objects work (or
collaborate) together to achieve some goal (usually an application that does what the end-user wants).

3.3.1. Injecting dependencies

The basic principle behind Dependency Injection (DI) is that objects define their dependencies (that is to say
the other objects they work with) only through constructor arguments, arguments to a factory method, or
properties which are set on the object instance after it has been constructed or returned from a factory method.
Then, it is the job of the container to actually inject those dependencies when it creates the bean. This is
fundamentally the inverse, hence the name Inversion of Control (I0C), of the bean itself being in control of
instantiating or locating its dependencies on its own using direct construction of classes, or something like the
Service Locator pattern.

It becomes evident upon usage that code gets much cleaner when the DI principle is applied, and reaching a
higher grade of decoupling is much easier when objects do not look up their dependencies, but are provided
with them (and additionally do not even know where the dependencies are located and of what concrete class
they are). DI existsin two major variants, namely Constructor Injection and Setter Injection.

3.3.1.1. Constructor Injection

Constructor-based DI is effected by invoking a constructor with a number of arguments, each representing a
dependency. Additionally, calling a st ati ¢ factory method with specific arguments to construct the bean, can
be considered almost equivalent, and the rest of this text will consider arguments to a constructor and
arguments to a static factory method similarly. Find below an example of a class that could only be
dependency injected using constructor injection. Notice that there is nothing special about this class.

public class SinpleMuvielLister {

/] the sinpleMvieLister has a dependency on a MovieFinder
private Movi eFi nder novi eFi nder;

// a constructor so that the Spring container can 'inject' a MvieFinder

public Sinpl eMvi elLi ster(Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;
}

/1 business logic that actually 'uses' the injected MvieFinder is omtted...

Spring Framework (2.5.5) 40

The 1oC container

3.3.1.1.1. Constructor Argument Resolution

Constructor argument resolution matching occurs using the argument's type. If there is no potentia for
ambiguity in the constructor arguments of a bean definition, then the order in which the constructor arguments
are defined in a bean definition is the order in which those arguments will be supplied to the appropriate
constructor when it is being instantiated. Consider the following class:

package x.y;
public class Foo {

public Foo(Bar bar, Baz baz) {
...
}

There is no potential for ambiguity here (assuming of course that Bar and Baz classes are not related in an
inheritance hierarchy). Thus the following configuration will work just fine, and you do not need to specify the
constructor argument indexes and / or types explicitly.

<beans>
<bean name="foo" class="x.y.Foo">
<constructor-arg>
<bean cl ass="x.y.Bar"/>
</ constructor-arg>
<constructor - ar g>
<bean cl ass="x.y.Baz"/>
</ constructor-arg>
</ bean>
</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as <val ue>t r ue<val ue>, Spring cannot determine the
type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es;

public class Exanpl eBean {

/1 No. of years to the calculate the Utinate Answer
private int years

/1 The Answer to Life, the Universe, and Everything
private String ultimateAnswer;

publi ¢ Exanpl eBean(int years, String ultimteAnswer) {
this.years = years
this.ultimteAnswer = ultimateAnswer;

3.3.1.1.1.1. Constructor Argument Type Matching

The above scenario can use type matching with simple types by explicitly specifying the type of the constructor
argument using the' t ype' attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

Spring Framework (2.5.5) 41

The 1oC container

3.3.1.1.1.2. Constructor Argument Index

Constructor arguments can have their index specified explicitly by use of thei ndex attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg index="0" val ue="7500000"/>
<constructor-arg index="1" val ue="42"/>

</ bean>

As well as solving the ambiguity problem of multiple simple values, specifying an index also solves the
problem of ambiguity where a constructor may have two arguments of the same type. Note that the index is 0
based.

3.3.1.2. Setter Injection

Setter-based DI isrealized by calling setter methods on your beans after invoking a no-argument constructor or
no-argument st at i ¢ factory method to instantiate your bean.

Find below an example of a class that can only be dependency injected using pure setter injection. Note that
there is nothing special about this class... it isplain old Java.
public class SinpleMvielister {

/'l the sinplemwvieLister has a dependency on the MvieFi nder
private MyvieFi nder novi eFi nder;

// a setter method so that the Spring container can 'inject' a MvieFinder

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;
}

/1 business logic that actually 'uses' the injected mvieFinder i s omtted...

Constructor- or Setter-based DI?

The Spring team generally advocates the usage of setter injection, since a large number of constructor
arguments can get unwieldy, especially when some properties are optional. The presence of setter
methods also makes objects of that class amenable to being re-configured (or re-injected) at some later
time (for management via JMX MBeansis a particularly compelling use case).

Constructor-injection is favored by some purists though (and with good reason). Supplying all of an
object's dependencies means that that object is never returned to client (calling) code in aless than totally
initialized state. The flip side is that the object becomes less amenable to re-configuration (or
re-injection).

There is no hard and fast rule here. Use whatever type of DI makes the most sense for a particular class;
sometimes, when dealing with third party classes to which you do not have the source, the choice will
already have been made for you - a legacy class may not expose any setter methods, and so constructor
injection will be the only type of DI available to you.

The BeanFact ory supports both of these variants for injecting dependencies into beans it manages. (It in fact
also supports injecting setter-based dependencies after some dependencies have already been supplied via the
constructor approach.) The configuration for the dependencies comes in the form of a BeanDef i ni ti on, which
is used together with Proper t yEdi t or instances to know how to convert properties from one format to another.
However, most users of Spring will not be dealing with these classes directly (that is programmatically), but

Spring Framework (2.5.5) 42

The 1oC container

rather with an XML definition file which will be converted internally into instances of these classes, and used
to load an entire Spring |oC container instance.

Bean dependency resolution generally happens as follows:

1. The BeanFact ory is created and initialized with a configuration which describes all the beans. (Most Spring
USErs use a BeanFact ory OF Appl i cati onCont ext implementation that supports XML format configuration
files)

2. Each bean has dependencies expressed in the form of properties, constructor arguments, or arguments to the
static-factory method when that is used instead of a normal constructor. These dependencies will be
provided to the bean, when the bean is actually created.

3. Each property or constructor argument is either an actual definition of the value to set, or a reference to
another bean in the container.

4. Each property or constructor argument which is a value must be able to be converted from whatever format
it was specified in, to the actual type of that property or constructor argument. By default Spring can convert
avalue supplied in string format to al built-in types, such asi nt, | ong, St ri ng, bool ean, €tC.

The Spring container validates the configuration of each bean as the container is created, including the
validation that properties which are bean references are actualy referring to valid beans. However, the bean
properties themselves are not set until the bean is actually created. For those beans that are singleton-scoped
and set to be pre-instantiated (such as singleton beansin an Appl i cat i onCont ext), creation happens at the time
that the container is created, but otherwise thisis only when the bean is requested. When a bean actually has to
be created, this will potentially cause a graph of other beans to be created, as its dependencies and its
dependencies dependencies (and so on) are created and assigned.

Circular dependencies

If you are using predominantly constructor injection it is possible to write and configure your classes and
beans such that an unresolvable circular dependency scenario is created.

Consider the scenario where you have class A, which requires an instance of class B to be provided via
constructor injection, and class B, which requires an instance of class A to be provided via constructor
injection. If you configure beans for classes A and B to be injected into each other, the Spring 10C
container will detect this circular reference at runtime, and throw a
BeanCurrent |yl nCreati onExcepti on.

One possible solution to this issue is to edit the source code of some of your classes to be configured via
setters instead of via constructors. Another solution is not to use constructor injection and stick to setter
injection only. In other words, while it should generally be avoided in al but the rarest of circumstances,
it is possible to configure circular dependencies with setter injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A and bean
B will force one of the beans to be injected into the other prior to being fully initialized itself (a classic
chicken/egg scenario).

Y ou can generally trust Spring to do the right thing. It will detect misconfiguration issues, such as references to
non-existent beans and circular dependencies, at container load-time. It will actually set properties and resolve
dependencies as late as possible, which is when the bean is actually created. This means that a Spring container
which has loaded correctly can later generate an exception when you request a bean if there is a problem
creating that bean or one of its dependencies. This could happen if the bean throws an exception as aresult of a

Spring Framework (2.5.5) 43

The 1oC container

missing or invalid property, for example. This potentially delayed visibility of some configuration issuesiswhy
Appl i cati onCont ext implementations by default pre-instantiate singleton beans. At the cost of some upfront
time and memory to create these beans before they are actually needed, you find out about configuration issues
when the Appl i cat i onCont ext iscreated, not later. If you wish, you can still override this default behavior and
set any of these singleton beans to lazy-initiaize (that is not be pre-instantiated).

If no circular dependencies are involved (see sidebar for a discussion of circular dependencies), when one or
more collaborating beans are being injected into a dependent bean, each collaborating bean is totally configured
prior to being passed (via one of the DI flavors) to the dependent bean. This means that if bean A has a
dependency on bean B, the Spring 1oC container will totally configure bean B prior to invoking the setter
method on bean A; you can read 'totally configure' to mean that the bean will be instantiated (if not a
pre-instantiated singleton), all of its dependencies will be set, and the relevant lifecycle methods (such as a
configured init method or the IntializingBean callback method) will all be invoked.

3.3.1.3. Some examples

First, an example of using XML-based configuration metadata for setter-based DI. Find below a small part of a
Spring XML configuration file specifying some bean definitions.

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<I-- setter injection using the nested <ref/> el emrent -->
<property name="beanOne"><ref bean="anot her Exanpl eBean"/ ></ property>

<I-- setter injection using the neater 'ref' attribute -->
<property name="beanTwo" ref="yet Anot her Bean"/>
<property name="integerProperty" val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public cl ass Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

public void set BeanOne(Anot her Bean beanOne) {
thi s. beanOne = beanOne
}

public void set BeanTwo(Yet Anot her Bean beanTwo) {
this. beanTwo = beanTwo;
}

public void setlntegerProperty(int i) {
this.i =i;
}

As you can see, setters have been declared to match against the properties specified in the XML file. Find
below an example of using constructor-based DI.
<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<l-- constructor injection using the nested <ref/> el ement -->
<const ruct or - ar g>
<ref bean="anot her Exanpl eBean"/>

</ constructor-arg>

<l-- constructor injection using the neater 'ref' attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" val ue="1"/>

Spring Framework (2.5.5) 44

The 1oC container

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
thi s. beanOne = anot her Bean;
t hi s. beanTwo = yet Anot her Bean;
this.i =1i;

Asyou can see, the constructor arguments specified in the bean definition will be used to passin as arguments
to the constructor of the Exanpl eBean.

Now consider a variant of this where instead of using a constructor, Spring is told to cal a static factory
method to return an instance of the object:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory- met hod="cr eat el nst ance" >
<constructor-arg ref="anot her Exanpl eBean"/ >
<constructor-arg ref="yet Anot her Bean"/ >
<constructor-arg val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/'l a private constructor
private ExanpleBean(...) {

i

// a static factory nethod; the argunments to this nethod can be
/'l considered the dependencies of the bean that is returned,
/'l regardl ess of how those argunents are actually used.
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
// some other operations...
return eb;

Note that arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly the
same as if a constructor had actually been used. Also, it is important to realize that the type of the class being
returned by the factory method does not have to be of the same type as the class which contains the stati c
factory method, although in this example it is. An instance (non-static) factory method would be used in an
essentially identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute), so
details will not be discussed here.

3.3.2. Dependencies and configuration in detail

As mentioned in the previous section, bean properties and constructor arguments can be defined as either

Spring Framework (2.5.5) 45

The 1oC container

references to other managed beans (collaborators), or values defined inline. Spring's XML-based configuration
metadata supports a number of sub-element types within its <property/> and <const ruct or - ar g/ > €elements
for just this purpose.

3.3.2.1. Straight values (primitives, stri ngs, etc.)

The <val ue/ > element specifies a property or constructor argument as a human-readable string representation.
As mentioned previously, JavaBeans Pr oper t yEdi t or s are used to convert these string valuesfromastri ng to
the actual type of the property or argument.

<bean i d="nyDat aSour ce" cl ass="or g. apache. commons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">

<l-- results in a setDriverCassNane(String) call -->
<property nanme="driverd assNane" >
<val ue>com nysql . j dbc. Dri ver </ val ue>
</ property>
<property name="url">
<val ue>j dbc: nysql : / /1 ocal host : 3306/ nydb</ val ue>
</ property>
<property name="user nanme">
<val ue>r oot </ val ue>
</ property>
<property nanme="password">
<val ue>nast er kaol i </ val ue>
</ property>
</ bean>

The <property/ > and <const ruct or - ar g/ > elements aso support the use of the ' val ue' attribute, which can
lead to much more succinct configuration. When using the * val ue' attribute, the above bean definition reads
like so:

<bean i d="nyDat aSour ce" cl ass="or g. apache. commons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">

<l-- results in a setDriverCassNane(String) call -->
<property name="driverC assNane" val ue="com nysql . jdbc. Driver"/>
<property name="url" val ue="j dbc: mysql :// | ocal host: 3306/ nydb"/ >
<property name="user nane" val ue="root"/>
<property name="password" val ue="nasterkaoli"/>

</ bean>

The Spring team generaly prefer the attribute style over the use of nested <val ue/ > elements. If you are
reading this reference manual straight through from top to bottom (wow!) then we are getting dightly ahead of
ourselves here, but you can also configureaj ava. util . Properti es instance like so:

<bean i d="mappi ngs" cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">

<I-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc.driver.className=com nysql . j dbc. Dri ver
jdbc. url =j dbc: nysql : //1 ocal host : 3306/ nydb
</val ue>
</ property>
</ bean>

Can you see what is happening? The Spring container is converting the text inside the <val ue/ > element into a
java.util.Properties instance using the JavaBeans Pr opert yEdi t or mechanism. Thisis a nice shortcut, and
is one of afew places where the Spring team do favor the use of the nested <val ue/ > element over the' val ue'
atribute style.

3.3.2.1.1. The idref element

Spring Framework (2.5.5) 46

The 1oC container

The idref element is simply an error-proof way to pass the id of another bean in the container (to a
<const ruct or - ar g/ > Or <pr oper t y/ > element).

<bean id="t heTarget Bean" class="..."/>

<bean i d="t heC i ent Bean" class="...">
<property name="t ar get Nane">
<i dref bean="theTar get Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="t heTarget Bean" class="..." />

<bean id="client" class="...">
<property name="t arget Nane" val ue="t heTar get Bean" />
</ bean>

The main reason the first form is preferable to the second is that using the i dref tag allows the container to
validate at deployment time that the referenced, named bean actually exists. In the second variation, no
validation is performed on the value that is passed to the ' t ar get Nane' property of the ' client' bean. Any
typo will only be discovered (with most likely fatal results) when the' cli ent' bean is actually instantiated. If
the ' client' bean is a prototype bean, this typo (and the resulting exception) may only be discovered long
after the container is actually deployed.

Additionally, if the bean being referred to is in the same XML unit, and the bean name is the bean id, the
"l ocal ' attribute may be used, which allows the XML parser itself to validate the bean id even earlier, at XML
document parse time.

<property name="t ar get Nane">
<l-- a bean with an id of 'theTargetBean' nust exist; otherwi se an XM. exception will be thrown -->
<idref |ocal ="t heTar get Bean"/>

</ property>

By way of an example, one common place (at least in pre-Spring 2.0 configuration) where the <idref/> element
brings value is in the configuration of AOP interceptors in a ProxyFact or yBean bean definition. If you use
<idref/> elements when specifying the interceptor names, there is no chance of inadvertently misspelling an
interceptor id.

3.3.2.2. References to other beans (collaborators)

Theref element isthe final element allowed inside a <constructor-ar g/ > Or <pr opert y/ > definition element.
It is used to set the value of the specified property to be areference to another bean managed by the container (a
collaborator). As mentioned in a previous section, the referred-to bean is considered to be a dependency of the
bean who's property is being set, and will be initialized on demand as needed (if it is a singleton bean it may
have already been initialized by the container) before the property is set. All references are ultimately just a
reference to another object, but there are 3 variations on how the id/name of the other object may be specified,
which determines how scoping and validation is handled.

Specifying the target bean by using the bean attribute of the <r ef / > tag is the most general form, and will allow
creating a reference to any bean in the same container (whether or not in the same XML file), or parent
container. The value of the ' bean' attribute may be the same as either the ' i d' attribute of the target bean, or
one of thevaluesin the' nane' attribute of the target bean.

<ref bean="soneBean"/>

Spring Framework (2.5.5) a7

The 1oC container

Specifying the target bean by using thel ocal attribute leverages the ability of the XML parser to validate XML
id references within the same file. The value of the | ocal attribute must be the same as the i d attribute of the
target bean. The XML parser will issue an error if no matching element is found in the samefile. As such, using
the local variant is the best choice (in order to know about errors as early as possible) if the target bean isin the
same XML file.

<ref |ocal ="soneBean"/>

Specifying the target bean by using the* parent* attribute allows a reference to be created to a bean which isin
a parent container of the current container. The value of the ' parent' attribute may be the same as either the
"id attribute of the target bean, or one of the values in the ' nane' attribute of the target bean, and the target
bean must be in a parent container to the current one. The main use of this bean reference variant is when you
have a hierarchy of containers and you want to wrap an existing bean in a parent container with some sort of
proxy which will have the same name as the parent bean.

<I-- in the parent context -->

<bean i d="account Servi ce" class="com foo. Si npl eAccount Servi ce">
<I-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean i d="account Service" <-- notice that the nane of this bean is the sane as the nane of the 'parent’

cl ass="org. spri ngf ramewor k. aop. f r amewor k. Pr oxyFact or yBean" >
<property nanme="target">
<ref parent="account Service"/> <-- notice how we refer to the parent bean
</ property>
<I-- insert other configuration and dependenci es as required as here -->
</ bean>

3.3.2.3. Inner beans

A <bean/ > element inside the <property/> Or <constructor-arg/ > elements is used to define a so-called
inner bean. An inner bean definition does not need to have any id or name defined, and it is best not to even
specify any id or name value because the id or name value ssimply will be ignored by the container.

<bean id="outer" class="...">
<l-- instead of using a reference to a target bean, sinply define the target bean inline -->
<property name="target">
<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->

<property nanme="nanme" val ue="Fi ona Apple"/>
<property name="age" val ue="25"/>
</ bean>
</ property>
</ bean>

Note that in the specific case of inner beans, the ' scope' flagand any 'id' or' nane' attribute are effectively
ignored. Inner beans are always anonymous and they are always scoped as prototypes. Please also note that it is
not possible to inject inner beans into collaborating beans other than the enclosing bean.

3.3.2.4. Collections

The<list/>, <set/>, <map/ >, and <pr ops/ > elements allow properties and arguments of the Java Col | ecti on
typeLLi st, Set, Map, and Properti es, respectively, to be defined and set.

<bean i d="nor eConpl exCbj ect” cl ass="exanpl e. Conpl exhj ect ">

<l-- results in a set Adm nEmai |l s(java.util.Properties) call -->
<property name="adm nEnail s">
<props>

<prop key="adm ni strator">adm ni strator @xanpl e. or g</ prop>

Spring Framework (2.5.5) 48

bean

The 1oC container

<prop key="support">support @xanpl e. or g</ pr op>
<prop key="devel opnment " >devel opnment @xanpl e. or g</ pr op>

</ props>
</ property>
<l-- results in a setSoneList(java.util.List) call -->
<property nanme="soneList">

<list>

<val ue>a list elenent foll owed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a setSoneMap(java.util.mvap) call -->
<property name="sonmeMap">
<map>
<entry>
<key>
<val ue>an entry</val ue>
</ key>
<val ue>j ust some string</val ue>
</entry>
<entry>
<key>
<val ue>a ref</val ue>
</ key>
<ref bean="nyDat aSource" />
</entry>
</ map>
</ property>
<l-- results in a setSoneSet (java.util.Set) call -->
<property name="soneSet">
<set >

<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</set>
</ property>
</ bean>

Note that the value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | nul

3.3.2.4.1. Collection merging

Asof Spring 2.0, the container also supports the merging of collections. This allows an application developer to
define a parent-style <l i st/ >, <map/ >, <set/> Or <props/> €lement, and have child-style <li st/ >, <map/ >,
<set/> Of <props/> elements inherit and override values from the parent collection; that is to say the child
collection's values will be the result obtained from the merging of the elements of the parent and child
collections, with the child's collection elements overriding values specified in the parent collection.

Please note that this section on merging makes use of the parent-child bean mechanism. This concept has not
yet been introduced, so readers unfamiliar with the concept of parent and child bean definitions may wish to
read the relevant section before continuing.

Find below an example of the collection merging feature:

<beans>
<bean i d="parent" abstract="true" cl ass="exanpl e. Conpl ex(Chj ect">
<property nanme="adm nEmail s">
<pr ops>
<prop key="adm ni strator">adm ni strat or @xanpl e. conx/ pr op>
<prop key="support">support @xanpl e. conk/ prop>
</ props>
</ property>
</ bean>
<bean i d="child" parent="parent">
<property name="adm nEnail s">
<l-- the nerge is specified on the *child* collection definition -->
<props nerge="true">
<prop key="sal es">sal es@xanpl e. conx/ pr op>

Spring Framework (2.5.5) 49

The 1oC container

<prop key="support">support @xanpl e. co. uk</ prop>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the adni nEmai | s property of thechild
bean definition. When the child bean is actually resolved and instantiated by the container, the resulting
instance will have an adni nEmai | s Properties collection that contains the result of the merging of the child's
admi nEmai | s collection with the parent's admi nEnmi | s collection.

admi ni strat or=adni ni strat or @xanpl e. com
sal es=sal es@xanpl e. com
suppor t =support @xanpl e. co. uk

Notice how the child Properties collection's value set will have inherited all the property elements from the
parent <props/ >. Notice also how the child's value for the support vaue overrides the value in the parent
collection.

This merging behavior applies similarly to the <l i st/ >, <map/ >, and <set/ > collection types. In the specific
case of the <li st/ > element, the semantics associated with the Li st collection type, that is the notion of an
or der ed collection of values, is maintained; the parent's values will precede all of the child list's values. In the
case of the map, Set, and Properties collection types, there is no notion of ordering and hence no ordering
semantics are in effect for the collection types that underlie the associated Map, Set and Properties
implementation types used internally by the container.

Finally, some minor notes about the merging support are in order; you cannot merge different collection types
(e.g. amap and aLi st), and if you do attempt to do so an appropriate Except i on will be thrown; and in case it
is not immediately obvious, the ' nmerge' attribute must be specified on the lower level, inherited, child
definition; specifying the * mer ge' attribute on a parent collection definition is redundant and will not result in
the desired merging; and (lastly), please note that this merging feature is only available in Spring 2.0 (and later
versions).

3.3.2.4.2. Strongly-typed collection (Java 5+ only)

If you are using Java 5 or Java 6, you will be aware that it is possible to have strongly typed collections (using
generic types). That is, it is possible to declare a Col | ect i on type such that it can only contain St ri ng elements
(for example). If you are using Spring to dependency inject a strongly-typed Col | ecti on into a bean, you can
take advantage of Spring's type-conversion support such that the elements of your strongly-typed Col | ecti on
instances will be converted to the appropriate type prior to being added to the Col | ecti on.

public class Foo {
private Map<String, Float> accounts;

public void set Accounts(Map<String, Float> accounts) {
this.accounts = accounts

}

<beans>
<bean id="fo0" class="x.y.Foo">
<property name="accounts">
<map>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>

Spring Framework (2.5.5) 50

The 1oC container

</ beans>

When the ' accounts' property of the ' foo' bean is being prepared for injection, the generics information
about the element type of the strongly-typed Map<String, Float > is actually available via reflection, and so
Spring's type conversion infrastructure will actually recognize the various value elements as being of type
Fl oat and sothestring values' 9. 99, '2.75' ,and" 3.99' will be converted into an actual Fl oat type.

3.3.2.5. N\l I s

The <nul | / > element is used to handle nul | values. Spring treats empty arguments for properties and the like
as empty Strings. The following XML-based configuration metadata snippet results in the email property
being set to the empty St ri ng value (")

<bean cl ass="Exanpl eBean" >
<property name="email"><val ue/ ></ property>
</ bean>

Thisis equivaent to the following Java code: exanpl eBean. set Emai | ("") . The special <nul | > element may be
used to indicate anul I value. For example:

<bean cl ass="Exanpl eBean" >
<property name="email "><nul | / ></property>
</ bean>

The above configuration is equivalent to the following Java code: exanpl eBean. set Emai | (nul 1) .

3.3.2.6. Shortcuts and other convenience options for XML-based configuration metadata

The configuration metadata shown so far is a tad verbose. That is why there are several options available for
you to limit the amount of XML you have to write to configure your components. The first is a shortcut to
define values and references to other beans as part of a <propert y/ > definition. The second is dlightly different
format of specifying properties altogether.

3.3.2.6.1. XML-based configuration metadata shortcuts

The <property/ >, <construct or - arg/ >, and <ent ry/ > elements al support a* val ue' attribute which may be
used instead of embedding afull <val ue/ > element. Therefore, the following:

<property name="nmnyProperty">
<val ue>hel | o</ val ue>
</ property>

<constructor-arg>
<val ue>hel | o</ val ue>
</ constructor-arg>

<entry key="nyKey">
<val ue>hel | o</ val ue>
</entry>

are equivaent to:

<property name="nyProperty" val ue="hello"/>

Spring Framework (2.5.5) 51

The 1oC container

<constructor-arg val ue="hell 0"/ >

<entry key="nyKey" val ue="hello"/>

The <property/ > and <const ruct or - ar g/ > elements support a similar shortcut ' ref' attribute which may be
used instead of afull nested <r ef / > element. Therefore, the following:

<property name="nyProperty">
<ref bean="nyBean">
</ property>

<constructor - ar g>
<ref bean="nyBean">
</ constructor-arg>

.. are equivalent to:

<property name="nyProperty" ref="nyBean"/>

<constructor-arg ref="nyBean"/>

Note however that the shortcut form is equivalent to a<ref bean="xxx"> element; there is no shortcut for <r ef
| ocal ="xxx">. To enforce astrict local reference, you must use the long form.

Finally, the entry element allows a shortcut form to specify the key and/or value of the map, in the form of the
"key' /' key-ref' and'val ue' /' val ue-ref' attributes. Therefore, the following:

<entry>

<key>
<ref bean="nyKeyBean" />

</ key>
<ref bean="nyVal ueBean" />

</entry>

isequivaent to:

<entry key-ref="nyKeyBean" val ue-ref="mnyVal ueBean"/>

Again, the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref
| ocal ="xxx">.

3.3.2.6.2. The p-namespace and how to use it to configure properties

The second option you have to limit the amount of XML you have to write to configure your components is to
use the special "p-namespace”. Spring 2.0 and later features support for extensible configuration formats using
namespaces. Those namespaces are all based on an XML Schema definition. In fact, the beans configuration
format that you've been reading about is defined in an XML Schema document.

One specia namespace is not defined in an XSD file, and only exists in the core of Spring itself. The so-called
p-namespace doesn't need a schema definition and is an aternative way of configuring your properties
differently than the way you have seen so far. Instead of using nested <property/> elements, using the
p-namespace you can use attributes as part of the bean element that describe your property values. The values
of the attributes will be taken as the values for your properties.

Spring Framework (2.5.5) 52

The 1oC container

The following two XML snippets boil down to the same thing in the end: the first is using the standard XML
format whereas the second example is using the p-namespace.

<beans xm ns="http://ww. spri ngfranmewor k. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: p="http://ww.springframework. org/ schema/ p"

xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd" >

<bean name="cl assi c" cl ass="com exanpl e. Exanpl eBean" >
<property name="enmail" val ue="foo@ar.com >
</ bean>

<bean name="p- nanespace" cl ass="com exanpl e. Exanpl eBean"
p: emai | ="f oo@ar . conl'/ >

</ beans>

As you can see, we are including an attribute in the p-namespace called email in the bean definition - thisis
telling Spring that it should include a property declaration. As previously mentioned, the p-namespace doesn't
have a schema definition, so the name of the attribute can be set to whatever name your property has.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: p="http://ww. springframework. org/ schema/ p"
xsi : schemaLocati on="htt p://ww. spri ngf ranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd" >

<bean nane="j ohn-cl assi c" cl ass="com exanpl e. Per son" >
<property name="nanme" val ue="John Doe"/>
<property nanme="spouse" ref="jane"/>

</ bean>

<bean nane="j ohn- noder n"
cl ass="com exanpl e. Per son"
p: name="John Doe"
p: spouse-ref="jane"/>

<bean nane="j ane" cl ass="com exanpl e. Person">
<property name="nane" val ue="Jane Doe"/>
</ bean>

</ beans>

As you can see, this example doesn't only include a property value using the p-namespace, but also uses a
specia format to declare property references. Whereas the first bean definition uses <pr operty name="spouse"
ref="jane"/> to create a reference from bean john to bean jane, the second bean definition uses
p: spouse-ref="j ane" as an attribute to do the exact same thing. In this case 'spouse’ is the property name
whereasthe - r ef ' part indicates that thisis not a straight value but rather a reference to another bean.

-

Note

e

Please note that the p-namespace is not quite as flexible as the standard XML format - for example
particular, the 'special’ format used to declare property references will clash with properties that
end in 'rRef ', whereas the standard XML format would have no problem there. We recommend that
you choose carefully which approach you are going to use in your projects. You should aso
communicate this to your team members so you won't end up with XML documents using all three
approaches at the same time. This will prevent people from not understanding the application
because of different ways of configuring it, and will add to the overal consistency of your
codebase.

Spring Framework (2.5.5) 53

The 1oC container

3.3.2.7. Compound property names

Compound or nested property names are perfectly legal when setting bean properties, as long as all components
of the path except the final property name are not nul | . Consider the following bean definition...

<bean id="foo0" class="foo.Bar">
<property nanme="fred. bob. sammy" val ue="123" />
</ bean>

The f oo bean has afred property which has a bob property, which has a samy property, and that final samy
property is being set to the value 123. In order for this to work, the fred property of f oo, and the bob property
of fred must not be nul I be non-null after the bean is constructed, or aNul | Poi nt er Except i on will be thrown.

3.3.3. Using depends- on

For most situations, the fact that a bean is a dependency of another is expressed by the fact that one bean is set
as a property of another. Thisis typically accomplished with the <r ef / > element in XML-based configuration
metadata. For the relatively infrequent situations where dependencies between beans are less direct (for
example, when a dtatic initializer in a class needs to be triggered, such as database driver registration), the
" depends-on' attribute may be used to explicitly force one or more beans to be initialized before the bean
using this element is initialized. Find below an example of using the ' depends-on' attribute to express a
dependency on a single bean.

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="manager"/>

<bean i d="nmanager" cl ass="ManagerBean" />

If you need to express a dependency on multiple beans, you can supply alist of bean names as the value of the
' depends- on' attribute, with commas, whitespace and semicolons all valid delimiters, like so:

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="nmanager, account Dao" >
<property name="manager" ref="manager" />
</ bean>

<bean i d="manager" cl ass="Manager Bean" />
<bean i d="account Dao" cl ass="x.y.jdbc.JdbcAccount Dao" />

Note

The 'depends-on' attribute and property is used not only to specify an initiaization time
dependency, but also to specify the corresponding destroy time dependency (in the case of
singleton beans only). Dependent beans that are defined in the 'depends-on' attribute will be
destroyed first prior to the relevant bean itself being destroyed. This thus alows you to control
shutdown order too.

3.3.4. Lazily-instantiated beans

The default behavior for ApplicationContext implementations is to eagerly pre-instantiate all singl et on
beans at startup. Pre-instantiation means that an Appl i cati onCont ext Will eagerly create and configure all of
its singleton beans as part of itsinitialization process. Generally thisis a good thing, because it means that any
errors in the configuration or in the surrounding environment will be discovered immediately (as opposed to
possibly hours or even days down the ling).

Spring Framework (2.5.5) 54

The 1oC container

However, there are times when this behavior is not what is wanted. If you do not want a singleton bean to be
pre-instantiated when using an Appl i cati onCont ext, you can selectively control this by marking a bean
definition as lazy-initialized. A lazily-initialized bean indicates to the 10C container whether or not a bean
instance should be created at startup or when it isfirst requested.

When configuring beans via XML, this lazy loading is controlled by the ' 1 azy-init' attribute on the <bean/ >
element; for example:

<bean i d="lazy" class="com fo0o0. Expensi veToCr eat eBean" |azy-init="true"/>

<bean name="not. | azy" class="com foo. Anot her Bean"/>

When the above configuration is consumed by an Appl i cat i onCont ext, the bean named ' 1 azy® will not be
eagerly pre-instantiated when the Appl i cati onCont ext is starting up, whereas the ' not . | azy' bean will be
eagerly pre-instantiated.

One thing to understand about lazy-initialization is that even though a bean definition may be marked up as
being lazy-initialized, if the lazy-initiadized bean is the dependency of a singleton bean that is not
lazy-initialized, when the Appl i cati onCont ext is eagerly pre-instantiating the singleton, it will have to satisfy
all of the singletons dependencies, one of which will be the lazy-initialized bean! So don't be confused if the
IoC container creates one of the beans that you have explicitly configured as lazy-initialized at startup; all that
means is that the lazy-initialized bean is being injected into a non-lazy-initialized singleton bean elsewhere.

It is also possible to control lazy-initialization at the container level by using the ' defaul t-1azy-init"
attribute on the <beans/ > element; for example:

<beans default-lazy-init="true">
<l-- no beans will be pre-instantiated... -->
</ beans>

3.3.5. Autowiring collaborators

The Spring container is able to autowire relationships between collaborating beans. This means that it is
possible to automatically let Spring resolve collaborators (other beans) for your bean by inspecting the contents
of the BeanFact ory. The autowiring functionality has five modes. Autowiring is specified per bean and can
thus be enabled for some beans, while other beans will not be autowired. Using autowiring, it is possible to
reduce or eliminate the need to specify properties or constructor arguments, thus saving a significant amount of
typing. 2 When usi ng XML-based configuration metadata, the autowire mode for a bean definition is specified
by using the aut owi r e attribute of the <bean/ > element. The following values are allowed:

Table 3.2. Autowiring modes

Mode Explanation

no
No autowiring at all. Bean references must be defined via a ref element. This is the

default, and changing this is discouraged for larger deployments, since explicitly
specifying collaborators gives greater control and clarity. To some extent, it is a form of
documentation about the structure of a system.

byName
Autowiring by property name. This option will inspect the container and look for a bean

named exactly the same as the property which needs to be autowired. For example, if you

2See the section entitled Section 3.3.1, Injecting dependencies”

Spring Framework (2.5.5) 55

The 1oC container

Mode Explanation

have a bean definition which is set to autowire by name, and it contains a master property
(that is, it has a setMaster(..) method), Spring will look for a bean definition named
mast er , and use it to set the property.

byType
Allows a property to be autowired if there is exactly one bean of the property type in the

container. If there is more than one, afatal exception is thrown, and this indicates that you
may not use byType autowiring for that bean. If there are no matching beans, nothing
happens, the property is not set. If this is not desirable, setting the
dependency- check="obj ect s" attribute value specifies that an error should be thrown in
this case.

constructor
Thisis analogous to byType, but applies to constructor arguments. If there isn't exactly one

bean of the constructor argument type in the container, afatal error is raised.

autodetect
Chooses constructor or byType through introspection of the bean class. If a default

constructor isfound, the byType mode will be applied.

Note that explicit dependenciesin property and const ruct or - ar g Settings al ways override autowiring. Please
also note that it is not currently possible to autowire so-called simple properties such as primitives, Stri ngs,
and d asses (and arrays of such simple properties). (This is by-design and should be considered a feature.)
When using either the byType or constructor autowiring mode, it is possible to wire arrays and
typed-collections. In such cases all autowire candidates within the container that match the expected type will
be provided to satisfy the dependency. Strongly-typed Maps can even be autowired if the expected key typeis
string. An autowired Map's values will consist of al bean instances that match the expected type, and the
Map's keys will contain the corresponding bean names.

Autowire behavior can be combined with dependency checking, which will be performed after all autowiring
has been completed.

It is important to understand the various advantages and disadvantages of autowiring. Some advantages of
autowiring include:

» Autowiring can significantly reduce the volume of configuration required. However, mechanisms such as the
use of abean template (discussed elsewhere in this chapter) are also valuablein this regard.

» Autowiring can cause configuration to keep itself up to date as your objects evolve. For example, if you need
to add an additional dependency to a class, that dependency can be satisfied automatically without the need
to modify configuration. Thus there may be a strong case for autowiring during development, without ruling
out the option of switching to explicit wiring when the code base becomes more stable.

Some disadvantages of autowiring:

< Autowiring is more magical than explicit wiring. Although, as noted in the above table, Spring is careful to
avoid guessing in case of ambiguity which might have unexpected results, the relationships between your
Spring-managed objects are no longer documented explicitly.

» Wiring information may not be available to tools that may generate documentation from a Spring container.

Spring Framework (2.5.5) 56

The 1oC container

Another issue to consider when autowiring by type is that multiple bean definitions within the container may
match the type specified by the setter method or constructor argument to be autowired. For arrays, collections,
or Maps, thisis not necessarily a problem. However for dependencies that expect a single value, this ambiguity
will not be arbitrarily resolved. Instead, if no unique bean definition is available, an Exception will be thrown.
Y ou do have several options when confronted with this scenario. First, you may abandon autowiring in favor of
explicit wiring. Second, you may designate that certain bean definitions are never to be considered as
candidates by setting their ' aut owi r e- candi dat e' attributesto ' f al se' as described in the next section. Third,
you may designate a single bean definition as the primary candidate by setting the * pri mary' attribute of its
<bean/ > element to ' true' . Findly, if you are using at least Java 5, you may be interested in exploring the
more fine-grained control available with annotation-based configuration as described in the section entitled
Section 3.11, “ Annotation-based configuration”.

When deciding whether to use autowiring, there is no wrong or right answer in al cases. A degree of
consistency across a project is best though; for example, if autowiring is not used in general, it might be
confusing to developersto useit just to wire one or two bean definitions.

3.3.5.1. Excluding a bean from being available for autowiring

Y ou can aso (on a per-bean basis) totally exclude a bean from being an autowire candidate. When configuring
beans using Spring's XML format, the ' aut owi re- candi dat e’ attribute of the <bean/ > element can be set to
‘fal se'; this has the effect of making the container totally exclude that specific bean definition from being
available to the autowiring infrastructure.

Another option is to limit autowire candidates based on pattern-matching against bean names. The top-level
<beans/ > element accepts one or more patterns within its ' def aul t - aut owi r e- candi dat es' attribute. For
example, to limit autowire candidate status to any bean whose name ends with 'Repository’, provide a value of
*Repository'. To provide multiple patterns, define them in a comma-separated list. Note that an explicit value
of "true' or'false' forabean definition's' aut owi r e- candi dat e’ attribute always takes precedence, and for
such beans, the pattern matching rules will not apply.

These techniques can be useful when you have one or more beans that you absolutely never ever want to have
injected into other beans via autowiring. It does not mean that an excluded bean cannot itself be configured
using autowiring... it can, it is rather that it itself will not be considered as a candidate for autowiring other
beans.

3.3.6. Checking for dependencies

The Spring 10C container also has the ability to check for the existence of unresolved dependencies of a bean
deployed into the container. These are JavaBeans properties of the bean, which do not have actual values set for
them in the bean definition, or aternately provided automatically by the autowiring feature.

This feature is sometimes useful when you want to ensure that all properties (or al properties of a certain type)
are set on a bean. Of course, in many cases a bean class will have default values for many properties, or some
properties do not apply to all usage scenarios, so this feature is of limited use. Dependency checking can aso
be enabled and disabled per bean, just as with the autowiring functionality. The default is to not check
dependencies. Dependency checking can be handled in severa different modes. When using XML-based
configuration metadata, this is specified viathe ' dependency- check' attribute in a bean definition, which may
have the following values.

Table 3.3. Dependency checking modes

Spring Framework (2.5.5) 57

The 1oC container

Mode Explanation

none
No dependency checking. Properties of the bean which have no value specified for them

are simply not set.

simple
Dependency checking is performed for primitive types and collections (everything except
collaborators).

object
Dependency checking is performed for collaborators only.

al

Dependency checking is done for collaborators, primitive types and collections.

If you are using Java 5 and thus have access to source-level annotations, you may find the section entitled
Section 25.3.1, “ @Requi r ed” to be of interest.

3.3.7. Method Injection

For most application scenarios, the mgjority of the beans in the container will be singletons. When a singleton
bean needs to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with
another non-singleton bean, the typical and common approach of handling this dependency by defining one
bean to be a property of the other is quite adequate. There is a problem when the bean lifecycles are different.
Consider a singleton bean A which needs to use a non-singleton (prototype) bean B, perhaps on each method
invocation on A. The container will only create the singleton bean A once, and thus only get the opportunity to
set the properties once. There is no opportunity for the container to provide bean A with a new instance of bean
B every time oneis needed.

One solution to thisissueisto forego some inversion of control. Bean A can be made aware of the container by
implementing the BeanFact oryAwar e interface, and use programmatic means to ask the container via a
getBean("B") cal for (a typicaly new) bean B instance every time it needs it. Find below an admittedly
somewhat contrived example of this approach:

/1 a class that uses a stateful Command-style class to perform sonme processing
package fiona. appl e;

/1 lots of Spring-APl inports

i mport org.springframework. beans. BeansExcepti on;

i nport org. springfranework. beans. f act ory. BeanFact ory;

i mport org.springframework. beans. fact ory. BeanFact or yAwar €;

public class ConmandManager i npl ements BeanFact oryAware {
private BeanFactory beanFactory;

public nject process(Map comandState) {
/1 grab a new instance of the appropriate comand
Command command = creat eCommand() ;
/'l set the state on the (hopefully brand new) Command i nstance
comand. set St at e(commandSt at e) ;
return conmmand. execute();

}

// the command returned here could be an inplenentation that executes asynchronously, or whatever
protect ed Command creat eCommand() {

return (Command) this. beanFactory. get Bean("command"); // notice the Spring APl dependency
}

public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
thi s. beanFactory = beanFactory;
}
}

Spring Framework (2.5.5) 58

The 1oC container

The above example is generally not a desirable solution since the business code is then aware of and coupled to
the Spring Framework. Method Injection, a somewhat advanced feature of the Spring 10C container, alows this
use case to be handled in a clean fashion.

3.3.7.1. Lookup method injection

Isn't this Method Injection...

. somewhat like Tapestry 4.0's pages, where folks wrote abstract properties that Tapestry would
override at runtime with implementations that did stuff? It sureis (well, somewhat).

Y ou can read more about the motivation for Method Injection in this blog entry.

Lookup method injection refers to the ability of the container to override methods on container managed beans,
to return the result of looking up another named bean in the container. The lookup will typically be of a
prototype bean as in the scenario described above. The Spring Framework implements this method injection by
dynamically generating a subclass overriding the method, using bytecode generation viathe CGLIB library.

So if you look at the code from previous code snippet (the ConmandManager class), the Spring container is going
to dynamically override the implementation of the creat eCommand() method. Your ConmandManager class is
not going to have any Spring dependencies, as can be seen in this reworked example below:

package fiona. appl e;
/1 no nore Spring inports!
public abstract class CommandManager {

public Object process(Object commandState) {
/1 grab a new instance of the appropriate comand interface
Command conmmand = creat eCommand() ;
/] set the state on the (hopefully brand new) Command i nstance
command. set St at e(commandSt at e) ;
return conmand. execute();

}

// okay... but where is the inplenentation of this nmethod?
protected abstract Command creat eCommand();

}
In the client class containing the method to be injected (the CommandManager in this case), the method that is to
be 'injected’ must have a signature of the following form:

<public| protected> [abstract] <return-type> theMethodNane(no-argunents);
If the method is abstract, the dynamically-generated subclass will implement the method. Otherwise, the

dynamically-generated subclass will override the concrete method defined in the original class. Let's look at an
example:

<l-- a stateful bean deployed as a prototype (non-singleton) -->

<bean i d="conmmand" cl ass="fi ona. appl e. AsyncCommand" scope="pr ot otype">
<!-- inject dependencies here as required -->

</ bean>

<! -- commandProcessor USE€S st ateful ConmandHel per - ->

<bean i d="commandManager" cl ass="fi ona. appl e. CommandManager " >
<l ookup- met hod nane="creat eConmand" bean="conmmand"/>
</ bean>

Spring Framework (2.5.5) 59

http://blog.springframework.com/rod/?p=1

The 1oC container

The bean identified as commandManager will call its own method cr eat eCormand() whenever it needs a new
instance of the command bean. It is important to note that the person deploying the beans must be careful to
deploy the conmand bean as a prototype (if that is actually what is needed). If it is deployed as a singleton, the
same instance of the conmand bean will be returned each time!

Please be aware that in order for this dynamic subclassing to work, you will need to have the CGLIB jar(s) on
your classpath. Additionally, the class that the Spring container is going to subclass cannot be fi nal , and the
method that is being overridden cannot be fi nal either. Also, testing a class that has an abst ract method can
be somewhat odd in that you will have to subclass the class yourself and supply a stub implementation of the
abst ract method. Finally, objects that have been the target of method injection cannot be serialized.

Tip
“a

The interested reader may aso find the ServicelLocatorFactoryBean (in the
org. springframewor k. beans. fact ory. confi g package) to be of use; the approach is similar to
that of the bj ect Fact or yCr eat i ngFact or yBean, but it allows you to specify your own lookup
interface as opposed to having to use a Spring-specific lookup interface such as the
Qbj ect Fact ory. Consult the (copious) Javadoc for the Servi ceLocat or Fact oryBean for a full
treatment of this alternative approach (that does reduce the coupling to Spring).

3.3.7.2. Arbitrary method replacement

A less commonly useful form of method injection than Lookup Method Injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of
this section (which describes this somewhat advanced feature), until this functionality is actually needed.

When using XML-based configuration metadata, the repl aced- met hod element may be used to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with a method
computeValue, which we want to override:

public class MyVal ueCal cul ator {

public String conputeVal ue(String input) {
/'l some real code...

}

/1 sone other nethods...

A class implementing the or g. spri ngf ramewor k. beans. f act ory. support. Met hodRepl acer interface provides
the new method definition.

/** meant to be used to override the existing conputeval ue(String)
i mpl enentation in MVal ueCal cul at or
*/
public cl ass Repl acenent Conput eVal ue i npl enents Met hodRepl acer {
public nject reinplement(Ooject o, Method m oject[] args) throws Throwabl e {
/1 get the input value, work with it, and return a conputed result
String input = (String) args[O0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this;

Spring Framework (2.5.5) 60

The 1oC container

<bean i d="nyVal ueCal cul at or cl ass="x.y.z. M/Val ueCal cul ator">
<l-- arbitrary nethod repl acenent -->
<repl aced- net hod name="conput eVal ue" repl acer ="r epl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</ repl aced- net hod>
</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/ >

One or more contained <ar g- t ype/ > elements within the <r epl aced- net hod/ > element may be used to indicate
the method signature of the method being overridden. Note that the signature for the arguments is actually only
needed in the case that the method is actually overloaded and there are multiple variants within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For example,
all the following would match j ava. | ang. Stri ng.

java.lang. String
String
Str

Since the number of arguments is often enough to distinguish between each possible choice, this shortcut can
save alot of typing, by allowing you to type just the shortest string that will match an argument type.

3.4. Bean scopes

When you create a bean definition what you are actually creating is arecipe for creating actual instances of the
class defined by that bean definition. The idea that a bean definition is a recipe is important, because it means
that, just like a class, you can potentially have many object instances created from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an
object that is created from a particular bean definition, but aso the scope of the objects created from a
particular bean definition. This approach is very powerful and gives you the flexibility to choose the scope of
the objects you create through configuration instead of having to 'bake in' the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes. out of the box, the Spring
Framework supports exactly five scopes (of which three are available only if you are using a web-aware
Appl i cati onCont ext).

The scopes supported out of the box are listed below:

Table 3.4. Bean scopes

Scope Description

singleton Scopes a single bean definition to a single object
instance per Spring 10C container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle of a
single HTTP request; that is each and every HTTP
request will have its own instance of a bean created
off the back of a single bean definition. Only valid in
the context of a web-aware Spring

Spring Framework (2.5.5) 61

The 1oC container

Scope Description

Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of a
HTTP session. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

dlobal session Scopes a single bean definition to the lifecycle of a
global HTTP Session. Typically only valid when
used in a portlet context. Only valid in the context of
aweb-aware Spring Appl i cat i onCont ext .

3.4.1. The singleton scope

When a bean is a singleton, only one shared instance of the bean will be managed, and al requests for beans
with an id or i ds matching that bean definition will result in that one specific bean instance being returned by
the Spring container.

To put it another way, when you define a bean definition and it is scoped as a singleton, then the Spring 10C
container will create exactly one instance of the object defined by that bean definition. This single instance will
be stored in a cache of such singleton beans, and all subsequent requests and references for that named bean
will result in the cached object being returned.

Only one instance is ever created...

<bean id="accountbDae" class="..." />

... and this same shared instance is injected into each collaborating object

Please be aware that Spring's concept of a singleton bean is quite different from the Singleton pattern as defined
in the seminal Gang of Four (GoF) patterns book. The GoF Singleton hard codes the scope of an aobject such
that one and only one instance of a particular class will ever be created per d assLoader . The scope of the
Spring singleton is best described as per container and per bean. This means that if you define one bean for a
particular class in a single Spring container, then the Spring container will create one and only one instance of
the class defined by that bean definition. The singleton scope is the default scope in Soring. To define a bean as
asingleton in XML, you would write configuration like so:

<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce"/>

Spring Framework (2.5.5) 62

The 1oC container

<l-- the followi ng is equival ent, though redundant (singleton scope is the default); using spring-beans-2.0.dtd --

<bean i d="account Servi ce" cl ass="com fo0o. Def aul t Account Servi ce" scope="si ngl eton"/>

<l-- the following is equival ent and preserved for backward conpatibility in spring-beans.dtd -->
<bean i d="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce" singleton="true"/>

3.4.2. The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance every
time a request for that specific bean is made (that is, it is injected into another bean or it is requested via a
programmatic get Bean() method call on the container). As arule of thumb, you should use the prototype scope
for al beansthat are stateful, while the singleton scope should be used for stateless beans.

The following diagram illustrates the Spring prototype scope. Please note that a DAO would not typically be
configured as a prototype, since a typical DAO would not hold any conversational state; it was just easier for
this author to reuse the core of the singleton diagram.

A brand new bean instance is created...

O

<bean id="accountDac" class="..."
scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

To define a bean as a prototype in XML, you would write configuration like so:

<l'-- using spring-beans-2.0.dtd -->
<bean i d="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce" scope="prototype"/>

<l-- the following is equivalent and preserved for backward conpatibility in spring-beans.dtd -->
<bean i d="account Servi ce" cl ass="com fo0o0. Def aul t Account Servi ce" singleton="fal se"/>

There is one quite important thing to be aware of when deploying a bean in the prototype scope, in that the
lifecycle of the bean changes dlightly. Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, decorates and otherwise assembles a prototype object, hands it to the client
and then has no further knowledge of that prototype instance. This means that while initialization lifecycle
callback methods will be called on all objects regardliess of scope, in the case of prototypes, any configured
destruction lifecycle callbacks will not be called. It is the responsibility of the client code to clean up prototype
scoped objects and release any expensive resources that the prototype bean(s) are holding onto. (One possible
way to get the Spring container to release resources used by prototype-scoped beans is through the use of a
custom bean post-processor which would hold a reference to the beans that need to be cleaned up.)

In some respects, you can think of the Spring containers role when talking about a prototype-scoped bean as

Spring Framework (2.5.5) 63

>

The 1oC container

somewhat of areplacement for the Java' new operator. All lifecycle aspects past that point have to be handled
by the client. (The lifecycle of a bean in the Spring container is further described in the section entitled
Section 3.5.1, “Lifecycle callbacks’.)

3.4.3. Singleton beans with prototype-bean dependencies

When using singleton-scoped beans that have dependencies on beans that are scoped as prototypes, please be
aware that dependencies are resolved at instantiation time. This means that if you dependency inject a
prototype-scoped bean into a singleton-scoped bean, a brand new prototype bean will be instantiated and then
dependency injected into the singleton bean... but that isall. That exact same prototype instance will be the sole
instance that is ever supplied to the singleton-scoped bean, which isfineif that is what you want.

However, sometimes what you actually want is for the singleton-scoped bean to be able to acquire a brand new
instance of the prototype-scoped bean again and again and again at runtime. In that case it is no use just
dependency injecting a prototype-scoped bean into your singleton bean, because as explained above, that only
happens once when the Spring container is instantiating the singleton bean and resolving and injecting its
dependencies. If you are in the scenario where you need to get a brand new instance of a (prototype) bean again
and again and again at runtime, you are referred to the section entitled Section 3.3.7, “Method Injection”

Backwar ds compatibility note: specifying thelifecycle scopein XML

A If you are referencing the ' spri ng- beans. dtd' DTD in a bean definition file(s), and you are being
explicit about the lifecycle scope of your beans you must use the "si ngl et on" attribute to express
the lifecycle scope (remembering that the singleton lifecycle scope is the default). If you are
referencing the ' spri ng-beans-2. 0. dtd' DTD or the Spring 2.0 XSD schema, then you will need
to use the "scope" attribute (because the "si ngl et on" attribute was removed from the definition of
the new DTD and XSD filesin favor of the "scope" attribute).

To be totally clear about this, this means that if you use the "si ngl et on™ attribute in an XML bean
definition then you must be referencing the ' spri ng- beans. dtd' DTD in that file. If you are using
the "scope" attribute then you must be referencing either the' spri ng- beans-2. 0. dtd' DTD or the
" spring-beans-2.5.xsd" XSD in that file.

3.4.4. The other scopes

The other scopes, namely request, sessi on, and gl obal sessi on are for use only in web-based applications
(and can be used irrespective of which particular web application framework you are using, if indeed any). In
the interest of keeping related concepts together in one place in the reference documentation, these scopes are
described here.

Note

e
The scopes that are described in the following paragraphs are only available if you are using a
web-aware Spring Appl i cati onCont ext implementation (such as xm WebAppl i cat i onCont ext). If
you try using these next scopes with regular Spring 10C containers such as the xn BeanFact ory or
C assPat hXnl Appl i cati onCont ext, you Will get an 111 egal St at eExcepti on complaining about
an unknown bean scope.

3.4.4.1. Initial web configuration

Spring Framework (2.5.5) 64

The 1oC container

In order to support the scoping of beans at the request, sessi on, and gl obal sessi on levels (web-scoped
beans), some minor initial configuration is required before you can set about defining your bean definitions.
Please note that this extra setup is not required if you just want to use the 'standard' scopes (namely singleton
and prototype).

Now as things stand, there are a couple of ways to effect thisinitial setup depending on your particular Servlet
environment...

If you are accessing scoped beans within Spring Web MV C, i.e. within arequest that is processed by the Spring
Di spat cher Servl et, Or Di spatcherPort|et, then no specia setup is necessary: Di spatcherServlet and
Di spat cher Port | et already expose al relevant state.

When using a Servlet 2.4+ web container, with requests processed outside of Spring's DispatcherServlet (e.g.
when using JSF or Struts), you need to add the following j avax. servl et . Servl et Request Li st ener to the
declarations in your web application's' web. xm ' file.

<web- app>

<listener>
<l i st ener-cl ass>org. spri ngfranmewor k. web. cont ext . request . Request Cont ext Li st ener </ | i st ener-cl ass>
</listener>

</ web- app>

If you are using an older web container (Servlet 2.3), you will need to use the provided j avax. servl et. Fil ter
implementation. Find below a snippet of XML configuration that has to be included in the * web. xm * file of
your web application if you want to have access to web-scoped beans in requests outside of Spring's
DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web application
configuration and so you will have to change it as appropriate.)

<web- app>

<filter>
<filter-nane>requestContextFilter</filter-nanme>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-nane>requestContextFilter</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

</ web- app>

That's it. Di spat cher Servl et , Request Cont ext Li st ener and Request Cont ext Fi | ter all do exactly the same
thing, namely bind the HTTP request object to the Thr ead that is servicing that request. This makes beans that
are request- and session-scoped available further down the call chain.

3.4.4.2. The request scope

Consider the following bean definition:

<bean i d="I| ogi nAction" class="com foo. Logi nActi on" scope="request"/>

With the above bean definition in place, the Spring container will create a brand new instance of the
Logi nActi on bean using the ' I ogi nActi on' bean definition for each and every HTTP request. That is, the
"1 ogi nActi on' bean will be effectively scoped at the HTTP request level. Y ou can change or dirty the internal
state of the instance that is created as much as you want, safe in the knowledge that other requests that are also
using instances created off the back of the same ' | ogi nAction' bean definition will not be seeing these

Spring Framework (2.5.5) 65

The 1oC container

changes in state since they are particular to an individual request. When the request is finished processing, the
bean that is scoped to the request will be discarded.

3.4.4.3. The session scope

Consider the following bean definition:

<bean i d="user Preferences" class="com foo. User Pref erences" scope="session"/>

With the above bean definition in place, the Spring container will create a brand new instance of the
User Pref erences bean using the ' userPreferences' bean definition for the lifetime of a single HTTP
Sessi on. In other words, the ' user Pref erences' bean will be effectively scoped at the HTTP Sessi on level.
Just liker equest - scoped beans, you can change the internal state of the instance that is created as much asyou
want, safe in the knowledge that other HTTP sessi on instances that are also using instances created off the
back of the same * user Pref erences' bean definition will not be seeing these changes in state since they are
particular to an individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is
scoped to that particular HTTP Sessi on will aso be discarded.

3.4.4.4. The global session scope

Consider the following bean definition:

<bean i d="userPreferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/ >

The gl obal sessi on scopeissimilar to the standard HTTP Sessi on scope (described immediately above), and
really only makes sense in the context of portlet-based web applications. The portlet specification defines the
notion of a global Sessi on that is shared amongst all of the various portlets that make up a single portlet web
application. Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global
portlet Sessi on.

Please note that if you are writing a standard Servlet-based web application and you define one or more beans
as having gl obal sessi on scope, the standard HTTP Sessi on scope will be used, and no error will be raised.

3.4.4.5. Scoped beans as dependencies

Being able to define a bean scoped to a HTTP request or Sessi on (or indeed a custom scope of your own
devising) is all very well, but one of the main value-adds of the Spring 10C container is that it manages not only
the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want
to inject a (for example) HTTP request scoped bean into another bean, you will need to inject an AOP proxy in
place of the scoped bean. That is, you need to inject a proxy object that exposes the same public interface as the
scoped object, but that is smart enough to be able to retrieve the real, target object from the relevant scope (for
example aHTTP request) and delegate method calls onto the real object.

Note

e
You do not need to use the <aop: scoped- proxy/ > in conjunction with beans that are scoped as
si ngl et ons Of prototypes. It isan error to try to create a scoped proxy for a singleton bean (and
the resulting BeanCr eat i onExcept i on Will certainly set you straight in this regard).

Let's look at the configuration that is required to effect this; the configuration is not hugely complex (it takes
just oneling), but it isimportant to understand the “why” aswell as the “how” behind it.

<?xm version="1.0" encodi ng="UTF-8"?>

Spring Framework (2.5.5) 66

The 1oC container

<beans xm ns="http://ww. spri ngframewor k. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"

xsi : schemaLocati on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schenma/ aop http://ww. springfranmewor k. or g/ schena/ aop/ spri ng-aop-2. 5. xsd">

<l-- a HITP session-scoped bean exposed as a proxy -->
<bean i d="user Preferences" class="com foo. User Pref erences" scope="session">

<I-- this next element effects the proxying of the surroundi ng bean -->
<aop: scoped- pr oxy/ >

</ bean>

<l-- a singleton-scoped bean injected with a proxy to the above bean -->

<bean i d="user Servi ce" class="com foo. Si npl eUser Servi ce">

<I-- a reference to the proxied 'userPreferences’ bean -->
<property name="user Preferences" ref="userPreferences"/>

</ bean>
</ beans>

To create such a proxy, you need only to insert a child <aop: scoped- proxy/ > element into a scoped bean
definition (you may also need the CGLIB library on your classpath so that the container can effect class-based
proxying; you will also need to be using Appendix A, XML Schema-based configuration). So, just why do you
need this <aop: scoped-proxy/> element in the definition of beans scoped at the request, session,
gl obal Sessi on and 'insert your custom scope here' level? The reason is best explained by picking apart the
following bean definition (please note that the following ' user Pref erences' bean definition as it stands is
incompl ete):

<bean i d="user Preferences" class="com foo. UserPreferences" scope="session"/>

<bean id="userManager" cl ass="com f 0o. User Manager " >
<property nanme="user Pref erences" ref="userPreferences"/>
</ bean>

From the above configuration it is evident that the singleton bean ' user Manager® is being injected with a
reference to the HTTP Session-scoped bean ' userPreferences'. The sdlient point here is that the
" user Manager' bean isasingleton... it will be instantiated exactly once per container, and its dependencies (in
this case only one, the ' userPreferences' bean) will also only be injected (once!). This means that the
" user Manager' Will (conceptually) only ever operate on the exact same ' user Pref erences' object, that is the
one that it was originaly injected with. This is not what you want when you inject a HTTP Sessi on-scoped
bean as a dependency into a collaborating object (typically). Rather, what we do want is a single
"user Manager' oObject, and then, for the lifetime of a HTTP Session, we want to see and use a
" user Preferences' object that is specific to said HTTP Sessi on.

Rather what you need then is to inject some sort of object that exposes the exact same public interface as the
User Pref erences class (ideally an object that is a User Pref er ences instance) and that is smart enough to be
able to go off and fetch the real User Pref er ences object from whatever underlying scoping mechanism we
have chosen (HTTP request, Sessi on, etc.). We can then safely inject this proxy object into the ' user Manager*
bean, which will be blissfully unaware that the User Pr ef er ences reference that it is holding onto is a proxy. In
the case of this example, when a User Manager instance invokes a method on the dependency-injected
User Pref er ences object, it is really invoking a method on the proxy... the proxy will then go off and fetch the
real User Pref er ences object from (in this case) the HTTP Sessi on, and delegate the method invocation onto
the retrieved real User Pr ef er ences object.

That is why you need the following, correct and complete, configuration when injecting r equest -, sessi on-,
and gl obal Sessi on- scoped beansinto collaborating objects:

<bean i d="userPreferences" class="com foo. User Preferences" scope="session">

Spring Framework (2.5.5) 67

The 1oC container

<aop: scoped- pr oxy/ >
</ bean>

<bean id="user Manager" cl ass="com f 0o. User Manager " >
<property nanme="user Preferences" ref="userPreferences"/>
</ bean>

3.4.4.5.1. Choosing the type of proxy created

By default, when the Spring container is creating a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy will be created. This means that you need to have
the CGLIB library on the classpath of your application.

Note: CGLIB proxies will only intercept public method calls! Do not call non-public methods on such a proxy;
they will not be delegated to the scoped target object.

You can choose to have the Spring container create 'standard' JDK interface-based proxies for such scoped
beans by specifying 'f al se' for the value of the 'proxy-target - cl ass' attribute of the <aop: scoped- pr oxy/ >
element. Using JDK interface-based proxies does mean that you don't need any additional libraries on your
application's classpath to effect such proxying, but it does mean that the class of the scoped bean must
implement at least one interface, and all of the collaborators into which the scoped bean is injected must be
referencing the bean via one of its interfaces.

<!I'-- Defaul tUserPreferences i npl ements the UserPreferences interface -->

<bean i d="user Preferences" class="com foo. Defaul t User Preferences" scope="session">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean i d="user Manager" cl ass="com f oo. User Manager" >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

The section entitled Section 6.6, “Proxying mechanisms’ may aso be of some interest with regard to
understanding the nuances of choosing whether class-based or interface-based proxying is right for you.

3.4.5. Custom scopes

As of Spring 2.0, the bean scoping mechanism in Spring is extensible. This means that you are not limited to
just the bean scopes that Spring provides out of the box; you can define your own scopes, or even redefine the
existing scopes (athough that last one would probably be considered bad practice - please note that you cannot
override the built-in si ngl et on and pr ot ot ype SCOpES).

3.4.5.1. Creating your own custom scope

Scopes are defined by the or g. spri ngf ramewor k. beans. fact ory. confi g. Scope interface. Thisisthe interface
that you will need to implement in order to integrate your own custom scope(s) into the Spring container, and is
described in detail below. Y ou may wish to look at the Scope implementations that are supplied with the Spring
Framework itself for an idea of how to go about implementing your own. The Scope Javadoc explains the main
class to implement when you need your own scope in more detail too.

The scope interface has four methods dealing with getting objects from the scope, removing them from the
scope and alowing them to be 'destroyed’ if needed.

The first method should return the object from the underlying scope. The session scope implementation for
example will return the session-scoped bean (and if it does not exist, return a new instance of the bean, after
having bound it to the session for future reference).

Spring Framework (2.5.5) 68

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/config/Scope.html

The 1oC container

Obj ect get(String name, ObjectFactory objectFactory)

The second method should remove the object from the underlying scope. The session scope implementation for
example, removes the session-scoped bean from the underlying session. The object should be returned (you are
allowed to return null if the object with the specified name wasn't found)

Obj ect renove(String nane)

The third method is used to register callbacks the scope should execute when it is destroyed or when the
specified object in the scope is destroyed. Please refer to the Javadoc or a Spring scope implementation for
more information on destruction callbacks.

voi d registerDestructionCall back(String name, Runnabl e destructionCal | back)

The last method deals with obtaining the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session for example, this can be the session identifier.

String get Conversationld()

3.4.5.2. Using a custom scope

After you have written and tested one or more custom Scope implementations, you then need to make the
Spring container aware of your new scope(s). The central method to register a new Scope with the Spring
container is declared on the Confi gurabl eBeanFactory interface (implemented by most of the concrete
BeanFact or y implementations that ship with Spring); this central method is displayed below:

voi d registerScope(String scopeNane, Scope scope);

The first argument to the r egi st er Scope(. .) method is the unigue name associated with a scope; examples of
such names in the Spring container itself are ' singl eton' and ' prototype' . The second argument to the
regi st er Scope(..) method is an actual instance of the custom Scope implementation that you wish to register
and use.

Let's assume that you have written your own custom Scope implementation, and you have registered it like so:

/'l note: the ThreadScope cl ass does not ship with the Spring Framework
Scope custonScope = new Thr eadScope();
beanFact ory. regi st er Scope("thread", custonScope);

Y ou can then create bean definitions that adhere to the scoping rules of your custom Scope like so:

<bean id="..." class="..." scope="thread"/>

If you have your own custom Scope implementation(s), you are not just limited to only programmatic
registration of the custom scope(s). You can aso do the Scope registration declaratively, using the
Cust onScopeConf i gur er class.

The declarative registration of custom Scope implementations using the Cust onScopeConfigurer class is
shown below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

Spring Framework (2.5.5) 69

The 1oC container

xm ns: aop="http://wwm. spri ngframewor k. or g/ schenma/ aop”

xsi : schemaLocati on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schenma/ aop http://ww. springframewor k. or g/ schena/ aop/ spri ng-aop-2. 5. xsd">

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property nanme="scopes">
<map>
<entry key="thread">
<bean cl ass="com f0o. Thr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property name="nanme" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >

</ bean>

<bean i d="fo00" class="x.y.Foo">
<property name="bar" ref="bar"/>
</ bean>

</ beans>

3.5. Customizing the nature of a bean

3.5.1. Lifecycle callbacks

The Spring Framework provides several callback interfaces to change the behavior of your bean in the
container; they include I nitial i zi ngBean and Di sposabl eBean. Implementing these interfaces will result in
the container calling af t er Properti esSet () for the former and destroy() for the latter to allow the bean to
perform certain actions upon initialization and destruction.

Internally, the Spring Framework uses BeanPost Processor implementations to process any callback interfaces
it can find and call the appropriate methods. If you need custom features or other lifecycle behavior Spring
doesn't offer out-of-the-box, you can implement a BeanPost Processor Yyourself. More information about this
can be found in the section entitled Section 3.7, “ Container extension points”.

All the different lifecycle callback interfaces are described below. In one of the appendices, you can find
diagrams that show how Spring manages beans, how those lifecycle features change the nature of your beans,
and how they are managed.

3.5.1.1. Initialization callbacks

Implementing the org. springframewor k. beans. factory. InitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container. The
I'nitializingBean interface specifies exactly one method:

void afterPropertiesSet() throws Exception

Generally, the use of the InitializingBean interface can be avoided and is actualy discouraged since it
unnecessarily couples the code to Spring. As an aternative, bean definitions provide support for a generic
initialization method to be specified. In the case of XML-based configuration metadata, this is done using the
"init-method attribute. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nethod="init"/>

Spring Framework (2.5.5) 70

The 1oC container

public class Exanpl eBean {

public void init() {
// do sone initialization work
}

...isexactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents InitializingBean {

public void afterPropertiesSet() {
// do sone initialization work
}

... but does not couple the code to Spring.

3.5.1.2. Destruction callbacks

Implementing the or g. spri ngf ramewor k. beans. f act ory. Di sposabl eBean interface allows a bean to get a
callback when the container containing it is destroyed. The Di sposabl eBean interface specifies a single
method:

voi d destroy() throws Exception

Generally, the use of the Di sposabl eBean callback interface can be avoided and is actually discouraged since it
unnecessarily couples the code to Spring. As an aternative, bean definitions provide support for a generic
destroy method to be specified. When using XML-based configuration metadata this is done via the
" destroy- net hod' attribute on the <bean/ >. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- net hod="cl eanup"/>

public class Exanpl eBean {

public void cleanup() {
/1 do some destruction work (like rel easing pool ed connecti ons)
}

...Isexactly thesame as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do some destruction work (like rel easing pool ed connecti ons)
}

... but does not couple the code to Spring.

3.5.1.3. Default initialization & destroy methods

Spring Framework (2.5.5) 71

The 1oC container

When writing initialization and destroy method callbacks that do not use the Spring-specific I ni ti al i zi ngBean
and Di sposabl eBean callback interfaces, one typically finds oneself writing methods with names such as
init(), initialize(), dispose(), etc. The names of such lifecycle callback methods are (hopefully!)
standardized across a project so that all developers on ateam use the same method names and thus ensure some
level of consistency.

The Spring container can be configured to ' 1 ook’ for named initialization and destroy callback method names
on every bean. This means that you, as an application developer, can simply write your application classes, use
a convention of having an initialization callback called i ni t (), and then (without having to configure each and
every bean with, in the case of XML-based configuration, an ' i ni t - met hod="i ni t"* attribute) be safe in the
knowledge that the Spring 10C container will call that method when the bean is being created (and in
accordance with the standard lifecycle callback contract described previously).

Let'slook at an example to make the use of this feature completely clear. For the sake of the example, let us say
that one of the coding conventions on a project is that al initialization callback methods are to be named
i ni t () and that destroy callback methods are to be called dest roy() . Thisleadsto classeslike so...

public class Defaul tBl ogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public void setBl ogDao(Bl ogDao bl ogDao) {
t hi s. bl ogDao = bl ogDao;
}

/'l this is (unsurprisingly) the initialization callback nethod
public void init() {
if (this.blogbao == null) {
throw new |11 egal St at eExcepti on("The [bl ogDao] property must be set.");
}

<beans default-init-nmethod="init">

<bean i d="bl ogServi ce" class="com foo. Def aul t Bl ogServi ce">
<property nanme="bl ogDao" ref="bl ogDao" />
</ bean>

</ beans>

Notice the use of the* def aul t-i ni t - met hod' attribute on the top-level <beans/ > element. The presence of this
attribute means that the Spring 10C container will recognize a method called *init* on beans as being the
initialization method callback, and when a bean is being created and assembled, if the bean's class has such a
method, it will beinvoked at the appropriate time.

Destroy method callbacks are configured similarly (in XML that is) using the ' def aul t - dest r oy- met hod'
attribute on the top-level <beans/ > element.

The use of this feature can save you the (small) housekeeping chore of specifying an initialization and destroy
method callback on each and every bean, and it is great for enforcing a consistent naming convention for
initialization and destroy method callbacks, as consistency is something that should always be aimed for.

Consider the case where you have some existing beans where the underlying classes already have initialization
callback methods that are named at variance with the convention. You can always override the default by
specifying (in XML that is) the method name using the ' i ni t - met hod' and* dest r oy- net hod' attributes on the
<bean/ > element itself.

Finally, please be aware that the Spring container guarantees that a configured initialization callback is called

Spring Framework (2.5.5) 72

The 1oC container

immediately after a bean has been supplied with all of its dependencies. This means that the initialization
callback will be called on the raw bean reference, which means that any AOP interceptors or suchlike that will
ultimately be applied to the bean will not yet bein place. A target bean isfully created first, then an AOP proxy
(for example) with its interceptor chain is applied. Note that, if the target bean and the proxy are defined
separately, your code can even interact with the raw target bean, bypassing the proxy. Hence, it would be very
inconsistent to apply the interceptors to the init method, since that would couple the lifecycle of the target bean
with its proxy/interceptors and leave strange semantics when talking to the raw target bean directly.

3.5.1.4. Combining lifecycle mechanisms

As of Spring 2.5, there are three options for controlling bean lifecycle behavior: the I nitializi ngBean and
Di sposabl eBean callback interfaces;, custom init() and destroy() methods, and the @ost Construct and
@ eDest r oy annotations.

When combining different lifecycle mechanisms - for example, in a class hierarchy in which various lifecycle
mechanisms are in use - developers should be aware of the order in which these mechanisms are applied. The
following is the ordering for initialization methods:

* Methods annotated with @ost Const r uct
e afterPropertiesSet () asdefined by thel niti ali zi ngBean callback interface
¢ A custom configuredi ni t () method

Destroy methods are called in the same order:

* Methods annotated with @r eDest r oy
e destroy() asdefined by the bi sposabl eBean callback interface

» A custom configured dest roy() method

Note

“a
If multiple lifecycle mechanisms are configured for a given bean, and each mechanism is
configured with a different method name, then each configured method will be executed in the
order listed above; however, if the same method name is configured - for example, i nit () for an
initialization method - for more than one of the aforementioned lifecycle mechanisms, that method
will only be executed once.

3.5.1.5. Shutting down the Spring loC container gracefully in non-web applications

Note

e
This next section does not apply to web applications (in case the title of this section did not make
that abundantly clear). Spring's web-based Appl i cati onCont ext implementations already have
code in place to handle shutting down the Spring 10C container gracefully when the relevant web
application is being shutdown.

If you are using Spring's 1oC container in a non-web application environment, for example in a rich client
desktop environment, and you want the container to shutdown gracefully and call the relevant destroy callbacks

Spring Framework (2.5.5) 73

The 1oC container

on your singleton beans, you will need to register a shutdown hook with the VM. This s quite easy to do (see
below), and will ensure that your Spring 10C container shuts down gracefully and that all resources held by
your singletons are released. Of course it is still up to you to both configure the destroy callbacks for your
singletons and implement such destroy callbacks correctly.

S0 to register a shutdown hook that enables the graceful shutdown of the relevant Spring 10C container, you
smply need to cal the registerShutdownHook() method that is declared on the
Abstract Appl i cati onCont ext class. To wit...

i nport org. springfranework. cont ext. support. Abstract Appl i cati onCont ext ;
i mport org.springframework. cont ext. support. d assPat hXm Appl i cati onCont ext ;

public final class Boot {

public static void main(final String[] args) throws Exception {
Abstract Appl i cati onCont ext ctx
= new Cl assPat hXm Appl i cati onCont ext (new String []{"beans.xm"});

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/'l app runs here. ..

/1 main method exits, hook is called prior to the app shutting down...

3.5.2. Knowing who you are

3.5.2.1. BeanFact or yAwar e

A class which implementsthe or g. spri ngf r amewor k. beans. f act ory. BeanFact or yAwar e interface is provided
with areference to the BeanFact or y that created it, when it is created by that BeanFact ory.

public interface BeanFactoryAware {

voi d set BeanFact ory(BeanFactory beanFactory) throws BeansExcepti on;

This alows beans to manipulate the BeanFactory that created them programmatically, through the
BeanFact ory interface, or by casting the reference to a known subclass of this which exposes additional
functionality. Primarily thiswould consist of programmatic retrieval of other beans. While there are cases when
this capability is useful, it should generally be avoided, since it couples the code to Spring and does not follow
the Inversion of Control style, where collaborators are provided to beans as properties.

An alternative option that is equivalent in effect to the BeanFact or yAwar e-based approach is to use the
org. springframewor k. beans. f act ory. conf i g. Obj ect Fact or yCr eat i ngFact or yBean. (It should be noted that
this approach still does not reduce the coupling to Spring, but it does not violate the central principle of 10C as
much as the BeanFact or yAwar e-based approach.)

The bj ect Fact or yCr eat i ngFact or yBean iS a Fact or yBean implementation that returns a reference to an
object (factory) that can in turn be used to effect a bean lookup. The bj ect Fact or yCr eat i ngFact or yBean
class does itself implement the BeanFact or yAwar e interface; what client beans are actually injected with is an
instance of the aj ect Fact ory interface. This is a Spring-specific interface (and hence there is still no total
decoupling from Spring), but clients can then use the j ect Fact ory's get Ooj ect () method to effect the bean
lookup (under the hood the oj ect Fact or y implementation instance that is returned simply delegates down to a
BeanFactory to actually lookup a bean by name). All that you need to do is supply the
Qbj ect Fact or yCr eat i ngFact or yBean With the name of the bean that is to be looked up. Let's look at an

Spring Framework (2.5.5) 74

The 1oC container

example:

package x.y;
public class NewsFeed {
private String news;

public void set News(String news) {
this. news = news;

}
public String getNews() {
return this.toString() + ": '" + news + """
}
}
package x.y;

i nport org. springfranework. beans. f act ory. Obj ect Fact ory;
public class NewsFeedManager {
private Object Factory factory;

public void setFactory(CbjectFactory factory) {
this.factory = factory

}

public void printNews() {
// here is where the | ookup is perforned; note that there is no
/1 need to hard code the nane of the bean that is being | ooked up..
NewsFeed news = (NewsFeed) factory.getObject();
System out . println(news. get News());

Find below the XML configuration to wire together the above classes wusing the
bj ect Fact or yCr eat i ngFact or yBean approach.

<beans>
<bean i d="newsFeedManager" cl ass="x.y. NewsFeedManager" >
<property nanme="factory">
<bean

cl ass="org. spri ngfranmewor k. beans. factory. confi g. Obj ect Fact or yCr eat i ngFact or yBean" >

<property name="t ar get BeanNanme" >
<idref |ocal ="newsFeed" />

</ property>

</ bean>
</ property>
</ bean>
<bean i d="newsFeed" cl ass="x.y.NewsFeed" scope="prototype">
<property name="news" value="... that's fit to print!" />
</ bean>
</ beans>

And here is a small driver program to test the fact that new (prototype) instances of the newsFeed bean are
actually being returned for each call to the injected j ect Fact ory inside the NewsFeedManager 'S pri nt News()
method.

i mport org.springframework. cont ext. Appl i cati onCont ext ;
i nport org. springfranework. cont ext. support. C assPat hXm Appl i cati onCont ext ;
i mport X.y.NewsFeedManager ;

public class Main {
public static void main(String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;

NewsFeedManager nmanager = (NewsFeedManager) ctx. get Bean("newsFeedManager");
manager . pri nt News() ;

Spring Framework (2.5.5) 75

The 1oC container

manager . pri nt News() ;

The output from running the above program will look like so (results will of course vary on your machine).

X.y. NewsFeed@?292d26: '... that's fit to print!"’
X.y. NewsFeed@329c5: '... that's fit to print!

As of Spring 2.5, you can rely upon autowiring of the BeanFact ory as yet another alternative to implementing
the BeanFact or yAwar e interface. The "traditional” construct or and by Type autowiring modes (as described in
the section entitled Section 3.3.5, “Autowiring collaborators’) are now capable of providing a dependency of
type BeanFactory for either a constructor argument or setter method parameter respectively. For more
flexibility (including the ability to autowire fields and multiple parameter methods), consider using the new
annotation-based autowiring features. In that case, the BeanFact ory will be autowired into a field, constructor
argument, or method parameter that is expecting the BeanFact ory type as long as the field, constructor, or
method in question carries the @utowired annotation. For more information, see the section entitled
Section 3.11.2, “ @ut owi red”.

3.5.2.2. BeanNanmeAwar e

If abean implementsthe or g. spri ngf ranewor k. beans. f act ory. BeanNaneAwar e interface and is deployed in a
BeanFact ory, the BeanFact ory will call the bean through this interface to inform the bean of the name it was
deployed under. The callback will be invoked after population of norma bean properties but before an
initialization callback like I ni ti al i zi ngBean's after PropertiesSet or a custom init-method.

3.6. Bean definition inheritance

A bean definition potentially contains alarge amount of configuration information, including container specific
information (for example initialization method, static factory method name, and so forth) and constructor
arguments and property values. A child bean definition is a bean definition that inherits configuration data from
a parent definition. It is then able to override some values, or add others, as needed. Using parent and child
bean definitions can potentially save alot of typing. Effectively, thisisaform of templating.

When working with a BeanFactory programmatically, child bean definitions are represented by the
Chi | dBeanDef i ni tion class. Most users will never work with them on this level, instead configuring bean
definitions declaratively in something like the xm BeanFactory. When using XML-based configuration
metadata a child bean definition is indicated simply by using the ' parent ' attribute, specifying the parent bean
as the value of this attribute.

<bean id="inheritedTestBean" abstract="true"
cl ass="org. spri ngf ramewor k. beans. Test Bean" >
<property name="nanme" val ue="parent"/>
<property name="age" val ue="1"/>
</ bean>

<bean id="inheritsWthbDifferentC ass"
cl ass="org. spri ngf ramewor k. beans. Deri vedTest Bean"
parent ="i nheritedTest Bean" init-nmethod="initialize">

<property nanme="nane" val ue="override"/>
<I-- the age property value of 1 will be inherited from parent -->

</ bean>

A child bean definition will use the bean class from the parent definition if none is specified, but can also

Spring Framework (2.5.5) 76

The 1oC container

override it. In the latter case, the child bean class must be compatible with the parent, that is it must accept the
parent's property values.

A child bean definition will inherit constructor argument values, property values and method overrides from the
parent, with the option to add new values. If any init-method, destroy-method and/or st ati ¢ factory method
settings are specified, they will override the corresponding parent settings.

The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency
check, singleton, scope, lazy init.

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute. In the case that the parent definition does not specify a class, and so explicitly marking the
parent bean definition asabst ract isrequired:

<bean id="inheritedTest BeanWt hout Cl ass" abstract="true">
<property name="nanme" val ue="parent"/>
<property name="age" val ue="1"/>

</ bean>

<bean id="inheritsWthC ass" class="org. springfranmework. beans. Deri vedTest Bean"

parent ="i nheritedTest BeanWt hout Cl ass" init-nmethod="initialize">
<property name="nane" val ue="override"/>
<I-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot get instantiated on its own since it is incomplete, and it is aso explicitly marked as
abstract. When a definition is defined to be abstract like this, it is usable only as a pure template bean
definition that will serve as a parent definition for child definitions. Trying to use such an abst ract parent bean
on its own (by referring to it as a ref property of another bean, or doing an explicit get Bean() call with the
parent bean id), will result in an error. Similarly, the container'sinternal prel nstanti at eSi ngl et ons() method
will completely ignore bean definitions which are defined as abstract.

Note

"
ApplicationContexts (but not BeanFactories) will by default pre-instantiate all singletons.
Therefore it is important (at least for singleton beans) that if you have a (parent) bean definition
which you intend to use only as a template, and this definition specifies a class, you must make
sure to set the 'abstract' attribute to 'true’, otherwise the application context will actually (attempt
to) pre-instantiate the abst r act bean.

3.7. Container extension points

The 1oC component of the Spring Framework has been designed for extension. There is typically no need for
an application developer to subclass any of the various BeanFact ory Or Appl i cati onCont ext implementation
classes. The Spring 10C container can be infinitely extended by plugging in implementations of special
integration interfaces. The next few sections are devoted to detailing all of these various integration interfaces.

3.7.1. Customizing beans using BeanPost Processor s

The first extension point that we will look at is the BeanPost Processor interface. This interface defines a
number of callback methods that you as an application developer can implement in order to provide your own
(or override the containers default) instantiation logic, dependency-resolution logic, and so forth. If you want to
do some custom logic after the Spring container has finished instantiating, configuring and otherwise

Spring Framework (2.5.5) 77

The 1oC container

initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Processors if you wish. You can control the order in which these
BeanPost Processors execute by setting the 'order' property (you can only set this property if the
BeanPost Processor implements the o der ed interface; if you write your own BeanPost Processor you should
consider implementing the ordered interface too); consult the Javadoc for the BeanPost Processor and
O der ed interfaces for more details.

Note

\'.‘
BeanPost Pr ocessor s operate on bean (or object) instances; that is to say, the Spring 10C container
will have instantiated a bean instance for you, and then BeanPost Processors get a chance to do
their stuff.

If you want to change the actual bean definition (that is the recipe that defines the bean), then you
rather need to use a BeanFact oryPost Processor (described below in the section entitled
Section 3.7.2, “Customizing configuration metadata with BeanFact or yPost Processors”.

Also, BeanPost Processors are scoped per-container. This is only relevant if you are using
container hierarchies. If you define a BeanPost Processor in one container, it will only do its stuff
on the beans in that container. Beans that are defined in another container will not be
post-processed by BeanPost Processor s in another container, even if both containers are part of the
same hierarchy.

The org. spri ngframewor k. beans. f act ory. confi g. BeanPost Processor interface consists of exactly two
callback methods. When such a class is registered as a post-processor with the container (see below for how
thisregistration is effected), for each bean instance that is created by the container, the post-processor will get a
callback from the container both before any container initialization methods (such as after PropertiesSet and
any declared init method) are called, and also afterwards. The post-processor is free to do what it wishes with
the bean instance, including ignoring the callback completely. A bean post-processor will typically check for
callback interfaces, or do something such as wrap a bean with a proxy; some of the Spring AOP infrastructure
classes are implemented as bean post-processors and they do this proxy-wrapping logic.

It is important to know that a BeanFactory treats bean post-processors dightly differently than an
Appl i cationCont ext. AN Appli cationCont ext Will automatically detect any beans which are defined in the
configuration metadata which is supplied to it that implement the BeanPost Processor interface, and register
them as post-processors, to be then called appropriately by the container on bean creation. Nothing else needs
to be done other than deploying the post-processors in a similar fashion to any other bean. On the other hand,
when using a BeanFact ory implementation, bean post-processors explicitly have to be registered, with code
likethis:

Conf i gur abl eBeanFactory factory = new Xm BeanFactory(...);

/1 now register any needed BeanPostProcessor i nstances

MyBeanPost Processor post Processor = new MyBeanPost Processor () ;

factory. addBeanPost Processor (post Processor) ;

/1 now start using the factory

This explicit registration step is not convenient, and this is one of the reasons why the various
Appl i cati onCont ext implementations are preferred above plain BeanFact ory implementations in the vast
majority of Spring-backed applications, especially when using BeanPost Pr ocessors.

BeanPost Processor s and AOP auto-proxying
e

Spring Framework (2.5.5) 78

The 1oC container

Classes that implement the BeanPost Processor interface are special, and so they are treated
differently by the container. All BeanPost Processors and their directly referenced beans will be
instantiated on startup, as part of the specia startup phase of the Appli cati onCont ext, then all
those BeanPost Processor s Will be registered in a sorted fashion - and applied to all further beans.
Since AOP auto-proxying is implemented as a BeanPost Processor itself, N0 BeanPost Processor s
or directly referenced beans are eligible for auto-proxying (and thus will not have aspects 'woven'
into them.

For any such bean, you should see an info log message: “ Bean 'foo' is not eligible for getting
processed by all BeanPostProcessors (for example: not eligible for auto-proxying)” .

Find below some examples of how to write, register, and use BeanPost Processors in the context of an
Appl i cati onCont ext .

3.7.1.1. Example: Hello World, BeanPost Pr ocessor -Style

This first example is hardly compelling, but serves to illustrate basic usage. All we are going to do is code a
custom BeanPost Processor implementation that simply invokes the t oSt ri ng() method of each bean asiit is
created by the container and prints the resulting string to the system console. Yes, it is not hugely useful, but
servesto get the basic concepts across before we move into the second example which is actually useful.

Find below the custom BeanPost Processor implementation class definition:

package scri pting;

i mport org. springframework. beans. factory. confi g. BeanPost Processor ;
i mport org.springframework. beans. BeansExcepti on;

public class InstantiationTraci ngBeanPost Processor inpl enents BeanPost Processor {

/'l sinply return the instantiated bean as-is

public oject postProcessBeforelnitialization(Object bean, String beanNane) throws BeansException {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterlnitialization(Object bean, String beanNane) throws BeansException {
Systemout.printin("Bean '" + beanNane + "' created : " + bean.toString());
return bean;

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ang="htt p: //www. spri ngframewor k. or g/ schenma/ | ang"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schena/ | ang http://ww. springfranework. org/ schena/ | ang/ spri ng-1 ang-2. 5. xsd">

<l ang: groovy i d="nmessenger"
scri pt - sour ce="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger. gr oovy" >
<l ang: property nane="nessage" val ue="Fiona Apple Is Just So Dreany."/>
</l ang: gr oovy>

<l--
when t he above bean (' nessenger') is instantiated, this custom
BeanPost Processor i npl enentation will output the fact to the system console
-->
<bean cl ass="scripting.|nstantiationTraci ngBeanPost Processor"/>

</ beans>

Spring Framework (2.5.5) 79

The 1oC container

Notice how the I nst ant i ati onTr aci ngBeanPost Processor issimply defined; it doesn't even have a name, and
becauseit is abean it can be dependency injected just like any other bean. (The above configuration also just so
happens to define a bean that is backed by a Groovy script. The Spring 2.0 dynamic language support is
detailed in the chapter entitled Chapter 24, Dynamic language support.)

Find below asmall driver script to exercise the above code and configuration;

i nport org. springfranework. cont ext. Appl i cati onCont ext ;
i mport org.springframework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i mport org.springframework. scri pting. Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXml Appli cati onCont ext ("scripting/beans.xm");
Messenger nmessenger = (Messenger) ctx. getBean("nessenger");
System out . printl n(messenger);

The output of executing the above program will be (something like) this:

Bean ' nessenger' created : org.springframework. scripting.groovy. GoovyMessenger @72961
org. springframewor k. scri pting. groovy. G oovyMessenger @72961

3.7.1.2. Example: The Requi r edAnnot at i onBeanPost Pr ocessor

Using callback interfaces or annotations in conjunction with a custom BeanPost Pr ocessor implementation is a
common means of extending the Spring 10C container. This next example is a bit of a cop-out, in that you are
directed to the section entitled Section 25.3.1, “@requi red” which demonstrates the usage of a custom
BeanPost Processor implementation that ships with the Spring distribution which ensures that JavaBean
properties on beans that are marked with an (arbitrary) annotation are actualy (configured to be)
dependency-injected with avalue.

3.7.2. Customizing configuration metadata with BeanFact or yPost Processors

The next extension point that we will look at is the
org. springframewor k. beans. factory. confi g. BeanFact or yPost Processor. The semantics of this interface
are similar to the BeanPost Processor , wWith one major difference: BeanFact or yPost Processor s operate on the
bean configuration metadata; that is, the Spring 10C container will allow BeanFact or yPost Processor s to read
the configuration metadata and potentially change it before the container has actually instantiated any other
beans.

Y ou can configure multiple BeanFact or yPost Processor s if you wish. Y ou can control the order in which these
BeanFact or yPost Processors execute by setting the ' order' property (you can only set this property if the
BeanFact oryPost Processor implements the oOdered interface; if you write your own
BeanFact or yPost Processor you should consider implementing the o der ed interface too); consult the Javadoc
for the BeanFact or yPost Processor and O der ed interfaces for more details.

Note

s

"8

If you want to change the actual bean instances (the objects that are created from the configuration
metadata), then you rather need to use a BeanPost Processor (described above in the section
entitled Section 3.7.1, “Customizing beans using BeanPost Pr ocessors”.

Also, BeanFact or yPost Processor s are scoped per-container. Thisisonly relevant if you are using

Spring Framework (2.5.5) 80

The 1oC container

container hierarchies. If you define a BeanFact or yPost Processor in one container, it will only do
its stuff on the bean definitions in that container. Bean definitions in another container will not be
post-processed by BeanFact or yPost Processor s in another container, even if both containers are
part of the same hierarchy.

A bean factory post-processor is executed manually (in the case of aBeanFact or y) or automatically (in the case
of an ApplicationContext) to apply changes of some sort to the configuration metadata that defines a
container. Spring includes a number of pre-existing bean factory post-processors, such as
PropertyOverrideConfigurer and PropertyPl acehol der Confi gurer, both described below. A custom
BeanFact or yPost Processor can also be used to register custom property editors, for example.

In aBeanFact ory, the process of applying aBeanFact or yPost Processor ismanual, and will be similar to this:

Xm BeanFactory factory = new Xm BeanFactory(new Fi | eSyst enResour ce("beans. xm ")) ;

/1 bring in some property values froma pProperties file
Pr opert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setLocation(new Fi |l eSyst enResource("j dbc. properties"));

/1 now actually do the repl acement
cf g. post ProcessBeanFactory(factory);

This explicit registration step is not convenient, and this is one of the reasons why the various
Appl i cationCont ext implementations are preferred above plain BeanFact ory implementations in the vast
majority of Spring-backed applications, especialy when using BeanFact or yPost Pr ocessor s.

An ApplicationContext Wwill detect any beans which are deployed into it which implement the
BeanFact or yPost Processor interface, and automatically use them as bean factory post-processors, at the
appropriate time. Nothing else needs to be done other than deploying these post-processor in a similar fashion
to any other bean.

Note

-

e

Just as in the case of BeanPostProcessors, Yyou typicaly dont want to have
BeanFact or yPost Processor s marked as being lazily-initialized. If they are marked as such, then
the Spring container will never instantiate them, and thus they won't get a chance to apply their
custom logic. If you are using the ' defaul t-1azy-init' attribute on the declaration of your
<beans/ > element, be sure to mark your various BeanFact or yPost Processor bean definitions with
"lazy-init="fal se"".

3.7.2.1. Example: the PropertyPl acehol der Confi gurer

The PropertyPl acehol der Confi gurer is used to externalize property values from a BeanFact ory definition,
into another separate file in the standard Java Properti es format. This is useful to alow the person deploying
an application to customize environment-specific properties (for example database URLS, usernames and
passwords), without the complexity or risk of modifying the main XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with placeholder
values is defined. We will configure some properties from an external properti es file, and at runtime, we will
apply a PropertyPl acehol der Configurer to the metadata which will replace some properties of the
DataSource:

<bean cl ass="org. spri ngframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons" >
<val ue>cl asspat h: coni f oo/ j dbc. properti es</val ue>

Spring Framework (2.5.5) 81

The 1oC container

</ property>
</ bean>

<bean i d="dat aSour ce" destroy-nethod="cl ose"
cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" >
<property name="driverd assNane" val ue="${j dbc. dri ver Cl assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property name="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java pr oper ti es format:

jdbc. dri verd assNanme=or g. hsql db. j dbcDri ver

j dbc. url =j dbc: hsql db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders with a
dedicated configuration element. Multiple locations may be provided as a comma-separated list for the
| ocat i on attribute.

<cont ext : property-pl acehol der | ocation="cl asspat h: conf f oo/ j dbc. properties"/>

The Propert yPl acehol der Confi gurer doesn't only look for propertiesin the Properti es file you specify, but
also checks against the Java Syst em properties if it cannot find a property you are trying to use. This behavior
can be customized by setting the syst enProperti esMode property of the configurer. It has three values, one to
tell the configurer to always override, one to let it never override and one to let it override only if the property
cannot be found in the properties file gspecified. Please consult the Javadoc for the
Pr oper t yPl acehol der Confi gur er for more information.

Class name substitution

-

e

The Propert yPl acehol der Confi gurer can be used to substitute class names, which is sometimes
useful when you have to pick a particular implementation class at runtime. For example:

<bean cl ass="org. spri ngframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons">
<val ue>cl asspat h: cont f oo/ st rat egy. properties</val ue>
</ property>
<property nanme="properties">
<val ue>cust om strat egy. cl ass=com f 0o. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class is unable to be resolved at runtime to a valid class, resolution of the bean will fail once
it is about to be created (which is during the prelnstantiateSingletons() phase of an
Appl i cati onCont ext for anon-lazy-init bean.)

3.7.2.2. Example: the PropertyQverri deConfi gurer

The PropertyOverrideConfigurer, another bean factory post-processor, is similar to the
Proper t yPl acehol der Conf i gur er, but in contrast to the latter, the original definitions can have default values
or no values at all for bean properties. If an overriding Properti es file does not have an entry for a certain bean
property, the default context definition is used.

Spring Framework (2.5.5) 82

The 1oC container

Note that the bean factory definition is not aware of being overridden, so it is not immediately obvious when
looking at the XML definition file that the override configurer is being used. In case that there are multiple
PropertyOverrideConfigurer instances that define different values for the same bean property, the last one
will win (due to the overriding mechanism).

Properties file configuration lines are expected to be in the format:

beanNane. pr opert y=val ue

An example properties file might look like this:

dat aSour ce. dri ver O assNane=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nysql : nydb

This example file would be usable against a container definition which contains a bean called dataSource,
which has driver and url properties.

Note that compound property names are also supported, as long as every component of the path except the final
property being overridden is already non-null (presumably initialized by the constructors). In this example...

f oo. fred. bob. sanmy=123
... the sammy property of the bob property of the fred property of the f oo bean is being set to the scalar value
123.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding with a
dedicated configuration element:

<cont ext: property-override | ocation="cl asspath: override. properties"/>

3.7.3. Customizing instantiation logic using Fact or yBeans

The org. spri ngfranewor k. beans. f act ory. Fact or yBean interface is to be implemented by objects that are
themsel ves factories.

The Fact oryBean interface is a point of pluggability into the Spring 10C containers instantiation logic. If you
have some complex initiaization code that is better expressed in Java as opposed to a (potentialy) verbose
amount of XML, you can create your own Fact or yBean, write the complex initialization inside that class, and
then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

e nject gethject(): hasto return an instance of the object this factory creates. The instance can possibly
be shared (depending on whether this factory returns singletons or prototypes).

* bool ean isSingleton(): hastoreturntrue if thisFact or yBean returns singletons, f al se otherwise

e O ass get Obj ect Type() : hasto return either the abject type returned by the get Obj ect () method or nul | if
the type isn't known in advance

The Fact or yBean concept and interface is used in a number of places within the Spring Framework; at the time
of writing there are over 50 implementations of the Fact or yBean interface that ship with Spring itself.

Spring Framework (2.5.5) 83

The 1oC container

Finally, there is sometimes a need to ask a container for an actual Fact or yBean instance itself, not the bean it
produces. This may be achieved by prepending the bean id with * & (sans quotes) when calling the get Bean
method of the BeanFactory (including ApplicationContext). SO for a given Fact oryBean with an id of
nyBean, invoking get Bean("nmyBean") on the container will return the product of the FactoryBean, but
invoking get Bean(" &yBean") Will return the Fact or yBean instance itself.

3.8. The Appli cati onCont ext

While the beans package provides basic functionality for managing and manipulating beans, including in a
programmatic way, the context package adds the ApplicationContext interface, which enhances
BeanFact ory functionality in a more framework-oriented style. Many users will use Appl i cati onContext ina
completely declarative fashion, not even having to create it manually, but instead relying on support classes
such as Cont ext Loader t0 automatically instantiate an Applicati onContext as part of the normal startup
process of a J2EE web-app. (Of course, it is still possible to create an Appl i cat i onCont ext programmatically.)

The basis for the context package is the ApplicationContext interface, located in the
org. springframework. cont ext package. Deriving from the BeanFactory interface, it provides all the
functionality of BeanFactory. To allow working in a more framework-oriented fashion, using layering and
hierarchical contexts, the context package also provides the following functionality:

e MessageSour ce, providing access to messagesin i18n-style.
* Accessto resources, such as URLs and files.

» Event propagation to beans implementing the Appl i cati onLi st ener interface.

Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, for example
the web layer of an application.

3.8.1. BeanFact ory Or Appl i cati onCont ext ?

Short version: use an Appl i cati onCont ext unless you have a really good reason for not doing so. For those of
you that are looking for slightly more depth as to the 'but why' of the above recommendation, keep reading.

Asthe Appli cati onCont ext includes al functionality of the BeanFact ory, it is generally recommended that it
be used in preference to the BeanFact ory, except for a few limited situations such as in an Appl et , where
memory consumption might be critical and a few extra kilobytes might make a difference. However, for most
‘typical’ enterprise applications and systems, the Appl i cat i onCont ext iswhat you will want to use. Versions of
Spring 2.0 and above make heavy use of the BeanPost Processor extension point (to effect proxying and
suchlike), and if you are using just a plain BeanFact ory then a fair amount of support such as transactions and
AOP will not take effect (at least not without some extra steps on your part), which could be confusing because
nothing will actually be wrong with the configuration.

Find below a feature matrix that lists what features are provided by the BeanFact ory and Appl i cat i onCont ext
interfaces (and attendant implementations). (The following sections describe functiondity that
Appl i cationCont ext adds to the basic BeanFact ory capabilities in a lot more depth than the said feature
matrix.)

Table 3.5. Feature Matrix

Spring Framework (2.5.5) 84

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/ApplicationContext.html

The 1oC container

Feature BeanFact ory Appl i cat i onCont ext
Bean instantiation/wiring Yes Yes
Automatic BeanPost Pr ocessor No Yes
registration
Automatic No Yes
BeanFact or yPost Pr ocessor
registration
Convenient MessageSour ce acCess No Yes
(for i18n)
Appl i cati onEvent publication No Yes

3.8.2. Internationalization using MessageSour ces

The ApplicationContext interface extends an interface called MessageSource, and therefore provides
messaging (i18n or internationalization) functionality. Together with the Hi er ar chi cal MessageSour ce, Capable
of resolving hierarchical messages, these are the basic interfaces Spring provides to do message resolution.
Let's quickly review the methods defined there:

* String getMessage(String code, Object[] args, String default, Locale |oc): the basic method
used to retrieve a message from the MessageSour ce. When no message is found for the specified locale, the
default message is used. Any arguments passed in are used as replacement values, using the MessageFor mat
functionality provided by the standard library.

e String get Message(String code, Cbject[] args, Locale |oc): essentially the same as the previous
method, but with one difference: no default message can be specified; if the message cannot be found, a
NoSuchMessageExcept i on isthrown.

e String getMessage(MessageSour ceResol vabl e resol vabl e, Local e |ocale): al properties used in the
methods above are a'so wrapped in a class nhamed MessageSour ceResol vabl e, which you can use via this
method.

When an Appl i cati onCont ext gets loaded, it automatically searches for a MessageSour ce bean defined in the
context. The bean has to have the name ' messageSour ce' . If such a bean is found, all calls to the methods
described above will be delegated to the message source that was found. If no message source was found, the
Appl i cati onCont ext attempts to seeif it has a parent containing a bean with the same name. If so, it uses that
bean as the MessageSour ce. If it can't find any source for messages, an empty St ati cMessageSour ce Will be
instantiated in order to be able to accept calls to the methods defined above.

Spring currently provides two MessageSour ce implementations. These are the Resour ceBundl eMessageSour ce
and the st at i cMessageSour ce. Both implement Hi er ar chi cal MessageSour ce in order to do nested messaging.
The st ati cMessageSour ce is hardly ever used but provides programmatic ways to add messages to the source.
The Resour ceBundl eMessageSour ce iSmore interesting and is the one we will provide an example for:

<beans>
<bean i d="nessageSour ce"
cl ass="org. spri ngframewor k. cont ext . support . Resour ceBundl eMessageSour ce" >

Spring Framework (2.5.5) 85

The 1oC container

<property nanme="basenanes">
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>wi ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

This assumes you have three resource bundles defined on your classpath called f ormat, exceptions and
wi ndows. Using the JDK standard way of resolving messages through ResourceBundles, any request to resolve
a message will be handled. For the purposes of the example, lets assume the contents of two of the above
resource bundle files are...

in 'format.properties'
message=Al | i gat ors rock!

in 'exceptions. properties'
argunent . requi red=The ' {0}' argument is required.

Some (admittedly trivial) driver code to exercise the MessageSource functionality can be found below.
Remember that all Appl i cati onCont ext implementations are also MessageSour ce implementations and so can
be cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nessage = resources. get Message("nmessage”, null, "Default", null);
System out . printl n(message) ;

The resulting output from the above program will be...

Al ligators rock!

So to summarize, the MessageSour ce iS defined in afile called ' beans. xni * (thisfile exists at the root of your
classpath). The ' nessageSour ce' bean definition refers to a number of resource bundles via it's basenanes
property; the three files that are passed in the list to the basenanmes property exist as files at the root of your
classpath (and are called format.properties, exceptions.properties, and w ndows. properties

respectively).

Lets look at another example, and this time we will look at passing arguments to the message lookup; these
arguments will be converted into strings and inserted into placeholders in the lookup message. This is perhaps
best explained with an example:

<beans>

<l-- this MssageSource i s being used in a web application -->

<bean i d="nessageSour ce" cl ass="org. spri ngframework. context. support.ResourceBundl eMessageSour ce" >
<property name="baseNane" val ue="WEB-| NF/test-nessages"/>

</ bean>

<l-- let's inject the above MssageSource into this PQIO -->
<bean i d="exanpl e" cl ass="com f 0oo. Exanpl e" >

<property name="nessages" ref="nessageSource"/>
</ bean>

</ beans>

public class Exanple {

Spring Framework (2.5.5) 86

The 1oC container

private MessageSource nessages;

public void set Messages(MessageSource nessages) {
t hi s. ressages = nmessages;
}

public void execute() {
String nmessage = this.nessages. get Message("argunent . required",
new Cbject [] {“"userDao"}, "Required", null);
System out . printl n(message) ;

The resulting output from the invocation of the execut e() method will be...

The 'userDao' argunment is required.

With regard to internationalization (i18n), Spring's various MessageResour ce implementations follow the same
locale resolution and fallback rules as the standard JDK Resour ceBundl e. In short, and continuing with the
example ' nessageSour ce' defined previously, if you want to resolve messages against the British (en-GB)
locale, you would create files called format_en_GB.properties, exceptions_en_GB.properties, and
wi ndows_en_GB. properti es respectively.

Locale resolution is typically going to be managed by the surrounding environment of the application. For the
purpose of this example though, we'll just manually specify the locale that we want to resolve our (British)

messages against.

in 'exceptions_en_GB. properties'
argunent . requi red=Ebagum | ad, the '{0}' argument is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nmessage = resources. get Message("argunent.required",
new Cbject [] {"userDao"}, "Required", Locale.UK);
System out . printl n(message) ;

The resulting output from the running of the above program will be...

Ebagum | ad, the 'userDao' argunment is required, | say, required.

The MessageSour ceAwar e interface can also be used to acquire a reference to any MessageSour ce that has been
defined. Any bean that is defined in an ApplicationContext that implements the MessageSour ceAwar e
interface will be injected with the application context's MessageSour ce when it (the bean) is being created and
configured.

3.8.3. Events

Event handling in the ApplicationContext is provided through the ApplicationEvent class and
Appl i cati onLi st ener interface. If a bean which implements the Appl i cati onLi st ener interface is deployed
into the context, every time an Appl i cati onEvent gets published to the Appl i cat i onCont ext , that bean will be
notified. Essentialy, this is the standard Observer design pattern. Spring provides the following standard
events:

Spring Framework (2.5.5) 87

The 1oC container

Table 3.6. Built-in Events

Event

Cont ext Ref reshedEvent

Cont ext St art edEvent

Cont ext St oppedEvent

Cont ext Cl osedEvent

Request Handl edEvent

Explanation

Published when the ApplicationContext is initialized or refreshed, e.g.
using the refresh() method on the Confi gurabl eAppli cationCont ext
interface. "Initialized" here means that all beans are loaded, post-processor
beans are detected and activated, singletons are pre-instantiated, and the
Appl i cationContext object is ready for use. A refresh may be triggered
multiple times, as long as the context hasn't been closed - provided that the
chosen ApplicationCont ext actually supports such "hot" refreshes (which
e.g. Xm WebApplicationContext does but GenericApplicationContext
doesn't).

Published when the ApplicationContext is started, using the start()
method on the Confi gur abl eAppl i cationCont ext interface. "Started" here
means that all Li f ecycl e beans will receive an explicit start signal. This will
typically be used for restarting after an explicit stop, but may also be used for
starting components that haven't been configured for autostart (e.g. haven't
started on initialization already).

Published when the ApplicationContext iS stopped, using the stop()
method on the Confi gur abl eAppl i cati onCont ext interface. "Stopped” here
means that al Li f ecycl e beanswill receive an explicit stop signal. A stopped
context may be restarted through ast art () call.

Published when the ApplicationContext is closed, using the cl ose()
method on the Confi gur abl eAppl i cati onCont ext interface. "Closed" here
means that all singleton beans are destroyed. A closed context has reached its
end of life; it cannot be refreshed or restarted.

A web-specific event telling all beans that an HTTP request has been serviced
(this will be published after the request has been finished). Note that this
event is only applicable for web applications using Spring's
Di spat cher Servl et .

Implementing custom events can be done as well. Simply call the publishEvent ()

method on the

Appl i cati onCont ext , Specifying a parameter which is an instance of your custom event class implementing
Appl i cati onEvent . Event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event (it is possible to supply an alternate event
publishing strategy via a ApplicationEvent Mil ticaster implementation). Furthermore, when a listener
receives an event it operates inside the transaction context of the publisher, if atransaction context is available.

Let'slook at an example. First, the Appl i cat i onCont ext :

<bean id="emailer" class="exanpl e. Emai | Bean">
<property nanme="bl ackLi st">

<list>

<val ue>bl ack@i st . or g</ val ue>
<val ue>white@i st . or g</ val ue>
<val ue>j ohn@loe. or g</ val ue>

</list>
</ property>
</ bean>

<bean i d="bl ackLi stListener" class="exanpl e. Bl ackLi st Notifier">
<property name="notificati onAddress" val ue="spam@ist.org"/>

Spring Framework (2.5.5) 88

The 1oC container

</ bean>

Now, let's ook at the actual classes:

public class Email Bean i npl ements Applicati onCont ext Aware {

private List blackList;
private ApplicationContext ctx;

public void setBlackLi st (List blackList) {
this. bl ackLi st = bl ackLi st;

}

public void setApplicationContext (ApplicationContext ctx) {
this.ctx = ctx;
}

public void sendEmail (String address, String text) {
i f (bl ackList.contains(address)) {
Bl ackLi st Event event = new Bl ackLi st Event (address, text);
ct x. publ i shEvent (event);
return;

}

/'l send emuil ...

public class Bl ackListNotifier inplenents ApplicationListener {
private String notificationAddress;

public void setNotificati onAddress(String notificationAddress) {
this.notificationAddress = notificati onAddress;
}

public void onApplicationEvent (Applicati onEvent event) {
if (event instanceof Bl ackListEvent) {
/1 notify appropriate person...

}

Of course, this particular example could probably be implemented in better ways (perhaps by using AOP
features), but it should be sufficient to illustrate the basic event mechanism.

3.8.4. Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generaly familiarize themselves
with Spring's Resour ce abstraction, as described in the chapter entitled Chapter 4, Resources.

An application context is a Resour ceLoader , able to be used to load Resour ceS. A Resource is essentially a
java. net. URL on steroids (in fact, it just wraps and uses a URL where appropriate), which can be used to
obtain low-level resources from almost any location in a transparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the resource
location string is a ssimple path without any special prefixes, where those resources come from is specific and
appropriate to the actual application context type.

A bean deployed into the application context may implement the special callback interface,
Resour ceLoader Awar e, to be automatically called back at initiaization time with the application context itself
passed in as the Resour ceLoader . A bean may also expose properties of type Resour ce, to be used to access
static resources, and expect that they will be injected into it like any other properties. The person deploying the
bean may specify those Resource properties as simple String paths, and rely on a specia JavaBean

Spring Framework (2.5.5) 89

The 1oC container

Propert yEdi t or that is automatically registered by the context, to convert those text strings to actual Resour ce
objects.

The location path or paths supplied to an Appl i cati onCont ext constructor are actually resource strings, and in
smple form are treated appropriately to the specific context implementation (
C assPat hxnl Appl i cati onCont ext treats a simple location path as a classpath location), but may also be used
with special prefixes to force loading of definitions from the classpath or a URL, regardless of the actua
context type.

3.8.5. Convenient Appl i cati onCont ext instantiation for web applications

As opposed to the BeanFact or y, which will often be created programmatically, Appl i cati onCont ext instances
can be created declaratively using for example a ContextLoader. Of course you can aso create
Appl i cati onCont ext instances programmatically using one of the ApplicationContext implementations.
First, let's examine the Cont ext Loader mechanism and itsimplementations.

The ContextLoader mechanism comes in two flavors. the ContextLoaderListener and the
Cont ext Loader Ser vl et . They both have the same functionality but differ in that the listener version cannot be
reliably used in Servlet 2.3 containers. Since the Servlet 2.4 specification, servlet context listeners are required
to execute immediately after the serviet context for the web application has been created and is available to
service the first request (and also when the servlet context is about to be shut down): as such a servlet context
listener is an ideal place to initialize the Spring Appl i cat i onCont ext . It iS up to you as to which one you use,
but al things being equal you should probably prefer Cont ext Loader Li st ener; for more information on
compatibility, have alook at the Javadoc for the Cont ext Loader Ser vl et .

Y ou can register an Appl i cati onCont ext USing the Cont ext Loader Li st ener asfollows:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ daoCont ext . xml /WEB- | NF/ appl i cati onCont ext . xml </ par am val ue>
</ cont ext - par an>

<listener>
<l i stener-class>org. springfranmewor k. web. cont ext. Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<l-- or use the ContextLoaderServiet instead of the above |istener

<servl et >
<servl et - name>cont ext </ ser vl et - nanme>
<servl et -cl ass>or g. spri ngf ramewor k. web. cont ext . Cont ext Loader Ser vl et </ servl et - cl ass>
<l oad- on- st artup>1</1 oad-on-start up>

</servl et>

S

The listener inspectsthe ' cont ext Conf i gLocati on' parameter. If the parameter does not exist, the listener will
use / WEB- | NF/ appl i cati onCont ext. xn as a default. When it does exist, it will separate the String using
predefined delimiters (comma, semicolon and whitespace) and use the values as locations where application
contexts will be searched for. Ant-style path patterns are supported as well: e.g. / WVEB- | NF/ * Cont ext . xmi (for
al files whose name ends with "Contextxml", residing in the "WEB-INF" directory) or
/ VEB- | NF/ **/ *Cont ext . xni (for al such filesin any subdirectory of "WEB-INF").

The Cont ext Loader Servl et can be used instead of the Cont ext Loader Li st ener. The servlet will use the
' cont ext Confi glLocation' parameter just asthe listener does.

3.9. Glue code and the evil singleton

The majority of the code inside an application is best written in a DI style, where that code is served out of a

Spring Framework (2.5.5) 90

The 1oC container

Spring 10C container, has its own dependencies supplied by the container when it is created, and is completely
unaware of the container. However, for the small glue layers of code that are sometimes needed to tie other
code together, there is sometimes a need for singleton (or quasi-singleton) style access to a Spring 10C
container. For example, third party code may try to construct new objects directly (d ass. f or Name() style),
without the ability to force it to get these objects out of a Spring 10C container. If the object constructed by the
third party codeis just asmall stub or proxy, which then uses a singleton style access to a Spring |0oC container
to get area object to delegate to, then inversion of control has still been achieved for the mgjority of the code
(the object coming out of the container); thus most code is still unaware of the container or how it is accessed,
and remains decoupled from other code, with all ensuing benefits. EJBs may also use this stub/proxy approach
to delegate to a plain Java implementation object, coming out of a Spring 10C container. While the Spring 10C
container itself ideally does not have to be a singleton, it may be unrealistic in terms of memory usage or
initialization times (when using beans in the Spring 10C container such as a Hibernate Sessi onFact ory) for
each bean to use its own, non-singleton Spring 10C container.

As another example, in complex J2EE applications with multiple layers (various JAR files, EJBs, and WAR
files packaged as an EAR), with each layer having its own Spring |oC container definition (effectively forming
a hierarchy), the preferred approach when there is only one web-app (WAR) in the top hierarchy is to simply
create one composite Spring 10C container from the multiple XML definition files from each layer. All of the
various Spring 10C container implementations may be constructed from multiple definition files in this fashion.
However, if there are multiple sibling web-applications at the root of the hierarchy, it is problematic to create a
Spring 1oC container for each web-application which consists of mostly identical bean definitions from lower
layers, as there may be issues due to increased memory usage, issues with creating multiple copies of beans
which take a long time to initialize (for example a Hibernate Sessi onFact ory), and possible issues due to
side-effects. As an aternative, classes such as ContextSi ngl et onBeanFact orylLocator Or
Si ngl et onBeanFact or yLocat or may be used to demand-load multiple hierarchical (that is one container is the
parent of another) Spring 10C container instances in a singleton fashion, which may then be used as the parents
of the web-application Spring 10C container instances. The result is that bean definitions for lower layers are
loaded only as needed, and loaded only once.

You can see a detailed example of the usage of these classes by viewing the Javadoc for the
SingletonBeanFactoryL ocator and ContextSingletonBeanFactoryL ocator classes. As mentioned in the chapter
on EJBs, the Spring convenience base classes for EJBs normally use a non-singleton BeanFact or yLocat or
implementation, which is easily replaced by the use of SingletonBeanFactorylLocator and
Cont ext Si ngl et onBeanFact oryLocat or.

3.10. Deploying a Spring ApplicationContext as a J2EE RAR
file

Since Spring 2.5, it is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context
and all of its required bean classes and library JARs in a J2EE RAR deployment unit. This is the equivalent of
bootstrapping a standal one ApplicationContext, just hosted in J2EE environment, being able to access the J2EE
server's facilities. RAR deployment is intended as a more 'natural’ alternative to the not uncommon scenario of
deploying a headless WAR file - i.e. aWAR file without any HTTP entry points, just used for bootstrapping a
Spring ApplicationContext in a J2EE environment.

RAR deployment isideal for application contexts that do not need any HTTP entry points but rather just consist
of message endpoints and scheduled jobs etc. Beans in such a context may use application server resources
such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS ConnectionFactory
instances, and may also register with the platform's IMX server - al through Spring's standard transaction
management and JNDI and JMX support facilities. Application components may also interact with the
application's server JCA WorkManager through Spring's TaskExecut or abstraction.

Spring Framework (2.5.5) 91

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html

The 1oC container

Check out the JavaDoc of the SpringContextResourceAdapter class for the configuration details involved in
RAR deployment.

For simple deployment needs, all you need to do is the following: Package all application classes into a RAR
file (which is just a standard JAR file with a different file extension), add all required library jars into the root
of the RAR achive, add a "META-INF/raxml" deployment descriptor (as shown in
Spri ngCont ext Resour ceAdapt er 'S JavaDoc) as well as the corresponding Spring XML bean definition file(s)
(typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your application server's
deployment directory!

NOTE: Such RAR deployment units are usually self-contained; they do not expose components to the 'outside’
world, not even to other modules of the same application. Interaction with a RAR-based ApplicationContext
usually happens through JM S destinations that it shares with other modules. A RAR-based ApplicationContext
may also - for example - schedule some jobs, reacting to new filesin the file system (or the like). If it actually
needs to allow for synchronous access from the outside, it could for example export RMI endpoints, which of
course may be used by other application modules on the same machine as well.

3.11. Annotation-based configuration

As mentioned in the section entitled Section 3.7.1.2, “Example: The
Requi r edAnnot at i onBeanPost Processor”, USINg a BeanPost Processor in conjunction with annotations is a
common means of extending the Spring 10C container. For example, Spring 2.0 introduced the possibility of
enforcing required properties with the @Required annotation. As of Spring 2.5, it is now possible to follow that
same genera approach to drive Spring's dependency injection. Essentialy, the @ut owi r ed annotation provides
the same capabilities as described in Section 3.3.5, “Autowiring collaborators’ but with more fine-grained
control and wider applicability. Spring 2.5 also adds support for JSR-250 annotations such as @resour ce,
@ost Const ruct, and @r eDest r oy. Of course, these options are only available if you are using at least Java 5
(Tiger) and thus have access to source level annotations. Use of these annotations also requires that certain
BeanPost Processor s be registered within the Spring container. As always, these can be registered asindividual
bean definitions, but they can aso be implicitly registered by including the following tag in an XML-based
Spring configuration (notice the inclusion of the 'cont ext ' namespace):

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranework. or g/ schema/ cont ext "
xsi : schemaLocati on="htt p://ww. spri ngf ranewor k. or g/ schema/ beans
http://ww. spri ngframewor k. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngframework. or g/ schena/ cont ext/ spri ng-cont ext - 2. 5. xsd" >

<cont ext: annot ati on-confi g/ >

</ beans>

(The implicitly registered post-processors include Autowi redAnnot at i onBeanPost Processor,
CommonAnnot at i onBeanPost Processor, Persi st enceAnnot ati onBeanPost Processor, as Wwell as the
aforementioned Requi r edAnnot at i onBeanPost Pr ocessor .)

3.11.1. @Required

The @equi r ed annotation applies to bean property setter methods, asin the following example:

public class SinpleMyvielLister {

Spring Framework (2.5.5) 92

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jca/context/SpringContextResourceAdapter.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

The 1oC container

private MvieFi nder novi eFi nder;

@Requi red
public void set Myvi eFi nder (Myvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}
Il

This annotation simply indicates that the affected bean property must be populated at configuration time: either
through an explicit property value in a bean definition or through autowiring. The container will throw an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding Nul | Poi nt er Except i ons or the like later on. Note that it is still recommended to put assertions into
the bean class itself (for example into an init method) in order to enforce those required references and values
even when using the class outside of a container.

3.11.2. @ut owi r ed

As expected, the @wut owi r ed annotation may be applied to "traditional" setter methods:

public class SinpleMvieLister {
private MoyvieFi nder novi eFi nder;
@\ut owi r ed

public void setMvi eFi nder (Movi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;
}

/1

The annotation may also be applied to methods with arbitrary names and/or multiple arguments:

public class Myvi eRecommender {
private Movi eCatal og novi eCat al og;
private CustonerPreferencebDao custoner Pref erenceDao;
@\ut owi r ed
public void prepare(MvieCatal og novi eCat al og, Cust oner Pref erenceDao cust oner Pref er enceDao) {

t hi s. novi eCat al og = novi eCat al og;
t hi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

The @wut owi r ed annotation may even be applied on constructors and fields:

public class Myvi eRecommender {

@\ut owi r ed
private MovieCatal og novi eCat al og;

private CustonerPreferenceDao customner PreferenceDao;

@A\ut owi red
publ i c Movi eRecommender (Cust orer Pr ef er enceDao cust oner Pr ef er enceDao) {
thi s. custoner PreferenceDao = cust omer Pref er enceDao;

}
/1

Spring Framework (2.5.5) 93

The 1oC container

It is also possible to provide all beans of a particular type from the Appli cati onCont ext by adding the
annotation to afield or method that expects an array of that type:
public class Myvi eRecommender {

@\ut owi r ed
private MvieCatal og[] novi eCat al ogs;

...

The same applies for typed collections:

public class Myvi eRecommender {
private Set <Mbvi eCat al og> novi eCat al ogs;

@\ut owi red
public void setMvieCat al ogs(Set <Movi eCat al og> novi eCat al ogs) {
t hi s. novi eCat al ogs = novi eCat al ogs;

}
...

Even typed Maps may be autowired as long as the expected key typeis st ri ng. The Map values will contain all
beans of the expected type, and the keys will contain the corresponding bean names:
public class Myvi eRecommender {
private Map<String, MovieCatal og> novi eCat al ogs;
@A\ut owi r ed
public void setMvieCatal ogs(Map<String, MvieCatal og> novi eCat al ogs) {

t hi s. novi eCat al ogs = novi eCat al ogs;

}
...

By default, the autowiring will fail whenever zero candidate beans are available; the default behavior isto treat
annotated methods, constructors, and fields as indicating required dependencies. This behavior can be changed
as demonstrated below.

public class SinpleMvielister {
private MyvieFi nder novi eFi nder;
@\ut owi r ed(r equi r ed=f al se)

public void set Myvi eFi nder (Myvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}
...

Note

Only one annotated constructor per-class may be marked as required, but multiple non-required
constructors can be annotated. In that case, each will be considered among the candidates and
Spring will use the greediest constructor whose dependencies can be satisfied.

Prefer the use of @ut owi red's required attribute over the @equi red annotation. The required

Spring Framework (2.5.5) 94

The 1oC container

attribute indicates that the property is not required for autowiring purposes, simply skipping it if it
cannot be autowired. @equi r ed, on the other hand, is stronger in that it enforces the property to
have been set in any of the container's supported ways; if no value has been injected, a
corresponding exception will be raised.

@wutowi red may aso be used for well-known "resolvable dependencies': the BeanFactory interface, the
Appl i cationCont ext interface, the Resour ceLoader interface, the Appl i cati onEvent Publ i sher interface and
the MessageSource interface. These interfaces (and their extended interfaces such as
Conf i gur abl eAppl i cati onCont ext OF ResourcePatternResol ver) Will be automatically resolved, with no

special setup necessary.
public class Myvi eRecommender {

@\ut owi r ed
private ApplicationContext context;

publ i ¢ Movi eRecommender () {
}

1.

3.11.3. Fine-tuning annotation-based autowiring with qualifiers

Since autowiring by type may lead to multiple candidates, it is often necessary to have more control over the
selection process. One way to accomplish this is with Spring's @ual i fier annotation. This alows for
associating qualifier values with specific arguments, narrowing the set of type matches so that a specific bean is
chosen for each argument. In the simplest case, this can be a plain descriptive value:
public class Myvi eRecommender {

@A\ut owi r ed

@ualifier("min")

private MyvieCatal og novi eCat al og;

...

The @ual i fi er annotation can also be specified on individual constructor arguments or method parameters.

public class Myvi eRecommender {
private Movi eCatal og novi eCat al og;
private CustomnerPreferenceDao customner Pref erenceDao;

@\ut owi r ed
public void prepare(@ualifier("min") MpvieCatal og novi eCatal og, CustonerPreferenceDao customner PreferenceDe

t hi s. novi eCat al og = novi eCat al og;
t hi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

The corresponding bean definitions would look like as follows. The bean with qualifier value "main" would be
wired with the constructor argument that has been qualified with the same value.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"

Spring Framework (2.5.5) 95

The 1oC container

xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schenma/ cont ext "
xsi : schemalLocat i on="

http://ww. springframework. or g/ schema/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. &
http://ww. springframework. or g/ schenma/ cont ext http://ww. springframework. or g/ schena/ cont ext/ spri ng-conte

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<qualifier val ue="main"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<qual i fier value="action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecommender" cl ass="exanpl e. Movi eRecommender "/ >

</ beans>

For afallback match, the bean name is considered as a default qualifier value. This means that the bean may be
defined with an id "main" instead of the nested qualifier element, leading to the same matching result.
However, note that while this can be used to refer to specific beans by name, @ut owi red is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even when using
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values would be "main" or "EMEA" or
"persistent”, expressing characteristics of a specific component - independent from the bean id (which may be
auto-generated in case of an anonymous bean definition like the one above).

Qualifiers also apply to typed collections (as discussed above): e.g. to Set <Movi eCat al og>. In such a case, all
matching beans according to the declared qualifiers are going to be injected as a collection. This implies that
qualifiers do not have to be unique; they rather smply constitute filtering criteria. For example, there could be
multiple Movi eCat al og beans defined with the same qualifier value "action"; al of which would be injected
into a Set <Movi eCat al og> annotated with @al i fier ("action").

Tip

e
If you intend to express annotation-driven injection by name, do not primarily use @ut owired -
even if is technically capable of referring to a bean name through @walifier values. Instead,
prefer the JISR-250 @resour ce annotation which is semantically defined to identify a specific target
component by its unique name, with the declared type being irrelevant for the matching process.

As a specific consequence of this semantic difference, beans which are themselves defined as a
collection or map type cannot be injected via @ut owi red since type matching is not properly
applicable to them. Use @esour ce for such beans, referring to the specific collection/map bean by
unique name.

Note: In contrast to @ut owi red which is applicable to fields, constructors and multi-argument
methods (allowing for narrowing through qualifier annotations at the parameter level), @esour ce
is only supported for fields and bean property setter methods with a single argument. As a
consequence, stick with qualifiers if your injection target is a constructor or a multi-argument
method.

You may create your own custom qualifier annotations as well. Simply define an annotation and provide the
@ual i fi er annotation within your definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

Spring Framework (2.5.5) 96

The 1oC container

@ualifier
public @nterface Genre {

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Myvi eRecommender {

@\ut owi r ed
@enre("Action")
private MyvieCatal og actionCatal og;

private MyvieCatal og conmedyCat al og;

@\ut owi r ed

public void set ConedyCat al og(@zenr e(" Conedy") Movi eCat al og conedyCat al og) {
t hi s. conedyCat al og = conedycCat al og;

}

/1

The next step is to provide the information on the candidate bean definitions. You can add <qual i fi er/ > tags
as sub-elements of the <bean/ > tag and then specify the ' type' and ' val ue' to match your custom qualifier
annotations. The type will be matched against the fully-qualified class name of the annotation, or as a
convenience when there is no risk of conflicting names, you may use the 'short' class name. Both are
demonstrated in the following example.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. springfranmework. or g/ schema/ cont ext "
xsi : schemalLocati on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans- 2. &
http://ww. springframework. or g/ schenma/ cont ext http://ww. springframework. or g/ schena/ cont ext/ spri ng-conte

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Genre" val ue="Action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qual i fier type="exanple. Genre" val ue="Conedy"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecomender" cl ass="exanpl e. Movi eRecommender "/ >

</ beans>

In the next section, entitled Section 3.12, “Classpath scanning for managed components’, you will see an
annotation-based alternative to providing the qualifier metadata in XML. Specificaly, see: Section 3.12.6,
“Providing qualifier metadata with annotations’.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when the
annotation serves a more generic purpose and could be applied across several different types of dependencies.
For example, you may provide an offline catalog that would be searched when no Internet connection is
available. First define the simple annotation:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAMVETER})
@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)
@ualifier

Spring Framework (2.5.5) 97

The 1oC container

public @nterface Ofline {

}

Then add the annotation to the field or property to be autowired:

public class Myvi eRecommender {

©@Aut owi r ed

@xfline
private MyvieCatal og of flineCatal og;

/1

Now the bean definition only needs aqualifier ' t ype' :

<bean cl ass="exanpl e. Si npl eMovi eCat al 0g" >

<qualifier type="Ofline"/>

<I-- inject any dependencies required by this bean -->
</ bean>

It is also possible to define custom qualifier annotations that accept named attributes in addition to or instead of
the simple ' val ue' attribute. If multiple attribute values are then specified on a field or parameter to be
autowired, a bean definition must match all such attribute values to be considered an autowire candidate. As an

example, consider the following annotation definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)
@ualifier
public @nterface MyvieQualifier {
String genre();

Format format();

In this case For mat iSan enum:

public enum Format {

VHS, DVD, BLURAY

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:

"genre' and' format' .

public class Myvi eRecommender {

@A\ut owi red
@pbvi eQual i fier(format=Format.VHS, genre="Action")
private MovieCatal og actionVhsCat al og;

@A\ut owi red
@bvi eQual i fier(format=Format.VHS, genre="Conedy")
private MvieCatal og conedyVhsCat al og;

@\ut owi r ed
@bvi eQual i fier(format=Format.DVD, genre="Action")
private MvieCatal og actionDvdCat al og;

@\ut owi r ed
@bvi eQual i fier(format=For mat. BLURAY, genre="Conedy")
private MyvieCatal og conedyBl uRayCat al og;

Spring Framework (2.5.5)

98

The 1oC container

/1

Finally, the bean definitions should contain matching qualifier values. This example aso demonstrates that
bean meta attributes may be used instead of the <qualifier/> sub-elements. If available, the <qualifier/>
and its attributes would take precedence, but the autowiring mechanism will fallback on the values provided
within the <net a/ > tagsif no such qualifier is present (see the last 2 bean definitions below).

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranework. or g/ schema/ cont ext "
xsi : schemalLocat i on="
http://ww. spri ngframework. or g/ schena/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans- 2. &
http://ww. springframework. or g/ schema/ cont ext http://wwmv. springframework. or g/ schema/ cont ext/ spri ng-cont e

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >
<qualifier type="MyvieQualifier">
<attribute key="format" val ue="VHS"'/>
<attribute key="genre" val ue="Action"/>
</qualifier>
<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >
<qualifier type="MyvieQualifier">
<attribute key="format" val ue="VHS"'/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<I'-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<meta key="format" val ue="DVD'/>

<meta key="genre" val ue="Action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMbovi eCat al 0g" >

<nmeta key="format" val ue="BLURAY"/>

<meta key="genre" val ue="Conedy"/>

<l-- inject any dependencies required by this bean -->
</ bean>

</ beans>

3.11.4. cust omAut owi r eConf i gur er

The Cust omAut owi r eConfi gurer iS a BeanFact or yPost Processor that enables further customization of the
autowiring process. Specifically, it allows you to register your own custom qualifier annotation types even if
they are not themselves annotated with Spring's @wal i fi er annotation.

<bean i d="cust omAut owi reConfi gurer” class="org. springfranmework. beans. factory. annot ati on. Cust omAut owi r eConfi gur er
<property name="customQualifierTypes">
<set >
<val ue>exanpl e. Cust omQual i fi er </ val ue>
</ set >
</ property>
</ bean>

Note that the particular implementation of Aut owi reCandi dat eResol ver that will be activated for the
application context depends upon the Java version. If running on less than Java 5, the qualifier annotations are
not supported, and therefore autowire candidates are solely determined by the ' aut owi r e- candi dat e’ value of

Spring Framework (2.5.5) 99

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

The 1oC container

each bean definition as well as any ' def aul t - aut owi r e- candi dat es' pattern(s) available on the <beans/ >
element. If running on Java 5 or greater, the presence of @ualifier annotations or any custom annotations
registered with the cust omaut owi reConf i gur er will also play arole.

Regardless of the Java version, the determination of a "primary" candidate (when multiple beans qualify as
autowire candidates) is the same: if exactly one bean definition among the candidateshasa* pri mary' attribute
setto' true', it will be selected.

3.11.5. @esource

Spring also supports injection using the JSR-250 @resource annotation on fields or bean property setter
methods. This is a common pattern found in Java EE 5 and Java 6 (e.g. in JSF 1.2 managed beans or JAX-WS
2.0 endpoints), which Spring supports for Spring-managed objects as well.

@resour ce takes a 'name' attribute, and by default Spring will interpret that value as the bean name to be
injected. In other words, it follows by-name semantics as demonstrated in this example:

public class SinpleMuvielLister {
private Movi eFi nder novi eFi nder;

@Resour ce(nane="nmyMvi eFi nder")

public void setMvi eFi nder (Movi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder;

}

If no name is specified explicitly, then the default name will be derived from the name of the field or setter
method: In case of afield, it will simply be equivalent to the field name; in case of a setter method, it will be
equivalent to the bean property name. So the following example is going to have the bean with name
"movieFinder" injected into its setter method:

public class SinpleMuvielLister {
private Movi eFi nder novi eFi nder;

@resour ce

public void set Mvi eFi nder (Movi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

Note

The name provided with the annotation will be resolved as a bean name by the BeanFact ory of
which the ConmonAnnot at i onBeanPost Processor is aware. Note that the names may be resolved
viaJNDI if Spring's Si npl eJndi BeanFact ory is configured explicitly. However, it is recommended
to rely on the default behavior and simply use Spring's JNDI lookup capabilities to preserve the
level of indirection.

Similar to @ut owi r ed, @esour ce may fall back to standard bean type matches (i.e. find a primary type match
instead of a specific named bean) as well as resolve well-known "resolvable dependencies': the BeanFact ory
interface, the Appl i cati onCont ext interface, the Resour ceLoader interface, the Appl i cati onEvent Publ i sher
interface and the MessageSour ce interface. Note that this only applies to @esour ce usage with no explicit
name specified!

So the following example will have its custonerPreferenceDao field looking for a bean with name

Spring Framework (2.5.5) 100

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

The 1oC container

"customerPreferenceDao" first, then falling back to a primary type match for the type Cust orer Pr ef er enceDao.
The "context" field will simply be injected based on the known resolvable dependency type
Appl i cati onCont ext .

public class Myvi eRecommender {

@Resour ce

private CustonerPreferencebDao custoner Pref erenceDao;

@Resour ce
private ApplicationContext context;

public Movi eRecommender () {
}

...

3.11.6. @ost Construct and @r eDestr oy

The ConmonAnnot at i onBeanPost Processor not only recoghizes the @esour ce annotation but also the JSR-250
lifecycle annotations. Introduced in Spring 2.5, the support for these annotations offers yet another alternative to
those described in the sections on initialization callbacks and destruction callbacks. Provided that the
ConmonAnnot at i onBeanPost Processor isregistered within the Spring Appl i cat i onCont ext , amethod carrying
one of these annotations will be invoked at the same point in the lifecycle as the corresponding Spring lifecycle
interface's method or explicitly declared callback method. In the example below, the cache will be
pre-populated upon initialization and cleared upon destruction.

public class Cachi nghvi eLi ster {

@ost Const r uct
public void popul at eMovi eCache() {
/] popul ates the novie cache upon initialization...

@°r eDest r oy
public void cl ear Movi eCache() {
/1 clears the novie cache upon destruction...

}

Note

"9
For details regarding the effects of combining various lifecycle mechanisms, see Section 3.5.1.4,
“Combining lifecycle mechanisms’.

3.12. Classpath scanning for managed components

Thus far most of the examples within this chapter have used XML for specifying the configuration metadata
that produces each BeanDefinition within the Spring container. The previous section (Section 3.11,
“Annotation-based configuration”) demonstrated the possibility of providing a considerable amount of the
configuration metadata using source-level annotations. Even in those examples however, the "base" bean
definitions were explicitly defined in the XML file while the annotations were driving the dependency injection
only. The current section introduces an option for implicitly detecting the candidate components by scanning
the classpath and matching against filters.

3.12.1. @onponent and further stereotype annotations

Spring Framework (2.5.5) 101

The 1oC container

Beginning with Spring 2.0, the @eposi t ory annotation was introduced as a marker for any class that fulfills
the role or stereotype of a repository (ak.a. Data Access Object or DAO). Among the possibilities for
leveraging such a marker is the automatic translation of exceptions as described in Section 12.6.4, “Exception
Trangdlation”.

Spring 2.5 introduces further stereotype annotations: @onponent, @ervi ce and @ontrol | er. @onponent
serves as a generic stereotype for any Spring-managed component; whereas, @epository, @ervice, and
@ontrol l er serve as specializations of @onponent for more specific use cases (e.g., in the persistence,
service, and presentation layers, respectively). What this means is that you can annotate your component
classes with @onponent, but by annotating them with @reposi t ory, @er vi ce, Or @ontrol | er instead, your
classes are more properly suited for processing by tools or associating with aspects. For example, these
stereotype annotations make ideal targets for pointcuts. Of course, it is also possible that @repository,
@er vi ce, and @ont rol | er may carry additional semantics in future releases of the Spring Framework. Thus,
if you are making a decision between using @onponent Or @er vi ce for your service layer, @er vi ce isclearly
the better choice. Similarly, as stated above, @epository is aready supported as a marker for automatic
exception trandation in your persistence layer.

3.12.2. Auto-detecting components

Spring provides the capability of automatically detecting 'stereotyped’ classes and registering corresponding
BeanDef i ni ti onS With the Appl i cati onCont ext . For example, the following two classes are eligible for such
autodetection:

@vervi ce
public class SinpleMyvielLister {

private Movi eFi nder novi eFi nder;

@\ut owi r ed

public Sinpl eMvi elLi ster(Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

@Reposi tory
public class JpaMovi eFi nder inplenments MyvieFi nder {
/1 inplenentation elided for clarity

}

To autodetect these classes and register the corresponding beans requires the inclusion of the following element
in XML where 'basePackage’ would be a common parent package for the two classes (or aternatively a
comma-separated list could be specified that included the parent package of each class).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schenma/ cont ext "
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. spri ngfranework. or g/ schema/ cont ext
http://ww. springframework. or g/ schenma/ cont ext/ spri ng-cont ext-2. 5. xsd" >

<cont ext : conponent - scan base- package="or g. exanpl e"/ >

</ beans>

Note

Spring Framework (2.5.5) 102

The 1oC container

Note that the scanning of classpath packages requires the presence of corresponding directory
entries in the classpath. When building jars with Ant, make sure to not activate the files-only
switch of the jar task!

Furthermore, the Aut owi r edAnnot at i onBeanPost Processor and CommonAnnot at i onBeanPost Processor are
both included implicitly when using the component-scan element. That means that the two components are
autodetected and wired together - al without any bean configuration metadata provided in XML.

Note

"9
The registration of those post-processors can be disabled by including the annotation-config
attribute with avalue of ‘false'.

3.12.3. Using filters to customize scanning

By default, classes annotated with @onponent , @Reposi t ory, @er vi ce, OF @ontrol | er (or classes annotated
with a custom annotation that itself is annotated with @onponent) are the only detected candidate components.
However it is simple to modify and extend this behavior by applying custom filters. These can be added as
either include-filter or exclude-filter sub-elements of the 'conponent - scan' element. Each filter element requires
the 't ype' and 'expr essi on' attributes. Five filtering options exist as described below.

Table 3.7. Filter Types

Filter Type Example Expression Description

annotation org. exanpl e. SomeAnnot at i on An annotation to be present at the type level in target
components.

assignable | org. exanpl e. Soned ass A class (or interface) that the target components are

assignable to (extend/implement).

aspectj org. exanpl e. . *Servi ce+ An Aspectd type expression to be matched by the
target components.

regex org\.exanpl e\. Defaul t. * A regex expression to be matched by the target
components' class names.

custom or g. exanpl e. MyCust oniTypeFi | t er A custom implementation of the
org. springframework. core. type. TypeFilter
interface.

Find below an example of the XML configuration for ignoring all @eposi t ory annotations and using "stub"
repositories instead.
<beans ...>
<cont ext : conponent - scan base- package="or g. exanpl e" >
<context:include-filter type="regex" expression=".*Stub.*Repository"/>
<cont ext:exclude-filter type="annotation" expression="org.springframework. stereotype. Repository"/>

</ cont ext: conmponent - scan>

</ beans>

Spring Framework (2.5.5) 103

The 1oC container

Note

It is aso possible to disable the default filters by providing use-default-filters="false" as an
attribute of the <component-scan/> element. This will in effect disable automatic detection of
classes annotated with @onponent , @Reposi t ory, @er vi ce, Or @ontrol | er.

3.12.4. Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name will be generated by the
BeanNanmeGener ator Strategy known to that scanner. By default, any Spring 'stereotype’ annotation
(@onponent , @Reposi tory, @ervi ce, and @ontrol | er) that contains a nane value will thereby provide that
name to the corresponding bean definition. If such an annotation contains no nane value or for any other
detected component (such as those discovered due to custom filters), the default bean name generator will
return the uncapitalized non-qualified class name. For example, if the following two components were detected,
the names would be 'myMovieLister' and 'movieFinderimpl':

@ser vi ce("nmyMvi eLi ster")
public class SinpleMyvielLister {
...

}

@Repository
public class MvieFinderlnpl inplenments MvieFi nder {
...

}

Note
e
If you don't want to rely on the default bean-naming strategy, you may provide a custom
bean-naming strategy. First, implement the BeanNaneGener at or_interface, and be sure to include a
default no-arg constructor. Then, provide the fully-qualified class name when configuring the
scanner:
<beans ...>

<cont ext : conponent - scan base- package="or g. exanpl e"
nane- gener at or =" or g. exanpl e. MyNaneGenerator" />

</ beans>

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever the
container is responsible for wiring.

3.12.5. Providing a scope for autodetected components

As with Spring-managed components in general, the default and by far most common scope is 'singleton'.
However, there are times when other scopes are needed. Therefore Spring 2.5 introduces a new @cope
annotation as well. Simply provide the name of the scope within the annotation, such as:

@scope(" prototype")

@Repository

public class MvieFinderlnpl inplenments MvieFi nder {
...

Spring Framework (2.5.5) 104

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/support/BeanNameGenerator.html

The 1oC container

Note
“a
If you would like to provide a custom strategy for scope resolution rather than relying on the
annotation-based approach, implement the ScopeMet adat aResol ver interface, and be sure to
include a default no-arg constructor. Then, provide the fully-qualified class name when configuring
the scanner:
<beans ...>

<cont ext : conponent - scan base- package="or g. exanpl e"
scope-resol ver ="or g. exanpl e. MyScopeResol ver" />

</ beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects. The
reasoning is described in detail within the section entitled Section 3.4.4.5, “ Scoped beans as dependencies’. For
this purpose, a scoped-proxy attribute is available on the ‘component-scan’ element. The three possible values
are: 'no’, 'interfaces, and 'targetClass. For example, the following configuration will result in standard JDK
dynamic proxies:

<beans ...>

<cont ext : conponent - scan base- package="or g. exanpl e"
scoped- proxy="interfaces" />

</ beans>

3.12.6. Providing qualifier metadata with annotations

The @walifier annotation was introduced in the section above entitled Section 3.11.3, “Fine-tuning
annotation-based autowiring with qualifiers’. The examples in that section demonstrated use of the @wal i fi er
annotation as well as custom qualifier annotations to provide fine-grained control when resolving autowire
candidates. Since those examples were based on XML bean definitions, the qualifier metadata was provided on
the candidate bean definitions using the 'qual i fi er' or 'met a' sub-elements of the 'bean' element in the XML.
When relying upon classpath scanning for autodetection of components, then the qualifier metadata may be
provided with type-level annotations on the candidate class. The following three examples demonstrate this
technique.

@Conponent

@ualifier("Action")

public class ActionMyvieCatalog inplenments MyvieCatal og {
...

}

@Conponent

@zenre("Action")

public class Acti onMovi eCatal og i npl enents Mvi eCat al og {
...

}

@Conponent

@xfline

public class Cachi ngMovi eCat al og i npl ements Mvi eCat al og {
1.

}

Spring Framework (2.5.5) 105

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/annotation/ScopeMetadataResolver.html

The 1oC container

Note

“ As with most of the annotation-based alternatives, keep in mind that the annotation metadata is
bound to the class definition itself, while the use of XML allows for multiple beans of the same
type to provide variations in their qualifier metadata since that metadata is provided per-instance
rather than per-class.

3.13. Registering a LoadTi neWeaver

The cont ext hamespace introduced in Spring 2.5 provides al oad- t i me- weaver element.

<beans ...>
<cont ext: | oad-ti me- weaver/ >

</ beans>

Adding this element to an XML-based Spring configuration file activates a Spring LoadTi meWaver for the
Appl i cationContext. Any bean within that ApplicationContext may implement LoadTi meWeaver Awar e
thereby receiving a reference to the load-time weaver instance. This is particularly useful in combination with
Spring's JPA support where load-time weaving may be necessary for JPA class transformation. Consult the
Local Cont ai ner Ent i t yManager Fact or yBean Javadoc for more detail. For more on AspectJ |oad-time weaving,
see Section 6.8.4, “L oad-time weaving with AspectJ in the Spring Framework”.

Spring Framework (2.5.5) 106

Chapter 4. Resources

4.1. Introduction

Javas standard j ava. net . URL class and standard handlers for various URL prefixes unfortunately are not quite
adequate enough for al access to low-level resources. For example, there is no standardized URL
implementation that may be used to access a resource that needs to be obtained from the classpath, or relative to
aservl et Cont ext . Whileit is possible to register new handlers for specialized URL prefixes (similar to existing
handlers for prefixes such as htt p:), thisis generally quite complicated, and the URL interface till lacks some
desirable functionality, such as a method to check for the existence of the resource being pointed to.

4.2. The Resour ce interface

Spring's Resour ce interface is meant to be a more capable interface for abstracting access to low-level
resources.
public interface Resource extends |nputStreanSource {
bool ean exists();
bool ean i sOpen();
URL get URL() throws | OException;
File getFile() throws | CExcepti on;
Resource createRel ative(String relativePath) throws | OException;
String getFilenane();

String getDescription();

public interface |nputStreanSource {

I nput St ream get | nput Strean{) throws | OException;

Some of the most important methods from the Resour ce interface are:

e get |l nput Strean() : locates and opens the resource, returning an | nput St reamfor reading from the resource.
It is expected that each invocation returns a fresh | nput St ream It is the responsibility of the caller to close
the stream.

e exists(): returnsabool ean indicating whether this resource actually existsin physical form.

e isQpen(): returns a bool ean indicating whether this resource represents a handle with an open stream. If
true, the I nput St ream cannot be read multiple times, and must be read once only and then closed to avoid
resource leaks. Will be false for al usual resource implementations, with the exception of
| nput St r eanResour ce.

e get Description(): returns adescription for this resource, to be used for error output when working with the
resource. Thisis often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or Fil e object representing the resource (if the underlying

Spring Framework (2.5.5) 107

Resources

implementation is compatible, and supports that functionality).

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method signatures
when a resource is needed. Other methods in some Spring APIs (such as the constructors to various
Appl i cati onCont ext implementations), take a st ri ng which in unadorned or simple form is used to create a
Resour ce appropriate to that context implementation, or via special prefixes on the string path, adlow the
caller to specify that a specific Resour ce implementation must be created and used.

While the Resour ce interface is used a lot with Spring and by Spring, it's actually very useful to use as a
genera utility class by itself in your own code, for access to resources, even when your code doesn't know or
care about any other parts of Spring. While this couples your code to Spring, it really only couples it to this
small set of utility classes, which are serving as a more capable replacement for URL, and can be considered
equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where possible.
For example, aur | Resour ce Wraps a URL, and uses the wrapped URL to do it's work.

4.3. Built-in Resour ce implementations

There are anumber of Resour ce implementations that come supplied straight out of the box in Spring:

4.3.1. Ur|l Resource

The ur | Resour ce wrapsaj ava. net . URL, and may be used to access any object that is normally accessible viaa
URL, such asfiles, an HTTP target, an FTP target, etc. All URLs have a standardized st ri ng representation,
such that appropriate standardized prefixes are used to indicate one URL type from another. This includes
file: for accessing filesystem paths, htt p: for accessing resources viathe HTTP protocol, ft p: for accessing
resources via FTP, etc.

A Url Resour ce is created by Java code explicitly using the ur | Resour ce constructor, but will often be created
implicitly when you call an APl method which takes a st ri ng argument which is meant to represent a path. For
the latter case, a JavaBeans Propert yEdi t or Will ultimately decide which type of Resource to create. If the
path string contains a few well-known (to it, that is) prefixes such as cl asspat h: , it will create an appropriate
specialized Resour ce for that prefix. However, if it doesn't recognize the prefix, it will assume the thisisjust a
standard URL string, and will create a Ur | Resour ce.

4.3.2. d assPat hResour ce

This class represents a resource which should be obtained from the classpath. This uses either the thread
context class loader, a given class loader, or agiven class for loading resources.

This Resour ce implementation supports resolution asj ava. i o. Fi | e if the class path resource resides in the file
system, but not for classpath resources which reside in ajar and have not been expanded (by the servlet engine,
or whatever the environment is) to the filesystem. To address this the various Resour ce implementations
always support resolution asaj ava. net . URL.

A d assPat hResour ce is created by Java code explicitly using the d assPat hResour ce constructor, but will
often be created implicitly when you call an APl method which takes a st ri ng argument which is meant to
represent a path. For the latter case, a JavaBeans PropertyEditor will recognize the special prefix
cl asspat h: on the string path, and create a d assPat hResour ce in that case.

Spring Framework (2.5.5) 108

Resources

4.3.3. Fi | eSyst enmResour ce

Thisis a Resour ce implementation for j ava. i o. Fi | e handles. It obviously supports resolution as aFi | e, and
asaURL.

4.3.4. Servl et Cont ext Resour ce

This is a Resource implementation for Servl et Cont ext resources, interpreting relative paths within the
relevant web application's root directory.

This always supports stream access and URL access, but only alows java.io. Fil e access when the web
application archive is expanded and the resource is physically on the filesystem. Whether or not it's expanded
and on the filesystem like this, or accessed directly from the JAR or somewhere else like a DB (it's
conceivable) is actually dependent on the Servlet container.

4.3.5. | nput St r eanResour ce

A Resource implementation for a given I nput Stream This should only be used if no specific Resource
implementation is applicable. In particular, prefer Byt eArrayResource or any of the file-based Resource
implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource - therefore
returning t rue from i sgpen() . Do not use it if you need to keep the resource descriptor somewhere, or if you
need to read a stream multiple times.

4.3.6. Byt eArr ayResour ce

This is a Resour ce implementation for a given byte array. It creates a Byt eArrayl nput St ream for the given
byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
I nput St r eanResour ce.

4.4. The Resour ceLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load) Resource
instances.

public interface ResourcelLoader {
Resource get Resource(String | ocation);
}

All application contexts implement the Resour ceLoader interface, and therefore all application contexts may be
used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified doesn't have a
specific prefix, you will get back a Resour ce type that is appropriate to that particular application context. For
example, assume the following snippet of code was executed against a d assPat hXni Appl i cati onCont ext

instance:

Resource tenpl ate = ctx. get Resource("sone/resource/ path/ nyTenpl ate. txt);

Spring Framework (2.5.5) 109

Resources

What would be returned would be a d assPat hResource; if the same method was executed against a
Fi | eSystenXni Appl i cationContext instance, youd get back a FileSystenResource. For a
WebAppl i cat i onCont ext , you'd get back a Ser vi et Cont ext Resour ce, and SO On.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force d assPat hResour ce to be used, regardless of the application context
type, by specifying the specia cl asspat h: prefix:

Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ r esour ce/ pat h/ nyTenpl ate. t xt);

Similarly, one can force aur | Resour ce to be used by specifying any of the standard j ava. net . URL prefixes:

Resource tenplate = ctx.getResource("file:/sone/resource/path/ nyTenpl ate. txt);

Resource tenpl ate = ctx. get Resource("http://nyhost.coniresource/path/nyTenpl ate. txt);

The following table summarizes the strategy for converting St ri ngSto Resour ceS:

Table4.1. Resour ce strings

Prefix Example Explanation
classpath: cl asspat h: coni nyapp/ confi g. xm Loaded from the classpath.
file: file:/datal/config.xm Loaded as a URL, from the
filesystem. 2
http: http:// nyserver/| ogo. png Loaded asa URL.
(none) / dat a/ confi g. xn Depends on the underlying

Appl i cati onCont ext .

8But see also the section entitled Section 4.7.3, “Fi | eSyst enResour ce caveats’.

4.5. The Resour ceLoader Awnar e interface

The Resour ceLoader Avar e interface is a special marker interface, identifying objects that expect to be provided
with aResour ceLoader reference.

public interface ResourcelLoader Anare {

voi d set Resour celLoader (Resour ceLoader resourcelLoader);

}

When a class implements ResourcelLoader Aware and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour celLoader Awnar e by the application context. The application
context will then invoke the set ResourcelLoader (Resour ceLoader), supplying itself as the argument
(remember, all application contextsin Spring implement the Resour ceLoader interface).

Spring Framework (2.5.5) 110

Resources

Of course, since an ApplicationContext IS a ResourcelLoader, the bean could aso implement the
Appl i cat i onCont ext Awar e interface and use the supplied application context directly to load resources, but in
generd, it's better to use the specialized Resour ceLoader interface if that's all that's needed. The code would
just be coupled to the resource loading interface, which can be considered a utility interface, and not the whole
Spring Appl i cati onCont ext interface.

As of Spring 2.5, you can rely upon autowiring of the Resour ceLoader as an aternative to implementing the
Resour ceLoader Awar e interface. The "traditional” const ruct or and by Type autowiring modes (as described in
the section entitled Section 3.3.5, “Autowiring collaborators’) are now capable of providing a dependency of
type Resour ceLoader for either a constructor argument or setter method parameter respectively. For more
flexibility (including the ability to autowire fields and multiple parameter methods), consider using the new
annotation-based autowiring features. In that case, the ResourceLoader will be autowired into a field,
constructor argument, or method parameter that is expecting the Resour ceLoader type as long as the field,
constructor, or method in question carries the @ut owi red annotation. For more information, see the section
entitled Section 3.11.2, “ @ut owi r ed”.

4.6. Resour ces as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic process, it
probably makes sense for the bean to use the Resour ceLoader interface to load resources. Consider as an
example the loading of atemplate of some sort, where the specific resource that is needed depends on the role
of the user. If the resources are static, it makes sense to eliminate the use of the Resour ceLoader interface
completely, and just have the bean expose the Resource properties it needs, and expect that they will be
injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a special
JavaBeans Pr oper t yEdi t or Which can convert Stri ng paths to Resour ce objects. So if nyBean has a template
property of type Resour ce, it can be configured with a simple string for that resource, as follows:

<bean i d="nyBean" class="...">
<property nanme="tenpl ate" val ue="sone/resource/ path/ nyTenpl ate. txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to be used as the
Resour ceLoader, the resource itself will be loaded via a d assPat hResource, Fil eSystenResource, Of
Ser vl et Cont ext Resour ce (as appropriate) depending on the exact type of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following two
examples show how to force a d assPat hResource and a Url Resource (the latter being used to access a
filesystemfile).

<property nanme="tenpl ate" val ue="cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. t xt">

<property name="tenpl ate" val ue="file:/some/resource/ path/ myTenpl ate.txt"/>

4.7. Application contexts and Resour ce paths

4.7.1. Constructing application contexts

Spring Framework (2.5.5) 111

Resources

An application context constructor (for a specific application context type) generally takes a string or array of
strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context.

When such a location path doesn't have a prefix, the specific Resour ce type built from that path and used to
load the bean definitions, depends on and is appropriate to the specific application context. For example, if you
create ad assPat hxm Appl i cat i onCont ext asfollows:

Appl i cationContext ctx = new C assPat hXnl Appli cati onCont ext ("conf/appContext.xm ");

The bean definitions will be loaded from the classpath, as a a assPat hResour ce will be used. But if you create
aFi | eSyst enXm Appl i cati onCont ext asfollows:

ApplicationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext (" conf/appCont ext.xm ") ;

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location path will override the
default type of Resour ce created to load the definition. So thisFi | eSyst emXml Appl i cat i onCont ext ...

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("cl asspat h: conf/ appCont ext. xm ") ;

will actualy load it's bean definitions from the classpath. However, it is dill a
Fi | eSyst emXni Appl i cati onCont ext . If it is subsequently used as a Resour ceLoader , any unprefixed paths will
still be treated as filesystem paths.

4.7.1.1. Constructing d assPat hXxn Appl i cati onCont ext instances - shortcuts

The d assPat hxn Appl i cati onCont ext €xposes a humber of constructors to enable convenient instantiation.
The basic idea is that one supplies merely a string array containing just the filenames of the XML files
themselves (without the leading path information), and one also supplies a dass; the
O assPat hXni Appl i cati onCont ext Will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

cond
f oo/
services. xn
daos. xm
Messenger Ser vi ce. cl ass

A d assPat hxnl Appl i cati onCont ext instance composed of the beans defined in the ' services. xm* and
" daos. xm * could be instantiated like so...

ApplicationContext ctx = new C assPat hXm Appli cati onCont ext (
new String[] {"services.xm", "daos.xm "}, Messenger Service. cl ass);

Please do consult the Javadocs for the C assPat hxnl Appl i cati onCont ext class for details of the various
constructors.

4.7.2. Wildcards in application context constructor resource paths

Spring Framework (2.5.5) 112

Resources

The resource paths in application context constructor values may be a simple path (as shown above) which has
a one-to-one mapping to a target Resource, or alternately may contain the specia "classpath*:" prefix and/or
internal Ant-style regular expressions (matched using Spring's Pat hvat cher utility). Both of the latter are
effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can "publish’
context definition fragments to a well-known location path, and when the final application context is created
using the same path prefixed viacl asspat h*: , al component fragments will be picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or when using
the Pat hmvat cher utility class hierarchy directly), and is resolved at construction time. It has nothing to do with
the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to construct an actual Resource, as a
resource points to just one resource at atime.

4.7.2.1. Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

/ \EB- | NF/ * - cont ext . xm

com nyconpany/ **/ appl i cati onCont ext . xmi

file: C/sonme/path/*-context.xmn

cl asspat h: conf myconpany/ **/ appl i cati onCont ext . xm

... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces a
Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL isnot a"jar:"
URL or container-specific variant (e.g. "zip:" in WeblLogic, "wsjar" in WebSphere, etc.), then a
java.io. File isobtained from it and used to resolve the wildcard by traversing the filesystem. In the case of a
jar URL, the resolver either gets aj ava. net. Jar URLConnect i on from it or manually parses the jar URL and
then traverses the contents of the jar file to resolve the wildcards.

4.7.2.1.1. Implications on portability

If the specified path is already afile URL (either explicitly, or implicitly because the base Resour ceLoader isa
filesystem one, then wildcarding is guaranteed to work in a completely portable fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path segment
URL viaad assl oader . get Resour ce() cal. Since thisis just a node of the path (not the file at the end) it is
actually undefined (in the d assLoader Javadocs) exactly what sort of a URL is returned in this case. In
practice, it is always a j ava. i o. Fi |l e representing the directory, where the classpath resource resolves to a
filesystem location, or a jar URL of some sort, where the classpath resource resolves to a jar location. Still,
there is a portability concern on this operation.

If a jaa URL is obtained for the last non-wildcard segment, the resolver must be able to get a
j ava. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the contents of the jar,
and resolve the wildcard. This will work in most environments, but will fail in others, and it is strongly
recommended that the wildcard resolution of resources coming from jars be thoroughly tested in your specific
environment before you rely onit.

4.7.2.2. The cl asspat h*: prefix

When constructing an XML-based application context, a location string may use the special cl asspat h*:
prefix:

Appl i cationContext ctx =
new Cl assPat hXm Appl i cati onCont ext (" cl asspat h*: conf/ appCont ext. xm ") ;

Spring Framework (2.5.5) 113

Resources

This special prefix specifies that all classpath resources that match the given name must be obtained (internally,
this essentialy happens via a d assLoader. get Resources(...) cal), and then merged to form the fina
application context definition.

Classpath*: portability

A The wildcard classpath relies on the get Resour ces() method of the underlying classloader. As
most application servers nowadays supply their own classloader implementation, the behavior
might differ especially when dealing with jar files. A simple test to check if cl asspat h* worksisto
use the clasdoader to load a file from within a jar on the classpath:
get d ass() . get O assLoader () . get Resour ces(" <someFi | el nsi deTheJar>"). Try this test with
files that have the same name but are placed inside two different locations. In case an inappropriate
result is returned, check the application server documentation for settings that might affect the
classloader behavior.

The "cl asspat h*: " prefix can also be combined with a Pat hvat cher pattern in the rest of the location path, for
example "cl asspat h*: META- | NF/ *-beans. xn ". In this case, the resolution strategy is fairly smple: a
Classl oader.getResources() call is used on the last non-wildcard path segment to get all the matching resources
in the class loader hierarchy, and then off each resource the same PathMatcher resoltion strategy described
aboveis used for the wildcard subpath.

4.7.2.3. Other notes relating to wildcards

Please note that "cl asspat h*: " when combined with Ant-style patterns will only work reliably with at least
one root directory before the pattern starts, unless the actual target files reside in the file system. This means
that a pattern like "cl asspat h*: *. xm " will not retrieve files from the root of jar files but rather only from the
root of expanded directories. This originates from a limitation in the JDK's d assLoader . get Resour ces()
method which only returns file system locations for a passed-in empty string (indicating potential roots to
search).

Ant-style patterns with "cl asspat h: " resources are not guaranteed to find matching resources if the root
package to search is available in multiple class path locations. This is because a resource such as

com nyconpany/ packagel/ servi ce- cont ext . xm

may be in only one location, but when a path such as

cl asspat h: conf myconpany/ **/ servi ce- cont ext . xni

is used to try to resolve it, the resolver will work off the (first) URL returned by
get Resour ce(" conf myconpany") ;. If this base package node exists in multiple classloader locations, the actual
end resource may not be underneath. Therefore, preferably, use "cl asspat h*: " with the same Ant-style pattern
in such a case, which will search al class path |ocations that contain the root package.

4.7.3. Fi | eSyst enResour ce caveats

A FileSystenResource that is not attached to a FileSystemipplicationContext (that is, a
Fi | eSyst emAppl i cati onCont ext iSnot the actual Resour ceLoader) will treat absolute vs. relative paths as you
would expect. Relative paths are relative to the current working directory, while absolute paths are relative to
the root of the filesystem.

Spring Framework (2.5.5) 114

Resources

For backwards compatibility (historical) reasons however, this changes when the
Fi | eSyst emAppl i cati onCont ext iSthe ResourceLoader. The Fi | eSyst emAppl i cati onCont ext Simply forces
all attached Fi | eSyst enResour ce instances to treat al location paths as relative, whether they start with a
leading slash or not. In practice, this means the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("conf/context.xm");

Appl i cati onContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("/conf/context.xm");

As are the following: (Even though it would make sense for them to be different, as one case is relative and the
other absolute.)

Fi | eSyst enXml Appl i cati onContext ctx = ...;
ct x. get Resour ce("somne/ resour ce/ path/ myTenpl ate. txt");

Fi | eSyst enmXnl Appl i cati onContext ctx = ...;
ct x. get Resour ce("/ sone/ resour ce/ pat h/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with
Fi | eSyst enResour ce / Fi | eSyst enXni Appl i cati onCont ext , and just force the use of a Ur| Resour ce, by using
thefile: URL prefix.

/'l actual context type doesn't matter, the Resource will always be urlResource
ct x. get Resource("file:/some/resource/ path/ nyTenpl ate. txt");

/1 force this FileSystemXm ApplicationContext to load it's definition via a Ul Resource
Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext ("file:/conf/context.xm");

Spring Framework (2.5.5) 115

Chapter 5. Validation, Data-binding, the Beanw apper,
and PropertyEditors

5.1. Introduction

There are pros and cons for considering validation as business logic, and Spring offers a design for validation
(and data binding) that does not exclude either one of them. Specifically validation should not be tied to the
web tier, should be easy to localize and it should be possible to plug in any validator available. Considering the
above, Spring has come up with aval i dat or interface that is both basic and eminently usable in every layer of
an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an application
(or whatever objects you use to process user input). Spring provides the so-called Dat aBi nder to do exactly
that. The val i dat or and the Dat aBi nder make up the val i dat i on package, which is primarily used in but not
limited to the MV C framework.

The Beanw apper is a fundamental concept in the Spring Framework and is used in a lot of places. However,
you probably will not ever have the need to use the Beanw apper directly. Because this is reference
documentation however, we felt that some explanation might be in order. We're explaining the Beanw apper in
this chapter since if you were going to use it at all, you would probably do so when trying to bind data to
objects, which is strongly related to the Beanw apper .

Spring uses PropertyEditors all over the place. The concept of a PropertyEditor is part of the JavaBeans
specification. Just as the Beanw apper, it's best to explain the use of PropertyEditors in this chapter as well,
sinceit's closely related to the Beanw apper and the Dat aBi nder .

5.2. Validation using Spring's Vval i dat or interface

Spring's features a val i dat or interface that you can use to validate objects. The val i dat or interface works
using an Error s object so that while validating, validators can report validation failures to the Er r or s abject.

Let's consider a small data object:

public class Person {

private String nane;
private int age;

// the usual getters and setters...

}

We're going to provide validation behavior for the Per son class by implementing the following two methods of
theorg. spri ngf ramewor k. val i dati on. Val i dat or interface:

e supports(d ass) - Canthisval i dat or validate instances of the supplied c ass?
e validate(bject, org.springfranmework.validation.Errors) - validates the given object and in case of
validation errors, registers those with the given r r or s object

Implementing a val i dat or isfairly straightforward, especially when you know of the val i dati onUti | s helper
class that the Spring Framework also provides.

Spring Framework (2.5.5) 116

Validation, Data-binding, the Beanw apper , and

public class PersonValidator inplenents Validator {

/**
* This validator validates just Person i nstances
*/
publ i ¢ bool ean supports(d ass clazz) {
return Person. cl ass. equal s(cl azz);
}

public void validate(Cbject obj, Errors e) {
ValidationUils.rejectlfEmpty(e, "nanme", "name.enpty");
Person p = (Person) obj;

if (p.getAge() < 0) {

e.rejectVal ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rejectVal ue("age", "too.darn.old");

}

As you can see, the static reject!fEnpty(..) method on the validationUtils classis used to rgect the
"name' property if itisnul | or the empty string. Have alook at the Javadoc for the val i dationUtils classto
see what functionality it provides besides the example shown previoudly.

While it is certainly possible to implement a single val i dat or class to validate each of the nested objectsin a
rich object, it may be better to encapsulate the validation logic for each nested class of object in its own
val i dat or implementation. A simple example of a 'rich' object would be a cust orer that is composed of two
String properties (a first and second name) and a complex Address object. Address objects may be used
independently of cust omer objects, and so a distinct AddressVal i dat or has been implemented. If you want
your Cust oner Val i dat or t0 reuse the logic contained within the Addr essVal i dat or class without recourse to
copy-n-paste you can dependency-inject or instantiate an Addr essVal i dat or within your Cust orer val i dat or,
and useit like so:
public class CustonerValidator inplenments Validator {
private final Validator addressValidator;
publ i c CustonerValidator(Validator addressValidator) {
i f (addressValidator == null) {
throw new |11 egal Argunent Excepti on("The supplied [Validator] is required and nmust not be null.");
i f (!addressValidator. supports(Address.class)) {

throw new ||| egal Argument Excepti on(
"The supplied [Validator] must support the validation of [Address] instances.");

}
thi s. addressVal i dator = addressVal i dator;
}
/**
* This validator validates customer instances, and any subcl asses of custoner too0
*/

publ i c bool ean supports(d ass clazz) {
return Custoner.cl ass.isAssi gnabl eFron{cl azz);
}

public void validate(Cbject target, Errors errors) {
ValidationUils.rejectlfEnmptyO Witespace(errors, "firstName", "field.required");

ValidationUils.rejectlfEnmptyO Witespace(errors, "surname", "field.required");
Cust omer customer = (Custoner) target;
try {

errors. pushNest edPat h("addr ess") ;
Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(), errors);

} finally {
errors. popNest edPat h();
}

Spring Framework (2.5.5) 117

PropertyEditors

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MV C you can
use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect the errors object
yourself. More information about the methods it offers can be found from the Javadoc.

5.3. Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors is the
last thing we need to discuss. In the example we've shown above, we rejected the nane and the age field. If
we're going to output the error messages by using a MessageSour ce, we Will do so using the error code we've
given when regjecting the field (‘'name’ and 'age’ in this case). When you call (either directly, or indirectly, using
for example the val i dationUtils class) reject Val ue or one of the other rej ect methods from the Errors
interface, the underlying implementation will not only register the code you've passed in, but also a number of
additional error codes. What error codes it registers is determined by the MessageCodesResol ver that is used.
By default, the Def aul t MessageCodesResol ver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method. So in case
you reject a field using rej ect val ue("age", “"too.darn.old"), apart from the t oo. darn. ol d code, Spring
will also register t oo. darn. ol d. age and t oo. dar n. ol d. age. i nt (0 the first will include the field name and
the second will include the type of the field); this is done as a convenience to aid developers in targeting error
messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online with the
Javadocs for M essageCodesResolver and DefaultM essageCodesResolver respectively.

5.4. Bean manipulation and the BeanWw apper

The or g. spri ngf ramewor k. beans package adheres to the JavaBeans standard provided by Sun. A JavaBean is
simply aclass with a default no-argument constructor, which follows a naming convention where (by way of an
example) a property named bi ngoMadness would have a setter method set Bi ngoMadness(..) and a getter
method get Bi ngoMadness() . For more information about JavaBeans and the specification, please refer to Sun's
website (java.sun.com/products/javabeans).

One quite important class in the beans package is the Beanw apper interface and its corresponding
implementation (Beanw apper | npl). As quoted from the Javadoc, the Beanw apper offers functionality to set
and get property values (individualy or in bulk), get property descriptors, and to query properties to determine
if they are readable or writable. Also, the Beanw apper offers support for nested properties, enabling the setting
of properties on sub-properties to an unlimited depth. Then, the Beanw apper supports the ability to add
standard JavaBeans PropertyChangelisteners and Vetoabl eChangeLi steners, without the need for
supporting code in the target class. Last but not least, the Beanw apper provides support for the setting of
indexed properties. The Beanw apper usually isn't used by application code directly, but by the Dat aBi nder and
the BeanFact ory.

The way the Beanw apper works is partly indicated by its name: it wraps a bean to perform actions on that
bean, like setting and retrieving properties.

5.4.1. Setting and getting basic and nested properties

Setting and getting properties is done using the set Pr oper t yval ue(s) and get Propert yVval ue(s) methods that
both come with a couple of overloaded variants. They're al described in more detail in the Javadoc Spring
comes with. What's important to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:

Spring Framework (2.5.5) 118

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/validation/MessageCodesResolver.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/validation/DefaultMessageCodesResolver.html
http://java.sun.com/products/javabeans/

Validation, Data-binding, the Beanw apper , and

Table 5.1. Examples of properties

Expression Explanation

name Indicates the property name corresponding to the methods get Nane() Of i sNane()
and set Narre(.. .)

account . nane Indicates the nested property nane of the property account corresponding e.g. to
the methods get Account () . set Nane() Or get Account (). get Narre()

account [2] Indicates the third element of the indexed property account . Indexed properties
can be of typearray, | i st or other naturally ordered collection

account [COVPANYNAVE] Indicates the value of the map entry indexed by the key COMPANYNAME of the
Map property account

Below you'll find some examples of working with the Beanw apper to get and set properties.

(This next section is not vitally important to you if you're not planning to work with the Beanw apper directly. If
you're just using the Dat aBi nder and the BeanFact ory and their out-of-the-box implementation, you should
skip ahead to the section about Pr oper t yEdi t or s.)

Consider the following two classes:

public class Conpany {
private String nane;
private Enpl oyee managi ngDirector;

public String getName() {
return this.nane;

public void setNane(String nane) {
thi s. name = nang;

}
publ i c Enpl oyee get Managi ngDi rector () {
return this. managi ngDirector;

public void setManagi ngDirect or (Enpl oyee managi ngDi rector) {
t hi s. managi ngDi rect or = managi ngDi rect or;

}

public class Enpl oyee {
private String naneg;
private float salary;

public String getName() {
return this.nane;
}

public void setNane(String nane) {
thi s. name = nane;

}
public float getSalary() {
return sal ary;

public void setSalary(float salary) {
this.salary = sal ary;
}

The following code snippets show some examples of how to retrieve and manipulate some of the properties of
instantiated Conpani es and Enpl oyees:

BeanW apper conpany = BeanW apper | npl (new Conpany());

Spring Framework (2.5.5) 119

PropertyEditors

/] setting the conpany nane..

conpany. set PropertyVal ue("nanme", "Sone Conpany Inc.");
/Il ... can also be done like this:
PropertyVal ue val ue = new PropertyVal ue("nanme", "Sone Conpany Inc.");

conpany. set PropertyVal ue(val ue);

/Il ok, let's create the director and tie it to the conpany:

BeanW apper ji m = BeanW apper | npl (new Enpl oyee());

jimsetPropertyVal ue("nane", "Jim Stravi nsky");

conpany. set PropertyVal ue("managi ngDirector”, jim getWappedl nstance());

/'l retrieving the salary of the nmanagi ngDirector through the conpany
Fl oat salary = (Float) conpany.getPropertyVal ue("managi ngDirector.salary");

5.4.2. Built-in PropertyEditor implementations

Spring heavily uses the concept of Propert yEdi t or s to effect the conversion between an j ect and astri ng.
If you think about it, it sometimes might be handy to be able to represent properties in a different way than the
object itself. For example, a Dat e can be represented in a human readable way (as the Stri ng '2007- 14- 09"),
while we're still able to convert the human readable form back to the original date (or even better: convert any
date entered in a human readable form, back to Dat e objects). This behavior can be achieved by registering
custom editors, of type java. beans. PropertyEditor. Registering custom editors on a BeanW apper Of
aternately in a specific 10C container as mentioned in the previous chapter, gives it the knowledge of how to
convert properties to the desired type. Read more about Propert yEdi t ors in the Javadoc of the j ava. beans
package provided by Sun.

A couple of examples where property editing is used in Spring:

e setting properties on beans is done using Propert yEdi t ors. When mentioning j ava. | ang. String as the
value of a property of some bean you're declaring in XML file, Spring will (if the setter of the corresponding
property hasad ass-parameter) use the d assEdi t or to try to resolve the parameter to ad ass object.

e parsing HTTP request parameters in Spring's MV C framework is done using al kinds of PropertyEditors
that you can manually bind in al subclasses of the ConmandControl | er.

Spring has a number of built-in Propert yEdi t or s to make life easy. Each of those is listed below and they are
all located in the org. springfranewor k. beans. propertyeditors package. Most, but not al (as indicated
below), are registered by default by Beanw apper I npl . Where the property editor is configurable in some
fashion, you can of course still register your own variant to override the default one:

Table5.2. Built-in Propert yEdi t or s

Class Explanation

Byt eAr r ayPr oper t yEdi t or Editor for byte arrays. Strings will simply be converted to their
corresponding byte representations. Registered by default by
BeanW apper | npl .

C assEdit or Parses Strings representing classes to actual classes and the other
way aound. When a class is not found, an
Il egal Argunent Exception is thrown. Registered by default by
BeanW apper | npl .

Cust onmBool eanEdi t or Customizable property editor for Bool ean properties. Registered by
default by Beanw apper I npl , but, can be overridden by registering
custom instance of it as custom editor.

Cust onCol | ect i onEdi t or Property editor for Collections, converting any source Col | ecti on

Spring Framework (2.5.5) 120

Validation, Data-binding, the Beanw apper , and

Class Explanation
to agiven target Col | ect i on type.

Cust onDat eEdi t or Customizable property editor for javautil.Date, supporting a
custom DateFormat. NOT registered by default. Must be user
registered as needed with appropriate format.

Cust omNunber Edi t or Customizable property editor for any Number subclass like
Integer, Long, Float, Double. Registered by default by
BeanW apper I npl , but can be overridden by registering custom
instance of it as a custom editor.

Fi | eEdi t or Capable of resolving Strings to j ava. i o. Fi | e objects. Registered
by default by Beanw apper I npl .

| nput St r eanEdi t or One-way property editor, capable of taking a text string and
producing (via an intermediate Resour ceEdi t or and Resour ce) an
I nput Stream SO | nput Stream properties may be directly set as
Strings. Note that the default usage will not close the I nput St r eam
for you! Registered by default by Beanw apper | npl .

Local eEdi t or Capable of resolving Strings to Local e objects and vice versa (the
String format is [language]_[country]_[variant], which is the same
thing the toString() method of Locale provides). Registered by
default by Beanw apper I npl .

Pat t er nEdi t or Capable of resolving Strings to JDK 1.5 pat t ern objects and vice
versa
Properti esEditor Capable of converting Strings (formatted using the format as

defined in the Javadoc for the javalang.Properties class) to
Properties oObjects. Registered by default by Beanw apper | npl .

StringTri mrer Edi t or Property editor that trims Strings. Optionally allows transforming
an empty string into anul | value. NOT registered by default; must
be user registered as needed.

URLEdi t or Capable of resolving a String representation of a URL to an actual

URL object. Registered by default by Beanw apper I npl .

Spring uses the j ava. beans. Propert yEdi t or Manager t0 set the search path for property editors that might be
needed. The search path aso includes sun. bean. edi t or s, which includes PropertyEdi t or implementations
for types such as Font, Col or, and most of the primitive types. Note also that the standard JavaBeans
infrastructure will automatically discover propertyEditor classes (without you having to register them
explicitly) if they are in the same package as the class they handle, and have the same name as that class, with
"Editor' appended; for example, one could have the following class and package structure, which would be
sufficient for the FooEdi t or classto be recognized and used as the Pr oper t yEdi t or for Foo-typed properties.

com
chank
pop
Foo
FooEdi t or /1 the PropertyEditor for the Foo cl ass

Note that you can also use the standard Beanlnfo JavaBeans mechanism here as well (described in
not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly registering

Spring Framework (2.5.5) 121

http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html
http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html

PropertyEditors

one or more Proper t yEdi t or instances with the properties of an associated class.

com
chank

pop
Foo
FooBeanl nf o /] the Beaninfo for the Foo cl ass

Here is the Java source code for the referenced FooBeanlinfo class. This would associate a
Cust om\unber Edi t or With the age property of the Foo class.

public class FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {

final PropertyEditor nunmber PE = new Cust onmNunber Edi t or (| nt eger. cl ass, true);

PropertyDescri ptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(Object bean) {

return number PE;

b

b

return new PropertyDescriptor[] { ageDescriptor };

catch (I ntrospecti onException ex) {
throw new Error(ex.toString());
}

5.4.2.1. Registering additional custom PropertyEdi tors

When setting bean properties as a string value, a Spring 10C container ultimately uses standard JavaBeans
Proper t yEdi t or s t0 convert these Strings to the complex type of the property. Spring pre-registers a number of
custom Proper t yEdi t or s (for example, to convert a classname expressed as a string into areal d ass object).
Additionally, Java's standard JavaBeans Pr opert yEdi t or lookup mechanism allows a Propert yEdi tor for a
class simply to be named appropriately and placed in the same package as the class it provides support for, to
be found automatically.

If there is a need to register other custom Propert yEdi t or s, there are several mechanisms available. The most
manual approach, which is not normally convenient or recommended, is to simply use the
regi ster CustonEdi tor () method of the Configurabl eBeanFactory interface, assuming you have a
BeanFact ory reference. Another, dlightly more convenient, mechanism is to use a specia bean factory
post-processor called cust onEdi t or Confi gurer. Although bean factory post-processors can be used with
BeanFact ory implementations, the Cust onEdi t or Confi gurer has a nested property setup, so it is strongly
recommended that it is used with the Appl i cat i onCont ext , where it may be deployed in similar fashion to any
other bean, and automatically detected and applied.

Note that al bean factories and application contexts automatically use a number of built-in property editors,
through their use of something called a Beanw apper to handle property conversions. The standard property
editors that the Beanw apper registers are listed in the previous section. Additionally, Appli cati onCont ext s
also override or add an additional number of editors to handle resource lookups in a manner appropriate to the
specific application context type.

Standard JavaBeans Propert yEdi t or instances are used to convert property values expressed as strings to the
actual complex type of the property. Cust onEdi t or Confi gur er, a bean factory post-processor, may be used to
conveniently add support for additional Pr opert yEdi t or instancesto an Appl i cat i onCont ext .

Consider a user class Exot i cType, and another class DependsnExot i cType Which needs Exot i cType Set as a
property:

Spring Framework (2.5.5) 122

Validation, Data-binding, the Beanw apper , and

package exanpl e;
public class ExoticType {
private String naneg;

public ExoticType(String name) {
thi s. name = nang;

}
}

public class DependsOnExoticType {
private ExoticType type;
public void set Type(ExoticType type) {

this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a
Pr oper t yEdi t or will behind the scenes convert into an actual Exot i cType instance:

<bean i d="sanpl e" cl ass="exanpl e. DependsOnExoti cType" >
<property name="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

The Proper t yEdi t or implementation could ook similar to this:

/'l converts string representation to ExoticType 0bj ect
package exanpl e;

public class ExoticTypeEditor extends PropertyEditorSupport {
private String format;

public void setFormat(String format) {
this.format = format;

}
public void set AsText(String text) {
if (format !'= null && format.equal s("upperCase")) {
text = text.toUpperCase();
}
Exoti cType type = new ExoticType(text);
set Val ue(type);
}

Finally, we use cust onEdi t or Conf i gur er tO register the new Propert yEdi t or With the Appl i cati onCont ext,
which will then be able to use it as needed:

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="cust omkEdi t ors">
<map>
<entry key="exanpl e. Exoti cType">
<bean cl ass="exanpl e. Exoti cTypeEdi tor">
<property nanme="format" val ue="upper Case"/>
</ bean>
</entry>
</ map>
</ property>
</ bean>

5.4.2.1.1. Using PropertyEdi tor Regi strars

Another mechanism for registering property editors with the Spring container is to create and use a

Spring Framework (2.5.5) 123

PropertyEditors

Proper t yEdi t or Regi st rar . Thisinterface is particularly useful when you need to use the same set of property
editors in severa different situations. write a corresponding registrar and reuse that in each case.
PropertyEdi t or Regi strars Work in conjunction with an interface called PropertyEditorRegistry, an
interface that is implemented by the Spring Beanw apper (and Dat aBi nder). Propert yEdi t or Regi strars are
particularly convenient when used in conjunction with the cust onEdi t or Confi gurer (introduced here), which
exposes a property called setPropertyEditorRegistrars(..): PropertyEditorRegistrars added to a
Cust orEdi t or Conf i gur er in thisfashion can easily be shared with Dat aBi nder and Spring MV C Control | ers.
Furthermore, it avoids the need for synchronization on custom editors: a PropertyEditorRegistrar iS
expected to create fresh Propert yEdi t or instances for each bean creation attempt.

Using a Proper t yEdi t or Regi strar IS perhaps best illustrated with an example. First off, you need to create
your own Pr oper t yEdi t or Regi st rar implementation:

package com foo. editors. spring;
public final class CustonPropertyEditorRegistrar inplements PropertyEditorRegistrar {
public void registerCustonEditors(PropertyEditorRegistry registry) {

/] it is expected that new PropertyEditor i nstances are created
regi stry.registerCust ontdi t or (Exoti cType. cl ass, new Exoti cTypeEditor());

/1 you could register as many custom property editors as are required here...

See adso the org. springfranmework. beans. support. ResourceEdi torRegistrar for an example
Pr opert yEdi t or Regi strar implementation. Notice how in its implementation of the
regi st er Cust onEdi tors(..) method it creates new instances of each property editor.

Next we configure a Cust onEdi t or Conf i gur er and inject an instance of our Cust onPr opert yEdi t or Regi str ar
into it:
<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property nanme="propertyEditorRegistrars">
<list>
<ref bean="custonPropertyEditorRegistrar"/>
</list>

</ property>
</ bean>

<bean i d="cust onPropertyEdi torRegi strar" class="com foo. editors.spring. CustonPropertyEditorRegistrar"/>

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring's MVC web
framework, using PropertyEditorRegistrars in conjunction with data-binding Controllers (such as
Si npl eFor nCont rol | er) can be very convenient. Find below an example of using a Proper t yEdi t or Regi strar
in the implementation of ani ni t Bi nder (. .) method:

public final class RegisterUserController extends SinpleFornController {
private final PropertyEditorRegistrar custonPropertyEditorRegistrar;
publ i ¢ Regi sterUserController(PropertyEditorRegi strar propertyEditorRegistrar) {
t hi s. cust onPropertyEditorRegi strar = propertyEditorRegistrar;
}

protected void initBinder(HttpServl et Request request, ServletRequestDataBi nder binder) throws Exception {
thi s. cust onmPropert yEdi t or Regi strar.regi sterCust onEdi t or s(bi nder);
}

/! other methods to do with registering a User

Spring Framework (2.5.5) 124

Validation, Data-binding, the Beanw apper , and

This style of propert yEdi t or registration can lead to concise code (the implementation of i ni t Bi nder(..) is
just one line long!), and allows common Propert yEdi t or registration code to be encapsulated in a class and
then shared amongst as many Cont r ol | er s as needed.

Spring Framework (2.5.5) 125

Chapter 6. Aspect Oriented Programming with
Spring

6.1. Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas in
AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as transaction
management that cut across multiple types and objects. (Such concerns are often termed crosscutting concerns
in AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring 1oC container does not depend
on AOP, meaning you do not need to use AOP if you don't want to, AOP complements Spring 10C to provide a
very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schemar-based approach or the @A spectJ annotation style. Both of these styles offer fully typed advice
and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema- and @A spectJ-based AOP support is discussed in this chapter. Spring 2.0 AOP
remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support offered by
the Spring 1.2 APIs is discussed in the following chapter.

AOP isused in the Spring Framework to...

... provide declarative enterprise services, especialy as a replacement for EJB declarative services. The most
important such service is declarative transaction management.

... dlow usersto implement custom aspects, complementing their use of OOP with AOP.

If you are interested only in generic declarative services or other pre-packaged declarative middieware
services such as pooling, you do not need to work directly with Spring AOP, and can skip most of this chapter.

6.1.1. AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not Spring-specific...
unfortunately, AOP terminology is not particularly intuitive; however, it would be even more confusing if
Spring used its own terminology.

« Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is a good
example of a crosscutting concern in J2EE applications. In Spring AOP, aspects are implemented using
regular classes (the schema-based approach) or regular classes annotated with the @spect annotation (the

@spect J style).

« Join point: a point during the execution of a program, such as the execution of a method or the handling of an
exception. In Spring AOP, ajoin point always represents a method execution.

Spring Framework (2.5.5) 126

Aspect Oriented Programming with Spring

e Advice: action taken by an aspect at a particular join point. Different types of advice include "around,"
"before" and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including Spring,
model an advice as an interceptor, maintaining a chain of interceptors around the join point.

« Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and runs at any
join point matched by the pointcut (for example, the execution of a method with a certain name). The
concept of join points as matched by pointcut expressions is central to AOP, and Spring uses the AspectJ
pointcut expression language by default.

« Introduction: declaring additional methods or fields on behalf of atype. Spring AOP alows you to introduce
new interfaces (and a corresponding implementation) to any advised object. For example, you could use an
introduction to make a bean implement an | smbdi fi ed interface, to simplify caching. (An introduction is
known as an inter-type declaration in the AspectJ community.)

» Target abject: object being advised by one or more aspects. Also referred to as the advised object. Since
Spring AOP isimplemented using runtime proxies, this object will always be a proxied object.

* AOP proxy: an object created by the AOP framework in order to implement the aspect contracts (advise
method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic proxy or a
CGLIB proxy.

» Weaving: linking aspects with other application types or objects to create an advised object. This can be done
at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring AOP, like other
pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

« Before advice: Advice that executes before a join point, but which does not have the ability to prevent
execution flow proceeding to the join point (unlessit throws an exception).

 After returning advice: Advice to be executed after ajoin point completes normally: for example, if a method
returns without throwing an exception.

 After throwing advice: Advice to be executed if a method exits by throwing an exception.

« After (finally) advice: Advice to be executed regardliess of the means by which ajoin point exits (normal or
exceptional return).

e Around advice: Advice that surrounds a join point such as a method invocation. This is the most powerful
kind of advice. Around advice can perform custom behavior before and after the method invocation. It isaso
responsible for choosing whether to proceed to the join point or to shortcut the advised method execution by
returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like Aspect], provides a full range of
advice types, we recommend that you use the least powerful advice type that can implement the required
behavior. For example, if you need only to update a cache with the return value of a method, you are better off
implementing an after returning advice than an around advice, although an around advice can accomplish the
same thing. Using the most specific advice type provides a simpler programming model with less potential for
errors. For example, you do not need to invoke the proceed() method on the Joi nPoi nt used for around
advice, and hence cannot fail to invoke it.

In Spring 2.0, al advice parameters are statically typed, so that you work with advice parameters of the
appropriate type (the type of the return value from a method execution for example) rather than obj ect arrays.

Spring Framework (2.5.5) 127

Aspect Oriented Programming with Spring

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from older
technologies offering only interception. Pointcuts enable advice to be targeted independently of the
Object-Oriented hierarchy. For example, an around advice providing declarative transaction management can
be applied to a set of methods spanning multiple objects (such as all business operations in the service layer).

6.1.2. Spring AOP capabilities and goals

Spring AOP isimplemented in pure Java. There is no need for a special compilation process. Spring AOP does
not need to control the class loader hierarchy, and is thus suitable for use in a J2EE web container or
application server.

Spring AOP currently supports only method execution join points (advising the execution of methods on Spring
beans). Field interception is not implemented, although support for field interception could be added without
breaking the core Spring AOP APIs. If you need to advise field access and update join points, consider a
language such as AspectJ.

Spring AOP's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide the
most complete AOP implementation (although Spring AOP is quite capable); it is rather to provide a close
integration between AOP implementation and Spring 10oC to help solve common problems in enterprise
applications.

Thus, for example, the Spring Framework's AOP functionality is normally used in conjunction with the Spring
loC container. Aspects are configured using normal bean definition syntax (although this allows powerful
"autoproxying" capabilities): this is a crucia difference from other AOP implementations. There are some
things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained objects (such as
domain objects typically): Aspectd is the best choice in such cases. However, our experience is that Spring
AOP provides an excellent solution to most problems in J2EE applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We believe
that both proxy-based frameworks like Spring AOP and full-blown frameworks such as Aspect] are valuable,
and that they are complementary, rather than in competition. Spring 2.0 seamlessly integrates Spring AOP and
loC with AspectJ, to enable all uses of AOP to be catered for within a consistent Spring-based application
architecture. This integration does not affect the Spring AOP API or the AOP Alliance API: Spring AOP
remains backward-compatible. See the following chapter for a discussion of the Spring AOP APIs.

Note
e

One of the central tenets of the Spring Framework is that of non-invasiveness, this is the idea that
you should not be forced to introduce framework-specific classes and interfaces into your
business/domain model. However, in some places the Spring Framework does give you the option
to introduce Spring Framework-specific dependencies into your codebase: the rationale in giving
you such options is because in certain scenarios it might be just plain easier to read or code some
specific piece of functionality in such away. The Spring Framework (almost) always offers you the
choice though: you have the freedom to make an informed decision as to which option best suits
your particular use case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and which AOP
style) to choose. Y ou have the choice of Aspectd and/or Spring AOP, and you aso have the choice
of either the @A spectJ annotation-style approach or the Spring XML configuration-style approach.
The fact that this chapter chooses to introduce the @AspectJ-style approach first should not be
taken as an indication that the Spring team favors the @A spectJ annotation-style approach over the
Spring XML configuration-style.

Spring Framework (2.5.5) 128

Aspect Oriented Programming with Spring

See the section entitled Section 6.4, “Choosing which AOP declaration style to use” for a fuller
discussion of the whys and wherefores of each style.

6.1.3. AOP Proxies

Spring AOP defaults to using standard J2SE dynamic proxies for AOP proxies. This enables any interface (or
set of interfaces) to be proxied.

Spring AOP can aso use CGLIB proxies. This is necessary to proxy classes, rather than interfaces. CGLIB is
used by default if a business object does not implement an interface. As it is good practice to program to
interfaces rather than classes, business classes normally will implement one or more business interfaces. It is
possible to force the use of CGLIB, in those (hopefully rare) cases where you need to advise a method that is
not declared on an interface, or where you need to pass a proxied object to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section entitled Section 6.6.1,
“Understanding AOP proxies’ for a thorough examination of exactly what this implementation detail actually
means.

6.2. @Aspect] support

@A spect] refers to a style of declaring aspects as regular Java classes annotated with Java 5 annotations. The
@A spect] style was introduced by the AspectJ project as part of the Aspectd 5 release. Spring 2.0 interprets the
same annotations as Aspectd 5, using a library supplied by Aspect] for pointcut parsing and matching. The
AOP runtimeisstill pure Spring AOP though, and there is no dependency on the AspectJ compiler or weaver.

Using the Aspectd compiler and weaver enables use of the full Aspect] language, and is discussed in
Section 6.8, “ Using AspectJ with Spring applications” .

6.2.1. Enabling @AspectJ Support

To use @A spectJ aspects in a Spring configuration you need to enable Spring support for configuring Spring
AOP based on @A spectJ aspects, and autoproxying beans based on whether or not they are advised by those
aspects. By autoproxying we mean that if Spring determines that a bean is advised by one or more aspects, it
will automatically generate a proxy for that bean to intercept method invocations and ensure that advice is
executed as needed.

The @A spectJ support is enabled by including the following element inside your spring configuration:

<aop: aspect j - aut opr oxy/ >
This assumes that you are using schema support as described in Appendix A, XML Schema-based
configuration. See Section A.2.7, “The aop schema’ for how to import the tags in the aop namespace.

If you are using the DTD, it is still possible to enable @A spectJ support by adding the following definition to
your application context:

<bean cl ass="org. spri ngf ramewor k. aop. aspectj . annot ati on. Annot at i onAwar eAspect JAut oPr oxyCreator" />

You will aso need two Aspectd libraries on the classpath of your application: aspectjweaver.jar and

Spring Framework (2.5.5) 129

http://www.eclipse.org/aspectj

Aspect Oriented Programming with Spring

aspectjrt.jar. Theselibraries are availableinthe' I'i b' directory of an Aspectdinstallation (version 1.5.1 or
later required), or inthe' 1i b/ aspect ' directory of the Spring-with-dependencies distribution.

6.2.2. Declaring an aspect

With the @Aspect] support enabled, any bean defined in your application context with a class that is an
@A spect] aspect (has the @spect annotation) will be automatically detected by Spring and used to configure
Spring AOP. The following example shows the minimal definition required for a not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @spect annotation:

<bean id="nyAspect" cl ass="org. xyz. Not Ver yUsef ul Aspect ">
<I-- configure properties of aspect here as nornal -->
</ bean>

And the Not VeryUseful Aspect class definition, annotated with org. aspectj .| ang. annot ati on. Aspect
annotation;

package org. xyz;
i nport org.aspectj .| ang. annot ati on. Aspect ;

@\spect
public class NotVeryUseful Aspect {

}

Aspects (classes annotated with @spect) may have methods and fields just like any other class. They may also
contain pointcut, advice, and introduction (inter-type) declarations.

Advising aspects

e
In Spring AOP, it is not possible to have aspects themselves be the target of advice from other
aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it from
auto-proxying.

6.2.3. Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice executes.
Sporing AOP only supports method execution join points for Spring beans, so you can think of a pointcut as
matching the execution of methods on Spring beans. A pointcut declaration has two parts. a signature
comprising a name and any parameters, and a pointcut expression that determines exactly which method
executions we are interested in. In the @A spectJ annotation-style of AOP, a pointcut signature is provided by a
regular method definition, and the pointcut expression is indicated using the @oi nt cut annotation (the method
serving as the pointcut signature must have avoi d return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear. The
following example defines a pointcut named ' anyd dTransfer' that will match the execution of any method
named' transfer':

@oi ntcut ("execution(* transfer(..))")// the pointcut expression
private void anyd dTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @oi nt cut annotation is a regular Aspect] 5 pointcut
expression. For a full discussion of AspectJ's pointcut language, see the Aspectd Programming Guide (and for

Spring Framework (2.5.5) 130

http://www.eclipse.org/aspectj/doc/released/progguide/index.html

Aspect Oriented Programming with Spring

Java 5 based extensions, the AspectJ 5 Developers Notebook) or one of the books on AspectJ such as “Eclipse
Aspect’ by Colyer et. al. or “AspectJin Action” by Ramnivas Laddad.

6.2.3.1. Supported Pointcut Designators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:

Other pointcut types

The full Aspectd pointcut language supports additional pointcut designators that are not supported in
Spring. These are: cal |, get, set, preinitialization, staticinitialization, initialization,
handl er, advi ceexecution, W thincode, cflow, cflowbelow, if, @his,and@ithi ncode. Use of
these pointcut designators in pointcut expressions interpreted by Spring AOP will result in an
I'l'| egal Argunent Except i on being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases both to
support more of the AspectJ pointcut designators.

execution - for matching method execution join points, this is the primary pointcut designator you will use
when working with Spring AOP

within - [imits matching to join points within certain types (simply the execution of a method declared within
amatching type when using Spring AOP)

this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
reference (Spring AOP proxy) is an instance of the given type

target - limits matching to join points (the execution of methods when using Spring AOP) where the target
object (application object being proxied) is an instance of the given type

args - limits matching to join points (the execution of methods when using Spring AOP) where the
arguments are instances of the given types

@ar get - limits matching to join points (the execution of methods when using Spring AOP) where the class
of the executing object has an annotation of the given type

@ gs - limits matching to join points (the execution of methods when using Spring AOP) where the runtime
type of the actual arguments passed have annotations of the given type(s)

@i thin - limits matching to join points within types that have the given annotation (the execution of
methods declared in types with the given annotation when using Spring AOP)

@annotation - limits matching to join points where the subject of the join point (method being executed in
Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut
designators above gives anarrower definition than you will find in the AspectJ programming guide. In addition,
Aspectitself has type-based semantics and at an execution join point both 't hi s' and 't ar get ' refer to the same
object - the object executing the method. Spring AOP is a proxy-based system and differentiates between the
proxy object itself (bound to 't hi s') and the target object behind the proxy (bound to 't ar get ').

Note
“a

Spring Framework (2.5.5) 131

http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

Aspect Oriented Programming with Spring

Due to the proxy-based nature of Spring's AOP framework, protected methods are by definition not
intercepted, neither for JDK proxies (where thisisn't applicable) nor for CGLIB proxies (where this
is technically possible but not recommendable for AOP purposes). As a consequence, any given
pointcut will be matched against public methods only!

If your interception needs include protected/private methods or even constructors, consider the use
of Spring-driven native AspectJ weaving instead of Spring's proxy-based AOP framework. This
congtitutes a different mode of AOP usage with different characteristics, so be sure to make
yourself familiar with weaving first before making a decision.

Spring AOP also supports an additional PCD named 'bean’. This PCD alows you to limit the matching of join
points to a particular named Spring bean, or to a set of named Spring beans (when using wildcards). The 'bean’
PCD has the following form:

bean(i dOr NameOf Bean)

The 'i dOr NameOf Bean' token can be the name of any Spring bean: limited wildcard support using the **
character is provided, so if you establish some naming conventions for your Spring beans you can quite easily
write a 'bean' PCD expression to pick them out. Asis the case with other pointcut designators, the 'bean' PCD
can be &&'ed, |'ed, and ! (negated) too.

Note

"9
Please note that the 'bean' PCD is only supported in Spring AOP - and not in native AspectJ
weaving. It is a Spring-specific extension to the standard PCDs that AspectJ defines.

The 'bean' PCD operates at the instance level (building on the Spring bean name concept) rather
than at the type level only (which is what weaving-based AOP is limited to). Instance-based
pointcut designators are a special capability of Spring's proxy-based AOP framework and its close
integration with the Spring bean factory, where it is natural and straightforward to identify specific
beans by name.

6.2.3.2. Combining pointcut expressions

Pointcut expressions can be combined using '& &', '||' and " It is also possible to refer to pointcut expressions
by name. The following example shows three pointcut expressions: anyPubl i cOper at i on (which matchesif a
method execution join point represents the execution of any public method); i nTr adi ng (which matches if a
method execution is in the trading module), and tr adi ngQper ati on (which matches if a method execution
represents any public method in the trading module).

@oi nt cut ("execution(public * *(.

)
private void anyPublicOperation() {}

@poi nt cut ("wi t hi n(com xyz. soneapp.trading..*)")
private void inTrading() {}

@poi nt cut ("anyPubl i cOperation() && inTrading()")
private void tradi ngOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components as shown
above. When referring to pointcuts by name, normal Java visibility rules apply (you can see private pointcutsin
the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and so on). Visibility does not

Spring Framework (2.5.5) 132

Aspect Oriented Programming with Spring

affect pointcut matching.

6.2.3.3. Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application and particular
sets of operations from within several aspects. We recommend defining a "SystemArchitecture” aspect that

captures common pointcut expressions for this purpose. A typical such aspect would look as follows:

package com xyz. someapp;

i nport org.aspectj .| ang. annot ati on. Aspect;
i nport org. aspectj .| ang. annot at i on. Poi nt cut ;

@\spect
public class SystemArchitecture {

/**

* Ajoin point is in the web layer if the method is defined

* in a type in the com xyz. sonmeapp. web package or any sub- package
* under that.

*/

@Poi ntcut ("within(com xyz. someapp. web. . *)")

public void i nWebLayer () {}

/**

* Ajoin point is in the service layer if the method is defined
* in a type in the comxyz.soneapp. service package or any sub-package
* under that.

*/

@Poi ntcut ("wi thin(com xyz. sonmeapp. service..*)")

public void inServiceLayer() {}

/**

* Ajoin point is in the data access layer if the nethod is defined
* in a type in the comxyz. soneapp. dao package or any sub-package

* under that.

*/

@poi nt cut ("wi t hi n(com xyz. soneapp. dao. . *)")

public void inDataAccessLayer() {}

*

/
A business service is the execution of any nethod defined on a service
interface. This definition assunes that interfaces are placed in the
"service" package, and that inplenentation types are in sub-packages.

If you group service interfaces by functional area (for exanple,
i n packages com xyz. soneapp. abc. service and com xyz. def.service) then
the poi ntcut expression "execution(* com xyz.soneapp..service.*.*(..))"
coul d be used instead.

Alternatively, you can wite the expression using the 'bean'
PCD, like so "bean(*Service)". (This assunmes that you have
naned your Spring service beans in a consistent fashion.)

E I I S I

*

*/
@Poi nt cut ("execution(* com xyz.soneapp.service.*.*(..))")
public void businessService() {}

/**

* A data access operation is the execution of any method defined on a

* dao interface. This definition assumes that interfaces are placed in the
* "dao" package, and that inplenentation types are in sub-packages.

*/

@Poi nt cut ("execution(* com xyz.sonmeapp.dao.*.*(..))")

public void dataAccessOperation() {}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut expression. For

example, to make the service layer transactional, you could write:

<aop: config>
<aop: advi sor

Spring Framework (2.5.5)

133

Aspect Oriented Programming with Spring

poi nt cut =" com xyz. sonmeapp. Syst emAr chi t ect ur e. busi nessService()"
advi ce-ref ="t x-advi ce"/>
</ aop: confi g>

<t x: advi ce id="t x-advice">
<tx:attributes>
<t x: met hod name="*" propagati on="REQU RED"/ >
</tx:attributes>
</t x: advi ce>

The <aop: confi g> and <aop: advi sor> elements are discussed in Section 6.3, “Schema-based AOP support”.
The transaction elements are discussed in Chapter 9, Transaction management.

6.2.3.4. Examples

Spring AOP users are likely to use the execution pointcut designator the most often. The format of an
execution expression is:

execution(nodifiers-pattern? ret-type-pattern decl aring-type-pattern? nane-pattern(param pattern)
t hrows- pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and parameters
pattern are optional. The returning type pattern determines what the return type of the method must be in order
for ajoin point to be matched. Most frequently you will use * as the returning type pattern, which matches any
return type. A fully-qualified type name will match only when the method returns the given type. The name
pattern matches the method name. Y ou can use the * wildcard as all or part of a name pattern. The parameters
pattern is dightly more complex: () matches a method that takes no parameters, whereas (. .) matches any
number of parameters (zero or more). The pattern (*) matches a method taking one parameter of any type,
(*, String) matches amethod taking two parameters, the first can be of any type, the second must be a String.
Consult the Language Semantics section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.

« the execution of any public method:

execution(public * *(..))

« the execution of any method with a name beginning with "set":

execution(* set*(..))

« the execution of any method defined by the Account Ser vi ce interface:

execution(* com xyz. servi ce. Account Service. *(..))

* the execution of any method defined in the service package:

execution(* com xyz.service.*.*(..))

« the execution of any method defined in the service package or a sub-package:

execution(* com xyz.service..*.*(..))

Spring Framework (2.5.5) 134

http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

Aspect Oriented Programming with Spring

e any join point (method execution only in Spring AOP) within the service package:

wi t hi n(com xyz. service. *)

 any join point (method execution only in Spring AOP) within the service package or a sub-package:

Wi t hi n(com xyz. service. .*)

e any join point (method execution only in Spring AOP) where the proxy implements the Account Servi ce
interface:

thi s(com xyz. servi ce. Account Servi ce)

'this' is more commonly used in a binding form :- see the following section on advice for how to make the
proxy object available in the advice body.

e any join point (method execution only in Spring AOP) where the target object implements the
Account Ser vi ce interface:

target (com xyz. servi ce. Account Ser vi ce)

'target’ is more commonly used in a binding form :- see the following section on advice for how to make the
target object available in the advice body.

« any join point (method execution only in Spring AOP) which takes a single parameter, and where the
argument passed at runtimeis Seri al i zabl e:

args(java.io. Serializable)

‘args' is more commonly used in a binding form :- see the following section on advice for how to make the
method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(* *(java.io. Serializable)): the
args version matches if the argument passed at runtime is Serializable, the execution version matches if the

method signature declares a single parameter of type Seri al i zabl e.

e any join point (method execution only in Spring AOP) where the target object has an @r ansact i onal
annotation:

@ ar get (org. springfranework. transacti on. annot ati on. Tr ansacti onal)
'‘@target’ can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) where the declared type of the target object has an
@r ansact i onal annotation:

@ t hin(org. springframework.transacti on. annotati on. Transacti onal)

‘@within' can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) where the executing method has an @t ansact i onal

Spring Framework (2.5.5) 135

Aspect Oriented Programming with Spring

annotation:

@nnot ati on(org. springfranework. transaction. annot ati on. Transacti onal)

‘@annotation’ can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) which takes a single parameter, and where the
runtime type of the argument passed has the @ assi f i ed annotation:

@rgs(com xyz. security. C assified)

'@args can also be used in a binding form :- see the following section on advice for how to make the
annotation object(s) available in the advice body.

e any join point (method execution only in Spring AOP) on a Spring bean named 't r adeSer vi ce':

bean(tradeService)

e any join point (method execution only in Spring AOP) on Spring beans having names that match the
wildcard expression ** Ser vi ce":

bean(* Servi ce)

6.2.4. Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions matched
by the pointcut. The pointcut expression may be either a simple reference to a named pointcut, or a pointcut
expression declared in place.

6.2.4.1. Before advice

Before adviceis declared in an aspect using the @ef or e annotation:

i nport org. aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. Before;

@\spect
public cl ass BeforeExanple {

@Bef ore("com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doAccessCheck() {
...

}

If using an in-place pointcut expression we could rewrite the above example as:

i nport org.aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. Before;

@\spect
public class BeforeExanple {

@Bef ore("execution(* com xyz. nyapp.dao.*.*(..))")
public void doAccessCheck() {
...

Spring Framework (2.5.5) 136

Aspect Oriented Programming with Spring

6.2.4.2. After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@\f t er Ret ur ni ng annotation:

i nport org.aspectj .| ang. annot ati on. Aspect;
i mport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturni ngExanpl e {

@Af t er Ret ur ni ng("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation()")
public void doAccessCheck() {
...

}
}

Note: it is of course possible to have multiple advice declarations, and other members as well, all inside the
same aspect. We're just showing a single advice declaration in these examples to focus on the issue under
discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. Y ou can use the form of
@\f t er Ret ur ni ng that binds the return value for this:

i nport org. aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturni ngExanpl e {

@Af t er Ret ur ni ng(
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation()",
returning="retVal")

public void doAccessCheck(oject retVal) {
...

}

The name used in the r et ur ni ng attribute must correspond to the name of a parameter in the advice method.
When a method execution returns, the return value will be passed to the advice method as the corresponding
argument value. A r et ur ni ng clause also restricts matching to only those method executions that return avalue
of the specified type (ovj ect in this case, which will match any return value).

Please note that it is not possible to return atotally different reference when using after-returning advice.

6.2.4.3. After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is declared
using the @ t er Thr owi ng annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annot ation. After Thr owi ng;

@Aspect
public class AfterThrow ngExanpl e {

@Af t er Thr owi ng(" com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doRecoveryActions() {
...

Spring Framework (2.5.5) 137

Aspect Oriented Programming with Spring

Often you want the advice to run only when exceptions of a given type are thrown, and you also often need
access to the thrown exception in the advice body. Use the t hrowi ng attribute to both restrict matching (if
desired, use Thr owabl e asthe exception type otherwise) and bind the thrown exception to an advice parameter.

i nport org.aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. After Thr owi ng;

@\spect
public class AfterThrow ngExanpl e {

@Af t er Thr owi ng(
poi nt cut ="com xyz. nmyapp. Syst emAr chi t ect ur e. dat aAccessQperation()",
t hr owi ng="ex")

public void doRecoveryActions(Dat aAccessException ex) {
1.

}

The name used in the t hr owi ng attribute must correspond to the name of a parameter in the advice method.
When a method execution exits by throwing an exception, the exception will be passed to the advice method as
the corresponding argument value. A t hr owi ng clause also restricts matching to only those method executions
that throw an exception of the specified type (Dat aAccessExcept i on in this case).

6.2.4.4. After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the @fter
annotation. After advice must be prepared to handle both normal and exception return conditions. It is typically
used for releasing resources, etc.

i mport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.lang.annotation. After;

@Aspect
public class AfterFinallyExanple {

@\fter("comxyz. myapp. Syst emAr chi t ect ure. dat aAccessOperation()")
public void doRel easeLock() {
...

}

6.2.4.5. Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the
opportunity to do work both before and after the method executes, and to determine when, how, and even if, the
method actually gets to execute at all. Around advice is often used if you need to share state before and after a
method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least
powerful form of advice that meets your requirements (i.e. don't use around advice if ssimple before advice
would do).

Around advice is declared using the @ ound annotation. The first parameter of the advice method must be of
type Proceedi ngJoi nPoi nt . Within the body of the advice, calling proceed() on the Proceedi ngJoi nPoi nt
causes the underlying method to execute. The pr oceed method may also be called passing in an j ect[] - the
valuesin the array will be used as the arguments to the method execution when it proceeds.

Spring Framework (2.5.5) 138

Aspect Oriented Programming with Spring

The behavior of proceed when called with an j ect[] is a little different than the behavior of proceed for
around advice compiled by the Aspectd compiler. For around advice written using the traditional AspectJ
language, the number of arguments passed to proceed must match the number of arguments passed to the
around advice (not the number of arguments taken by the underlying join point), and the value passed to
proceed in a given argument position supplants the original value at the join point for the entity the value was
bound to (Don't worry if this doesn't make sense right now!). The approach taken by Spring is simpler and a
better match to its proxy-based, execution only semantics. You only need to be aware of this difference if you
are compiling @AspectJ aspects written for Soring and using proceed with arguments with the AspectJ
compiler and weaver. There is a way to write such aspects that is 100% compatible across both Soring AOP
and AspectJ, and thisis discussed in the following section on advice parameters.

i mport org.aspectj.|ang.annotation. Aspect;

i mport org.aspectj .| ang.annot ati on. Around;

i mport org. aspectj .| ang. Proceedi ngJoi nPoi nt ;
@\spect

public class AroundExanpl e {

@\r ound(" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService()")
public Object doBasicProfiling(ProceedingJoi nPoint pjp) throws Throwabl e {
/] start stopwatch
oj ect retVal = pjp.proceed();
/'l stop stopwatch
return retVal;

}

The value returned by the around advice will be the return value seen by the caller of the method. A simple
caching aspect for example could return a value from a cache if it has one, and invoke proceed() if it does not.
Note that proceed may be invoked once, many times, or not at all within the body of the around advice, al of
these are quite legal.

6.2.4.6. Advice parameters

Spring 2.0 offers fully typed advice - meaning that you declare the parameters you need in the advice signature
(aswe saw for the returning and throwing examples above) rather than work with avj ect [] arraysall the time.
Well see how to make argument and other contextual values available to the advice body in a moment. First
let's take a look at how to write generic advice that can find out about the method the advice is currently
advising.

6.2.4.6.1. Access to the current Joi nPoi nt

Any advice method may declare as its first parameter, a parameter of type org. aspect]j . | ang. Joi nPoi nt
(please note that around advice is required to declare afirst parameter of type Pr oceedi ngJoi nPoi nt , which is
a subclass of Joi nPoi nt. The Joi nPoi nt interface provides a number of useful methods such as get Args()
(returns the method arguments), get Thi s() (returns the proxy object), get Tar get () (returns the target object),
get Si gnature() (returns a description of the method that is being advised) and t oString() (prints a useful
description of the method being advised). Please do consult the Javadocs for full details.

6.2.4.6.2. Passing parameters to advice

We've aready seen how to bind the returned value or exception value (using after returning and after throwing
advice). To make argument values available to the advice body, you can use the binding form of args. If a
parameter name is used in place of a type name in an args expression, then the value of the corresponding
argument will be passed as the parameter value when the advice is invoked. An example should make this
clearer. Suppose you want to advise the execution of dao operations that take an Account object as the first
parameter, and you need access to the account in the advice body. Y ou could write the following:

Spring Framework (2.5.5) 139

Aspect Oriented Programming with Spring

@Bef ore("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation() &&" +
"args(account,..)")
public void validateAccount (Account account) {
...

}

Theargs(account, ..) part of the pointcut expression serves two purposes: firstly, it restricts matching to only
those method executions where the method takes at least one parameter, and the argument passed to that
parameter is an instance of Account ; secondly, it makes the actual Account object available to the advice via
the account parameter.

Another way of writing thisis to declare a pointcut that "provides' the Account object value when it matches a
join point, and then just refer to the named pointcut from the advice. Thiswould look as follows:

@Poi nt cut ("com xyz. nyapp. Syst emAr chi t ect ure. dat aAccessQperation() &&' +
"args(account,..)")
private void account Dat aAccessOper ati on(Account account) {}

@Bef or e(" account Dat aAccessOper ati on(account)")
public void validateAccount (Account account) {
1.

}

The interested reader is once more referred to the Aspect] programming guide for more details.

The proxy object (t hi s), target object (t ar get), and annotations (@v thin, @arget, @nnotation, @urgs)
can all be bound in a similar fashion. The following example shows how you could match the execution of
methods annotated with an @udi t abl e annotation, and extract the audit code.

First the definition of the @udi t abl e annotation:

@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)
@rar get (El enent Type. METHOD)
public @nterface Auditable {
Audi t Code val ue();
}

And then the advice that matches the execution of @udi t abl e methods:

@Bef ore("com xyz. | ib. Poi nt cuts. anyPubl i cMet hod() && " +
"@nnot ati on(audi table)")
public void audit(Auditable auditable) {
Audi t Code code = auditabl e.val ue();
1.

}

6.2.4.6.3. Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut expressions to declared
parameter names in (advice and pointcut) method signatures. Parameter names are not available through Java
reflection, so Spring AOP uses the following strategies to determine parameter names;

1. If the parameter names have been specified by the user explicitly, then the specified parameter names are
used: both the advice and the pointcut annotations have an optional "argNames" attribute which can be used
to specify the argument names of the annotated method - these argument names are available at runtime. For
example:

@Bef or e(
val ue="com xyz. | i b. Poi nt cuts. anyPubl i cMet hod() && target(bean) && @nnotation(auditable)",

Spring Framework (2.5.5) 140

Aspect Oriented Programming with Spring

ar gNanes="bean, audi t abl e")
public void audit(Object bean, Auditable auditable) {
Audi t Code code = auditabl e.val ue();
// ... use code and bean

}

If the first parameter is of the Joi nPoi nt, Proceedi ngJoi nPoi nt, OF Joi nPoi nt. Stati cPart type, you may
leave out the name of the parameter from the value of the "argNames" attribute. For example, if you modify
the preceding advice to receive the join point object, the "argNames' attribute need not include it:

@Bef or e(
val ue="com xyz. | i b. Poi nt cut s. anyPubl i cMet hod() && target(bean) && @nnotation(auditable)",
ar gNanes="bean, audi t abl e")
public void audit(JoinPoint jp, Object bean, Auditable auditable) {
Audi t Code code = auditabl e.val ue();
// ... use code, bean, and jp

}

The specia treatment given to the first parameter of the Joi nPoint, Proceedi ngJoinPoint, and
Joi nPoi nt . StaticPart typesis particularly convenient for advice that do not collect any other join point
context. In such situations, you may simply omit the "argNames" attribute. For example, the following
advice need not declare the "argNames' attribute:

@Bef or e(
"com xyz. |ib. Poi ntcuts. anyPubl i cMet hod()")
public void audit(JoinPoint jp) {
/Il ... usejp

}

2. Using the argNares' attribute is alittle clumsy, so if the' ar gNanes' attribute has not been specified, then
Spring AOP will look at the debug information for the class and try to determine the parameter names from
the local variable table. This information will be present as long as the classes have been compiled with
debug information (' - g: vars' a a minimum). The consequences of compiling with this flag on are: (1)
your code will be slightly easier to understand (reverse engineer), (2) the classfile sizes will be very dlightly
bigger (typically inconsequential), (3) the optimization to remove unused local variables will not be applied
by your compiler. In other words, you should encounter no difficulties building with this flag on.

If an @AspectJ aspect has been compiled by the Aspectd compiler (ajc) even without the debug information
then thereis no need to add the ar gNanes attribute as the compiler will retain the needed information.

3. If the code has been compiled without the necessary debug information, then Spring AOP will attempt to
deduce the pairing of binding variables to parameters (for example, if only one variable is bound in the
pointcut expression, and the advice method only takes one parameter, the pairing is obvious!). If the binding
of variables is ambiguous given the available information, then an Anbi guousBi ndi ngExcept i on will be
thrown.

4. If all of the above strategies fail thenan 111 egal Ar gument Except i on Will be thrown.

6.2.4.6.4. Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with arguments that works consistently
across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature binds each of the
method parametersin order. For example:

@\r ound(" execution(List<Account> find*(..)) &&" +

"com xyz. nyapp. SystemArchi t ect ure. i nDat aAccessLayer () && " +

"ar gs(account Hol der NanePattern)")
public oject preProcessQueryPattern(Proceedi ngJoi nPoint pjp, String account Hol der NanePat t er n)
throws Throwabl e {

Spring Framework (2.5.5) 141

Aspect Oriented Programming with Spring

String newPattern = preProcess(account Hol der NanePat t ern) ;
return pjp.proceed(new Cbject[] {newPattern});

}

In many cases you will be doing this binding anyway (as in the example above).

6.2.4.7. Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP follows the
same precedence rules as Aspect] to determine the order of advice execution. The highest precedence advice
runs first "on the way in" (so given two pieces of before advice, the one with highest precedence runs first).
"On the way out" from ajoin point, the highest precedence advice runs last (so given two pieces of after advice,
the one with the highest precedence will run second).

When two pieces of advice defined in different aspects both need to run at the same join point, unless you
specify otherwise the order of execution is undefined. You can control the order of execution by specifying
precedence. This is done in the norma Spring way by either implementing the
org. spri ngframewor k. core. Or der ed interface in the aspect class or annotating it with the o der annotation.
Given two aspects, the aspect returning the lower value from o der ed. get Val ue() (or the annotation value)
has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the ordering is
undefined (since there is no way to retrieve the declaration order via reflection for javac-compiled classes).
Consider collapsing such advice methods into one advice method per join point in each aspect class, or refactor
the pieces of advice into separate aspect classes - which can be ordered at the aspect level.

6.2.5. Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects
implement agiven interface, and to provide an implementation of that interface on behalf of those objects.

An introduction is made using the @ecl areParents annotation. This annotation is used to declare that
matching types have a new parent (hence the name). For example, given an interface UsageTr acked, and an
implementation of that interface Def aul t UsageTr acked, the following aspect declares that al implementors of
service interfaces also implement the UsageTracked interface. (In order to expose statistics via IMX for
example.)

@\spect
public class UsageTracking {

@ecl ar ePar ent s(val ue="com xzy. nyapp. servi ce. *+",
def aul t | mpl =Def aul t UsageTr acked. cl ass)
public static UsageTracked m Xxin;

@Bef ore("com xyz. nyapp. Syst emAr chi t ect ure. busi nessServi ce() &&' +
"t hi s(usageTracked)")
public void recordUsage(UsageTracked usageTracked) {
usageTr acked. i ncrement UseCount () ;

}

The interface to be implemented is determined by the type of the annotated field. The val ue attribute of the
@ecl ar ePar ent s annotation is an Aspect] type pattern :- any bean of a matching type will implement the
UsageTracked interface. Note that in the before advice of the above example, service beans can be directly used
as implementations of the UsageTr acked interface. If accessing a bean programmatically you would write the

Spring Framework (2.5.5) 142

Aspect Oriented Programming with Spring

following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("myService");

6.2.6. Aspect instantiation models
(Thisis an advanced topic, so if you are just starting out with AOP you can safely skip it until later.)

By default there will be a single instance of each aspect within the application context. Aspect] calls this the
singleton instantiation model. It is possible to define aspects with aternate lifecycles :- Spring supports
AspectJs perthis and pertarget instantiation models (percfl ow, percfl owbel ow, and pertypewithin are
not currently supported).

A "perthis' aspect is declared by specifying a perthis clause in the @spect annotation. Let's look at an
example, and then we'll explain how it works.

@\spect (" perthi s(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService())")
public class MyAspect ({

private int sonmeState;

@Bef ore(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService())
public void recordServi ceUsage() {
...

}

The effect of the ' perthis' clause is that one aspect instance will be created for each unique service object
executing a business service (each unique object bound to 'this at join points matched by the pointcut
expression). The aspect instance is created the first time that a method is invoked on the service object. The
aspect goes out of scope when the service object goes out of scope. Before the aspect instance is created, hone
of the advice within it executes. As soon as the aspect instance has been created, the advice declared within it
will execute at matched join points, but only when the service object is the one this aspect is associated with.
See the AspectJ programming guide for more information on per-clauses.

The' pertarget' instantiation model works in exactly the same way as perthis, but creates one aspect instance
for each unique target object at matched join points.

6.2.7. Example

Now that you have seen how all the constituent parts work, let's put them together to do something useful!

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser).
If the operation is retried, it is quite likely to succeed next time round. For business services where it is
appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict
resolution), wed like to transparently retry the operation to avoid the client seeing a
Pessi ni sti cLocki ngFai | ur eExcepti on. Thisis arequirement that clearly cuts across multiple services in the
service layer, and henceisideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call proceed multiple
times. Here's how the basic aspect implementation looks:

@\spect
public class Concurrent OperationExecutor inplenments Ordered {

private static final int DEFAULT _MAX RETRIES = 2;

private int maxRetries = DEFAULT _MAX RETRI ES;

Spring Framework (2.5.5) 143

Aspect Oriented Programming with Spring

private int order = 1;

public void setMaxRetries(int maxRetries) {
this. maxRetries = maxRetries;

}

public int getOder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

@\r ound(" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessServi ce()")
publ i c Object doConcurrent Operati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numAttenpts = O;
Pessi mi sti cLocki ngFai | ureExcepti on | ockFai | ureExcepti on;
do {
numAt t enpt s++;

try {
return pjp.proceed();

cat ch(Pessi m sti cLocki ngFai | ureException ex) {
| ockFai | ureException = ex;

}
}
whi |l e(numAttenpts <= this. maxRetries);
throw | ockFai | ur eExcepti on;

Note that the aspect implements the o der ed interface so we can set the precedence of the aspect higher than
the transaction advice (we want a fresh transaction each time we retry). The maxRetri es and or der properties
will both be configured by Spring. The main action happens in the doConcur r ent Oper at i on around advice.
Notice that for the moment we're applying the retry logic to all busi nessServi ce()s. We try to proceed, and if
we fail with an Pessi mi sti cLocki ngFai | ur eExcepti on we simply try again unless we have exhausted all of
our retry attempts.

The corresponding Spring configuration is:

<aop: aspect j - aut opr oxy/ >

<bean i d="concurrent Qper ati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concur r ent Oper at i onExecut or ">
<property name="nmaxRetries" val ue="3"/>
<property name="order" val ue="100"/>
</ bean>

To refine the aspect so that it only retries idempotent operations, we might define an | denpot ent annotation:

@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
public @nterface |dempotent {
/1 marker annotation

}

and use the annotation to annotate the implementation of service operations. The change to the aspect to only
retry idempotent operations simply involves refining the pointcut expression so that only @ denpot ent
operations match:

@\r ound(" com xyz. myapp. Syst emAr chi t ect ur e. busi nessService() && " +
"@nnot ati on(com xyz. nyapp. servi ce. | denpotent)")
public Object doConcurrent Operation(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {

i

Spring Framework (2.5.5) 144

Aspect Oriented Programming with Spring

6.3. Schema-based AOP support

If you are unable to use Java 5, or simply prefer an XML-based format, then Spring 2.0 also offers support for
defining aspects using the new "aop" namespace tags. The exact same pointcut expressions and advice kinds
are supported as when using the @A spectJ style, hence in this section we will focus on the new syntax and refer
the reader to the discussion in the previous section (Section 6.2, “ @AspectJ support”) for an understanding of
writing pointcut expressions and the binding of advice parameters.

To use the aop namespace tags described in this section, you need to import the spring-aop schema as described
in Appendix A, XML Schema-based configuration. See Section A.2.7, “The aop schema” for how to import the
tags in the aop nhamespace.

Within your Spring configurations, all aspect and advisor elements must be placed within an <aop: confi g>
element (you can have more than one <aop: confi g> element in an application context configuration). An
<aop: confi g> element can contain pointcut, advisor, and aspect elements (note these must be declared in that
order).

=] Warning

The <aop: confi g> style of configuration makes heavy use of Spring's auto-proxying mechanism.
This can cause issues (such as advice not being woven) if you are already using explicit
auto-proxying via the use of BeanNaneAut oPr oxyCreat or Or suchlike. The recommended usage
pattern is to use either just the <aop: conf i g> style, or just the Aut oPr oxyCr eat or Style.

6.3.1. Declaring an aspect

Using the schema support, an aspect is simply aregular Java object defined as a bean in your Spring application
context. The state and behavior is captured in the fields and methods of the object, and the pointcut and advice
information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the ref
attribute:

<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">

</ aop: aspect >
</ aop: confi g>

<bean i d="aBean" class="...">

</ bean>
The bean backing the aspect ("aBean" in this case) can of course be configured and dependency injected just
like any other Spring bean.
6.3.2. Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to be shared
across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined as follows:

<aop: confi g>

Spring Framework (2.5.5) 145

Aspect Oriented Programming with Spring

<aop: poi ntcut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: confi g>

Note that the pointcut expression itself is using the same AspectJ pointcut expression language as described in
Section 6.2, “ @AspectJ support”. If you are using the schema based declaration style with Java 5, you can refer
to named pointcuts defined in types (@A spects) within the pointcut expression, but this feature is not available
on JDK 1.4 and below (it relies on the Java 5 specific AspectJ reflection APIs). On JDK 1.5 therefore, another
way of defining the above pointcut would be;

<aop: confi g>

<aop: poi ntcut i d="busi nessService"
expressi on="com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce()"/>

</ aop: confi g>

Assuming you have a Syst emAr chi t ect ur e aspect as described in Section 6.2.3.3, “ Sharing common pointcut
definitions’.

Declaring a pointcut inside an aspect is very similar to declaring atop-level pointcut:

<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">

<aop: poi ntcut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: aspect >

</ aop: confi g>

Much the same way in an @Aspect] aspect, pointcuts declared using the schema based definition style may
collect join point context. For example, the following pointcut collects the 'this object as the join point context
and passesit to advice:
<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">
<aop: poi ntcut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..)) &anp; &np; this(service)"/>
<aop: bef ore poi ntcut-ref="busi nessServi ce" nethod="nonitor"/>
</ aop: aspect >

</ aop: confi g>

The advice must be declared to receive the collected join point context by including parameters of the matching
names.

public void nonitor(Object service) {

}

When combining pointcut sub-expressions, '& &' is awkward within an XML document, and so the keywords

Spring Framework (2.5.5) 146

Aspect Oriented Programming with Spring

‘and', 'or' and 'not' can be used in place of '&&", '|| and '!" respectively. For example, the previous pointcut may
be better written as:
<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">
<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz. nyapp.service.*.*(..)) and this(service)"/>
<aop: bef ore poi ntcut -ref="busi nessServi ce" nethod="nonitor"/>
</ aop: aspect >

</ aop: confi g>

Note that pointcuts defined in this way are referred to by their XML id and cannot be used as named pointcuts
to form composite pointcuts. The named pointcut support in the schema based definition style is thus more
limited than that offered by the @A spectJ style.

6.3.3. Declaring advice

The same five advice kinds are supported as for the @A spectJ style, and they have exactly the same semantics.

6.3.3.1. Before advice

Before advice runs before a matched method execution. It is declared inside an <aop: aspect > using the
<aop:before> element.

<aop: aspect i d="beforeExanpl e" ref="aBean">
<aop: before

poi nt cut - r ef =" dat aAccessOper ati on"
met hod="doAccessCheck"/ >

</ aop: aspect >

Here dat aAccessQperation is the id of a pointcut defined at the top (<aop: confi g>) level. To define the
pointcut inline instead, replace the poi nt cut - ref attribute with apoi nt cut attribute:

<aop: aspect i d="beforeExanpl e" ref="aBean">

<aop: before
poi nt cut ="execution(* com xyz. nyapp.dao. *.*(..))"
nmet hod="doAccessCheck" />

</ aop: aspect >

As we noted in the discussion of the @Aspect style, using named pointcuts can significantly improve the
readability of your code.

The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This method
must be defined for the bean referenced by the aspect element containing the advice. Before a data access
operation is executed (a method execution join point matched by the pointcut expression), the
"doAccessCheck™" method on the aspect bean will be invoked.

Spring Framework (2.5.5) 147

Aspect Oriented Programming with Spring

6.3.3.2. After returning advice

After returning advice runs when a matched method execution completes normally. It is declared inside an
<aop: aspect > in the same way as before advice. For example:
<aop: aspect id="afterReturni ngExanpl e" ref="aBean">
<aop: after-returning

poi nt cut - r ef =" dat aAccessOper ati on"
met hod="doAccessCheck"/ >

</ aop: aspect >

Just as in the @AspectJ style, it is possible to get hold of the return value within the advice body. Use the
returning attribute to specify the name of the parameter to which the return value should be passed:
<aop: aspect id="afterReturni ngxanpl e" ref="aBean">
<aop: after-returning
poi nt cut - ref =" dat aAccessOper ati on”

returning="retVal"
nmet hod="doAccessCheck"/ >

</ aop: aspect >

The doAccessCheck method must declare a parameter named r et Val . The type of this parameter constrains
matching in the same way as described for @AfterReturning. For example, the method signature may be
declared as:

public void doAccessCheck(Object retVval) {...

6.3.3.3. After throwing advice

After throwing advice executes when a matched method execution exits by throwing an exception. It is
declared inside an <aop: aspect > using the after-throwing element:
<aop: aspect id="after Throw ngExanpl e" ref="aBean">
<aop: after-throw ng

poi nt cut - r ef =" dat aAccessOper ati on”
nmet hod="doRecover yActi ons"/ >

</ aop: aspect >

Just as in the @Aspectd style, it is possible to get hold of the thrown exception within the advice body. Use the
throwing attribute to specify the name of the parameter to which the exception should be passed:
<aop: aspect id="after Throw ngExanpl e" ref="aBean">
<aop: after-throw ng
poi nt cut - ref =" dat aAccessOper ati on”

t hr owi ng="dat aAccessEx"
net hod="doRecover yActi ons"/ >

</ aop: aspect >

Spring Framework (2.5.5) 148

Aspect Oriented Programming with Spring

The doRecoveryActions method must declare a parameter named dat aAccessEx. The type of this parameter
constrains matching in the same way as described for @AfterThrowing. For example, the method signature
may be declared as:

public void doRecoveryActi ons(Dat aAccessExcepti on dat aAccessEx) {...

6.3.3.4. After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the af t er element:

<aop: aspect id="afterFinallyExanpl e" ref="aBean">

<aop: after
poi nt cut - ref =" dat aAccessOper ati on”
nmet hod="doRel easelLock"/ >

</ aop: aspect >

6.3.3.5. Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the
opportunity to do work both before and after the method executes, and to determine when, how, and even if, the
method actually gets to execute at all. Around advice is often used if you need to share state before and after a
method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least
powerful form of advice that meets your requirements; don't use around advice if simple before advice would
do.

Around advice is declared using the aop: ar ound element. The first parameter of the advice method must be of
type Proceedi ngJoi nPoi nt . Within the body of the advice, calling proceed() on the Proceedi ngJoi nPoi nt

causes the underlying method to execute. The pr oceed method may also be calling passing in an Obj ect[] - the
valuesin the array will be used as the arguments to the method execution when it proceeds. See Section 6.2.4.5,
“Around advice” for notes on calling proceed with an tbj ect[] .

<aop: aspect id="aroundExanpl e" ref="aBean">
<aop: ar ound

poi nt cut - ref =" busi nessServi ce"
net hod="doBasi cProfiling"/>

</ aop: aspect >

The implementation of the doBasi cProfi | i ng advice would be exactly the same as in the @Aspect] example
(minus the annotation of course):

public Object doBasicProfiling(Proceedingdoi nPoint pjp) throws Throwable {
/'l start stopwatch
oj ect retVal = pjp.proceed();
/'l stop stopwatch
return retVal

6.3.3.6. Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for the @A spectJ

Spring Framework (2.5.5) 149

Aspect Oriented Programming with Spring

support - by matching pointcut parameters by name against advice method parameters. See Section 6.2.4.6,
“Advice parameters’ for details. If you wish to explicitly specify argument names for the advice methods (not
relying on the detection strategies previously described) then this is done using the ar g- nanes attribute of the
advice element, which is treated in the same manner to the "argNames" attribute in an advice annotation as
described in Section 6.2.4.6.3, “ Determining argument names”. For example:

<aop: before
poi nt cut ="com xyz. | i b. Poi nt cuts. anyPubl i cMet hod() and @nnot ati on(auditable)"
met hod="audi t "
ar g- nanmes="audi t abl e"/ >

The ar g- nares attribute accepts a comma-delimited list of parameter names.

Find below a dlightly more involved example of the XSD-based approach that illustrates some around advice
used in conjunction with a number of strongly typed parameters.

package X.y.service;

public interface FooService {

Foo get Foo(String fooName, int age);
}

public cl ass Defaul t FooService inplenents FooService {

public Foo getFoo(String name, int age) {
return new Foo(nane, age);
}

Next up is the aspect. Notice the fact that the profile(..) method accepts a number of strongly-typed
parameters, the first of which happens to be the join point used to proceed with the method call: the presence of
this parameter isan indication that the profil e(..) isto beused asar ound advice:

package x.y;

i nport org. aspectj .| ang. Proceedi ngJoi nPoi nt;
i nport org.springfranework. util.StopWatch;

public class SinpleProfiler {

public Object profile(Proceedi ngJoinPoint call, String nane, int age) throws Throwable {
St opWat ch cl ock = new St opWat ch(
"Profiling for '" + nane + "' and '" + age + "'");
try {

clock.start(call.toShortString());
return call.proceed();
} finally {
cl ock. stop();
System out. println(clock.prettyPrint());

Finaly, here is the XML configuration that is required to effect the execution of the above advice for a
particular join point:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"

xsi : schemalLocat i on="
http://ww. springfranmework. org/ schenma/ beans http://ww. spri ngfranmework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
ht t p: // ww. spri ngf ranewor k. or g/ schena/ aop http://ww. spri ngfranework. or g/ schena/ aop/ spri ng- aop- 2. 5. xsd" >

<I-- this is the object that will be proxied by Spring's AOP infrastructure -->
<bean i d="fooService" class="x.y.service. Defaul t FooService"/>

Spring Framework (2.5.5) 150

Aspect Oriented Programming with Spring

<l-- this is the actual advice itself -->
<bean id="profiler" class="x.y.SinpleProfiler"/>

<aop: confi g>
<aop: aspect ref="profiler">

<aop: poi ntcut id="t heExecuti onOf SoneFooSer vi ceMet hod"
expressi on="execution(* x.y.service. FooService. getFoo(String,int))
and args(nane, age)"/>

<aop: around poi ntcut -ref="t heExecuti onOf SoneFooSer vi ceMet hod"
nmet hod="profile"/>

</ aop: aspect >
</ aop: confi g>

</ beans>

If we had the following driver script, we would get output something like this on standard outpui:

i nport org. springfranework. beans. f act ory. BeanFact ory;
i mport org.springframework. cont ext. support. C assPat hXm Appl i cati onCont ext ;
i nport X.y.service. FooService

public final class Boot {

public static void main(final String[] args) throws Exception {
BeanFactory ctx = new Cl assPat hXm Applicati onContext ("x/y/plain.xm");
FooService foo = (FooService) ctx.getBean("fooService");
f 0o. get Foo(" Pengo", 12);

}

StopWatch 'Profiling for 'Pengo’ and '12'': running time (mllis) =0

00000 ? execution(getFoo)

6.3.3.7. Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering rules are as
described in Section 6.2.4.7, “Advice ordering”. The precedence between aspects is determined by either
adding the o der annotation to the bean backing the aspect or by having the bean implement the O der ed
interface.

6.3.4. Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects
implement a given interface, and to provide an implementation of that interface on behalf of those objects.

An introduction is made using the aop: decl ar e- par ent s element inside an aop: aspect Thiselement isused to
declare that matching types have a new parent (hence the name). For example, given an interface
UsageTracked, and an implementation of that interface Def aul t UsageTr acked, the following aspect declares
that all implementors of service interfaces also implement the UsageTr acked interface. (In order to expose
statistics viaJM X for example.)

<aop: aspect id="usageTrackerAspect" ref="usageTracki ng">

<aop: decl are-parents
t ypes- mat chi ng="com xzy. myapp. servi ce. *+"
i mpl enent -i nterface="com xyz. myapp. servi ce. tracki ng. UsageTr acked"
def aul t -i npl =" com xyz. nyapp. servi ce. tracki ng. Def aul t UsageTr acked"/ >

Spring Framework (2.5.5) 151

Aspect Oriented Programming with Spring

<aop: before
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessSer vi ce()
and thi s(usageTracked)"
nmet hod="r ecor dUsage"/ >

</ aop: aspect >

The class backing the usageTr acki ng bean would contain the method:

public void recordUsage(UsageTracked usageTracked) {
usageTracked. i ncrement UseCount () ;
}

The interface to be implemented is determined by inplenent-interface atribute. The value of the
t ypes- mat chi ng attribute is an Aspectd type pattern :- any bean of a matching type will implement the
UsageTr acked interface. Note that in the before advice of the above example, service beans can be directly used
as implementations of the UsageTr acked interface. If accessing a bean programmatically you would write the
following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("myService");

6.3.5. Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other instantiation
models may be supported in future releases.

6.3.6. Advisors

The concept of "advisors' is brought forward from the AOP support defined in Spring 1.2 and does not have a
direct equivalent in AspectJ. An advisor is like a small self-contained aspect that has a single piece of advice.
The advice itself is represented by a bean, and must implement one of the advice interfaces described in
Section 7.3.2, “Advice typesin Spring”. Advisors can take advantage of AspectJ pointcut expressions though.

Spring 2.0 supports the advisor concept with the <aop: advi sor > element. Y ou will most commonly see it used
in conjunction with transactional advice, which also has its own namespace support in Spring 2.0. Here's how it
looks:

<aop: confi g>

<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

<aop: advi sor
poi nt cut - r ef =" busi nessSer vi ce"
advi ce-ref ="t x-advi ce"/ >

</ aop: confi g>

<t x: advi ce id="tx-advice">
<tx:attributes>
<t x: net hod nane="*" propagati on="REQUI RED"/ >
</tx:attributes>
</ tx: advi ce>

As well as the poi nt cut -ref attribute used in the above example, you can also use the poi nt cut attribute to
define a pointcut expression inline.

Spring Framework (2.5.5) 152

Aspect Oriented Programming with Spring

To define the precedence of an advisor so that the advice can participate in ordering, use the or der attribute to
define the O der ed value of the advisor.

6.3.7. Example

Let's see how the concurrent locking failure retry example from Section 6.2.7, “Example” ooks when rewritten
using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser).
If the operation is retried, it is quite likely it will succeed next time round. For business services where it is
appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict
resolution), wed like to transparently retry the operation to avoid the client seeing a
Pessi mi sti cLocki ngFai | ur eExcepti on. Thisis arequirement that clearly cuts across multiple services in the
service layer, and henceisideal for implementing via an aspect.

Because we want to retry the operation, we'll need to use around advice so that we can call proceed multiple
times. Here's how the basic aspect implementation looks (it's just a regular Java class using the schema
support):

public class Concurrent OperationExecutor inplenments Ordered {
private static final int DEFAULT _MAX RETRIES = 2;

private int maxRetries = DEFAULT_MAX RETRI ES;
private int order = 1;

public void set MaxRetries(int nmaxRetries) {
this. maxRetries = maxRetries;

}

public int getOrder() {
return this.order;
}

public void setOrder(int order) {
this.order = order;

}

public Qoject doConcurrent Qperati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numAttenpts = O;
Pessi m sti cLocki ngFai | ureExcepti on | ockFai | ur eExcepti on;
do {
numAt t enpt s++;

try {
return pjp.proceed();

cat ch(Pessi m sti cLocki ngFai | ureException ex) {
| ockFai | ureException = ex;
}
}

whil e(numAttenpts <= this. maxRetries);
t hrow | ockFai | ur eExcepti on;

Note that the aspect implements the o der ed interface so we can set the precedence of the aspect higher than
the transaction advice (we want a fresh transaction each time we retry). The maxRet ri es and or der properties
will both be configured by Spring. The main action happens in the doConcurrent Oper ati on around advice
method. We try to proceed, and if we fail with a Pessi ni sti cLocki ngFai | ur eExcepti on we simply try again
unless we have exhausted all of our retry attempts.

This classisidentical to the one used in the @Aspect] example, but with the annotations removed.

Spring Framework (2.5.5) 153

Aspect Oriented Programming with Spring

The corresponding Spring configuration is:

<aop: confi g>
<aop: aspect id="concurrentOperationRetry" ref="concurrentOperationExecutor">

<aop: poi ntcut id="i denpotent Operation"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

<aop: ar ound
poi nt cut -ref ="i denpot ent Oper ati on"
nmet hod="doConcurrent Operati on"/>

</ aop: aspect >
</ aop: confi g>

<bean i d="concurrent Qper ati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concurr ent Oper ati onExecut or" >
<property name="naxRetries" val ue="3"/>
<property nane="order" val ue="100"/>
</ bean>

Notice that for the time being we assume that all business services are idempotent. If thisis not the case we can
refine the aspect so that it only retries genuinely idempotent operations, by introducing an | denpot ent
annotation:

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)
public @nterface |denpotent {
/'l marker annotation

}

and using the annotation to annotate the implementation of service operations. The change to the aspect to retry
only idempotent operations simply involves refining the pointcut expression so that only @ denpotent
operations match:

<aop: poi ntcut id="idenpotent Operation"
expressi on="execution(* com xyz. nmyapp.service.*.*(..)) and
@nnot ati on(com xyz. myapp. servi ce. | denpotent)"/>

6.4. Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given requirement, how do you
decide between using Spring AOP or Aspect], and between the Aspect language (code) style, @Aspect]
annotation style, or the Spring XML style? These decisions are influenced by a number of factors including
application requirements, development tools, and team familiarity with AOP.

6.4.1. Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full AspectJ as there is no requirement
to introduce the Aspectd compiler / weaver into your development and build processes. If you only need to
advise the execution of operations on Spring beans, then Spring AOP is the right choice. If you need to advise
objects not managed by the Spring container (such as domain objects typicaly), then you will need to use
Aspectd. You will also need to use Aspect] if you wish to advise join points other than simple method
executions (for example, field get or set join points, and so on).

When using AspectJ, you have the choice of the Aspectd language syntax (also known as the "code styl€") or
the @A spectJ annotation style. Clearly, if you are not using Java 5+ then the choice has been made for you...

Spring Framework (2.5.5) 154

Aspect Oriented Programming with Spring

use the code style. If aspects play alarge role in your design, and you are able to use the AspectJ Development
Tools (AJDT) plugin for Eclipse, then the Aspect] language syntax is the preferred option: it is cleaner and
simpler because the language was purposefully designed for writing aspects. If you are not using Eclipse, or
have only a few aspects that do not play a major role in your application, then you may want to consider using
the @AspectJ style and sticking with a regular Java compilation in your IDE, and adding an aspect weaving
phase to your build script.

6.4.2. @Aspectd or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @Aspectd or XML style. Clearly if you are
not running on Java 5+, then the XML style is the appropriate choice; for Java 5 projects there are various
tradeoffs to consider.

The XML style will be most familiar to existing Spring users. It can be used with any JDK level (referring to
named pointcuts from within pointcut expressions does still require Java 5+ though) and is backed by genuine
POJOs. When using AOP as atool to configure enterprise services then XML can be a good choice (a good test
is whether you consider the pointcut expression to be a part of your configuration you might want to change
independently). With the XML style arguably it is clearer from your configuration what aspects are present in
the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the
requirement it addresses in a single place. The DRY principle says that there should be a single, unambiguous,
authoritative representation of any piece of knowledge within a system. When using the XML style, the
knowledge of how a requirement is implemented is split across the declaration of the backing bean class, and
the XML in the configuration file. When using the @AspectJ style there is a single module - the aspect - in
which this information is encapsulated. Secondly, the XML style is dightly more limited in what it can express
than the @AspectJ style: only the "singleton" aspect instantiation model is supported, and it is not possible to
combine named pointcuts declared in XML. For example, in the @AspectJ style you can write something like:

@Poi nt cut (execution(* get*()))
public void propertyAccess() {}

@Poi nt cut (executi on(org. xyz. Account+ *(..))
public void operationReturni ngAnAccount () {}

@Poi nt cut (propertyAccess() && operati onRet urni ngAnAccount ())
public void account PropertyAccess() {}

In the XML style | can declare the first two pointcuts:

<aop: poi ntcut id="propertyAccess"
expressi on="execution(* get*())"/>

<aop: poi ntcut id="operationReturni ngAnAccount"
expressi on="execution(org. xyz. Account+ *(..))"/>

The downside of the XML approach is that you cannot define the 'account PropertyAccess' pointcut by
combining these definitions.

The @Aspect] style supports additional instantiation models, and richer pointcut composition. It has the
advantage of keeping the aspect as a modular unit. It also has the advantage the @AspectJ aspects can be
understood (and thus consumed) both by Spring AOP and by Aspect] - so if you later decide you need the
capabilities of AspectJ to implement additional requirements then it is very easy to migrate to an AspectJ-based
approach. On balance the Spring team prefer the @A spectJ style whenever you have aspects that do more than
simple "configuration" of enterprise services.

Spring Framework (2.5.5) 155

http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/

Aspect Oriented Programming with Spring

6.5. Mixing aspect types

It is perfectly possible to mix @Aspectd style aspects using the autoproxying support, schema-defined
<aop: aspect > asPects, <aop: advi sor > declared advisors and even proxies and interceptors defined using the
Spring 1.2 style in the same configuration. All of these are implemented using the same underlying support
mechanism and will co-exist without any difficulty.

6.6. Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object. (JDK
dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at |east one interface then a JDK dynamic proxy will be used. All
of the interfaces implemented by the target type will be proxied. If the target object does not implement any
interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the target
object, not just those implemented by its interfaces) you can do so. However, there are some issues to consider:

* final methods cannot be advised, as they cannot be overriden.

* You will need the CGLIB 2 binaries on your classpath, whereas dynamic proxies are available with the JDK.
Spring will automatically warn you when it needs CGL 1B and the CGLIB library classes are not found on the

classpath.

« The constructor of your proxied object will be called twice. This is a natural consegquence of the CGLIB
proxy model whereby a subclass is generated for each proxied object. For each proxied instance, two objects
are created: the actual proxied object and an instance of the subclass that implements the advice. This
behavior is not exhibited when using JDK proxies. Usually, calling the constructor of the proxied type twice,
is not an issue, as there are usually only assignments taking place and no real logic is implemented in the
constructor.

To force the use of CGLIB proxies set the value of the proxy-target - cl ass attribute of the <aop: confi g>
element to true:

<aop: config proxy-target-class="true">
<!-- other beans defined here... -->
</ aop: confi g>

To force CGLIB proxying when using the @Aspect] autoproxy support, set the ' proxy-target - cl ass'

attribute of the <aop: aspectj - aut opr oxy> element to t r ue:

<aop: aspect j - aut opr oxy proxy-target-class="true"/>

Note

Multiple <aop: confi g/ > sections are collapsed into a single unified auto-proxy creator at runtime,
which applies the strongest proxy settings that any of the <aop: confi g/ > sections (typically from
different XML bean definition files) specified. This also applies to the <t x: annot ati on-dri ven/ >
and <aop: aspect j - aut opr oxy/ > elements.

Spring Framework (2.5.5) 156

Aspect Oriented Programming with Spring

To be clear: using ‘'proxy-target-class="true"' ON <tx:annotation-driven/>,

<aop: aspect j - aut opr oxy/ > Of <aop: confi g/ > elements will force the use of CGLIB proxies for
all three of them.

6.6.1. Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement

actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied with
the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight object
reference, asillustrated by the following code snippet.

public class SinplePojo inplenents Pojo {

public void foo() {
/1 this next method invocation is a direct call on the "this' reference
this.bar();

}

public void bar() {
/1 sone logic...

}
}

If you invoke a method on an object reference, the method is invoked directly on that object reference, as can
be seen below.

Calling code pojo.foo ()
&

Flain Dbjec:t I—D foo() on the cbject

public class Main {

public static void main(String[] args) {
Poj o pojo = new Si npl ePoj o();

// this is a direct nethod call on the 'pojo' reference
poj o. foo();

Things change slightly when the reference that client code has is a proxy. Consider the following diagram and
code snippet.

Spring Framework (2.5.5) 157

Aspect Oriented Programming with Spring

pojo. foo ()
feo() on the proxy

then foo() on the object

Flain Object

public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFactory(new Si npl ePojo());
factory. addl nterface(Poj o. cl ass);
factory. addAdvi ce(new RetryAdvice());
Poj o pojo = (Pojo) factory.getProxy();

/'l this is a nethod call on the proxy!
poj o. foo();

The key thing to understand here is that the client code inside the mai n(. .) of the mai n class has a reference to
the proxy. This means that method calls on that object reference will be calls on the proxy, and as such the
proxy will be able to delegate to al of the interceptors (advice) that are relevant to that particular method call.
However, once the call has finally reached the target object, the Si npl ePoj o reference in this case, any method
calls that it may make on itself, such asthis. bar() or this.foo(), are going to be invoked against the t hi s
reference, and not the proxy. This has important implications. It means that self-invocation is not going to result
in the advice associated with a method invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to refactor
your code such that the self-invocation does not happen. For sure, this does entail some work on your part, but
it is the best, least-invasive approach. The next approach is absolutely horrendous, and | am almost reticent to
point it out precisely because it is so horrendous. You can (choke!) totaly tie the logic within your class to
Spring AOP by doing this:
public class SinplePojo inplenments Pojo {

public void foo() {

/1 this works, but... gah!
((Poj o) AopContext.currentProxy()).bar();

public void bar() {
/1 sone logic...
}

Thistotally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is being used
in an AOP context, which flies in the face of AOP. It aso requires some additional configuration when the
proxy is being created:

public class Main {

Spring Framework (2.5.5) 158

Aspect Oriented Programming with Spring

public static void main(String[] args) {

ProxyFactory factory = new ProxyFact ory(new Si npl ePojo());
factory. adddl nt erface(Poj o. cl ass);

factory. addAdvi ce(new RetryAdvice());

factory. set ExposeProxy(true);

Poj o pojo = (Pojo) factory.getProxy();

// this is a nmethod call on the proxy!
poj o. foo();

Finally, it must be noted that Aspect does not have this self-invocation issue because it is not a proxy-based
AOP framework.

6.7. Programmatic creation of @AspectJ Proxies

In addition to declaring aspects in your configuration using either <aop: conf i g> Or <aop: aspect j - aut opr oxy>,
it is aso possible programmatically to create proxies that advise target objects. For the full details of Spring's
AOP AP, see the next chapter. Here we want to focus on the ability to automatically create proxies using

@A spect] aspects.

The class org. spri ngf ramewor k. aop. aspect j . annot at i on. Aspect JProxyFact ory can be used to create a
proxy for a target object that is advised by one or more @A spect] aspects. Basic usage for this class is very
simple, asillustrated below. See the Javadocs for full information.

I/l create a factory that can generate a proxy for the given target object
Aspect JProxyFactory factory = new Aspect JProxyFact ory(target Object);

// add an aspect, the class nust be an @\spectJ aspect
/1 you can call this as nmany tines as you need with different aspects
factory. addAspect (Securit yManager. cl ass) ;

// you can al so add existing aspect instances, the type of the object supplied nust be an @\spectJ aspect
factory. addAspect (usageTr acker);

/'l now get the proxy object...
M/l nter faceType proxy = factory. get Proxy();

6.8. Using AspectJ with Spring applications

Everything we've covered so far in this chapter is pure Spring AOP. In this section, we're going to look at how
you can use the AspectJ compiler/weaver instead of, or in addition to, Spring AOP if your needs go beyond the
facilities offered by Spring AOP alone.

Spring ships with a small Aspectd aspect library, which is available standalone in your distribution as
spring-aspects.jar; you'll need to add this to your classpath in order to use the aspects in it. Section 6.8.1,
“Using AspectJ to dependency inject domain objects with Spring” and Section 6.8.2, “Other Spring aspects for
AspectJ’ discuss the content of this library and how you can use it. Section 6.8.3, “ Configuring AspectJ aspects
using Spring 10C” discusses how to dependency inject Aspect] aspects that are woven using the Aspect]
compiler. Finaly, Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework” provides an
introduction to load-time weaving for Spring applications using AspectJ.

6.8.1. Using AspectJ to dependency inject domain objects with Spring

Spring Framework (2.5.5) 159

Aspect Oriented Programming with Spring

The Spring container instantiates and configures beans defined in your application context. It is also possible to
ask a bean factory to configure a pre-existing object given the name of a bean definition containing the
configuration to be applied. The spri ng- aspects. jar contains an annotation-driven aspect that exploits this
capability to allow dependency injection of any object. The support is intended to be used for objects created
outside of the control of any container. Domain objects often fall into this category because they are often
created programmatically using the new operator, or by an ORM tool as aresult of a database query.

The @onf i gur abl e annotation marks a class as eligible for Spring-driven configuration. In the simplest case it
can be used just as a marker annotation:

package com xyz. nyapp. domai n
i mport org.springframework. beans. factory. annot ati on. Confi gur abl e;

@onf i gurabl e

public class Account {
...

}

When used as a marker interface in this way, Spring will configure new instances of the annotated type
(Account in this case) using a prototype-scoped bean definition with the same name as the fully-qualified type
name (com xyz. nyapp. domai n. Account). Since the default name for a bean is the fully-qualified name of its
type, a convenient way to declare the prototype definition is simply to omit thei d attribute:

<bean cl ass="com xyz. nyapp. donai n. Account" scope="pr ot ot ype">
<property nanme="fundsTransferService" ref="fundsTransferService"/>
</ bean>

If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly in the
annotation:

package com xyz. nyapp. domai n
i nport org.springfranework. beans. f act ory. annot ati on. Confi gur abl e;

@Conf i gur abl e("account ™)

public class Account {
...

}

Spring will now look for a bean definition named "account " and use that as the definition to configure new
Account instances.

You can also use autowiring to avoid having to specify a prototype-scoped bean definition at all. To have
Spring apply autowiring use the 'autowire' property of the @oonfigurable annotation: specify either
@onf i gur abl e(aut owi r e=Aut owi r e. BY_TYPE) or @conf i gur abl e(aut owi r e=Aut owi r e. BY_NAME for
autowiring by type or by name respectively. As an aternative, as of Spring 2.5 it is preferable to specify
explicit, annotation-driven dependency injection for your @onfi gurabl e beans by using @ut owi red and
@resour ce at thefield or method level (see Section 3.11, “ Annotation-based configuration” for further details).

Finally you can enable Spring dependency checking for the object references in the newly created and
configured object by using the dependencyCheck attribute (for example:
@@onf i gur abl e(aut owi r e=Aut owi r e. BY_NAME, dependencyCheck=true)). If this attribute is set to true, then
Spring will validate after configuration that all properties (which are not primitives or collections) have been
Set.

Using the annotation on its own does nothing of course. It is the Annot ati onBeanConfi gur er Aspect in
spring-aspects. jar that acts on the presence of the annotation. In essence the aspect says "after returning

Spring Framework (2.5.5) 160

Aspect Oriented Programming with Spring

from the initialization of a new object of a type annotated with @onfi gur abl e, configure the newly created
object using Spring in accordance with the properties of the annotation”. In this context, initialization refers to
newly instantiated objects (e.g., objects instantiated with the 'new operator) as well asto Seri al i zabl e objects
that are undergoing deserialization (e.g., viareadResolve()).

Note
e

One of the key phrases in the above paragraph is 'in essence’. For most cases, the exact semantics
of 'after returning from the initialization of a new object’ will be fine... in this context, ‘after
initialization' means that the dependencies will be injected after the object has been constructed -
this means that the dependencies will not be available for use in the constructor bodies of the class.
If you want the dependencies to be injected before the constructor bodies execute, and thus be
available for use in the body of the constructors, then you need to define this on the @onf i gur abl e
declaration like so:

@onf i gur abl e(preConstructi on=true)

You can find out more information about the language semantics of the various pointcut types in
AspectJin this appendix of the AspectJ Programming Guide.

For this to work the annotated types must be woven with the AspectJ weaver - you can either use a build-time
Ant or Maven task to do this (see for example the AspectJ Development Environment Guide) or load-time
weaving (see Section 6.8.4, “Load-time weaving with Aspectd in the Spring Framework™). The
Annot at i onBeanConf i gur er Aspect itself needs configuring by Spring (in order to obtain a reference to the
bean factory that is to be used to configure new objects). The Spring cont ext namespace defines a convenient
tag for doing this: just include the following in your application context configuration:

<cont ext : spri ng- confi gured/ >

If you are using the DTD instead of schema, the equivalent definitioniis:

<bean
cl ass="org. spri ngframewor k. beans. factory. aspectj . Annot ati onBeanConf i gur er Aspect"
factory- met hod="aspect &0f "/ >

Instances of @onfi gurabl e objects created before the aspect has been configured will result in a warning
being issued to the log and no configuration of the object taking place. An example might be a bean in the
Spring configuration that creates domain objects when it is initialized by Spring. In this case you can use the
"depends-on" bean attribute to manually specify that the bean depends on the configuration aspect.

<bean i d="nyService"
cl ass="com xzy. nyapp. servi ce. MyServi ce"
depends- on="or g. spri ngf ramewor k. beans. f act ory. aspectj . Annot at i onBeanConfi gur er Aspect ">

<l-- .. -->

</ bean>

6.8.1.1. Unit testing @onfi gur abl e Objects

One of the goals of the @onfi gur abl e support is to enable independent unit testing of domain objects without
the difficulties associated with hard-coded lookups. If @onfi gurabl e types have not been woven by AspectJ
then the annotation has no affect during unit testing, and you can simply set mock or stub property referencesin
the object under test and proceed as normal. If @onfi gur abl e types have been woven by AspectJ then you can

Spring Framework (2.5.5) 161

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.eclipse.org/aspectj/doc/next/progguide/semantics-joinPoints.html
http://www.eclipse.org/aspectj/doc/next/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html

Aspect Oriented Programming with Spring

dtill unit test outside of the container as normal, but you will see a warning message each time that you
construct an @onf i gur abl e object indicating that it has not been configured by Spring.

6.8.1.2. Working with multiple application contexts

The Annot at i onBeanConf i gur er Aspect Used to implement the @onf i gur abl e support is an AspectJ singleton
aspect. The scope of a singleton aspect is the same as the scope of st ati ¢ members, that is to say there is one
aspect instance per classloader that defines the type. This meansthat if you define multiple application contexts
within the same classloader hierarchy you need to consider where to define the <aop: spri ng- confi gured/ >
bean and where to place spri ng- aspect s. j ar on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining common
business services and everything needed to support them, and one child application context per servlet
containing definitions particular to that servlet. All of these contexts will co-exist within the same classloader
hierarchy, and so the Annot at i onBeanConf i gur er Aspect can only hold a reference to one of them. In this case
we recommend defining the <aop: spri ng- confi gured/ > bean in the shared (parent) application context: this
defines the services that you are likely to want to inject into domain objects. A consequence is that you cannot
configure domain objects with references to beans defined in the child (serviet-specific) contexts using the
@Configurable mechanism (probably not something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application loads the types
in spring-aspects.jar using its own classoader (for example, by placing spring-aspects.jar in
"WEB- I NF/lib'). If spring-aspects.jar isonly added to the container wide classpath (and hence loaded by
the shared parent classloader), all web applications will share the same aspect instance which is probably not
what you want.

6.8.2. Other Spring aspects for AspectJ

In addition to the @onf i gur abl e aspect, spri ng- aspects. j ar contains an AspectJ aspect that can be used to
drive Spring's transaction management for types and methods annotated with the @r ansacti onal annotation.
Thisis primarily intended for users who want to use the Spring Framework's transaction support outside of the
Spring container.

The aspect that interprets @r ansact i onal annotations is the Annot at i onTransact i onAspect . When using this
aspect, you must annotate the implementation class (and/or methods within that class), not the interface (if any)
that the class implements. AspectJ follows Java's rule that annotations on interfaces are not inherited.

A @ransactional annotation on a class specifies the default transaction semantics for the execution of any
public operation in the class.

A @ransactional annotation on a method within the class overrides the default transaction semantics given
by the class annotation (if present). Methods with public, protected, and default visibility may al be
annotated. Annotating pr ot ect ed and default visibility methods directly is the only way to get transaction
demarcation for the execution of such methods.

For Aspectd programmers that want to use the Spring configuration and transaction management support but
don't want to (or cannot) use annotations, spri ng- aspects. j ar alS0 contains abst ract aspects you can extend
to provide your own pointcut definitions. See the sources for the Abstract BeanConfi gurer Aspect and
Abst ract Tr ansact i onAspect aspects for more information. As an example, the following excerpt shows how
you could write an aspect to configure all instances of objects defined in the domain model using prototype
bean definitions that match the fully-qualified class names:

publ i c aspect Donmi nObj ect Confi guration extends Abstract BeanConfi gurerAspect {

publ i ¢ Domai nObj ect Configuration() {

Spring Framework (2.5.5) 162

Aspect Oriented Programming with Spring

set BeanW ri ngl nf oResol ver (new Cl assNaneBeanW ri ngl nf oResol ver());

}

// the creation of a new bean (any object in the domain nodel)
prot ect ed pointcut beanCreati on(Object beanl nstance)
initialization(new..)) &&
Syst emAr chi t ect ure. i nDonai nModel () &&
t hi s(beanl nst ance) ;

6.8.3. Configuring AspectJ aspects using Spring loC

When using AspectJ aspects with Spring applications, it is natural to both want and expect to be able to
configure such aspects using Spring. The AspectJ runtime itself is responsible for aspect creation, and the
means of configuring the AspectJ created aspects via Spring depends on the AspectJ instantiation model (the
'per - xxx' clause) used by the aspect.

The majority of Aspect] aspects are singleton aspects. Configuration of these aspects is very easy: simply
create a bean definition referencing the aspect type as normal, and include the bean attribute
" factory-net hod="aspect 0" . This ensures that Spring obtains the aspect instance by asking AspectJ for it
rather than trying to create an instance itself. For example:

<bean id="profiler" class="comxyz.profiler.Profiler"
factory-net hod="aspect O " >
<property name="profilingStrategy" ref="janonProfilingStrategy"/>
</ bean>

Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype bean
definitions and using the @onfi gur abl e support from spri ng- aspects. j ar to configure the aspect instances
once they have bean created by the AspectJ runtime.

If you have some @Aspect] aspects that you want to weave with Aspectd (for example, using load-time
weaving for domain model types) and other @A spectJ aspects that you want to use with Spring AOP, and these
aspects are all configured using Spring, then you will need to tell the Spring AOP @A spectJ autoproxying
support which exact subset of the @Aspect] aspects defined in the configuration should be used for
autoproxying. You can do this by wusing one or more <include/> €lements inside the
<aop: aspect j - aut opr oxy/ > declaration. Each <i ncl ude/ > element specifies a name pattern, and only beans
with names matched by at least one of the patterns will be used for Spring AOP autoproxy configuration:

<aop: aspect j - aut opr oxy>
<aop: i ncl ude nane="t hi sBean"/>
<aop: i ncl ude nane="t hat Bean"/>
</ aop: aspectj - aut opr oxy>

Note

Do not be misled by the name of the <aop: aspectj - aut opr oxy/ > element: using it will result in
the creation of Soring AOP proxies. The @AspectJ style of aspect declaration is just being used
here, but the AspectJ runtime is not involved.

6.8.4. Load-time weaving with AspectJ in the Spring Framework

L oad-time weaving (LTW) refers to the process of weaving Aspect] aspects into an application's class files as

Spring Framework (2.5.5) 163

Aspect Oriented Programming with Spring

they are being loaded into the Java virtual machine (JVM). The focus of this section is on configuring and using
LTW in the specific context of the Spring Framework: this section is not an introduction to LTW though. For
full details on the specifics of LTW and configuring LTW with just AspectJ (with Spring not being involved at
all), see the LTW section of the AspectJ Development Environment Guide.

The value-add that the Spring Framework brings to AspectJ LTW is in enabling much finer-grained control
over the weaving process. 'Vanilla' Aspect] LTW is effected using a Java (5+) agent, which is switched on by
specifying a VM argument when starting up a JVM. It is thus a JV M-wide setting, which may be fine in some
situations, but often is a little too coarse. Spring-enabled LTW enables you to switch on LTW on a
per-d assLoader basis, which obviously is more fine-grained and which can make more sense in a
'single-Jv M-multiple-application’ environment (such asisfound in atypical application server environment).

Further, in certain environments, this support enables load-time weaving without making any modifications to
the application server's launch script that will be needed to add -javaagent: path/to/aspectjweaver.jar or (as we
describe later in this section) -javaagent:path/to/spring-agent.jar. Developers ssimply modify one or more files
that form the application context to enable load-time weaving instead of relying on administrators who
typically are in charge of the deployment configuration such as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of Aspectd LTW using Spring,
followed by detailed specifics about elements introduced in the following example. For a complete example,
please see the Petclinic sample application.

6.8.4.1. A first example

Let us assume that you are an application developer who has been tasked with diagnosing the cause of some
performance problems in a system. Rather than break out a profiling tool, what we are going to do is switch on
asimple profiling aspect that will enable us to very quickly get some performance metrics, so that we can then
apply afiner-grained profiling tool to that specific areaimmediately afterwards.

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the
@A spectJ-style of aspect declaration.

package f oo0;

i mport org. aspectj .| ang. Proceedi ngJoi nPoi nt ;

i nport org. aspectj .| ang. annot ati on. Aspect ;

i mport org.aspectj .| ang.annot ati on. Around;

i nport org. aspectj .| ang. annot ati on. Poi nt cut ;

i nport org.springfranmework. util.StopWatch;

i nport org. springfranework. core. annot ati on. Or der;

@\spect
public class ProfilingAspect {

@A ound(" et hodsToBeProfiled()")
public Object profil e(Proceedi ngJoi nPoint pjp) throws Throwabl e {
St opWat ch sw = new St opWat ch(get Cl ass(). get Si npl eNanme()) ;
try {
sw. start (pj p. getSignature().getNanme());
return pjp.proceed();
} finally {
sw. stop();
Systemout.println(sw prettyPrint());

}

@Poi nt cut ("execution(public * foo..*.*(..))")
public void methodsToBeProfiled(){}

We will also need to create an 'WVETA- | NF/ aop. xmi ' file, to inform the Aspect] weaver that we want to weave

Spring Framework (2.5.5) 164

http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

Aspect Oriented Programming with Spring

our ProfilingAspect intoour classes. Thisfile convention, namely the presence of afile (or files) on the Java
classpath called ' META- 1 NF/ aop. xni ' is standard AspectJ.

<! DOCTYPE aspectj PUBLIC
"-//AspectJ//DTD// EN' "http://ww. eclipse. org/aspectj/dtd/ aspectj.dtd">
<aspectj >
<weaver >

<I-- only weave classes in our application-specific packages -->
<include within="foo.*"/>

</ weaver >
<aspect s>

<l-- weave in just this aspect -->
<aspect nane="foo. ProfilingAspect"/>

</ aspect s>

</ aspectj >

Now to the Spring-specific portion of the configuration. We need to configure aLoadTi meveaver (all explained
later, just take it on trust for now). This load-time weaver is the essential component responsible for weaving
the aspect configuration in one or more 'META- | NF/ aop. xm ' files into the classes in your application. The good
thing is that it does not require a lot of configuration, as can be seen below (there are some more options that
you can specify, but these are detailed later).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmework. or g/ schema/ cont ext "
xsi : schemalLocat i on="
http://ww. spri ngfranmework. org/ schenma/ beans http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
htt p: // ww. spri ngf ranewor k. or g/ schenma/ cont ext http://ww. spri ngfranework. or g/ schema/ cont ext/ spri ng- cont ext - 2. 5. x
<I-- a service object; we will be profiling it's nethods -->
<bean id="entitl| enment Cal cul ati onServi ce"
cl ass="foo. StubEntitl enment Cal cul ati onServi ce"/>

<l-- this switches on the |oad-tinme weaving -->
<cont ext: | oad-ti ne- weaver/ >

</ beans>

Now that all the required artifacts are in place - the aspect, the 'META-1 NF/ aop. xmi ' file, and the Spring
configuration -, let us create asimple driver class with anei n(..) method to demonstrate the LTW in action.
package foo;
i mport org.springframework. cont ext. support. d assPat hXm Appl i cati onCont ext ;
public final class Main {
public static void main(String[] args) {
Appl i cationContext ctx = new C assPat hXnl Appl i cati onCont ext ("beans. xm ", Main.cl ass);

Entitl enent Cal cul ati onService entitlenentCal cul ati onService
= (EntitlenentCal cul ati onService) ctx.getBean("entitlenmentCal cul ati onService");

/1 the profiling aspect is 'woven' around this method execution
entitlement Cal cul ati onService. cal cul ateEntitlenment();

There is one last thing to do. The introduction to this section did say that one could switch on LTW selectively

Spring Framework (2.5.5) 165

Aspect Oriented Programming with Spring

on aper-c assLoader basis with Spring, and thisis true. However, just for this example, we are going to use a
Java agent (supplied with Spring) to switch on the LTW. Thisis the command line we will use to run the above
Mai n class:

java -javaagent: C:/projects/foo/lib/global/spring-agent.jar foo.Miin
The '-j avaagent ' is a Java 5+ flag for specifying and enabling agents to instrument programs running on the

JVM. The Spring Framework ships with such an agent, the I nst r unent at i onSavi ngAgent , which is packaged
inthespring-agent . j ar that was supplied as the value of the - j avaagent argument in the above example.

The output from the execution of the mai n program will look something like that below. (I have introduced a
Thread. sl eep(..) Statement into the cal cul ateEntitlement () implementation so that the profiler actually
captures something other than O milliseconds - the 01234 milliseconds is not an overhead introduced by the
AOP:))

Cal cul ating entitl enment

St opWatch ' ProfilingAspect': running time (mllis) = 1234

01234 100% cal cul ateEntitl enent

Since this LTW is effected using full-blown AspectJ, we are not just limited to advising Spring beans; the
following slight variation on the Mai n program will yield the same result.

package f oo0;
i mport org.springframework. cont ext. support. d assPat hXm Appl i cati onCont ext ;
public final class Main {
public static void main(String[] args) {
new Cl assPat hXm Appl i cati onCont ext ("beans. xm ", Main. cl ass);

Entitl ement Cal cul ati onService entitlenentCal cul ati onService =
new St ubEntit| enent Cal cul ati onService();

/1 the profiling aspect will be 'woven' around this nethod execution
entitlement Cal cul ati onService. cal cul ateEntitlenment();

Notice how in the above program we are simply bootstrapping the Spring container, and then creating a new
instance of the St ubEntitlenment Cal cul ati onServi ce totally outside the context of Spring... the profiling
advice still getswovenin.

The example admittedly is simplistic... however the basics of the LTW support in Spring have all been
introduced in the above example, and the rest of this section will explain the ‘why' behind each bit of
configuration and usage in detail.

Note

e
TheprofilingAspect used in thisexample may be basic, but it is quite useful. It is a nice example
of a development-time aspect that developers can use during development (of course), and then
quite easily exclude from builds of the application being deployed into UAT or production.

Spring Framework (2.5.5) 166

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html

Aspect Oriented Programming with Spring

6.8.4.2. Aspects

The aspects that you use in LTW have to be Aspectd aspects. They can be written in either the Aspect]
language itself or you can write your aspects in the @AspectJ-style. The latter option is of course only an
option if you are using Java 5+, but it does mean that your aspects are then both valid AspectJ and Spring AOP
aspects. Furthermore, the compiled aspect classes need to be available on the classpath.

6.8.4.3. '"META- | NF/ aop. xml '

The AspectJ LTW infrastructure is configured using one or more 'META- | NF/ aop. xm ' files, that are on the Java
classpath (either directly, or moretypicaly injar files).

The structure and contents of this file is detailed in the main AspectJ reference documentation, and the
interested reader isreferred to that resource. (I appreciate that this section is brief, but the 'aop. xm ' file is 100%
Aspect] - there is no Spring-specific information or semantics that apply to it, and so there is no extra value that
| can contribute either as a result), so rather than rehash the quite satisfactory section that the AspectJ
developerswrote, | am just directing you there.)

6.8.4.4. Required libraries (JARS)

At aminimum you will need the following libraries to use the Spring Framework's support for AspectJ LTW:

1. spring.jar (version 2.5 or later)
2. aspectjrt.jar (version 1.5 or later)
3. aspectjweaver.jar (version 1.5 or later)

If you are using the Spring-provided agent to enable instrumentation, you will also need:

1. spring-agent.jar

6.8.4.5. Spring configuration

The key component in Springs LTW support is the LoadTineweaver interface (in the
org. springframewor k. i nstrunent. cl assl oadi ng package), and the numerous implementations of it that ship
with the Spring distribution. A LoadTi meVeaver is responsible for adding one or more
java.lang.instrument.d assFil eTransformers t0 @ d assLoader at runtime, which opens the door to all
manner of interesting applications, one of which happens to be the LTW of aspects.

Tip

e
If you are unfamiliar with the idea of runtime class file transformation, you are encouraged to read
the Javadoc APl documentation for thej ava. | ang. i nst runent package before continuing. Thisis
not a huge chore because there is - rather annoyingly - precious little documentation there... the key
interfaces and classes will at least be laid out in front of you for reference as you read through this
section.

Configuring a LoadTi mreWeaver using XML for a particular Appl i cati onCont ext can be as easy as adding one
line. (Please note that you almost certainly will need to be using an Appl i cati onContext as your Spring
container - typically a BeanFactory will not be enough because the LTW support makes use of

Spring Framework (2.5.5) 167

http://www.eclipse.org/aspectj/doc/released/devguide/ltw-configuration.html

Aspect Oriented Programming with Spring

BeanFact or yPost Processors.)

To enable the Spring Framework's LTW support, you need to configure a LoadTi neWeaver , which typicaly is
done using the <cont ext : | oad- ti me- weaver /> element. Find below a valid <cont ext : | oad- ti ne- weaver/ >
definition that uses default settings.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranework. or g/ schema/ cont ext "
xsi : schemaLocat i on="
http://ww. spri ngframework. or g/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ context http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext-2. 5. x

<cont ext : | oad-ti ne- weaver/ >

</ beans>

The above <cont ext : | oad-ti me- weaver/ > bean definition will define and register a number of LTW-specific
infrastructure beans for you automatically, such as a LoadTi neweaver and an Aspect JWeavi ngEnabl er . Notice
how the <cont ext : | oad-ti me- weaver/ > is defined in the 'cont ext ' namespace; note also that the referenced
XML Schemafileisonly available in versions of Spring 2.5 and later.

What the above configuration does is define and register a default LoadTi meweaver bean for you. The default
LoadTi meWeaver iS the Def aul t Cont ext LoadTi meWeaver class, which attempts to decorate an automatically
detected LoadTi neWeaver : the exact type of LoadTi meweaver that will be ‘automatically detected' is dependent
upon your runtime environment (summarised in the following table).

Table 6.1. Def aul t Cont ext LoadTi meWeaver LoadTi meWaver s

Runtime Environment LoadTi meWeaver implementation
Running in BEA's Weblogic 10 WebLogi cLoadTi meVeaver
Running in Oracle's OC4J OC4JLoadTi meWeaver

Running in GlassFish d assFi shLoadTi meWeaver

JVM started with Spring I nst runent at i onLoadTi meVaver

I nst runment at i onSavi ngAgent

(java -javaagent:path/to/spring-agent.jar)

Fallback, expecting the underlying ClassL oader to Ref | ecti veLoadTi meWeaver
follow common conventions (e.g. applicable to
Toncat | nst rument abl ed assLoader and to Resin)

Note that these are just the LoadTineweavers that are autodetected when using the
Def aul t Cont ext LoadTi meWeaver: it is of course possible to specify exactly which LoadTi meveaver
implementation that you wish to use by specifying the fully-qualified classname as the value of the
'weaver - cl ass' attribute of the <cont ext : | oad-ti me-weaver/ > element. Find below an example of doing just
that:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"

Spring Framework (2.5.5) 168

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic/server
http://www.oracle.com/technology/products/oc4j/index.html
http://glassfish.dev.java.net/

Aspect Oriented Programming with Spring

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: cont ext ="http://ww. spri ngfranework. or g/ schema/ cont ext "

xsi : schemalLocat i on="
http://ww. springframework. or g/ scherma/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ context http://ww. springframework. or g/ schema/ cont ext/ spri ng-context-2.5. x

<cont ext: | oad-ti ne- weaver
weaver - cl ass="org. spri ngf ranewor k. i nstrunent . cl assl oadi ng. Ref | ecti veLoadTi neWeaver"/ >

</ beans>

The LoadTi neweaver that is defined and registered by the <cont ext : | oad- t i me- weaver/ > element can be later
retrieved from the Spring container using the well-known name 'l oadTi meWeaver'. Remember that the
LoadTi meWeaver eXists just as a mechanism for Spring's LTW infrastructure to add one or more
O assFileTransformers. The actual dassFileTransforner that does the LTW is the
Cl assPreProcessor Agent Adapter (from the org. aspectj.weaver.|oadti me package) class. See the
class-level Javadoc for the O assPr eProcessor Agent Adapt er class for further details, because the specifics of
how the weaving is actually effected is beyond the scope of this section.

There is one final attribute of the <context:1oad-tine-weaver/> left to discuss: the 'aspectj - weavi ng'
attribute. Thisis asimple attribute that controls whether LTW is enabled or not, it is as ssimple as that. It accepts
one of three possible values, summarised below, with the default value if the attribute is not present being '
aut odet ect '

Table 6.2. 'aspect j - weavi ng' attribute values

Attribute Value Explanation

on Aspect] weaving is on, and aspects will be woven at
|oad-time as appropriate.

of f LTW isoff... no aspect will be woven at load-time.

aut odet ect If the Spring LTW infrastructure can find at least one
'META- | NF/ aop. xni ' file, then Aspectd weaving is on,
elseitisoff. Thisisthe default value.

6.8.4.6. Environment-specific configuration

This last section contains any additional settings and configuration that you will need when using Spring's
LTW support in environments such as application servers and web containers.

6.8.4.6.1. Generic Java applications

You may enable Spring's support for LTW in any Java application (standalone as well as application server
based) through the use of the Spring-provided instrumentation agent. To do so, start the VM by by specifying
the -j avaagent : pat h/ t o/ spri ng- agent . j ar option. Note that this requires modification of the VM launch
script which may prevent you from using this in application server environments (depending on your operation
policies).

6.8.4.6.2. Tomcat

For web applications deployed onto Apache Tomcat 5.0 and above, Spring provides a

Spring Framework (2.5.5) 169

Aspect Oriented Programming with Spring

Tontat | nst runent abl ed assLoader t0 be registered as the web app class loader. The required Tomcat setup
looks as follows, to be included either in Tomcat's central server.xm file or in an application-specific
META- | NF/ cont ext . xni file within the WAR root. Spring's spri ng-t ontat - weaver . j ar needs to be included
in Tomcat's common lib directory in order to make this setup work.

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocati on">
<Loader | oaderd ass="org. springframework.instrunent.cl assl oadi ng.tontat. Tontat | nstrunent abl eCl assLoader"
useSyst enCl assLoader AsPar ent ="f al se"/ >
</ Cont ext >

Note: We generally recommend Tomcat 5.5.20 or above when enabling load-time weaving. Prior versions have
known issues with custom d assLoader Setup.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat's launch
script (see above). This will make instrumentation available to all deployed web applications, no matter which
Classl oader they happen to run on.

For a more detailed discussion of Tomcat-based weaving setup, check out the Section 12.6.1.3.1, “Tomcat
load-time weaving setup (5.0+)” section which discusses specifics of various Tomcat versions. While the
primary focus of that section is on JPA persistence provider setup, the Tomcat setup characteristics apply to
genera load-time weaving as well.

6.8.4.6.3. WebLogic, OC4J, Resin, GlassFish

Recent versions of BEA WebL ogic (version 10 and above), Oracle Containers for Java EE (OC4J 10.1.3.1 and
above) and Resin (3.1 and above) provide a ClassLoader that is capable of loca instrumentation. Spring's
native LTW leverages such ClassLoaders to enable Aspect] weaving. You can enable LTW by simply
activating cont ext : | oad- ti me- weaver as described earlier. Specifically, you do not need to modify the launch
script to add - j avaagent : pat h/ t o/ spri ng-agent . j ar.

GlassFish provides an instrumentation-capable ClassLoader as well, but only in its EAR environment. For
GlassFish web applications, follow the Tomcat setup instructions as outlined above.

6.9. Further Resources

More information on AspectJ can be found on the Aspect] website.

The book Eclipse Aspectd by Adrian Colyer et. a. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the AspectJ language.

The book Aspect] in Action by Ramnivas Laddad (Manning, 2003) comes highly recommended; the focus of
the book is on AspectJ, but alot of general AOP themes are explored (in some depth).

Spring Framework (2.5.5) 170

http://www.eclipse.org/aspectj

Chapter 7. Spring AOP APIs

7.1. Introduction

The previous chapter described the Spring 2.0 support for AOP using @Aspect] and schema-based aspect
definitions. In this chapter we discuss the lower-level Spring AOP APIs and the AOP support used in Spring
1.2 applications. For new applications, we recommend the use of the Spring 2.0 AOP support described in the
previous chapter, but when working with existing applications, or when reading books and articles, you may
come across Spring 1.2 style examples. Spring 2.0 is fully backwards compatible with Spring 1.2 and
everything described in this chapter is fully supported in Spring 2.0.

7.2. Pointcut APl in Spring

Let'slook at how Spring handles the crucial pointcut concept.

7.2.1. Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target different
advice using the same pointcut.

The or g. spri ngf ramewor k. aop. Poi nt cut interface is the central interface, used to target advices to particular
classes and methods. The complete interface is shown below:

public interface Pointcut {
ClassFilter getCassFilter();

Met hodvat cher get Met hodMat cher () ;

Splitting the Poi ntcut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a"union" with another method matcher).

The d assFil ter interface is used to restrict the pointcut to a given set of target classes. If the mat ches()
method always returns true, all target classes will be matched:

public interface CassFilter {

bool ean mat ches(d ass cl azz);

The Met hodnat cher interface is normally more important. The complete interface is shown below:

public interface Methodvatcher {
bool ean mat ches(Method m Cl ass targetd ass);
bool ean i sRuntine();

bool ean mat ches(Method m Cl ass targetC ass, Object[] args);

The mat ches(Met hod, O ass) method is used to test whether this pointcut will ever match a given method on

Spring Framework (2.5.5) 171

Spring AOP APIs

atarget class. This evaluation can be performed when an AOP proxy is created, to avoid the need for atest on
every method invocation. If the 2-argument matches method returns true for a given method, and the
i sRunti me() method for the MethodMatcher returns true, the 3-argument matches method will be invoked on
every method invocation. This enables a pointcut to look at the arguments passed to the method invocation
immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their i sRuntine() method returns false. In this case, the
3-argument matches method will never be invoked.

Tip

e
If possible, try to make pointcuts static, allowing the AOP framework to cache the results of
pointcut evaluation when an AOP proxy is created.

7.2.2. Operations on pointcuts

Spring supports operations on pointcuts: notably, union and inter section.

« Union means the methods that either pointcut matches.
« |ntersection means the methods that both pointcuts match.
e Unionisusually more useful.

 Pointcuts can be composed using the static methods in the org.springframewor k.aop.support.Pointcuts class,
or using the ComposablePointcut class in the same package. However, using AspectJ pointcut expressions is
usually a simpler approach.

7.2.3. AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
org. springframewor k. aop. aspect j . Aspect JExpr essi onPoi nt cut . This is a pointcut that uses an AspectJ
supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.

7.2.4. Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

7.2.4.1. Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's arguments.
Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate a static pointcut
only once, when a method is first invoked: after that, there is no need to evaluate the pointcut again with each
method invocation.

Let's consider some static pointcut implementations included with Spring.

7.2.4.1.1. Regular expression pointcuts

Spring Framework (2.5.5) 172

Spring AOP APIs

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides Spring
make this possible. org. spri ngf ranmewor k. aop. support . Per | 5GRegexpMet hodPoi nt cut IS @ generic regular
expression pointcut, using Perl 5 regular expression syntax. The Per | 5RegexpMet hodPoi nt cut class depends on
Jakarta ORO for regular expression matching. Spring also provides the JdkRegexpMet hodPoi nt cut class that
uses the regular expression support in JDK 1.4+.

Using the Per | 5RegexpMet hodPoi nt cut class, you can provide a list of pattern Strings. If any of these is a
match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:

<bean i d="settersAndAbsquat ul at ePoi nt cut "
cl ass="org. spri ngf ramewor k. aop. support . Per| 5RegexpMet hodPoi nt cut " >
<property name="patterns">
<list>
<val ue>. *set . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

Spring provides a convenience class, RegexpMet hodPoi nt cut Advi sor, that alows us to also reference an
Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.). Behind the scenes,
Spring will use the JdkRegexpMethodPointcut on J2SE 1.4 or above, and will fal back to
Per | 5RegexpMet hodPoi nt cut on older VMs. The use of Per | 5RegexpMet hodPoi nt cut can be forced by setting
the perl5 property to true. Using RegexpMet hodPoi nt cut Advi sor simplifies wiring, as the one bean
encapsulates both pointcut and advice, as shown below:

<bean i d="sett er sAndAbsquat ul at eAdvi sor"
cl ass="org. spri ngf ramewor k. aop. support . RegexpMet hodPoi nt cut Advi sor ">
<property nanme="advi ce">
<ref |ocal ="beanNameOf AopAl | i ancel nterceptor"/>
</ property>
<property name="patterns">
<list>
<val ue>. *set . *</val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

7.2.4.1.2. Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata attributes:
typically, source-level metadata.

7.2.4.2. Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method arguments, as
well as static information. This means that they must be evaluated with every method invocation; the result
cannot be cached, as arguments will vary.

The main exampleisthecontrol f1 ow pointcut.

7.2.4.2.1. Control flow pointcuts

Spring Framework (2.5.5) 173

Spring AOP APIs

Spring control flow pointcuts are conceptually similar to Aspectd cflow pointcuts, although less powerful.
(Thereis currently no way to specify that a pointcut executes below a join point matched by another pointcut.)
A control flow pointcut matches the current call stack. For example, it might fire if the join point was invoked
by a method in the com nyconpany. web package, or by the sonecal | er class. Control flow pointcuts are
specified using the or g. spri ngf r amewor k. aop. support . Cont r ol Fl owPoi nt cut class.

Note

"9
Control flow pointcuts are significantly more expensive to evaluate at runtime than even other
dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts.

7.2.5. Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticMethodMatcherPointcut, as shown
below. This requires implementing just one abstract method (although it's possible to override other methods to
customize behavior):

class TestStaticPointcut extends StaticMethodMatcherPoi ntcut {

publ i c bool ean nmatches(Method m C ass targetd ass) {
/] return true if customcriteria match
}

}

There are also superclasses for dynamic pointcuts.

Y ou can use custom pointcuts with any advice typein Spring 1.0 RC2 and above.

7.2.6. Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ) it's possible to
declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be arbitrarily complex.
However, using the AspectJ pointcut expression language is recommended if possible.

Note

"o
Later versions of Spring may offer support for "semantic pointcuts' as offered by JAC: for
example, "al methods that change instance variables in the target object.”

7.3. Advice APl in Spring

Let's now look at how Spring AOP handles advice.

7.3.1. Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to each
advised object. This corresponds to per-class or per-instance advice.

Spring Framework (2.5.5) 174

Spring AOP APIs

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do
not depend on the state of the proxied object or add new state; they merely act on the method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the
proxied object.

It's possible to use amix of shared and per-instance advice in the same AOP proxy.

7.3.2. Advice types in Spring

Spring provides severa advice types out of the box, and is extensible to support arbitrary advice types. Let us
look at the basic concepts and standard advice types.

7.3.2.1. Interception around advice
The most fundamental advice typein Spring isinterception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
M ethodl nterceptors implementing around advice should implement the following interface:

public interface Methodl nterceptor extends Interceptor {

oj ect invoke(Met hodl nvocati on invocation) throws Throwabl e;

The Met hodl nvocat i on argument to the i nvoke() method exposes the method being invoked; the target join
point; the AOP proxy; and the arguments to the method. The i nvoke() method should return the invocation's
result: the return value of the join point.

A simple Met hodl nt er cept or implementation looks as follows:

public class Debugl nterceptor inplenments Methodl nterceptor {

public oject invoke(Methodl nvocation invocation) throws Throwabl e {
System out. println("Before: invocation=[" + invocation + "]");
oj ect rval = invocation. proceed();
System out. println("lnvocation returned");
return rval;

Note the call to the Methodinvocation's proceed() method. This proceeds down the interceptor chain towards
the join point. Most interceptors will invoke this method, and return its return value. However, a
Methodlnterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

Note
e

Methodinterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section implement
common AOP concepts, but in a Spring-specific way. While there is an advantage in using the
most specific advice type, stick with Methodlinterceptor around advice if you are likely to want to
run the aspect in another AOP framework. Note that pointcuts are not currently interoperable
between frameworks, and the AOP Alliance does not currently define pointcut interfaces.

Spring Framework (2.5.5) 175

Spring AOP APIs

7.3.2.2. Before advice

A simpler advice type is a before advice. This does not need a Met hodl nvocat i on object, since it will only be
called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed() method, and therefore
no possihility of inadvertently failing to proceed down the interceptor chain.

The Met hodBef or eAdvi ce interface is shown below. (Spring's APl design would allow for field before advice,
although the usual objects apply to field interception and it's unlikely that Spring will ever implement it).
public interface MethodBeforeAdvi ce extends BeforeAdvice {

voi d before(Method m Opbject[] args, Object target) throws Throwabl e;

Note the return type is voi d. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution of the
interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on the
signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped in an
unchecked exception by the AOP proxy.

An example of abefore advice in Spring, which counts all method invocations:

public class Counti ngBeforeAdvice inplenments Met hodBef or eAdvi ce {
private int count;
public void before(Method m Object[] args, Object target) throws Throwabl e {

++count ;
}

public int getCount() {
return count;
}

Tip
"9
Before advice can be used with any pointcut.

7.3.2.3. Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception. Spring offers
typed throws advice. Note that this means that the or g. spri ngf ramewor k. aop. Thr owsAdvi ce interface does
not contain any methods: It is a tag interface identifying that the given object implements one or more typed
throws advice methods. These should be in the form of:

af t er Thr owi ng([Met hod, args, target], subclassO Throwabl e)

Only the last argument is required. The method signatures may have either one or four arguments, depending
on whether the advice method is interested in the method and arguments. The following classes are examples of
throws advice.

The advice below isinvoked if aRenot eExcept i on isthrown (including subclasses):

public class Renot eThrowsAdvi ce inplements ThrowsAdvi ce {

Spring Framework (2.5.5) 176

Spring AOP APIs

public void afterThrow ng(Renpt eExcepti on ex) throws Throwabl e {
/1 Do something with renote exception

}

The following advice is invoked if a Servl et Exception is thrown. Unlike the above advice, it declares 4
arguments, so that it has access to the invoked method, method arguments and target object:

public class Servl et ThrowsAdvi ceW t hArgurment s i npl ements Thr owsAdvi ce {

public void afterThrowi ng(Method m Object[] args, Object target, ServletException ex) {
// Do something with all arguments

}

The fina example illustrates how these two methods could be used in a single class, which handles both
Renot eExcept i on and Ser vl et Except i on. Any number of throws advice methods can be combined in asingle
class.

public static class Conbi nedThrowsAdvi ce inplements ThrowsAdvi ce {

public void afterThrow ng(Renot eException ex) throws Throwabl e {
// Do something with renpte exception

}

public void afterThrow ng(Method m Object[] args, Object target, ServletException ex) {
// Do sonmething with all argunents

}

Note: If athrows-advice method throws an exception itself, it will override the original exception (i.e. change
the exception thrown to the user). The overriding exception will typically be a RuntimeException; this is
compatible with any method signature. However, if athrows-advice method throws a checked exception, it will
have to match the declared exceptions of the target method and is hence to some degree coupled to specific
target method signatures. Do not throw an undeclared checked exception that is incompatible with the target
method's signature!

Tip

s

"8

Throws advice can be used with any pointcut.

7.3.2.4. After Returning advice

An after returning advice in Spring must implement the org.springframework.aop.After ReturningAdvice
interface, shown below:

public interface AfterReturningAdvi ce extends Advice {

voi d afterReturni ng(oj ect returnValue, Method m Object[] args, Object target)
t hrows Throwabl e;

An after returning advice has access to the return value (which it cannot modify), invoked method, methods
arguments and target.

The following after returning advice counts all successful method invocations that have not thrown exceptions:

public class CountingAfterReturni ngAdvi ce i npl ements AfterReturni ngAdvi ce {

Spring Framework (2.5.5) 177

Spring AOP APIs

private int count;
public void afterReturning(Qject returnValue, Method m Object[] args, bject target)

throws Throwabl e {
++count ;

}

public int getCount() {
return count;
}

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor
chain instead of the return value.

M Tip

"8

After returning advice can be used with any pointcut.

7.3.2.5. Introduction advice
Spring treats introduction advice as a specia kind of interception advice.

Introduction requires an I ntroductionAdvisor, and an Introductionlnterceptor, implementing the
following interface:
public interface |ntroductionlnterceptor extends Methodlnterceptor {

bool ean i npl enentslnterface(C ass intf);

The i nvoke() method inherited from the AOP Alliance Met hodl nt er cept or interface must implement the
introduction: that is, if the invoked method is on an introduced interface, the introduction interceptor is
responsible for handling the method call - it cannot invoke pr oceed() .

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method, level. You
can only use introduction advice with the I nt r oduct i onAdvi sor, which has the following methods:
public interface Introducti onAdvi sor extends Advisor, Introductionlnfo {
ClassFilter getClassFilter();

voi d validatelnterfaces() throws IIIegal Argument Excepti on;

}

public interface Introductionlnfo {

Class[] getlnterfaces();

Thereis no Met hodMat cher , and hence no Poi nt cut , associated with introduction advice. Only classfiltering is
logical.

Theget I nterfaces() method returns the interfaces introduced by this advisor.
The val i dat el nterfaces() method is used internally to see whether or not the introduced interfaces can be
implemented by the configured I nt r oduct i onl nt er cept or .

Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the following

Spring Framework (2.5.5) 178

Spring AOP APIs

interface to one or more objects:

public interface Lockable {
void | ock();
voi d unl ock();
bool ean | ocked();

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and call
lock and unlock methods. If we call the lock() method, we want all setter methods to throw aLockedExcept i on.
Thus we can add an aspect that provides the ability to make objects immutable, without them having any
knowledge of it: agood example of AOP.

Firstly, welll need an I ntroductionlnterceptor that does the heavy lifting. In this case, we extend the
or g. spri ngf ramewor k. aop. support. Del egati ngl ntroducti onl nterceptor convenience class. We could
implement Introductionlnterceptor directly, but using Del egat i ngl ntroducti onl nt er cept or is best for most
Cases.

The Del egat i ngl ntroducti onl nt er cept or is designed to delegate an introduction to an actual implementation
of the introduced interface(s), concealing the use of interception to do so. The delegate can be set to any object
using a constructor argument; the default delegate (when the no-arg constructor is used) is this. Thus in the
example below, the delegate is the LockM xi n subclass of Del egatingl ntroductionl nterceptor. Given a
delegate (by default itself), a Del egati ngl ntroductionlnterceptor instance looks for al interfaces
implemented by the delegate (other than Introductionlnterceptor), and will support introductions against any of
them. It's possible for subclasses such as LockM xi n to call the suppressinterface(dass intf) method to
suppress interfaces that should not be exposed. However, no matter how many interfaces an
I ntroductionlnterceptor iS prepared to support, the IntroductionAdvisor used will control which
interfaces are actually exposed. An introduced interface will conceal any implementation of the same interface
by the target.

Thus LockMixin subclasses Del egatingl ntroductionlnterceptor and implements Lockable itself. The
superclass automatically picks up that Lockable can be supported for introduction, so we don't need to specify
that. We could introduce any number of interfacesin this way.

Note the use of the | ocked instance variable. This effectively adds additional state to that held in the target
object.

public class LockM xi n extends Del egati ngl ntroducti onl nterceptor
i mpl enents Lockabl e {

private bool ean | ocked;

public void lock() {
this.locked = true;
}

public void unlock() {
this.locked = fal se;
}

publ i c bool ean | ocked() {
return this.|ocked;
}

public oject invoke(Methodl nvocation invocation) throws Throwabl e {
if (locked() && invocation.getMethod().getNane().indexOf("set") == 0)
t hrow new LockedException();
return super.invoke(invocation);

Spring Framework (2.5.5) 179

Spring AOP APIs

Often it isnt necessary to override the invoke() method: the Del egatinglntroductionl nterceptor
implementation - which calls the delegate method if the method is introduced, otherwise proceeds towards the
join point - isusually sufficient. In the present case, we need to add a check: no setter method can be invoked if
in locked mode.

The introduction advisor required is simple. All it needs to do is hold adistinct LockM xi n instance, and specify
the introduced interfaces - in this case, just Lockabl e. A more complex example might take a reference to the
introduction interceptor (which would be defined as a prototype): in this case, there's no configuration relevant
for aLockM xi n, SO we simply create it using new.

public class LockM xi nAdvi sor extends Defaul tlntroductionAdvi sor {

public LockM xi nAdvi sor () {
super (new LockM xi n(), Lockabl e. cl ass);
}

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It'simpossible to
use an | ntroducti onl nt ercept or Without an IntroductionAdvisor.) As usual with introductions, the advisor
must be per-instance, asit is stateful. We need a different instance of LockM xi nAdvi sor, and hence LockM xi n,
for each advised object. The advisor comprises part of the advised object's state.

We can apply this advisor programmatically, using the Advi sed. addAdvi sor () method, or (the recommended
way) in XML configuration, like any other advisor. All proxy creation choices discussed below, including
"auto proxy creators,”" correctly handle introductions and stateful mixins.

7.4. Advisor APl in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut expression.

Apart from the special case of introductions, any advisor can be used with any advice
org. spri ngframewor k. aop. suppor t . Def aul t Poi nt cut Advi sor iS the most commonly used advisor class. For
example, it can be used with aMet hodl nt er cept or , Bef or eAdvi ce Of Thr owsAdvi ce.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could use a
interception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary interceptor chain.

7.5. Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring 10oC container (an ApplicationContext or BeanFactory) for your business objects -
and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a factory bean
introduces alayer of indirection, enabling it to create objects of a different type.)

Note
"9
The Spring 2.0 AOP support aso uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to use the
org.springframewor k.aop.framewor k.ProxyFactoryBean. This gives complete control over the pointcuts and
advice that will apply, and their ordering. However, there are simpler options that are preferable if you don't

Spring Framework (2.5.5) 180

Spring AOP APIs

need such control.

7.5.1. Basics

The ProxyFact or yBean, like other Spring Fact or yBean implementations, introduces a level of indirection. If
you define a Pr oxyFact or yBean With name f oo, what objects referencing f oo see is not the Pr oxyFact or yBean
instance itself, but an object created by the ProxyFact or yBean's implementation of the get Obj ect () method.
This method will create an AOP proxy wrapping atarget object.

One of the most important benefits of using a ProxyFact or yBean or another loC-aware class to create AOP
proxies, is that it means that advices and pointcuts can also be managed by 10C. This is a powerful feature,
enabling certain approaches that are hard to achieve with other AOP frameworks. For example, an advice may
itself reference application objects (besides the target, which should be available in any AOP framework),
benefiting from all the pluggability provided by Dependency Injection.

7.5.2. JavaBean properties

In common with most Fact or yBean implementations provided with Spring, the ProxyFact or yBean class is
itself a JavaBean. Its properties are used to:

» Specify the target you want to proxy.

e Specify whether to use CGLIB (see below and aso the section entitled Section 7.5.3, “JDK- and
CGLIB-based proxies”).

Some key properties are inherited from or g. spri ngf r amewor k. aop. f ramewor k. ProxyConfi g (the superclass
for al AOP proxy factoriesin Spring). These key propertiesinclude:

e proxyTargetd ass: true if the target class is to be proxied, rather than the target class interfaces. If this
property value is set to t rue, then CGLIB proxies will be created (but see also below the section entitled
Section 7.5.3, “JDK- and CGLIB-based proxies’).

e optinize: controls whether or not aggressive optimizations are applied to proxies created via CGLIB. One
should not blithely use this setting unless one fully understands how the relevant AOP proxy handles
optimization. Thisis currently used only for CGLIB proxies; it has no effect with JDK dynamic proxies.

* frozen: if aproxy configuration isfrozen, then changes to the configuration are no longer allowed. Thisis
useful both as a slight optimization and for those cases when you don't want callers to be able to manipulate
the proxy (viathe Advi sed interface) after the proxy has been created. The default value of this property is
f al se, SO changes such as adding additional advice are allowed.

* exposePr oxy: determines whether or not the current proxy should be exposed in a Thr eadLocal S0 that it can
be accessed by the target. If a target needs to obtain the proxy and the exposePr oxy property is set to t r ue,
the target can use the AopCont ext . current Proxy() method.

* aopProxyFact ory: the implementation of AcpProxyFact ory to use. Offers a way of customizing whether to
use dynamic proxies, CGLIB or any other proxy strategy. The default implementation will choose dynamic
proxies or CGLIB appropriately. There should be no need to use this property; it is intended to allow the
addition of new proxy typesin Spring 1.1.

Other properties specific to Pr oxyFact or yBean include:

Spring Framework (2.5.5) 181

Spring AOP APIs

e proxylnterfaces: array of String interface names. If thisisn't supplied, a CGLIB proxy for the target class
will be used (but see also below the section entitled Section 7.5.3, “JDK- and CGLIB-based proxies”).

e interceptorNanes: String array of Advisor, interceptor or other advice names to apply. Ordering is
significant, on afirst come-first served basis. That isto say that the first interceptor in the list will be the first
to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories. You can't
mention bean references here since doing so would result in the ProxyFact or yBean ignoring the singleton
setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the application of all advisor
beans with names starting with the part before the asterisk to be applied. An example of using this feature
can be found in Section 7.5.6, “Using 'global’ advisors”.

 singleton: whether or not the factory should return a single object, no matter how often the get j ect ()
method is called. Several Fact or yBean implementations offer such a method. The default value is true. If
you want to use stateful advice - for example, for stateful mixins - use prototype advices along with a
singleton value of f al se.

7.5.3. JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the ProxyFact or yBean chooses to create one of
either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

Note

e
The behavior of the proxyFact oryBean with regard to creating JDK- or CGLIB-based proxies
changed between versions 1.2.x and 2.0 of Spring. The ProxyFact or yBean how exhibits similar
semantics with regard to auto-detecting interfaces as those of the Transacti onPr oxyFact or yBean
class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn't
implement any interfaces, then a CGLIB-based proxy will be created. Thisis the easiest scenario, because JDK
proxies are interface based, and no interfaces means JDK proxying isn't even possible. One simply plugs in the
target bean, and specifies the list of interceptors viathei nt er cept or Names property. Note that a CGLI1B-based
proxy will be created even if the pr oxyTar get O ass property of the ProxyFact or yBean has been set to f al se.
(Obvioudly this makes no sense, and is best removed from the bean definition because it is at best redundant,
and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends on the
configuration of the Pr oxyFact or yBean.

If the proxyTar get O ass property of the ProxyFact or yBean has been set to t r ue, then a CGLIB-based proxy
will be created. This makes sense, and is in keeping with the principle of least surprise. Even if the
proxyl nt erfaces property of the ProxyFact oryBean has been set to one or more fully qualified interface
names, the fact that the proxyTar get G ass property is set to t rue will cause CGLIB-based proxying to be in
effect.

If the proxyl nt er f aces property of the ProxyFact or yBean has been set to one or more fully qualified interface
names, then a JDK-based proxy will be created. The created proxy will implement all of the interfaces that
were specified in the proxyl nterfaces property; if the target class happens to implement a whole lot more

Spring Framework (2.5.5) 182

Spring AOP APIs

interfaces than those specified in the proxyl nter f aces property, that is all well and good but those additional
interfaces will not be implemented by the returned proxy.

If the pr oxyl nt er f aces property of the Pr oxyFact or yBean has not been set, but the target class does implement
one (or more) interfaces, then the Pr oxyFact or yBean will auto-detect the fact that the target class does actually
implement at least one interface, and a JDK-based proxy will be created. The interfaces that are actually
proxied will be all of the interfaces that the target class implements; in effect, this is the same as simply
supplying a list of each and every interface that the target class implements to the proxyl nt er f aces property.
However, it is significantly lesswork, and less prone to typos.

7.5.4. Proxying interfaces

Let'slook at a simple example of Pr oxyFact or yBean in action. This example involves:

¢ A target bean that will be proxied. Thisisthe "personTarget" bean definition in the example below.
» An Advisor and an Interceptor used to provide advice.

* An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces to
proxy, along with the advices to apply.

<bean i d="personTarget" class="com nyconpany. Personl npl ">
<property name="name"><val ue>Tony</ val ue></ property>
<property nanme="age"><val ue>51</val ue></ property>

</ bean>

<bean i d="nyAdvi sor" cl ass="com nmyconpany. MyAdvi sor" >
<property name="soneProperty"><val ue>Custom string property val ue</val ue></ property>
</ bean>

<bean i d="debugl nterceptor" class="org. springfranework. aop.interceptor.Debuglnterceptor">
</ bean>

<bean i d="person"
cl ass="org. spri ngf ramewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>

<property name="target"><ref |ocal ="personTarget"/></property>
<property name="inter ceptor Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Note that thei nt er cept or Nanes property takes alist of String: the bean names of the interceptor or advisorsin
the current factory. Advisors, interceptors, before, after returning and throws advice objects can be used. The
ordering of advisorsis significant.

Note

“a
Y ou might be wondering why the list doesn't hold bean references. The reason for thisisthat if the
ProxyFactoryBean's singleton property is set to false, it must be able to return independent proxy
instances. If any of the advisors is itself a prototype, an independent instance would need to be
returned, so it's necessary to be able to obtain an instance of the prototype from the factory; holding
areference isn't sufficient.

The "person” bean definition above can be used in place of a Person implementation, as follows:

Spring Framework (2.5.5) 183

Spring AOP APIs

Person person = (Person) factory.getBean("person");

Other beans in the same 10C context can express a strongly typed dependency on it, as with an ordinary Java
object:

<bean i d="personUser" cl ass="com myconpany. Per sonUser ">
<property name="person"><ref |ocal ="person" /></property>
</ bean>

The per sonUser class in this example would expose a property of type Person. As far as it's concerned, the
AOP proxy can be used transparently in place of a"real" person implementation. However, its class would be a
dynamic proxy class. It would be possible to cast it to the Advi sed interface (discussed below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as follows.
Only the Pr oxyFact or yBean definition is different; the advice isincluded only for completeness:

<bean id="nyAdvi sor" cl ass="com nyconpany. MyAdvi sor" >
<property name="sonmeProperty"><val ue>Custom string property val ue</val ue></ property>
</ bean>

<bean i d="debugl nterceptor" class="org.springfranework. aop.interceptor.Debuglnterceptor"/>

<bean i d="person" class="org. springframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>
<l-- Use inner bean, not |local reference to target -->
<property name="target">
<bean cl ass="com nyconpany. Personl npl ">
<property nanme="nane"><val ue>Tony</val ue></ property>
<property name="age"><val ue>51</val ue></ property>
</ bean>
</ property>
<property nanme="inter cept or Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

This has the advantage that there's only one object of type Person: useful if we want to prevent users of the
application context from obtaining a reference to the un-advised object, or need to avoid any ambiguity with
Spring 1oC autowiring. There's also arguably an advantage in that the ProxyFactoryBean definition is
self-contained. However, there are times when being able to obtain the un-advised target from the factory might
actually be an advantage: for example, in certain test scenarios.

7.5.5. Proxying classes

What if you need to proxy aclass, rather than one or more interfaces?

Imagine that in our example above, there was ho Per son interface: we needed to advise a class called Per son
that didn't implement any business interface. In this case, you can configure Spring to use CGLIB proxying,
rather than dynamic proxies. Simply set the proxyTar get O ass property on the ProxyFactoryBean above to
true. While it's best to program to interfaces, rather than classes, the ability to advise classes that don't
implement interfaces can be useful when working with legacy code. (In general, Spring isn't prescriptive. While
it makes it easy to apply good practices, it avoids forcing a particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

Spring Framework (2.5.5) 184

Spring AOP APIs

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this generated
subclass to delegate method calls to the original target: the subclass is used to implement the Decorator pattern,
weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:

* Fi nal methods can't be advised, asthey can't be overridden.
* You'll need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK.

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are dightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.

7.5.6. Using 'global’ advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before the
asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set of 'global’
advisors:

<bean i d="proxy" class="org.springframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target" ref="service"/>
<property nanme="inter ceptor Nanes" >
<list>
<val ue>gl obal *</ val ue>
</list>
</ property>
</ bean>

<bean i d="gl obal _debug" cl ass="org. spri ngframework. aop. i nt er cept or. Debugl nt erceptor"/>
<bean i d="gl obal _performance" class="org. springfranmework. aop.interceptor.PerformanceMnitorlnterceptor"/>

7.6. Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The use
of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and more
concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean i d="t xProxyTenpl ate" abstract="true"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property nanme="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri butes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Thiswill never be instantiated itself, so may actually be incomplete. Then each proxy which needsto be created
is just a child bean definition, which wraps the target of the proxy as an inner bean definition, since the target
will never be used on its own anyway.

<bean id="nyService" parent="txProxyTenpl ate">
<property name="target">

Spring Framework (2.5.5) 185

Spring AOP APIs

<bean cl ass="org. spri ngf ramewor k. sanpl es. MySer vi cel npl ">
</ bean>
</ property>
</ bean>

It is of course possible to override properties from the parent template, such as in this case, the transaction
propagation settings:

<bean i d="nySpeci al Servi ce" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngf ramewor k. sanpl es. MySpeci al Servi cel npl ">
</ bean>
</ property>
<property name="transactionAttri butes">
<pr ops>
<prop key="get*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="find*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="|oad*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="store*" >PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute, as described previously, so that it may not actually ever be instantiated. Application contexts
(but not ssimple bean factories) will by default pre-instantiate all singletons. It is therefore important (at least for
singleton beans) that if you have a (parent) bean definition which you intend to use only as a template, and this
definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the application
context will actually try to pre-instantiate it.

7.7. Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP without
dependency on Spring |oC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor. The
interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFact ory(myBusi nesslnterfacel npl);
factory. addl nt er cept or (myMet hodl nterceptor);

factory. addAdvi sor (myAdvi sor) ;

MyBusi nesslnterface tb = (M/Busi nesslnterface) factory. getProxy();

The first step is to construct an object of type or g. spri ngf r amewor k. aop. f r amewor k. Pr oxyFact ory. YOu can
create this with a target object, as in the above example, or specify the interfaces to be proxied in an alternate
constructor.

You can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you add an
IntroductionlnterceptionAroundAdvisor you can cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from Advi sedSuppor t) which allow you to add
other advice types such as before and throws advice. AdvisedSupport is the superclass of both ProxyFactory
and ProxyFactoryBean.

Spring Framework (2.5.5) 186

Spring AOP APIs

5 Tip

"9
Integrating AOP proxy creation with the 1oC framework is best practice in most applications. We

recommend that you externalize configuration from Java code with AOP, asin general.

7.8. Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org. spri ngframewor k. aop. f ramewor k. Advi sed interface. Any AOP proxy can be cast to this interface,
whichever other interfaces it implements. This interface includes the following methods:

Advi sor[] get Advi sors();
voi d addAdvi ce(Advi ce advi ce) throws AopConfi gExcepti on;

voi d addAdvi ce(int pos, Advice advice)
t hrows AopConfi gExcepti on;

voi d addAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d addAdvi sor (i nt pos, Advisor advisor) throws AopConfi gExcepti on;
int indexOf (Advi sor advisor);

bool ean renoveAdvi sor (Advi sor advi sor) throws AopConfi gException;

voi d renmoveAdvi sor (i nt index) throws AopConfi gExcepti on;

bool ean repl aceAdvi sor (Advi sor a, Advisor b) throws AopConfi gExcepti on;

bool ean i sFrozen();

The get Advi sors() method will return an Advisor for every advisor, interceptor or other advice type that has
been added to the factory. If you added an Advisor, the returned advisor at thisindex will be the object that you
added. If you added an interceptor or other advice type, Spring will have wrapped this in an advisor with a
pointcut that always returns true. Thus if you added a Met hodl nt er cept or, the advisor returned for this index
will be an Def aul t Poi nt cut Advi sor returning your Met hodl nt er cept or and a pointcut that matches all classes
and methods.

The addAdvi sor () methods can be used to add any Advisor. Usually the advisor holding pointcut and advice
will be the generic Def aul t Poi nt cut Advi sor, which can be used with any advice or pointcut (but not for
introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The only
restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from the factory
will not show the interface change. (Y ou can obtain a new proxy from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advi sed interface and examining and manipulating its
advice:

Advi sed advi sed = (Advi sed) nyQbject;

Advi sor[] advisors = advi sed. get Advi sors();

i nt ol dAdvi sor Count = advi sors. | ength;

System out . println(ol dAdvi sor Count + " advi sors");

// Add an advice like an interceptor wthout a pointcut

/1 WIIl match all proxied nethods

/'l Can use for interceptors, before, after returning or throws advice
advi sed. addAdvi ce(new Debugl nterceptor());

Spring Framework (2.5.5) 187

Spring AOP APIs

/1l Add sel ective advice using a pointcut
advi sed. addAdvi sor (new Def aul t Poi nt cut Advi sor (mySpeci al Poi nt cut, myAdvice));

assert Equal s(" Added two advi sors",
ol dAdvi sor Count + 2, advi sed. get Advi sors().length);

Note

It's questionable whether it's advisable (no pun intended) to modify advice on a business object in
production, although there are no doubt legitimate usage cases. However, it can be very useful in
development: for example, in tests. | have sometimes found it very useful to be able to add test
code in the form of an interceptor or other advice, getting inside a method invocation | want to test.
(For example, the advice can get inside a transaction created for that method: for example, to run
SQL to check that a database was correctly updated, before marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which case the Advi sed
i sFrozen() method will return true, and any attempts to modify advice through addition or removal will result
in an AopConfi gExcepti on. The ability to freeze the state of an advised object is useful in some cases, for
example, to prevent calling code removing a security interceptor. It may also be used in Spring 1.1 to alow
aggressive optimization if runtime advice modification is known not to be required.

7.9. Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a Pr oxyFact or yBean Or similar factory bean.

Spring also allows us to use "autoproxy” bean definitions, which can automatically proxy selected bean
definitions. Thisis built on Spring "bean post processor” infrastructure, which enables modification of any bean
definition as the container loads.

In this model, you set up some specia bean definitions in your XML bean definition file to configure the auto
proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't need to use
Pr oxyFact or yBean.

There are two waysto do this:

« Using an autoproxy creator that refers to specific beans in the current context.
« A gpecial case of autoproxy creation that deserves to be considered separately; autoproxy creation driven by
source-level metadata attributes.

7.9.1. Autoproxy bean definitions

The org. spri ngf ramewor k. aop. f ramewor k. aut opr oxy package provides the following standard autoproxy
creators.

7.9.1.1. BeanNameAutoProxyCreator

The BeanNaneAut oPr oxyCr eat or Class is a BeanPost Processor that automatically creates AOP proxies for
beans with names matching literal values or wildcards.

Spring Framework (2.5.5) 188

Spring AOP APIs

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property nanme="beanNanes" ><val ue>j dk*, onl yJdk</ val ue></ property>
<property nanme="inter cept or Nanes" >
<list>
<val ue>nyl nt er cept or </ val ue>
</list>
</ property>
</ bean>

As with ProxyFact or yBean, there is an i nt er cept or Nanes property rather than a list of interceptors, to allow
correct behavior for prototype advisors. Named "interceptors' can be advisors or any advice type.

As with auto proxying in general, the main point of using BeanNameAut oPr oxyCr eat or IS to apply the same
configuration consistently to multiple objects, with minimal volume of configuration. It is a popular choice for
applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are plain old
bean definitions with the target class. An AOP proxy will be created automaticaly by the
BeanNameAut oPr oxyCr eat or . The same advice will be applied to al matching beans. Note that if advisors are
used (rather than the interceptor in the above example), the pointcuts may apply differently to different beans.

7.9.1.2. DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is Def aul t Advi sor Aut oPr oxyCr eat or . This will
automagically apply eligible advisors in the current context, without the need to include specific bean namesin
the autoproxy advisor's bean definition. It offers the same merit of consistent configuration and avoidance of
duplication as BeanNarmeAut oPr oxyCr eat or .

Using this mechanism involves:

e Specifying aDef aul t Advi sor Aut oPr oxyCr eat or bean definition.

» Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors, not
just interceptors or other advices. Thisis necessary because there must be a pointcut to evaluate, to check the
digibility of each adviceto candidate bean definitions.

The Def aul t Advi sor Aut oPr oxyCr eat or Will automatically evaluate the pointcut contained in each advisor, to
see what (if any) advice it should apply to each business object (such as "businessObjectl" and
"businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no pointcut in
any of the advisors matches any method in a business object, the object will not be proxied. As bean definitions
are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain an
un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP proxy,
not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

<bean cl ass="org. springframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property nanme="transactionlnterceptor" ref="transactionlnterceptor"/>

</ bean>

<bean i d="cust omAdvi sor" cl ass="com nyconpany. MyAdvi sor"/ >

<bean i d="busi nessObj ect 1" cl ass="com nmyconpany. Busi nessObj ect 1" >

Spring Framework (2.5.5) 189

Spring AOP APIs

<l-- Properties omtted -->
</ bean>

<bean i d="busi nessObj ect 2" cl ass="com nyconpany. Busi nessObj ect 2"/ >

The Def aul t Advi sor Aut oProxyCr eat or is very useful if you want to apply the same advice consistently to
many business objects. Once the infrastructure definitions are in place, you can simply add new business
objects without including specific proxy configuration. Y ou can also drop in additional aspects very easily - for
example, tracing or performance monitoring aspects - with minimal change to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evauated, allowing use of multiple, differently configured, AdvisorAutoProxyCreators in
the same factory) and ordering. Advisors can implement the or g. spri ngf r amewor k. cor e. Or der ed interface to
ensure correct ordering if this is an issue. The TransactionAttributeSourceAdvisor used in the above example
has a configurable order value; the default setting is unordered.

7.9.1.3. AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators by
subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to the
behavior of the framework Def aul t Advi sor Aut oPr oxyCr eat or .

7.9.2. Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar programming
model to .NET Servi cedConponent s. Instead of using XML deployment descriptors as in EJB, configuration
for transaction management and other enterprise servicesis held in source-level attributes.

In this case, you use the Def aul t Advi sor Aut oPr oxyCr eat or, in combination with Advisors that understand
metadata attributes. The metadata specifics are held in the pointcut part of the candidate advisors, rather than in
the autoproxy creation class itself.

Thisis really a specia case of the Def aul t Advi sor Aut oPr oxyCr eat or , but deserves consideration on its own.
(The metadata-aware code is in the pointcuts contained in the advisors, not the AOP framework itself.)

The/attribut es directory of the JPetStore sample application shows the use of attribute-driven autoproxying.
In this case, there's no need to use the Tr ansact i onPr oxyFact or yBean. Simply defining transactional attributes
on business objects is sufficient, because of the use of metadata-aware pointcuts. The bean definitions include
the following code, in/ WEB- | NF/ decl ar at i veSer vi ces. xm . Note that this is generic, and can be used outside
the JPetStore:

<bean cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="transactionlnterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transacti onAttributeSource">
<bean cl ass="org. springframework.transaction.interceptor.AttributesTransactionAttributeSource">
<property name="attributes" ref="attributes"/>
</ bean>
</ property>
</ bean>

Spring Framework (2.5.5) 190

Spring AOP APIs

<bean id="attributes" class="org.springfranework. netadat a. conmons. ConmonsAttri butes"/>

The Def aul t Advi sor Aut oPr oxyCr eat or bean definition (the name is not significant, hence it can even be
omitted) will pick up al eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type Transacti onAttri but eSour ceAdvi sor, Will apply to classes or
methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor depends on a
Transactioninterceptor, via constructor dependency. The example resolves this via autowiring. The
AttributesTransactionAttributeSource depends on an implementation of the
org. spri ngfranmewor k. met adat a. At tri but es interface. In this fragment, the "attributes’ bean satisfies this,
using the Jakarta Commons Attributes API to obtain attribute information. (The application code must have
been compiled using the Commons Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection of
Spring's Tr ansact i onal annotation, leading to implicit proxies for beans containing that annotation:

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property name="transactionlnterceptor” ref="transacti onlnterceptor"/>
</ bean>

<bean i d="transactionlnterceptor"”
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri buteSource">
<bean cl ass="org. springfranmework. transacti on. annot ati on. Annot ati onTransacti onAttri but eSource"/>
</ property>
</ bean>

The Transacti onl nt er cept or defined here depends on a Pl at f or nir ansact i onManager definition, which is
not included in this generic file (although it could be) because it will be specific to the application’s transaction
requirements (typically JTA, asin this example, or Hibernate, JDO or JDBC):

<bean i d="transacti onManager"
class="org. springframework.transaction.jta.JtaTransacti onManager"/>

Tip

If you require only declarative transaction management, using these generic XML definitions will
result in Spring automatically proxying all classes or methods with transaction attributes. You
won't need to work directly with AOP, and the programming model is similar to that of .NET
ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. Y ou heed to:

 Define your custom attribute.

» Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of the
custom attribute on a class or method. You may be able to use an existing advice, merely implementing a
static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they smply need to be

Spring Framework (2.5.5) 191

Spring AOP APIs

defined as prototype, rather than singleton, bean definitions. For example, the LockM xi n introduction
interceptor from the Spring test suite, shown above, could be used in conjunction with an attribute-driven
pointcut to target a mixin, as shown here. We use the generic Def aul t Poi nt cut Advi sor, configured using
JavaBean properties:

<bean id="1ockM xi n" cl ass="org. spri ngfranmewor k. aop. LockM xi n"
scope="pr ot ot ype"/ >

<bean id="1| ockabl eAdvi sor" cl ass="org. spri ngfranmewor k. aop. support. Def aul t Poi nt cut Advi sor"
scope="pr ot ot ype" >
<property name="pointcut" ref="nyAttributeAwarePointcut"/>
<property name="advi ce" ref="IockM xin"/>
</ bean>

<bean i d="anyBean" cl ass="anycl ass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin will be
applied. Note that both 1ockMxin and |ockabl eAdvisor definitions are prototypes. The
nyAt tri but eAwar ePoi nt cut pointcut can be a singleton definition, as it doesn't hold state for individual
advised objects.

7.10. Using TargetSources

Spring offers the concept of a TargetSource, expressed in the org. spri ngframewor k. aop. Tar get Sour ce
interface. This interface is responsible for returning the "target object” implementing the join point. The
Tar get Sour ce implementation is asked for a target instance each time the AOP proxy handles a method
invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides a
powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling
TargetSource can return a different target instance for each invocation, using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same
target isreturned for each invocation (as you would expect).

Let'slook at the standard target sources provided with Spring, and how you can use them.
Tip
"o
When using a custom target source, your target will usually need to be a prototype rather than a
singleton bean definition. This allows Spring to create a new target instance when required.

7.10.1. Hot swappable target sources

The org. spri ngf ramewor k. aop. t ar get . Hot Swappabl eTar get Sour ce exists to allow the target of an AOP
proxy to be switched while allowing callers to keep their referencesto it.

Changing the target source's target takes effect immediately. The Hot Swappabl eTar get Sour ce is threadsafe.

Y ou can change the target viathe swap() method on HotSwappableTargetSource as follows:

Hot Swappabl eTar get Sour ce swapper =
(Hot Swappabl eTar get Sour ce) beanFact ory. get Bean(" swapper");

Spring Framework (2.5.5) 192

Spring AOP APIs

oj ect ol dTarget = swapper. swap(newTar get) ;
The XML definitions required ook as follows:

<bean id="initial Target" class="myconpany. O dTarget"/>

<bean i d="swapper" class="org. springfranmework. aop.target. Hot Swappabl eTar get Sour ce" >
<constructor-arg ref="initial Target"/>
</ bean>

<bean i d="swappabl e" cl ass="org. spri ngfranewor k. aop. f ranewor k. Pr oxyFact or yBean" >
<property name="target Source" ref="swapper"/>
</ bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to that bean will
be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice - and it's not necessary to add advice to use a Tar get Sour ce - Of
course any Tar get Sour ce can be used in conjunction with arbitrary advice.

7.10.2. Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in which a pool
of identical instances is maintained, with method invocations going to free objectsin the pool.

A crucia difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to any
POJO. Aswith Spring in genera, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides afairly efficient pooling
implementation. Y ou'll need the commons-pool Jar on your application's classpath to use this feature. It's al'so
possible to subclass or g. spri ngf r amewor k. aop. t ar get . Abst r act Pool i ngTar get Sour ce t0 support any other
pooling API.

Sample configuration is shown below:

<bean i d="busi nessObj ect Target" cl ass="com nyconpany. M/Busi nessObj ect "
scope="pr ot ot ype" >
. properties omtted

</ bean>

<bean i d="pool Tar get Sour ce" cl ass="org. spri ngfranmewor k. aop. t ar get . CormonsPool Tar get Sour ce" >
<property nanme="t ar get BeanNane" val ue="busi nessQbj ect Target"/>
<property nanme="maxSi ze" val ue="25"/>

</ bean>

<bean i d="busi nessObj ect" cl ass="org. spri ngfranmework. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="t ar get Sour ce" ref="pool Target Source"/>
<property name="interceptorNanes" val ue="nylnterceptor"/>

</ bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows the
Pool i ngTar get Sour ce implementation to create new instances of the target to grow the pool as necessary. See
the Javadoc for Abstract Pool i ngTar get Source and the concrete subclass you wish to use for information
about it's properties: maxSize is the most basic, and always guaranteed to be present.

In this case, "mylnterceptor” is the name of an interceptor that would need to be defined in the same 10C

Spring Framework (2.5.5) 193

Spring AOP APIs

context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no
other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
org. springfranmewor k. aop. tar get . Pool i ngConfig interface, which exposes information about the
configuration and current size of the pool through an introduction. Y ou'll need to define an advisor like this:

<bean i d="pool Confi gAdvi sor" cl ass="org. spri ngfranework. beans. fact ory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="target Obj ect" ref="pool Target Source"/ >
<property name="t ar get Met hod" val ue="get Pool i ngConfi gM xi n"/>

</ bean>

This advisor is obtained by calling a convenience method on the Abst r act Pool i ngTar get Sour ce class, hence
the use of MethodInvokingFactoryBean. This advisor's name (" pool ConfigAdvisor" here) must be in the list of
interceptors namesin the ProxyFactoryBean exposing the pooled object.

The cast will look asfollows:

Pool i ngConfi g conf = (PoolingConfig) beanFactory. get Bean("busi nessObject");
System out. println("Max pool size is " + conf.get MaxSize());

Note

Pooling stateless service objects is not usually necessary. We don't believe it should be the default
choice, as most stateless objects are naturally thread safe, and instance pooling is problematic if
resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy
creator.

7.10.3. Prototype target sources

Setting up a "prototype” target source is similar to a pooling TargetSource. In this case, a new instance of the
target will be created on every method invocation. Although the cost of creating a new object isn't high in a
modern JVM, the cost of wiring up the new object (satisfying its 10C dependencies) may be more expensive.
Thus you shouldn't use this approach without very good reason.

To do this, you could modify the pool Tar get Sour ce definition shown above as follows. (I've also changed the
name, for clarity.)

<bean i d="prot ot ypeTar get Sour ce" cl ass="org. spri ngframewor k. aop. target. Prot ot ypeTar get Sour ce">
<property name="t ar get BeanNanme" ref="busi nessObj ect Target"/>
</ bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource implementations
to ensure consistent naming. As with the pooling target source, the target bean must be a prototype bean
definition.

7.10.4. ThreadLocal target sources

ThreadLocal target sources are useful if you need an object to be created for each incoming request (per thread
that is). The concept of a ThreadLocal provide a JDK-wide facility to transparently store resource alongside a

Spring Framework (2.5.5) 194

Spring AOP APIs

thread. Setting up a Thr eadLocal Tar get Sour ce iS pretty much the same as was explained for the other types of
target source:

<bean i d="t hreadl ocal Tar get Source" cl ass="org. spri ngfranework. aop. target. ThreadLocal Tar get Sour ce" >
<property name="t ar get BeanNane" val ue="busi nessQbj ect Target"/>
</ bean>

Note

ThreadL ocals come with serious issues (potentially resulting in memory leaks) when incorrectly
using them in a multi-threaded and multi-classloader environments. One should always consider
wrapping a threadlocal in some other class and never directly use the Thr eadLocal itself (except of
course in the wrapper class). Also, one should aways remember to correctly set and unset (where
the latter smply involved a call to ThreadLocal . set (nul 1)) the resource local to the thread.
Unsetting should be done in any case since not unsetting it might result in problematic behavior.
Spring's ThreadL ocal support does this for you and should always be considered in favor of using
ThreadL ocals without other proper handling code.

7.11. Defining new Advi ce types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice types in addition to the out-of-the-box interception around
advice, before, throws advice and after returning advice.

The org. spri ngframewor k. aop. f ramewor k. adapt er package is an SPl package allowing support for new
custom advice types to be added without changing the core framework. The only constraint on a custom Advi ce
typeisthat it must implement the or g. aopal | i ance. aop. Advi ce tag interface.

Please refer to the or g. spri ngf ramewor k. aop. f r amewor k. adapt er package's Javadocs for further information.

7.12. Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

« The JPetStore's default configuration illustrates the use of the Tr ansact i onPr oxyFact or yBean for declarative
transaction management.

e The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative transaction
management.

Spring Framework (2.5.5) 195

Chapter 8. Testing

8.1. Introduction

The Spring team considers developer testing to be an absolutely integral part of enterprise software
development. A thorough treatment of testing in the enterprise is beyond the scope of this chapter; rather, the
focus here is on the value-add that the adoption of the [oC principle can bring to unit testing and on the benefits
that the Spring Framework provides in integration testing.

8.2. Unit testing

One of the main benefits of Dependency Injection is that your code should really depend far less on the
container than in traditional J2EE development. The POJOs that comprise your application should be testable in
JUnit or TestNG tests, with objects simply instantiated using the new operator, without Spring or any other
container. You can use mock objects (in conjunction with many other valuable testing techniques) to test your
code in isolation. If you follow the architecture recommendations around Spring you will find that the resulting
clean layering and componentization of your codebase will naturally facilitate easier unit testing. For example,
you will be able to test service layer objects by stubbing or mocking DAO or Repository interfaces, without any
need to access persistent data while running unit tests.

True unit tests typicaly will run extremely quickly, as there is no runtime infrastructure to set up, whether
application server, database, ORM tool, or whatever. Thus emphasizing true unit tests as part of your
development methodology will boost your productivity. The upshot of this is that you often do not need this
section of the testing chapter to help you write effective unit tests for your 10C-based applications. For certain
unit testing scenarios, however, the Spring Framework provides the following mock objects and testing support
classes.

8.2.1. Mock objects

8.2.1.1. INDI

The org. spri ngf ramewor k. nock. j ndi package contains an implementation of the JINDI SPI, which is useful
for setting up a simple JNDI environment for test suites or stand-alone applications. If, for example, JDBC
Dat aSour ceS get bound to the same JNDI names in test code as within a J2EE container, both application code
and configuration can be reused in testing scenarios without modification.

8.2.1.2. Servlet API

The org. spri ngf ramewor k. nock. web package contains a comprehensive set of Servlet APl mock objects,
targeted at usage with Spring's Web MVC framework, which are useful for testing web contexts and
controllers. These mock objects are generally more convenient to use than dynamic mock objects (e.g.,
EasyMock) or existing Servlet APl mock objects (e.g., MockObjects).

8.2.1.3. Portlet API

The or g. spri ngf ramewor k. nock. web. port | et package contains a set of Portlet APl mock objects, targeted at
usage with Spring's Portlet MV C framework.

Spring Framework (2.5.5) 196

http://www.easymock.org
http://www.mockobjects.com

Testing

8.2.2. Unit testing support classes

8.2.2.1. General utilities

The org. springframework.test.util package contains ReflectionTestUils, which is a collection of
reflection-based utility methods for use in unit and integration testing scenarios in which the developer would
benefit from being able to set a non-public field or invoke a non-public setter method when testing
application code involving, for example:

¢ ORM frameworks such as JPA and Hibernate which condone the usage of pri vat e or prot ect ed field access
as opposed to publ i ¢ setter methods for properties in adomain entity

» Spring's support for annotations such as @ut owi r ed and @esour ce Which provides dependency injection for
privat e Or prot ect ed fields, setter methods, and configuration methods

8.2.2.2. Spring MVC

The org. springframework. test.web package contains Abstract Model AndVi ewTests, Which serves as a
convenient base class for JUnit 3.8 based unit tests dealing with Spring MV C Mdel AndVi ew objects. When
developing against Java 1.4 and higher (e.g., in combination with JUnit 4+, TestNG, etc.), you have the option
of using the Mdel Andvi ewassert class (in the same package) to test your Model AndVi ew related functionality.

Tip: depending on your testing environment, either extend AbstractMdel AndVi ewTests OF USe
Mbdel AndVi ewAssert directly and then use MockHtt pServl et Request, MockHtt pSession, etc. from the
org. springframewor k. nock. web packageto test your Spring MV C Control | er S.

8.3. Integration testing

8.3.1. Overview

It isimportant to be able to perform some integration testing without requiring deployment to your application
server or connecting to other enterprise infrastructure. Thiswill enable you to test things such as:

» The correct wiring of your Spring |0C container contexts.

» Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL
statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first class support for integration testing in the form of the classes that are
packaged in the spring-test.jar library. In this library, you will find the org. spri ngfranework. t est
package which contains valuable classes for integration testing using a Spring container, while at the same time
not being reliant on an application server or other deployment environment. Such tests will be slower to run
than unit tests but much faster to run than the equivalent Cactus tests or remote tests relying on deployment to
an application server.

Prior to the 2.5 release of the framework, Spring provided integration testing support specific to JUnit 3.8. As
of the 2.5 release, Spring offers support for unit and integration testing in the form of the Spring TestContext
Framework, which is agnostic of the actual testing framework in use, thus allowing instrumentation of tests in
various environments including JUnit 3.8, JUnit 4.4, TestNG, etc. Note that the Soring TestContext Framework
requires Java 5+.

Spring Framework (2.5.5) 197

Testing

8.3.2. Which support framework to use

The Spring team recommends using the Spring TestContext Framework for al new unit testing or integration
testing involving Appl i cat i onCont ext S OF requiring transactional test fixtures; however, if you are developing
in apre-Java 5 environment, you will need to continue to use the JUnit 3.8 legacy support. In addition, explicit
integration testing support for JPA which relies on shadow class loading for JPA class instrumentation is
currently only available with the JUnit 3.8 legacy support. If you are testing against a JPA provider which does
not require class instrumentation, however, it is recommended that you use the TestContext framework.

8.3.3. Common goals

The Spring integration testing support frameworks share several common goals, including:

Spring 10C container caching between test execution.

» Dependency Injection of test fixture instances (thisis nice).

» Transaction management appropriate to integration testing (thisis even nicer).

 Spring-specific support classes that are really useful when writing integration tests.

The following sections outline each of these goals and provide direct links to information specific to the
particular support frameworks.

8.3.3.1. Context management and caching

Spring integration testing support frameworks provide consistent loading of Spring Appl i cati onCont ext S and
caching of those contexts. Support for the caching of loaded contexts is important, because if you are working
on alarge project, startup time may become an issue - not because of the overhead of Spring itself, but because
the aobjects instantiated by the Spring container will themselves take time to instantiate. For example, a project
with 50-100 Hibernate mapping files might take 10-20 seconds to load the mapping files, and incurring that
cost before running every single test in every single test fixture will lead to slower overall test runs that could
reduce productivity.

Test classes will generally provide an array containing the resource locations of XML configuration metadata -
typically on the classpath - used to configure the application. This will be the same, or nearly the same, as the
list of configuration locations specified in web. xm or other deployment configuration.

By default, once loaded, the configured Appl i cati onCont ext will be reused for each test. Thus the setup cost
will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely
case that a test may 'dirty' the application context, requiring reloading - for example, by changing a bean
definition or the state of an application object - Spring's testing support provides mechanisms to cause the test
fixture to rel oad the configurations and rebuild the application context before executing the next test.

Context management and caching with:

* JUnit 3.8 legacy support

¢ The TestContext Framework

8.3.3.2. Dependency Injection of test fixtures

Spring Framework (2.5.5) 198

Testing

When Spring integration testing support frameworks load your application context, they can optionally
configure instances of your test classes via Dependency Injection. This provides a convenient mechanism for
setting up test fixtures using pre-configured beans from your application context. A strong benefit here is that
you can reuse application contexts across various testing scenarios (e.g., for configuring Spring-managed object
graphs, transactional proxies, bat aSour ces, €tc.), thus avoiding the need to duplicate complex test fixture set up
for individual test cases.

As an example, consider the scenario where we have a class, Hi ber nat eTi t | eDao, that performs data access
logic for say, the Ti t | e domain object. We want to write integration tests that test al of the following areas:

e The Spring configuration: basically, is everything related to the configuration of the Hi ber nat eTi t | eDao
bean correct and present?

« The Hibernate mapping file configuration: is everything mapped correctly and are the correct lazy-loading
settings in place?

e Thelogic of the Hi ber nat eTi t | eDao: does the configured instance of this class perform as anticipated?

Dependency Injection of test fixtures with:

* JUnit 3.8 legacy support

¢ The TestContext Framework

8.3.3.3. Transaction management

One common issue in tests that access a real database is their affect on the state of the persistence store. Even
when you're using a development database, changes to the state may affect future tests. Also, many operations -
such as inserting to or modifying persistent data - cannot be performed (or verified) outside a transaction.

The Spring integration testing support frameworks meet this need. By default, they create and roll back a
transaction for each test. You simply write code that can assume the existence of a transaction. If you call
transactionally proxied objects in your tests, they will behave correctly, according to their transactional
semantics. In addition, if test methods del ete the contents of selected tables while running within a transaction,
the transaction will roll back by default, and the database will return to its state prior to execution of the test.
Transactional support is provided to your test class via a Pl at f or nilr ansact i onManager bean defined in the
test's application context.

If you want a transaction to commit - unusual, but occasionally useful when you want a particular test to
populate or modify the database - the Spring integration testing support frameworks can be instructed to cause
the transaction to commit instead of roll back either by calling an inherited hook-method or by declaring a
specific annotation.

Transaction management with:

+ JUnit 3.8 legacy support

* The TestContext Framework

8.3.3.4. Integration testing support classes

The Spring integration testing support frameworks provide several abstract support classes that can simplify

Spring Framework (2.5.5) 199

Testing

writing integration tests. These base test classes provide well defined hooks into the testing framework as well
as convenient instance variables and methods, allowing access to such things as:

» The Appl i cati onCont ext : useful for performing explicit bean lookups or testing the state of the context as a
whole.

* A JdbcTenpl ate Or Sinpl eJdbcTenpl ate: useful for querying to confirm state. For example, you might
query before and after testing application code that creates an object and persists it using an ORM tooal, to
verify that the data appears in the database. (Spring will ensure that the query runs in the scope of the same
transaction.) Y ou will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example
using thef I ush() method on Hibernate's Sessi on interface.

Often you will provide an application-wide superclass for integration tests that provides further useful instance
variables used in many tests.

Support classesfor:

* JUnit 3.8 legacy support

¢ The TestContext Framework

8.3.4. JDBC testing support

The org. springframework. test.jdbc package contains Sinpl eJdbcTest Utils, which is a Java-5-based
collection of JDBC related utility functions intended to simplify standard database testing scenarios. Note that
Abst ract Transacti onal JUni t 38Spri ngCont ext Tests, Abstract Transacti onal JUnit4Spri ngCont ext Tests,

and Abstract Transacti onal Test NGSpri ngCont ext Tests provide convenience methods which delegate to
Si npl eJdbcTest Ui | s internally.

8.3.5. Common annotations

The Spring Framework provides a common set of Spring-specific annotations in the
org. springframework. test. annot ati on package that you can use in your testing if you are developing
against Java 5 or greater.

e @fProfileVal ue

Indicates that the annotated test is enabled for a specific testing environment. If the configured
Profil eval ueSource returns a matching val ue for the provided nane, the test will be enabled. This
annotation can be applied to an entire class or individual methods.

@fProfil eval ue(nane="j ava. vendor", val ue="Sun M crosystens Inc.")
public void testProcessWi chRunsOnl yOnSunJdvn() {

/1 sone logic that should run only on Java VMs from Sun M crosystens
}

Alternatively @f Profil eval ue may be configured with a list of val ues (with OR semantics) to achieve
TestNG-like support for test groups in a JUnit environment. Consider the following example:

@fProfil eVal ue(nane="t est-groups"”, values={"unit-tests", "integration-tests"})
public void testProcessWi chRunsForUnit Orl ntegrationTest Groups() {

/1 sone logic that should run only for unit and integration test groups
}

Spring Framework (2.5.5) 200

Testing

e @rofileVal ueSourceConfiguration

Class-level annotation which is used to specify what type of Profi | eval ueSour ce t0 use when retrieving
profile values configured via the @f Profi | eval ue annotation. If @ ofi | eval ueSour ceConfi guration iS
not declared for atest, Syst enProf i | eval ueSour ce Will be used by default.

@rof i | eVal ueSour ceConf i gur ati on(Cust onPr of i | eVal ueSour ce. cl ass)
public class CustonProfil eVal ueSourceTests {

/1 class body. ..
}

* @irtiesContext

The presence of this annotation on a test method indicates that the underlying Spring container is 'dirtied’
during the execution of the test method, and thus must be rebuilt after the test method finishes execution
(regardless of whether the test passed or not).

@i rtiesCont ext
public void testProcessWichDirti esAppCtx() {

/1 sone logic that results in the Spring container being dirtied
}

* @xpect edException

Indicates that the annotated test method is expected to throw an exception during execution. The type of the
expected exception is provided in the annotation, and if an instance of the exception is thrown during the test
method execution then the test passes. Likewise if an instance of the exception is not thrown during the test
method execution then the test fails.

@xpect edExcept i on(SonmeBusi nessExcepti on. cl ass)
public void testProcessRai nyDayScenario() {

/1 some logic that should result in an Exception being thrown
}

* @i ned

Indicates that the annotated test method has to finish execution in a specified time period (in milliseconds). If
the text execution time takes longer than the specified time period, the test fails.

Note that the time period includes execution of the test method itself, any repetitions of the test (see
@repeat), aswell asany set up or tear down of the test fixture.

@i med(m | 1is=1000)
public void testProcessWthOneSecondTi meout () {

/1 sonme logic that should not take |onger than 1 second to execute
}

* @Repeat

Indicates that the annotated test method must be executed repeatedly. The number of times that the test
method is to be executed is specified in the annotation.

Note that the scope of execution to be repeated includes execution of the test method itself as well as any set
up or tear down of the test fixture.

@Repeat (10)
public void testProcessRepeatedl y() {
...

Spring Framework (2.5.5) 201

Testing

* @Rol | back

Indicates whether or not the transaction for the annotated test method should be rolled back after the test
method has completed. If true, the transaction will be rolled back; otherwise, the transaction will be
committed. Use @rol | back to override the default rollback flag configured at the class level.

@Rol | back(fal se)

public void testProcessWthoutRol |l back() {
...

}

® @\ot Transact i onal

The presence of this annotation indicates that the annotated test method must not execute in a transactional
context.

@\ot Tr ansact i onal

public void testProcessWthout Transaction() {
...

}

Annotation support for:

» JUnit 3.8 legacy support: all common annotations listed above are supported but must be used in conjunction
with Abst ract Annot at i onAwar eTr ansact i onal Test s in order for the presence of these annotations to have
any effect.

» The TestContext Framework: supports all of the common annotations listed above while providing additional
TestContext-specific and transactional annotations (e.g., @ont ext Confi guration, @BeforeTransaction,
etc.). Note, however, that some of the common annotations are only supported when used in conjunction
with JUnit (e.g., with the SpringJUnit4ClassRunner or the JUnit 3.8 and JUnit 4.4 base test classes). Refer to
the documentation in the TestContext Framework section for further details.

8.3.6. JUnit 3.8 legacy support

Spring's JUnit 3.8 legacy support is comprised of the classes found in the or g. spri ngf r amewor k. t est package.
This package provides valuable JUnit Test Case superclasses which can be extended for out-of-container
integration tests involving Spring Appl i cati onCont ext S OF requiring transactional support at the test method
level.

8.3.6.1. Context management and caching

Abst r act Si ngl eSpri ngCont ext Tests provides context management and caching support for JUnit 3.8 based
test cases and exposes a prot ect ed method that subclasses can override to provide the location of context
definition files:

protected String[] getConfiglLocations()

Implementations of this method must provide an array containing the resource locations of XML configuration
metadata - typically on the classpath - used to configure the application. This will be the same, or nearly the

Spring Framework (2.5.5) 202

Testing

same, as the list of configuration locations specified in web. xmi or other deployment configuration. As an
alternative you may choose to override one of the following. See the respective JavaDoc for further details.

protected String[] getConfigPaths()

protected String get ConfigPath()

By default, once loaded, the configuration file set will be reused for each test case. Thus the setup cost will be
incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely case that
atest may 'dirty’ the application context, requiring reloading - for example, by changing a bean definition or the
state of an application object - you can call theset bi rty() method on Abst ract Si ngl eSpri ngCont ext Test s t0
cause the test fixture to reload the configurations and rebuild the application context before executing the next
test case. As an dternative, if you are developing against Java 5 or greater and extending
Abst r act Annot at i onAwar eTr ansact i onal Test s, YOu may annotate your test method with @i rti esCont ext to
achieve the same effect.

8.3.6.2. Dependency Injection of test fixtures

When Abst r act Dependencyl nj ecti onSpri ngCont ext Tests (and subclasses) load your application context,
they can optionally configure instances of your test classes by Setter Injection. All you need to do is to define
instance variables and the corresponding setter methods. Abst r act Dependency! nj ect i onSpri ngCont ext Test s
will automatically locate the corresponding object in the set of configuration files specified in the
get Confi gLocati ons() method.

Consider the scenario where we have a class, Hi ber nat eTi t | eDao (as outlined in the Common goals section).
Let's look at a JUnit 3.8 based implementation of the test class itself (we will look at the configuration
immediately afterwards).

public final class Hi bernateTitl eDaoTests extends Abstract Dependencyl njecti onSpri ngCont ext Tests {

/1 this instance will be (autonmatically) dependency injected
private Hi bernateTitl eDao titleDao;

// a setter method to enable DI of the 'titleDao' instance variable

public void setTitl eDao(H bernateTitleDao titleDao) {
this.titleDao = titl eDao;

}

public void testLoadTitle() throws Exception {
Title title = this.titleDao.loadTitle(new Long(10));
assertNotNul | (title);

}

/1 specifies the Spring configuration to load for this test fixture
protected String[] getConfiglLocations() {

return new String[] { "classpath:conifoo/daos.xm" };
}

The file referenced by the get Confi gLocati ons() method (i.e., "cl asspat h: cont f oo/ daos. xm ") looks like
this:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd" >

<l-- this bean will be injected into the HbernateTitleDaoTests cl ass -->
<bean i d="titl eDao" cl ass="com fo0o0. dao. hi bernate. H bernateTi t| eDao" >

Spring Framework (2.5.5) 203

Testing

<property name="sessi onFactory" ref="sessionFactory"/>
</ bean>

<bean i d="sessi onFactory" cl ass="org. spri ngframework. orm hi ber nat e3. Local Sessi onFact or yBean" >
<!-- dependencies elided for clarity -->
</ bean>

</ beans>

The Abst ract Dependencyl nj ecti onSpri ngCont ext Tests Classes uses autowire by type. Thus if you have
multiple bean definitions of the same type, you cannot rely on this approach for those particular beans. In that
case, you can use the inherited appl i cati onCont ext instance variable and perform explicit lookups using (for
example) acall to appl i cati onCont ext . get Bean("tit| eDao").

If you don't want dependency injection applied to your test cases, ssmply don't declare any public Setter
methods. Alternatively, you can extend Abst ract Spri ngCont ext Test s - the root of the JUnit 3.8 integration
testing support class hierarchy in the org. springframework.test package - which merely contains
convenience methods to load Spring contexts and performs no Dependency Injection of the test fixture.

8.3.6.2.1. Field level injection

If, for whatever reason, you don't fancy having setter methods in your test fixtures, Spring can inject
dependencies into protected fields. Find below a reworking of the previous example to use field level
injection (the Spring XML configuration does not need to change, merely the test fixture).

public final class Hi bernateTitl eDaoTests extends Abstract Dependencyl njecti onSpri ngCont ext Tests {

public H bernateTitl eDaoTests() {
/1 switch on field | evel injection
set Popul at ePr ot ect edVari abl es(true);

}

/1 this instance will be (automatically) dependency injected
protected HibernateTitl eDao titleDao;

public void testLoadTitle() throws Exception {
Title title = this.titleDao.|oadTitle(new Long(10));
assertNotNul | (title);

}

/| specifies the Spring configuration to load for this test fixture
protected String[] getConfiglLocations() {

return new String[] { "classpath:conf foo/daos.xm" };
}

In the case of field injection, there is no autowiring going on: the name of apr ot ect ed instance variable is used
as the lookup bean name in the configured Spring container.

8.3.6.3. Transaction management

Abstract Transact i onal Spri ngCont ext Test s depends on aPl at f or mir ansact i onManager bean being defined
in the application context. The name doesn't matter due to the use of autowire by type.

Typicaly you will extend the subclass, Abstract Transact i onal Dat aSour ceSpri ngCont ext Tests. This class
also requires that a Dat aSour ce bean definition - again, with any name - be present in the application context. It
creates a JdbcTenpl at e instance variable, that is useful for convenient querying, and provides handy methods
to delete the contents of selected tables (remember that the transaction will roll back by default, so thisis safe
to do).

If you want a transaction to commit programmatically - unusual, but occasionally useful when you want a

Spring Framework (2.5.5) 204

Testing

particular test to populate the database - you can cal the set Conplete() method inherited from
Abstract Transact i onal Spri ngCont ext Tests. This will cause the transaction to commit instead of roll back.
As an dternative, if you are developing against Java 5 or greater and extending
Abst r act Annot at i onAwar eTr ansact i onal Tests, you may annotate your test method with @rol | back(f al se)
to achieve the same effect through configuration.

There is adso the convenient ability to end a transaction before the test case ends, by calling the
endTransacti on() method. Thiswill roll back the transaction by default and commit it only if set Conpl et e()
had previously been called. This functionality is useful if you want to test the behavior of ‘disconnected' data
objects, such as Hibernate-mapped entities that will be used in a web or remoting tier outside a transaction.
Often, lazy loading errors are discovered only through Ul testing; if you call endTr ansacti on() you can ensure
correct operation of the Ul through your JUnit test suite.

8.3.6.4. JUnit 3.8 legacy support classes

When you extend the Abst ract Tr ansact i onal Dat aSour ceSpri ngCont ext Test s class you will have access to
the following pr ot ect ed instance variables:

e applicationCont ext (a Conf i gur abl eAppl i cati onCont ext): inherited from the
Abst ract Si ngl eSpri ngCont ext Test s superclass. Use thisto perform explicit bean lookup or to test the state
of the context as awhole.

e jdbcTenpl ate: inherited from Abstract Transacti onal Dat aSour ceSpri ngCont ext Tests. Useful for
querying to confirm state. For example, you might query before and after testing application code that creates
an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will
ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to
flush' its changes for this to work correctly, for example using the f1 ush() method on Hibernate's Sessi on
interface.

8.3.6.5. Java 5+ specific support

8.3.6.5.1. Annotation aware transactional tests

In addition to the aforementioned common annotations, the or g. spri ngf ramewor k. t est . annot at i on package
also contains an abst ract JUnit Test Case class which provides annotation-driven integration testing support.

The Abst ract Annot at i onAwar eTr ansact i onal Tests class extends
Abstract Transact i onal Dat aSour ceSpri ngCont ext Test s and makes text fixtures, which extend it, aware of a
number of (Spring-specific) annotations. Abstract Annot at i onAwar eTr ansact i onal Tests supports all
annotations listed in the common annotations section as well as Spring's @ ansacti onal annotation for
configuring explicit transactional semantics.

8.3.6.5.2. JPA support classes

The or g. spri ngframewor k. t est . j pa package provides support classes for tests based on the Java Persistence
API (JPA).

e Abstract JpaTests iS a convenient support class for JPA-related tests, which offers the same contract as
Abstract Transact i onal Dat aSour ceSpri ngCont ext Tests and equaly good performance, even when
performing the instrumentation required by the JPA specification. Exposes an Ent i t yManager Fact ory and a
shared EntityManager. Requires an EntityManager Factory to be injected, plus the DataSource and
JpaTransact i onManager through the superclass.

Spring Framework (2.5.5) 205

Testing

e Abstract Aspectj JpaTest s iSasubclass of Abst ract JpaTest s that activates AspectJ load-time weaving and
alows the ability to specify a custom location for AspectJsaop. xni file.

8.3.7. Spring TestContext Framework

The Soring Test Cont ext Framework (located in the or g. spri ngframewor k. t est . cont ext package) provides
generic, annotation-driven unit and integration testing support that is agnostic of the testing framework in use,
for example JUnit 3.8, JUnit 4.4, TestNG 5.5, etc. The TestContext framework also places a great deal of
importance on convention over configuration with reasonable defaults that can be overridden via
annotation-based configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support for JUnit 3.8,
JUnit 4.4, and TestNG 5.5 in the form of abst ract support classes. For JUnit 4.4, the framework also provides
a custom Runner which alows one to write test classes that are not required to extend a particular class
hierarchy.

The following section provides an overview of the internals of the TestContext framework. If you are only
interested in using the framework and not necessarily interested in extending it with your own custom listeners,
feel free to skip ahead to the configuration (context management, dependency injection, transaction
management), support classes, and annotation support sections.

8.3.7.1. Key abstractions

The core of the framework consists of the Test Context and Test Cont ext Manager classes and the
Test Executi onLi stener interface. A Test Cont ext Manager IS created on a per-test basis. The
Test Cont ext Manager in turn manages a Test Cont ext Which is responsible for holding the context of the
current test. The Test Cont ext Manager IS aso responsible for updating the state of the Test Cont ext as the test
progresses and delegating to Test Executi onLi st ener S, which instrument the actual test execution (e.g.,
providing dependency injection, managing transactions, etc.). Consult the JavaDoc and the Spring test suite for
further information and examples of various configurations.

e Test Cont ext : encapsulates the context in which atest is executed, agnostic of the actual testing framework
in use.

e Test Cont ext Manager : the main entry point into the Spring TestContext Framework, which is responsible for
managing a single Test Context and signaling events to al registered Test Executi onLi steners at well
defined test execution points: test instance preparation, prior to any before methods of a particular testing
framework, and after any after methods of a particular testing framework.

* TestExecutionLi stener: defines a listener API for reacting to test execution events published by the
Test Cont ext Manager With which the listener is registered.

Spring provides three Test Execut i onLi st ener implementations which are configured by default (via the
@est Executi onLi st eners annotation): Dependencyl nj ect i onTest Execut i onLi st ener,
Di rti esCont ext Test Executi onLi stener, and Transacti onal Test Executi onLi stener, Which provide
support for dependency injection of the test instance, handling of the @i rti esContext annotation, and
transactional test execution support with default rollback semantics, respectively.

The following three sections explain how to configure the Test Cont ext framework via annotations and provide
working examples of how to actually write unit and integration tests with the framework.

8.3.7.2. Context management and caching

Spring Framework (2.5.5) 206

Testing

Each Test Context provides context management and caching support for the test instance for which it is
responsible. Test instances do not automatically receive access to the configured ApplicationCont ext;
however, if a test class implements the ApplicationContextAware interface, a reference to the

Appl i cat i onCont ext will be supplied to the test instance (provided the
Dependencyl nj ecti onTest Execut i onLi stener has been configured, which is the default). Note that
Abst ract JUni t 38Spri ngCont ext Test s, Abstract JUni t 4Spri ngCont ext Test s, and

Abst ract Test NGSpri ngCont ext Test s aready implement Appl i cati onCont ext Aware and therefore provide
this functionality out-of-the-box.

In contrast to the JUnit 3.8 legacy support, test classes which use the TestContext framework do not need to
override any protected instance methods to configure their application context. Rather, configuration is
achieved merely by declaring the @ont ext Confi gur ati on annotation at the class level. If your test class does
not explicitly declare any application context resource |ocations, the configured ContextLoader will
determine how and whether or not to load a context from a default set of locations. For example,
Gener i cXnl Cont ext Loader - Which isthe default cont ext Loader - will generate a default location based on the
name of the test class. If your class is hamed com exanpl e. MyTest , Gener i cXnl Cont ext Loader Will load your
application context from " cl asspat h: / coni exanpl e/ MyTest - cont ext . xni .

package com exanpl e;

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be | oaded from "classpath:/con exanpl e/ MyTest - cont ext . xm "
@Cont ext Confi guration
public class MyTest {
/'l class body...
}

If the default location does not suit your needs, you are free to explicitly configure the | ocat i ons attribute of
@ont ext Confi guration (Ssee code listing below) with an array containing the resource locations of XML
configuration metadata (assuming an XML-capable Cont ext Loader has been configured) - typically on the
classpath - used to configure the application. This will be the same, or nearly the same, as the list of
configuration locations specified in web. xni or other deployment configuration. As an alternative you may
choose to implement and configure your own custom Cont ext Loader .

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)
/1 ApplicationContext will be | oaded from "/applicationContext.xm" and "/applicationContext-test.xm "
/1l in the root of the classpath
@Cont ext Confi guration(l ocations={"/applicationContext.xm ", "/applicationContext-test.xm"})
public class MyTest {

/1 class body. ..

}

@ont ext Confi guration alSO supports a boolean i nheri t Locati ons attribute which denotes whether or not
resource locations from superclasses should be inherited. The default value is t rue, which means that an
annotated class will inherit the resource locations defined by an annotated superclass. Specifically, the resource
locations for an annotated class will be appended to the list of resource locations defined by an annotated
superclass. Thus, subclasses have the option of extending the list of resource locations. In the following
example, the ApplicationContext for ExtendedTest will be loaded from "/base-context.xml" and
"/extended-context.xml", in that order. Beans defined in "/extended-context.xml" may therefore override those
defined in "/base-context.xml".

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)
/1 ApplicationContext will be | oaded from "/base-context.xmi" in the root of the classpath
@Cont ext Confi guration(l ocations={"/base-context.xm"})
public class BaseTest {
/'l class body. ..
}

/1 ApplicationContext will be | oaded from "/base-context.xm" and "/extended-context.xni"

Spring Framework (2.5.5) 207

Testing

// in the root of the classpath
@Cont ext Confi guration(l ocati ons={"/extended-context.xm "})
public class ExtendedTest extends BaseTest {
/'l class body...
}

If i nheritLocations issettofal se, the resource locations for the annotated class will shadow and effectively
replace any resource locations defined by a superclass.

By default, once loaded, the configured Appl i cati onCont ext will be reused for each test. Thus the setup cost
will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely
case that a test may dirty the application context, requiring reloading - for example, by changing a bean
definition or the state of an application object - you may annotate your test method with @i rti esCont ext
(assuming Di r t i esCont ext Test Execut i onLi st ener has been configured, which is the default) to cause the test
fixture to reload the configurations and rebuild the application context before executing the next test.

8.3.7.3. Dependency Injection of test fixtures

When you configure the Dependencyl nj ect i onTest Execut i onLi st ener - which is configured by default - via
the @est Execut i onLi st ener s annotation, the dependencies of your test instances will be injected from beans
in the application context you configured via @ont ext Confi gur ati on by Setter Injection, Field Injection, or
both, depending on which annotations you choose and whether you place them on setter methods or fields. For
consistency with annotation support in Spring 2.5, you may choose either Spring's @ut owi r ed annotation or
the @esource annotation from JSR 250. The semantics for both are consistent throughout the Spring
Framework. For example, if you prefer autowiring by type, annotate your setter methods or fields with
@ut owi r ed. On the other hand, if you prefer to have your dependencies injected by name, annotate your setter
methods or fields with @esour ce.

Tip
The TestContext framework does not instrument the manner in which atest instance is instantiated.
Thus the use of @ut owi r ed for constructors has no effect for test classes.

Since @ut owi red performs autowiring by type, if you have multiple bean definitions of the same type, you
cannot rely on this approach for those particular beans. In that case, you can use @esour ce for injection by
name. Alternatively, if your test class implements Appl i cati onCont ext Aware, You can directly access the
Appl i cationContext supplied to your test and perform an explicit lookup using (for example) a call to
appl i cati onCont ext. getBean("titl eDao").

If you don't want dependency injection applied to your test instances, simply don't annotate any fields or setter
methods with @ut owi red or @resource. Alternatively, you can disable dependency injection altogether by
explicitly configuring your class with @est Execut i onLi st eners and omitting
Dependencyl nj ect i onTest Execut i onLi st ener. cl ass from thelist of listeners.

Consider the scenario where we have a class, H ber nat eTi t | eDao (&s outlined in the common goals section).
First, let's look at a JUnit 4.4 based implementation of the test class itself which uses @ut owi red for field
injection (we will look at the application context configuration after all sample code listings). Note: The
dependency injection behavior in the following code listings is not in any way specific to JUnit 4.4. The same
DI techniques can be used in conjunction with any testing framework.

@RunW t h(Spri ngJUni t 4Cl assRunner. cl ass)

/] specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration(l ocati ons={"daos.xm "})

public final class Hi bernateTitl eDaoTests {

// this instance will be dependency injected by type

Spring Framework (2.5.5) 208

Testing

@\ut owi r ed
private H bernateTitleDao titleDao;

public void testLoadTitle() throws Exception {
Title title = this.titleDao.loadTitle(new Long(10));
assertNotNul | (title);

Alternatively, we can configure the class to use @ut owi r ed for setter injection.

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)

/| specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration(l ocati ons={"daos. xm "})

public final class HibernateTitleDaoTests {

/1 this instance will be dependency injected by type
private HibernateTitleDao titleDao;

@\ut owi r ed

public void setTitl eDao(Hi bernateTitleDao titleDao) {
this.titleDao = titl eDao;

}

public void testLoadTitle() throws Exception {
Title title = this.titleDao.loadTitle(new Long(10));
assertNotNul | (title);

Now let's take alook at an example using @esour ce for field injection.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/| specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration(l ocati ons={"daos. xm "})

public final class Hi bernateTitl eDaoTests {

// this instance will be dependency injected by nane

@Resour ce
private Hi bernateTitl eDao titleDao;

public void testLoadTitle() throws Exception {
Title title = this.titleDao.|oadTitle(new Long(10));
assertNot Nul | (title);

Finally, hereis an example using @esour ce for setter injection.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/1 specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration(l ocati ons={"daos.xm "})

public final class Hi bernateTitl eDaoTests {

// this instance will be dependency injected by nane
private HibernateTitl eDao titleDao;

@Resour ce

public void setTitleDao(Hi bernateTitleDao titleDao) {
this.titleDao = titl eDao;

}

public void testLoadTitle() throws Exception {
Title title = this.titleDao.|oadTitle(new Long(10));
assertNotNul | (title);

The above code listings use the same XML context file referenced by the @ont ext Conf i gur at i on annotation
(i.e., "daos. xm ") which looks like this:

Spring Framework (2.5.5) 209

Testing

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd" >

<I-- this bean will be injected into the HbernateTitleDaoTests cl ass -->

<bean id="titl eDao" class="com foo.dao. hi bernate. H bernateTitl eDao">
<property nanme="sessi onFactory" ref="sessionFactory"/>

</ bean>

<bean i d="sessi onFactory" class="org. springfranmework. orm hi bernat e3. Local Sessi onFact or yBean" >
<I-- dependencies elided for clarity -->
</ bean>

</ beans>

Note

If you are extending from a Spring-provided test base class that happens to use @ut owi r ed on one
of its setters methods, you might have multiple beans of the affected type defined in your
application context: e.g. multiple Dat aSour ce beans. In such a case, you may override the setter
and use the @ual i fi er annotation to indicate a specific target bean as follows:

@verride @\wutow red
public void setDataSource(@ualifier("mDataSource") DataSource dataSource) {
super . set Dat aSour ce(dat aSour ce) ;

}

The specified qualifier value indicates the specific bat aSour ce bean to inject, narrowing the set of
type matches to a specific bean. Its value is matched against <qual i fi er > declarations within the
corresponding <bean> definitions. The bean name is used as a fallback qualifier value, so you may
effectively also point to a specific bean by name there (as shown above, assuming that
"myDataSource” is the bean id). If there is only one Dat aSour ce bean to begin with, then the
qualifier will simply not have any effect - independent from the bean name of that single matching
bean.

Alternatively, consider using the @esource annotation on such an overridden setter methods,
defining the target bean name explicitly - with no type matching semantics. Note that this always
points to a bean with that specific name, no matter whether there is one or more beans of the given

type.

@verride @resource("myDat aSource")
public void set Dat aSour ce(Dat aSour ce dat aSource) {
super . set Dat aSour ce(dat aSour ce) ;

}

8.3.7.4. Transaction management

In the TestContext framework, transactions are managed by the Transacti onal Test Executi onlLi st ener,
which is configured via the @rest Executi onLi st eners annotation by default, even if you do not explicitly
declare @rest Execut i onLi st eners 0n your test class. To enable support for transactions, however, you must
provide a Pl at f or nilr ansact i onManager bean in the application context loaded via @ont ext Confi gurati on
semantics. In addition, you must declare @r ansact i onal either at the class or method level.

Spring Framework (2.5.5) 210

Testing

For class-level transaction configuration (i.e., setting the bean name for the transaction manager and the default
rollback flag), see the @ransacti onConfiguration entry in the TestContext framework annotation support
section.

There are severa options for configuring transactions for individual test methods. If transactions are not
enabled for the entire test class, methods may be explicitly annotated with @ ansactional . Similarly, if
transactions are enabled for the entire test class, methods may be explicitly flagged not to run within a
transaction by annotating them with @t Transacti onal . To control whether or not a transaction should
commit for a particular test method, you may use the @rol | back annotation to override the class-level default
rollback setting.

Note that Abst ract Transact i onal JUni t 38Spri ngCont ext Test s,
Abst ract Transacti onal JUni t 4Spri ngCont ext Test s, and
Abst ract Tr ansact i onal Test NGSpri ngCont ext Test s are pre-configured for transactional support at the class
level.

Y ou will occasionally find that you need to execute certain code before or after a transactional test method but
outside the transactional context, for example to verify the initial database state prior to execution of your test
or to verify expected transactional commit behavior after test execution (e.g., if the test was configured not to
roll back the transaction). Transacti onal Test Executi onLi st ener supports the @eforeTransaction and
@\ ter Transact i on annotations exactly for such scenarios. Simply annotate any publ i ¢ voi d method in your
test class with one of these annotations, and the Transact i onal Test Execut i onLi st ener Will ensure that your
before transaction method or after transaction method is executed at the appropriate time.
Tip

-

"9
Any before methods (e.g., methods annotated with JUnit 4's @Before) and any after methods (e.g.,

methods annotated with JUnit 4's @After) will be executed within a transaction. In addition,
methods annotated with @BeforeTransaction Or @fterTransacti on Will naturally not be
executed for tests annotated with @iot Tr ansact i onal .

The following JUnit 4 based example displays a fictitious integration testing scenario highlighting several of
the transaction-related annotations. Consult the TestContext framework annotation support section of the
reference manual for further information and configuration examples.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@Cont ext Confi guration

@ ansact i onConfi guration(transacti onvVanager="txMr", defaul t Rol | back=f al se)
@ransacti onal

public class FictitiousTransactional Test {

@Bef oreTransacti on
public void verifylnitial Dat abaseState() {

/Il logic to verify the initial state before a transaction is started
}

@efore
public void setUpTest DataWt hi nTransacti on() {
/] set up test data within the transaction

}
@est

/1 overrides the class-level defaultRollback setting
@Rol | back(true)
public void nodifyDat abaseW t hi nTransacti on() {
/1 1ogic which uses the test data and nodifi es database state

}

@\ ter
public void tear DownW t hi nTransacti on() {
/'l execute "tear down" logic within the transaction

Spring Framework (2.5.5) 211

Testing

}

@\fterTransaction
public void verifyFinal Dat abaseState() {

/!l logic to verify the final state after transaction has rolled back
}

@est

@\ot Tr ansact i onal

public void perfornmonDat abaseRel at edAction() {
/'l 1 ogic which does not nodify database state

}

8.3.7.5. TestContext support classes

8.3.7.5.1. JUnit 3.8 support classes

The org. spri ngf ramewor k. t est . cont ext . j uni t 38 package provides support classes for JUnit 3.8 based test
Cases.

* AbstractJUnit 38Spri ngCont ext Test s:

Abstract Test Case which integrates the Soring TestContext Framework with explicit Appl i cat i onCont ext
testing support in a JUnit 3.8 environment. When you extend the Abst ract JUni t 38Spri ngCont ext Test s
class you will have access to the following pr ot ect ed instance variables:

* applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
whole.

* Abstract Transacti onal JUni t 38Spri ngCont ext Test s:

Abstract transactional extension of Abst ract JUni t 38Spri ngCont ext Test s that also adds some convenience
functionality for JIDBC access. Expects aj avax. sql . Dat aSour ce bean and a Pl at f or nilr ansact i onManager
bean to be defined in the ApplicationContext. When you extend the
Abstract Transact i onal JUni t 38Spri ngCont ext Tests class you will have access to the following
pr ot ect ed instance variables:

* applicationContext: inherited from the Abstract JUni t 38Spri ngCont ext Tests superclass. Use this to
perform explicit bean lookups or to test the state of the context as awhole.

* sinpl eJdbcTenpl at e: useful for querying to confirm state. For example, you might query before and after
testing application code that creates an object and persists it using an ORM tool, to verify that the data
appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) Y ou
will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
f1 ush() method on Hibernate€'s sessi on interface.

8.3.7.5.2. JUnit 4.4 support classes

The org. spri ngframewor k. t est. cont ext . j uni t 4 package provides support classes for JUnit 4.4 based test
Cases.

® AbstractJUnit 4SpringCont ext Tests:

Abstract base test class which integrates the Spring TestContext Framework with explicit
Appl i cati onCont ext testing support in a JUnit 4.4 environment.

Spring Framework (2.5.5) 212

Testing

When you extend Abst ract JUni t 4Spri ngCont ext Test s you Wwill have access to the following pr ot ect ed
instance variables:

 applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
whole.

Abstract Transacti onal JUni t 4Spri ngCont ext Test s:

Abstract transactional extension of Abst ract JUni t 4Spri ngCont ext Test s that also adds some convenience
functionality for JDBC access. Expects aj avax. sql . Dat aSour ce bean and a Pl at f or mTr ansact i onManager
bean to be defined in the Appl i cat i onCont ext .

When you extend Abstract Transactional JUni t 4SpringContext Tests you will have access to the
following pr ot ect ed instance variables:

 applicationContext: inherited from the Abstract JUni t 4Spri ngCont ext Tests superclass. Use this to
perform explicit bean lookups or to test the state of the context as awhole.

* sinpl eJdbcTenpl at e: useful for querying to confirm state. For example, you might query before and after
testing application code that creates an object and persists it using an ORM tool, to verify that the data
appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) Y ou
will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
f1ush() method on Hibernate's Sessi on interface.

Tip

“a
These classes serve only as a convenience for extension. If you do not wish for your test classes to
be tied to a Spring-specific class hierarchy - for example, if you wish to directly extend the class
you are testing - you may configure your own custom test classes by using
@unW t h(SpringJuni t 4Cl assRunner. cl ass), @cont ext Confi gurati on,
@rest Execut i onLi st ener s, €tC.

8.3.7.5.3. Custom JUnit 4.4 Runner

The Soring TestContext Framework offers full integration with JUnit 4.4 via a custom runner. By annotating
test classes with @unwi t h(Spri ngJuni t 4d assRunner . cl ass) , developers can implement standard JUnit 4.4
unit and integration tests and simultaneously reap the benefits of the TestContext framework such as support
for loading application contexts, dependency injection of test instances, transactional test method execution,
etc. The following code listing displays the minimal requirements for configuring a test class to run with the
custom Spring Runner. Note that @est Execut i onLi st ener s has been configured with an empty list in order to
disable the default listeners, which would otherwise require that an Appl i cati onCont ext be configured via
@cont ext Confi gurati on.

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)
@est Executi onLi steners({})
public class SinpleTest {

@est

public void testMethod() {
/'l execute test logic...
}

8.3.7.5.4. TestNG support classes

Spring Framework (2.5.5) 213

Testing

The org. spri ngfranmework. t est. cont ext. testng package provides support classes for TestNG based test
cases.

* Abstract Test NGSpri ngCont ext Test s.

Abstract base test class which integrates the Spring TestContext Framework with explicit
Appl i cati onCont ext testing support in a TestNG environment.

When you extend Abst r act Test NGSpr i ngCont ext Test's you will have access to the following pr ot ect ed
instance variables:

* applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
whole.

* Abstract Transacti onal Test NGSpri ngCont ext Test s:

Abstract transactional extension of Abstract Test NGSpri ngCont ext Tests that adds some convenience
functionality for JDBC access. Expects aj avax. sql . Dat aSour ce bean and a Pl at f or nilr ansact i onManager
bean to be defined in the Appl i cat i onCont ext .

When you extend Abstract Transacti onal Test NGSpri ngCont ext Tests you will have access to the
following pr ot ect ed instance variables:

e applicationContext: inherited from the Abstract Test NGSpri ngCont ext Test s superclass. Use this to
perform explicit bean lookups or to test the state of the context asawhole.

 sinpl eJdbcTenpl at e: useful for querying to confirm state. For example, you might query before and after
testing application code that creates an object and persists it using an ORM tool, to verify that the data
appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You
will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
f1 ush() method on Hibernate's Sessi on interface.

Tip

"9
These classes serve only as a convenience for extension. If you do not wish for your test classes to
be tied to a Spring-specific class hierarchy - for example, if you wish to directly extend the class

you are testing - you may configure your own custom test classes by using
@ont ext Confi guration, @estExecutionListeners, etc. and by manually instrumenting your
test class with a Test Cont ext Manager . See the source code of

Abst r act Test NGSpr i ngCont ext Test s for an example of how to instrument your test class.

8.3.7.6. TestContext framework annotation support

The Spring TestContext Framework supports all annotations as outlined in the common annotations section.
The following annotations, however, are only supported when used in conjunction with Junit (e.g., with the
SoringJUnit4ClassRunner or the JUnit 3.8 and JUnit 4.4 support classes.

e @fProfil eVal ue
e @rofil eVal ueSourceConfiguration

* @xpect edException

Spring Framework (2.5.5) 214

Testing

Using Spring's @xpect edException annotation in conjunction with JUnit 4's @rest (expected=...)
configuration would lead to an unresolvable conflict. Developers must therefore choose one or the other
when integrating with JUnit 4, in which case it is generadly preferable to use the explicit JUnit 4
configuration.

e @i ned

Spring's @i med annotation has different semantics than JUnit 4's @est (ti neout =. . .) support. Specificaly,
due to the manner in which JUnit 4 handles test execution timeouts (i.e., by executing the test method in a
separate Thr ead), @est (ti meout=...) appliesto each iteration in the case of repetitions and preemptively
fails the test if the test takes too long. Spring's @i ned, on the other hand, times the total test execution time
(including al repetitions) and does not preemptively fail the test but rather waits for the test to actualy
complete before failing.

* @Repeat

The following non-test-specific annotations are also supported by the Spring TestContext Framework with their
standard semantics.

* @\wutowired

e @ualifier

e @resour ce (javax.annotation) if JSR-250 is present

e @ersistenceCont ext (javax.persistence) if JPAis present

e @ersistencelnit (javax.persistence) if JPA is present

* @Required

* @ransacti onal

The following list includes all annotations specific to the Spring TestContext Framework. Refer to the
respective JavaDoc for further information, including default attribute values, etc.

* @ont ext Configuration

Defines class-level metadata which is used to determine how to load and configure an Appl i cat i onCont ext .
Specifically, @ContextConfiguration defines the application context resource | ocat i ons to load as well as
the Cont ext Loader strategy to use for loading the context.

@Cont ext Confi guration(l ocati ons={"exanpl e/test-context.xm "}, | oader=CustonCont ext Loader. cl ass)
public class CustonConfiguredApplicationContextTests {

/1 class body. ..
}

Note: @ont ext Conf i gurati on provides support for inherited resource locations by default. See the Context
management and caching section and JavaDoc for an example and further details.

® @est ExecutionLi steners

Defines class-level metadata for configuring which Test Execut i onLi st ener s should be registered with a
Test Cont ext Manager. Typically, @restExecutionListeners Wwill be used in conjunction with

Spring Framework (2.5.5) 215

Testing

@Cont ext Confi gurati on.

@Cont ext Confi guration
@est Execut i onLi st ener s({ Cust onTest Execut i onLi st ener. cl ass, Anot her Test Execut i onLi st ener. cl ass})
public class Custonilest Executi onLi stener Tests {
/1 class body. ..
}

Note: @est Executi onLi st ener s provides support for inherited listeners by default. See the JavaDoc for an
example and further details.

® @ransacti onConfiguration

Defines class-level metadata for configuring transactional tests. Specifically, the bean name of the
Pl at f or niTr ansact i onManager that isto be used to drive transactions can be explicitly configured if the bean
name of the desired PlatformTransactionManager is not "transactionManager. In addition, the
def aul t Rol | back flag can optionally be changed to f al se. Typically, @r ansacti onConfi gurati on will be
used in conjunction with @ont ext Confi gurati on.

@Cont ext Confi guration
@ransacti onConfiguration(transacti onManager="txMyr", defaultRol | back=fal se)
public cl ass CustonConfiguredTransactional Tests {
/'l class body...
}

* @BeforeTransaction

Indicates that the annotated publ i ¢ voi d method should be executed before a transaction is started for test
methods configured to run within atransaction viathe @r ansact i onal annotation.

@Bef oreTr ansact i on
public void beforeTransaction() {

/1 logic to be executed before a transaction is started
}

e @\fterTransaction

Indicates that the annotated publ i ¢ voi d method should be executed after a transaction has been ended for
test methods configured to run within atransaction viathe @r ansact i onal annotation.

@\fterTransacti on
public void afterTransaction() {

/1 logic to be executed after a transaction has ended
}

8.3.8. PetClinic example

The PetClinic sample application included with the full Spring distribution illustrates several features of the
Soring TestContext Framework in a JUnit 4.4 environment. Most test functionality is included in the
Abstract d i ni cTest s, for which apartial listing is shown below:

@Cont ext Conf i guration
public abstract class AbstractC inicTests extends Abstract Transacti onal JUnit 4Spri ngCont ext Tests {

@\ut owi r ed
protected Cinic clinic;

@est
public void getVets() {

Spring Framework (2.5.5) 216

Testing

Col I ection<Vet> vets = this.clinic.getVets();

assert Equal s("JDBC query must show t he same nunber of vets",
super . count Rowsl nTabl e("VETS"), vets.size());

Vet vl = EntityUtils.getByld(vets, Vet.class, 2);

assert Equal s("Leary", vl.getLastNanme());

assert Equal s(1, v1.getNrOf Specialties());

assert Equal s("radi ol ogy", (v1.getSpecialties().get(0)).getNanme());

...

...

Notes:

* Thistest case extends the Abst ract Transact i onal JUni t 4Spri ngCont ext Test s class, from which it inherits
configuration for Dependency Injection (via the Dependencyl njectionTest Executi onLi stener) and
transactional behavior (viathe Transact i onal Test Execut i onLi st ener).

e The clinic instance variable - the application object being tested - is set by Dependency Injection via
@ut owi r ed semantics.

e Thetest Get Vet s() method illustrates how the inherited count RowsI nTabl e() method can be used to easily
verify the number of rows in a given table, thus testing correct behavior of the application code being tested.
This alows for stronger tests and lessens dependency on the exact test data. For example, you can add
additional rows in the database without breaking tests.

» Like many integration tests using a database, most of the tests in AbstractdinicTests depend on a
minimum amount of data already in the database before the test cases run. Y ou might, however, choose to
populate the database in your test cases also - again, within the same transaction.

The PetClinic application supports three data access technologies - JDBC, Hibernate, and JPA. By declaring
@ont ext Confi gurati on Without any specific resource locations, the Abst ract d i ni cTest s class will have its
application context loaded from the default location, " Abst ract O i ni cTest s- cont ext . xni ", which declares a
common DataSource. Subclasses specify additional context locations which must declare a
Pl at f or nilr ansact i onManager and a concrete implementation of d i ni c.

For example, the Hibernate implementation of the PetClinic tests contains the following implementation. Note
that for this example, Hi ber nat ed i ni cTests does not contain a single line of code: we only need to declare
@ontext Configuration, and the tests are inherited from AbstractdinicTests. Since
@ont ext Configuration is declared without any specific resource locations, the Spring TestContext
Framework will load an application context from all the beans defined in
“Abstract dini cTests-context.xm " (i.e, the inherited locations) and
“Hi bernat eC i ni cTests-context.xm ", With "Hi bernated ini cTests-context.xm " possibly overriding
beans defined in " Abstract i ni cTests-context. xm ",

@Cont ext Confi guration
public class H bernatedinicTests extends AbstractCinicTests { }

Asyou can see in the PetClinic application, the Spring configuration is split across multiple files. Asis typical
of large scale applications, configuration locations will often be specified in a common base class for all
application-specific integration tests. Such a base class may also add useful instance variables - populated by
Dependency Injection, naturally - such as aHi ber nat eTenpl at e, in the case of an application using Hibernate.

As far as possible, you should have exactly the same Spring configuration files in your integration tests as in
the deployed environment. One likely point of difference concerns database connection pooling and transaction
infrastructure. If you are deploying to a full-blown application server, you will probably use its connection pool

Spring Framework (2.5.5) 217

Testing

(available through JNDI) and JTA implementation. Thus in production you will use a Jndi oj ect Fact or yBean
for the Dat aSource and Jt aTransacti onManager. JNDI and JTA will not be available in out-of-container
integration tests, so you should use a combination like the Commons DBCP Basi cDat aSource and
Dat aSour ceTr ansact i onManager OF Hi ber nat eTr ansact i onManager for them. You can factor out this variant
behavior into a single XML file, having the choice between application server and 'local’ configuration
separated from all other configuration, which will not vary between the test and production environments. In
addition, it is advisable to use properties files for connection settings: see the PetClinic application for an
example.

8.4. Further Resources

This section contains links to further resources about testing in general .

« The JUnit homepage. The Spring Framework's unit test suite is written using JUnit 3.8 as the testing
framework.

e The TestNG homepage. TestNG is atesting framework inspired by JUnit 3.8 with added support for Java 5
annotations, test groups, data-driven testing, distributed testing, etc.

« The Mock Objects homepage. About Mock Objects, a technique for improving the design of code within
Test-Driven Devel opment.

* "Mock Objects' article at Wikipedia

» The EasyMock homepage. The Spring Framework uses EasyMock extensively in it'stest suite.

* The JMock homepage. JMock is a library that supports test-driven development of Java code with mock
objects.

* The DbUnit homepage. DbUnit is a JUnit extension (also usable with Ant) targeted for database-driven
projects that, among other things, puts your database into a known state between test runs.

» The Grinder homepage. The Grinder is a Java load-testing framework.

Spring Framework (2.5.5) 218

http://www.junit.org/
http://testng.org/
http://www.mockobjects.com/
http://en.wikipedia.org/wiki/Mock_Object
http://www.easymock.org/
http://www.jmock.org/
http://dbunit.sourceforge.net/
http://grinder.sourceforge.net/

Part Il. Middle Tier Data Access

This part of the reference documentation is concerned with the middle tier, and specifically the data access
responsibilities of said tier.

Spring's comprehensive transaction management support is covered in some detail, followed by thorough
coverage of the various middle tier data access frameworks and technologies that the Spring Framework
integrates with.

Chapter 9, Transaction management

Chapter 10, DAO support

Chapter 11, Data access using JDBC

Chapter 12, Object Relational Mapping (ORM) data access

Spring Framework (2.5.5) 219

Chapter 9. Transaction management

9.1. Introduction

One of the most compelling reasons to use the Spring Framework is the comprehensive transaction support.
The Spring Framework provides a consistent abstraction for transaction management that delivers the following
benefits:

« Provides a consistent programming model across different transaction APIs such as JTA, JDBC, Hibernate,
JPA, and JDO.

* Supports declarative transaction management.

* Provides a simpler API for programmatic transaction management than a number of complex transaction
APlIssuch as JTA.

 Integrates very well with Spring's various data access abstractions.

This chapter is divided up into a number of sections, each detailing one of the value-adds or technol ogies of the
Spring Framework's transaction support. The chapter closes up with some discussion of best practices
surrounding transaction management (for example, choosing between declarative and programmatic transaction
management).

e The first section, entitled Motivations, describes why one would want to use the Spring Framework's
transaction abstraction as opposed to EJB CMT or driving transactions via a proprietary APl such as
Hibernate.

» The second section, entitled Key abstractions outlines the core classes in the Spring Framework's transaction
support, aswell as how to configure and obtain Dat aSour ce instances from a variety of sources.

* The third section, entitled Declarative transaction management, covers the Spring Framework's support for
declarative transaction management.

« The fourth section, entitled Programmatic transaction management, covers the Spring Framework's support
for programmatic (that is, explicitly coded) transaction management.

9.2. Motivations

Is an application server needed for transaction management?

The Spring Framework's transaction management support significantly changes traditional thinking as to
when a J2EE application requires an application server.

In particular, you don't need an application server just to have declarative transactions via EJB. In fact,
even if you have an application server with powerful JTA capabilities, you may well decide that the
Spring Framework's declarative transactions offer more power and a much more productive programming
model than EJB CMT.

Typically you need an application server's JTA capability only if you need to enlist multiple transactional

Spring Framework (2.5.5) 220

Transaction management

resources, and for many applications being able to handle transactions across multiple resources isn't a
requirement. For example, many high-end applications use a single, highly scalable database (such as
Oracle 9i RAC). Standaone transaction managers such as Atomikos Transactions and JOTM are other
options. (Of course you may need other application server capabilities such as IMS and JCA.)

The most important point is that with the Spring Framework you can choose when to scale your
application up to a full-blown application server. Gone are the days when the only alternative to using
EJB CMT or JTA was to write code using local transactions such as those on JDBC connections, and face
a hefty rework if you ever needed that code to run within global, container-managed transactions. With
the Spring Framewaork, only configuration needs to change so that your code doesn't have to.

Traditionally, J2EE devel opers have had two choices for transaction management: global or local transactions.
Global transactions are managed by the application server, using the Java Transaction APl (JTA). Local
transactions are resource-specific: the most common example would be a transaction associated with a JDBC
connection. This choice has profound implications. For instance, global transactions provide the ability to work
with multiple transactional resources (typically relational databases and message queues). With local
transactions, the application server is not involved in transaction management and cannot help ensure
correctness across multiple resources. (It is worth noting that most applications use a single transaction
resource.)

Global Transactions. Global transactions have a significant downside, in that code needsto use JTA, and JTA
is a cumbersome API to use (partly due to its exception model). Furthermore, a JTA User Transacti on
normally needs to be sourced from JNDI: meaning that we need to use both JNDI and JTA to use JTA.
Obviously all use of global transactions limits the reusability of application code, as JTA is normally only
available in an application server environment. Previoudly, the preferred way to use global transactions was via
EJB CMT (Container Managed Transaction): CMT is a form of declarative transaction management (as
distinguished from programmatic transaction management). EJB CMT removes the need for
transaction-related JNDI lookups - athough of course the use of EJB itself necessitates the use of JNDI. It
removes most of the need (although not entirely) to write Java code to contral transactions. The significant
downside is that CMT istied to JTA and an application server environment. Also, it is only available if one
chooses to implement business logic in EJBs, or at least behind a transactional EJB facade. The negatives
around EJB in general are so great that thisis not an attractive proposition, especialy in the face of compelling
aternatives for declarative transaction management.

Local Transactions. Local transactions may be easier to use, but have significant disadvantages. they cannot
work across multiple transactional resources. For example, code that manages transactions using a JDBC
connection cannot run within a global JTA transaction. Another downside is that local transactions tend to be
invasive to the programming model.

Spring resolves these problems. It enables application devel opers to use a consistent programming model in any
environment. Y ou write your code once, and it can benefit from different transaction management strategies in
different environments. The Spring Framework provides both declarative and programmatic transaction
management. Declarative transaction management is preferred by most users, and is recommended in most
Cases.

With programmatic transaction management, developers work with the Spring Framework transaction
abstraction, which can run over any underlying transaction infrastructure. With the preferred declarative model,
developers typically write little or no code related to transaction management, and hence don't depend on the
Spring Framework's transaction API (or indeed on any other transaction AP!).

Spring Framework (2.5.5) 221

http://www.atomikos.com/
http://jotm.objectweb.org/

Transaction management

9.3. Key abstractions

The key to the Spring transaction abstraction is the notion of a transaction strategy. A transaction strategy is
defined by the or g. spri ngf ramewor k. t ransact i on. Pl at f or nilr ansact i onManager interface, shown below:

public interface Platfornilransacti onManager {

Transacti onSt at us get Transacti on(Transacti onDefiniti on definition)
throws Transacti onExcepti on;

void comm t(TransactionStatus status) throws Transacti onExcepti on;

voi d rol | back(TransactionStatus status) throws Transacti onExcepti on;

}

This is primarily an SPI interface, athough it can be used programmatically. Note that in keeping with the
Spring Framework's philosophy, PI at f or nilr ansact i onManager is an interface, and can thus be easily mocked
or stubbed as necessary. Nor is it tied to a lookup strategy such as JNDI: Pl at f or nilr ansact i onManager
implementations are defined like any other object (or bean) in the Spring Framework's [oC container. This
benefit alone makes it a worthwhile abstraction even when working with JTA: transactional code can be tested
much more easily than if it used JTA directly.

Again in keeping with Spring's philosophy, the Transacti onException that can be thrown by any of the
Pl at f or niTr ansact i onvanager interface's methods is unchecked (that is it extends the
java. | ang. Runti meException class). Transaction infrastructure failures are almost invariably fatal. In rare
cases where application code can actually recover from atransaction failure, the application developer can till
choose to catch and handle Tr ansact i onExcept i on. The salient point is that developers are not forced to do so.

The getTransaction(..) method returns a TransactionStatus oObject, depending on a
TransactionDefinition parameter. The returned TransactionStatus might represent a new or existing
transaction (if there were a matching transaction in the current call stack - with the implication being that (as
with J2EE transaction contexts) a Tr ansact i onSt at us iS associated with athread of execution).

The Transacti onDef i ni ti on interface specifies:

« |solation: the degree of isolation this transaction has from the work of other transactions. For example, can
this transaction see uncommitted writes from other transactions?

» Propagation: normally all code executed within a transaction scope will run in that transaction. However,
there are several options specifying behavior if atransactional method is executed when a transaction context
aready exists. for example, simply continue running in the existing transaction (the common case); or
suspending the existing transaction and creating a new transaction. Soring offers all of the transaction
propagation options familiar from EJB CMT. (Some details regarding the semantics of transaction
propagation in Spring can be found in the section entitled Section 9.5.7, “ Transaction propagation”.

« Timeout: how long this transaction may run before timing out (and automatically being rolled back by the
underlying transaction infrastructure).

* Read-only status: aread-only transaction does not modify any data. Read-only transactions can be a useful
optimization in some cases (such as when using Hibernate).

These settings reflect standard transactional concepts. If necessary, please refer to a resource discussing
transaction isolation levels and other core transaction concepts because understanding such core concepts is
essential to using the Spring Framework or indeed any other transaction management solution.

Spring Framework (2.5.5) 222

Transaction management

The Transact i onSt at us interface provides a simple way for transactional code to control transaction execution
and query transaction status. The concepts should be familiar, asthey are common to all transaction APIs:

public interface TransactionStatus {
bool ean i sNewTransaction();
voi d setRol | backOnl y();

bool ean i sRol | backOnl y();
}

Regardless of whether you opt for declarative or programmatic transaction management in Spring, defining the
correct Pl at f or nilr ansact i onManager implementation is absolutely essential. In good Spring fashion, this
important definition typically is made using via Dependency |njection.

Pl at f or niTr ansact i onManager implementations normally require knowledge of the environment in which they
work: JDBC, JTA, Hibernate, etc The following examples from the dat aAccessCont ext -1 ocal . xm file from
Spring's j Pet Stor e sample application show how alocal Pl at f or nilr ansact i onManager implementation can be
defined. (Thiswill work with plain JDBC.)

We must define a JDBC Dat aSour ce, and then use the Spring Dat aSour ceTr ansact i onManager, giving it a
reference to the Dat aSour ce.

<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose" >
<property nanme="driverC assNane" val ue="${j dbc. driverC assNane}" />
<property nanme="url" val ue="${jdbc.url}" />
<property nanme="usernane" val ue="${j dbc. usernane}" />
<property nanme="password" val ue="${j dbc. password}" />
</ bean>

Therelated Pl at f or nir ansact i onManager bean definition will look like this:

<bean i d="t xManager" cl ass="org. springframework.j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property name="dat aSource" ref="dataSource"/>
</ bean>

If we use JTA in a J2EE container, as in the ' dat aAccessContext-jta.xm ' file from the same sample
application, we use a container DataSource, Obtained via JNDI, in conjunction with Spring's
JtaTransact i onManager. The JtaTransacti onManager doesn't need to know about the Dat aSource, Or any
other specific resources, asit will use the container's global transaction management infrastructure.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns:jee="http://ww. springframework. org/ schena/j ee"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xs
htt p: // ww. spri ngf ranewor k. or g/ schena/ j ee http://ww. springfranework. org/ schena/jee/ spring-jee-2.5. xsd">

<j ee:jndi -1 ookup id="dataSource" jndi-nanme="jdbc/jpetstore"/>

<bean i d="t xManager" class="org.springfranmework.transaction.jta.JtaTransacti onManager" />

<l-- other <bean/> definitions here -->
</ beans>
Note

The above definition of the ' dat aSource' bean uses the <j ndi -1 ookup/ > tag from the ' j ee’

Spring Framework (2.5.5) 223

Transaction management

namespace. For more information on schemabased configuration, see Appendix A, XML
Schema-based configuration, and for more information on the <j ee/ > tags see the section entitled
Section A.2.3, “Thej ee schema’.

We can aso use Hibernate local transactions easily, as shown in the following examples from the Spring
Framework's PetClinic sample application. In this case, we need to define a Hibernate
Local Sessi onFact or yBean, Which application code will use to obtain Hibernate Sessi on instances.

The Dat aSour ce bean definition will be similar to the one shown previously (and thus is not shown). If the
Dat aSour ce IS managed by the JEE container it should be non-transactional as the Spring Framework, rather
than the JEE container, will manage transactions.

The ' t xManager’ bean in this case is of the Hi ber nat eTr ansact i onManager type. In the same way as the
Dat aSour ceTr ansact i onManager needs a reference to the Dat aSour ce, the Hi ber nat eTr ansact i onManager
needs areference to the Sessi onFact ory.

<bean i d="sessi onFactory" cl ass="org. spri ngframework. orm hi bernat e3. Local Sessi onFact or yBean" >
<property name="dat aSource" ref="dataSource" />
<property name="nmappi ngResour ces" >
<list>
<val ue>or g/ spri ngf ramewor k/ sanpl es/ pet cl i ni c/ hi ber nat e/ pet cl i ni c. hbm xm </ val ue>
</list>
</ property>
<property nanme="hi bernat eProperties">
<val ue>
hi ber nat e. di al ect =${ hi ber nat e. di al ect }
</val ue>
</ property>
</ bean>

<bean i d="t xManager" cl ass="org. spri ngfranmework. orm hi bernat e3. Hi ber nat eTransact i onManager " >
<property name="sessi onFactory" ref="sessionFactory" />
</ bean>

With Hibernate and JTA transactions, we can simply use the Jt aTransact i onvanager as with JDBC or any
other resource strategy.

<bean id="txManager" class="org. springframework.transaction.jta.JtaTransacti onManager"/>

Note that this is identical to JTA configuration for any resource, as these are global transactions, which can
enlist any transactional resource.

In all these cases, application code will not need to change at all. We can change how transactions are
managed merely by changing configuration, even if that change means moving from local to global
transactions or vice versa.

9.4. Resource synchronization with transactions

It should now be clear how different transaction managers are created, and how they are linked to related
resources which need to be synchronized to transactions (for example Dat aSour ceTr ansact i onManager t0 a
JDBC Dat aSour ce, Hibernat eTransacti onManager t0 a Hibernate Sessi onFactory, and so forth). There
remains the question however of how the application code, directly or indirectly using a persistence APl (such
as JDBC, Hibernate, and JDO), ensures that these resources are obtained and handled properly in terms of
proper creation/reuse/cleanup and trigger (optionally) transaction synchronization via the relevant
Pl at f or nTTr ansact i onManager .

Spring Framework (2.5.5) 224

Transaction management

9.4.1. High-level approach

The preferred approach is to use Spring's highest level persistence integration APIs. These do not replace the
native APIs, but internally handle resource creation/reuse, cleanup, optional transaction synchronization of the
resources and exception mapping so that user data access code doesn't have to worry about these concerns at
all, but can concentrate purely on non-boilerplate persistence logic. Generally, the same template approach is
used for al persistence APIs, with examples including the JdbcTenpl ate, HibernateTenplate, and
JdoTenpl at e classes (detailed in subsequent chapters of this reference documentation.

9.4.2. Low-level approach

At a lower level exist classes such as Dat aSourceltils (for JDBC), SessionFactoryUtils (for Hibernate),
Per si st enceManager FactoryUtils (for JDO), and so on. When it is preferable for application code to deal
directly with the resource types of the native persistence APIs, these classes ensure that proper Spring
Framework-managed instances are obtained, transactions are (optionally) synchronized, and exceptions which
happen in the process are properly mapped to a consistent API.

For example, in the case of JDBC, instead of the traditional JDBC approach of calling the get Connecti on()
method on the Dat aSour ce, you would instead use Spring's
org. springframewor k. j dbc. dat asour ce. Dat aSourcelti | s classasfollows:

Connection conn = DataSourceltils. get Connecti on(dat aSource);

If an existing transaction exists, and already has a connection synchronized (linked) to it, that instance will be
returned. Otherwise, the method call will trigger the creation of a new connection, which will be (optionally)
synchronized to any existing transaction, and made available for subsequent reuse in that same transaction. As
mentioned, this has the added advantage that any SQ.Exception will be wrapped in a Spring Framework
Cannot Get JdbcConnecti onException - one of the Spring Framework's hierarchy of unchecked
DataAccessExceptions. This gives you more information than can easily be obtained from the sQLExcept i on,
and ensures portability across databases: even across different persistence technologies.

It should be noted that this will aso work fine without Spring transaction management (transaction
synchronization is optional), so you can use it whether or not you are using Spring for transaction management.

Of course, once you've used Spring's JDBC support or Hibernate support, you will generally prefer not to use
Dat aSourceltils or the other helper classes, because you'll be much happier working via the Spring
abstraction than directly with the relevant APls. For example, if you use the Spring JdbcTenpl ate oOr
j dbc. obj ect package to simplify your use of JDBC, correct connection retrieval happens behind the scenes
and you won't need to write any special code.

9.4.3. Transact i onAwar eDat aSour cePr oxy

At the very lowest level exists the Transacti onAwar eDat aSour ceProxy class. This is a proxy for a target
Dat aSour ce, Which wraps the target Dat aSource to add awareness of Spring-managed transactions. In this
respect, it is similar to atransactional JNDI Dat aSour ce as provided by a J2EE server.

It should almost never be necessary or desirable to use this class, except when existing code exists which must
be called and passed a standard JDBC Dat aSour ce interface implementation. In that case, it's possible to still
have this code be usable, but participating in Spring managed transactions. It is preferable to write your new
code using the higher level abstractions mentioned above.

Spring Framework (2.5.5) 225

Transaction management

9.5. Declarative transaction management

Most users of the Spring Framework choose declarative transaction management. It is the option with the least
impact on application code, and hence is most consistent with the ideals of a non-invasive lightweight
container.

The Spring Framework's declarative transaction management is made possible with Spring AOP, although, as
the transactional aspects code comes with the Spring Framework distribution and may be used in a boilerplate
fashion, AOP concepts do not generally have to be understood to make effective use of this code.

It may be helpful to begin by considering EJB CMT and explaining the similarities and differences with the
Spring Framework's declarative transaction management. The basic approach is similar: it is possible to specify
transaction behavior (or lack of it) down to individual method level. It is possible to make a
set Rol | backonl y() call within atransaction context if necessary. The differences are:

e Unlike EJB CMT, which istied to JTA, the Spring Framework's declarative transaction management works
in any environment. It can work with JDBC, JDO, Hibernate or other transactions under the covers, with
configuration changes only.

« The Spring Framework enables declarative transaction management to be applied to any class, not merely
special classes such as EJBs.

« The Spring Framework offers declarative rollback rules. this is a feature with no EJB equivalent. Both
programmatic and declarative support for rollback rulesis provided.

e The Spring Framework gives you an opportunity to customize transactional behavior, using AOP. For
example, if you want to insert custom behavior in the case of transaction rollback, you can. Y ou can also add
arbitrary advice, along with the transactional advice. With EJB CMT, you have no way to influence the
container's transaction management other than set Rol | backOnl y() .

« The Spring Framework does not support propagation of transaction contexts across remote cals, as do
high-end application servers. If you need this feature, we recommend that you use EJB. However, consider
carefully before using such afeature, because normally, one does not want transactions to span remote calls.

Where is Transact i onPr oxyFact or yBean?

Declarative transaction configuration in versions of Spring 2.0 and above differs considerably from
previous versions of Spring. The main difference is that there is no longer any need to configure
Transact i onPr oxyFact or yBean beans.

The old, pre-Spring 2.0 configuration styleis still 100% valid configuration; think of the new <t x: t ags/ >
as simply defining Tr ansact i onPr oxyFact or yBean beans on your behalf.

The concept of rollback rules isimportant: they enable us to specify which exceptions (and throwables) should
cause automatic roll back. We specify this declaratively, in configuration, not in Java code. So, while we can
gtill call setRollbackOnly()on the TransactionStatus oObject to roll the current transaction back
programmatically, most often we can specify a rule that My/Appl i cati onException must always result in
rollback. This has the significant advantage that business aobjects don't need to depend on the transaction
infrastructure. For example, they typically don't need to import any Spring APIs, transaction or other.

While the EJB default behavior is for the EJB container to automatically roll back the transaction on a system
exception (usualy a runtime exception), EJB CMT does not roll back the transaction automatically on an

Spring Framework (2.5.5) 226

Transaction management

application exception (that is, a checked exception other than j ava. r ni . Renot eExcept i on). While the Spring
default behavior for declarative transaction management follows EJB convention (roll back is automatic only
on unchecked exceptions), it is often useful to customize this.

9.5.1. Understanding the Spring Framework's declarative transaction
implementation

The aim of this section is to dispel the mystique that is sometimes associated with the use of declarative
transactions. It is all very well for this reference documentation simply to tell you to annotate your classes with
the @ransacti onal annotation, add the line (' <t x: annot ati on-dri ven/ >') to your configuration, and then
expect you to understand how it all works. This section will explain the inner workings of the Spring
Framework's declarative transaction infrastructure to help you navigate your way back upstream to camer
watersin the event of transaction-related issues.

The most important concepts to grasp with regard to the Spring Framework's declarative transaction support are
that this support is enabled via AOP proxies, and that the transactional advice is driven by metadata (currently
XML- or annotation-based). The combination of AOP with transactional metadata yields an AOP proxy that
uses a Transactionlnterceptor in conjunction with an appropriate Pl atfornilransacti onManager
implementation to drive transactions around method invocations.

Note
e

Although knowledge of Spring AOP is not required to use Spring's declarative transaction support,
it can help. Spring AOP is thoroughly covered in the chapter entitled Chapter 6, Aspect Oriented
Programming with Spring.

Conceptualy, caling amethod on atransactional proxy looks like this...

Control flows back through

interceptor chain to return
result to caller

Transaction |::;:. Custom

SOnsor AdVSors)

Caller invokes proxy,
not target
Transaction created on way
in, committed or rolled
back on way out Business logic invoked

Custom interceptors may run
before or after transaction advisor

9.5.2. A first example

Spring Framework (2.5.5) 227

Transaction management

Consider the following interface, and its attendant implementation. (The intent is to convey the concepts, and
using the rote Foo and Bar tropes means that you can concentrate on the transaction usage and not have to
worry about the domain model.)

/'l the service interface that we want to make transacti onal
package x.y.service;
public interface FooService {

Foo get Foo(String fooNane);

Foo get Foo(String fooNanme, String barNane);

voi d i nsert Foo(Foo foo);

voi d updat eFoo(Foo fo0);

// an inplenmentation of the above interface
package Xx.y.service;
public class Defaul t FooService inplenents FooService {

public Foo getFoo(String fooNane) {
t hr ow new Unsupport edOper ati onExcepti on();

}

public Foo getFoo(String fooNane, String barNanme) {
t hr ow new Unsupport edOper ati onExcepti on();

}

public void insertFoo(Foo foo) {
t hr ow new Unsupport edOper ati onExcepti on();

}

public void updat eFoo(Foo foo) {
t hrow new Unsupport edOperati onException();

}

(For the purposes of this example, the fact that the DefaultFooService class throws
Unsuppor t edOper at i onExcept i on instances in the body of each implemented method is good; it will allow us
to see transactions being created and then rolled back in response to the Unsupport edOper at i onExcept i on
instance being thrown.)

Let's assume that the first two methods of the FooServi ce interface (get Foo(String) and get Foo(Stri ng,
String)) have to execute in the context of a transaction with read-only semantics, and that the other methods
(i nsert Foo(Foo) and updat eFoo(Foo)) have to execute in the context of a transaction with read-write
semantics. Don't worry about taking the following configuration in al at once; everything will be explained in
detail in the next few paragraphs.

<I-- fromthe file 'context.xm' -->
<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframework. or g/ schema/ aop"”
xm ns: tx="http://wwm. spri ngframework. or g/ schema/ t x"
xsi : schemalLocat i on="
ht t p: // ww. spri ngf ranewor k. or g/ schema/ beans http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xs
http://ww. springfranework. org/ schema/tx http://ww.springfranework. org/schema/tx/spring-tx-2.5. xsd
http://ww. springframework. or g/ scherma/ aop http://ww. springframewor k. or g/ schema/ aop/ spri ng-aop- 2. 5. xsd">

<l-- this is the service object that we want to nake transactional -->
<bean i d="fooService" class="x.y.service. Defaul t FooService"/>

Spring Framework (2.5.5) 228

Transaction management

<l-- the transactional advice (what 'happens'; see the <aop:advisor/> bean bel ow) -->
<t x:advi ce id="txAdvi ce" transacti on-nmanager ="t xManager" >
<!-- the transactional semantics... -->
<tx:attributes>
<l-- all nethods starting with 'get' are read-only -->
<t x: met hod nanme="get*" read-only="true"/>
<l-- other nmethods use the default transaction settings (see below) -->

<t x: net hod nane="*"/>
</tx:attributes>
</ tx:advi ce>

<l-- ensure that the above transactional advice runs for any execution
of an operation defined by the FooService interface -->
<aop: confi g>
<aop: poi ntcut id="fooServi ceOperation" expressi on="execution(* X.y.service.FooService.*(..))"/>
<aop: advi sor advi ce-ref="txAdvi ce" pointcut-ref="fooServiceQperation"/>
</ aop: confi g>

<l-- don't forget the DataSource -->

<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose" >
<property nanme="driverd assNane" val ue="oracl e.j dbc. driver. O acl eDriver"/>

<property name="url" value="jdbc:oracle:thin: @j-t42:1521:elvis"/>

<property name="usernane" val ue="scott"/>

<property nanme="password" val ue="tiger"/>

</ bean>

<I-- simlarly, don't forget the PlatfornilransactionManager -->

<bean i d="t xManager" cl ass="org. springframework.j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property nanme="dat aSource" ref="dataSource"/>

</ bean>

<l-- other <bean/> definitions here -->

</ beans>

Let's pick apart the above configuration. We have a service object (the ' f ooServi ce' bean) that we want to
make transactional. The transaction semantics that we want to apply are encapsulated in the <t x: advi ce/ >
definition. The <t x: advi ce/ > definition reads as “... all methods on starting with ' get* are to execute in the
context of a read-only transaction, and all other methods are to execute with the default transaction
semantics’. The ' transacti on-manager' attribute of the <tx:advice/> tag is set to the name of the
Pl at f or niTr ansact i onManager bean that is going to actualy drive the transactions (in this case the
"t xManager ' bean).
Tip

s

"8

You can actualy omit the 'transaction-manager' attribute in the transactional advice
(<t x: advi ce/ >) if the bean name of the Pl at f or niTr ansact i onManager that you want to wire in
has the name ' transact i onManager ' . If the Pl at f or nilr ansact i onManager bean that you want to
wire in has any other name, then you have to be explicit and use the ' transacti on- nanager*

attribute as in the example above.

The <aop: confi g/ > definition ensures that the transactional advice defined by the ' t xAdvi ce' bean actualy
executes at the appropriate points in the program. First we define a pointcut that matches the execution of any
operation defined in the FooSer vi ce interface (' f ooSer vi ceQper ati on'). Then we associate the pointcut with
the ' t xAdvi ce' using an advisor. The result indicates that at the execution of a* f ooSer vi ceQperati on', the
advice defined by ' t xAdvi ce' will berun.

The expression defined within the <aop: poi nt cut / > element is an AspectJ pointcut expression; see the chapter
entitted Chapter 6, Aspect Oriented Programming with Soring for more details on pointcut expressions in

Spring 2.0.

A common reguirement is to make an entire service layer transactional. The best way to do this is simply to
change the pointcut expression to match any operation in your service layer. For example:

Spring Framework (2.5.5) 229

Transaction management

<aop: confi g>
<aop: poi ntcut id="fooServi ceMet hods" expression="execution(* x.y.service.*.*(..))"/>
<aop: advi sor advi ce-ref="txAdvi ce" pointcut-ref="fooServi ceMet hods"/>
</ aop: confi g>

(This example assumes that all your service interfaces are defined in the ' x.y. servi ce' package; see the
chapter entitled Chapter 6, Aspect Oriented Programming with Spring for more details.)

Now that we've analyzed the configuration, you may be asking yourself, “Okay... but what does all this
configuration actually do?”.

The above configuration is going to effect the creation of atransactional proxy around the object that is created
from the ' f ooServi ce' bean definition. The proxy will be configured with the transactional advice, so that
when an appropriate method is invoked on the proxy, a transaction may be started, suspended, be marked as
read-only, etc., depending on the transaction configuration associated with that method. Consider the following
program that test drives the above configuration.

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new Cl assPat hXnl Appl i cati onCont ext ("context.xm ", Boot.class);
FooServi ce fooService = (FooService) ctx.getBean("fooService");
fooService.insertFoo (new Foo());
}
}

The output from running the above program will look something like this. (Please note that the Log4J output
and the stacktrace from the Unsupport edOper ati onExcept i on thrown by the i nsert Foo(..) method of the
Def aul t FooSer vi ce class have been truncated in the interest of clarity.)

<l-- the Spring container is starting up... -->
[Aspect Jl nvocat i onCont ext Exposi ngAdvi sor Aut oProxyCreator] - Creating inplicit proxy
for bean 'fooService' with O common interceptors and 1 specific interceptors
<l-- the DefaultFooService i s actually proxied -->
[JdkDynam cAopProxy] - Creating JDK dynam c proxy for [x.y.service. Defaul t FooService]

<l-- ... the insertFoo(..) method i s now being i nvoked on the proxy -->
[Transactionlnterceptor] - Getting transaction for X.y.service. FooService.insertFoo

<l-- the transactional advice kicks in here... -->
[Dat aSour ceTr ansact i onManager] - Creating new transaction with name [x.y.service. FooService.insertFoo]
[Dat aSour ceTr ansact i onManager] - Acquired Connection

[org. apache. commpns. dbcp. Pool abl eConnect i on@53de4] for JDBC transaction

<l-- the insertFoo(..) method from Defaul t FooService throws an exception... -->
[Rul eBasedTransactionAttribute] - Applying rules to deternine whether transaction shoul d
rol | back on java.l ang. Unsupport edOper ati onExcepti on
[Transactionlnterceptor] - Invoking rollback for transaction on X.y.service. FooService.insertFoo
due to throwabl e [java. |l ang. Unsupport edQOperati onExcepti on]

<l-- and the transaction is rolled back (by default, RuntinmeException instances cause rollback) -->
[Dat aSour ceTr ansact i onManager] - Rolling back JDBC transacti on on Connection
[org. apache. conmpns. dbcp. Pool abl eConnect i on@53de4]
[Dat aSour ceTr ansact i onManager] - Rel easi ng JDBC Connection after transaction
[Dat aSourceltil s] - Returning JDBC Connection to DataSource

Exception in thread "mai n" java.l ang. UnsupportedQOperati onException
at x.y.service. Defaul t FooServi ce. i nsert Foo(Def aul t FooSer vi ce. j ava: 14)
<l-- AOP infrastructure stack trace el enments renoved for clarity -->
at $Proxy0. i nsert Foo(Unknown Source)
at Boot. mai n(Boot.java: 11)

9.5.3. Rolling back

Spring Framework (2.5.5) 230

Transaction management

The previous section outlined the basics of how to specify the transactional settings for the classes, typically
service layer classes, in your application in a declarative fashion. This section describes how you can control
therollback of transactions in a simple declarative fashion.

The recommended way to indicate to the Spring Framework's transaction infrastructure that a transaction's
work is to be rolled back is to throw an Excepti on from code that is currently executing in the context of a
transaction. The Spring Framework's transaction infrastructure code will catch any unhandled Excepti on as it
bubbles up the call stack, and will mark the transaction for rollback.

Note however that the Spring Framework's transaction infrastructure code will, by default, only mark a
transaction for rollback in the case of runtime, unchecked exceptions; that is, when the thrown exception is an
instance or subclass of RuntimeException. (Errors will also - by default - result in a rollback.) Checked
exceptions that are thrown from a transactional method will not result in the transaction being rolled back.

Exactly which Exception types mark a transaction for rollback can be configured. Find below a snippet of
XML configuration that demonstrates how one would configure rollback for a checked, application-specific
Excepti on type.

<t x:advi ce id="txAdvi ce" transaction-nmanager ="t xManager" >
<tx:attributes>
<t x: met hod name="get*" read-only="true" rollback-for="NoProduct|nStockException"/>
<t x: met hod name="*"/>
</tx:attributes>
</tx: advi ce>

It isalso possible to specify 'no rollback rules, for those times when you do not want a transaction to be marked
for rollback when an exception is thrown. In the example configuration below, we effectively are telling the
Spring Framework's transaction infrastructure to commit the attendant transaction even in the face of an
unhandled I nst r unent Not FoundExcept i on.

<t x: advi ce id="txAdvi ce">
<tx:attributes>
<t x: met hod name="updat eSt ock" no-rol | back-for="Instrunment Not FoundExcepti on"/>
<t x: net hod nane="*"/>
</tx:attributes>
</t x: advi ce>

When the Spring Framework's transaction infrastructure has caught an exception and is consulting any
configured rollback rules to determine whether or not to mark the transaction for rollback, the strongest
matching rule wins. So in the case of the following configuration, any exception other than an
I nst r ument Not FoundExcept i on would result in the attendant transaction being marked for rollback.

<t x: advi ce id="t xAdvi ce">
<tx:attributes>
<t x: met hod nanme="*" rol | back-for="Throwabl e* no-rol | back-for="Instrunent Not FoundExcepti on"/ >
</tx:attributes>

</ tx: advi ce>

The second way to indicate that a rollback is required is to do so programmatically. Although very simple, this
way is quite invasive, and tightly couples your code to the Spring Framework's transaction infrastructure, as
can be seen below:

public void resol vePosition() {
try {
/'l sone business logic...
} catch (NoProduct | nSt ockException ex) {
/1 trigger rollback progranmatically
Transact i onAspect Support. current Transacti onSt atus(). set Rol | backOnl y();
}
}

Spring Framework (2.5.5) 231

Transaction management

You are strongly encouraged to use the declarative approach to rollback if at all possible. Programmatic
rollback is available should you absolutely need it, but its usage flies in the face of achieving a nice, clean
POJO-based architecture.

9.5.4. Configuring different transactional semantics for different beans

Consider the scenario where you have a number of service layer objects, and you want to apply totally different
transactional configuration to each of them. This is achieved by defining distinct <aop: advi sor/ > elements
with differing ' poi ntcut' and' advi ce-ref' attribute values.

Let's assume that all of your service layer classes are defined in aroot ' x. y. service' package. To make all
beans that are instances of classes defined in that package (or in subpackages) and that have names ending in
" Servi ce' have the default transactional configuration, you would write the following:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xm ns: tx="http://ww. spri ngframework. org/ schema/t x"
xsi : schemalLocat i on="
http://ww. spri ngframework. or g/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/tx http://ww. springframework. org/schema/tx/spring-tx-2.5.xsd
http://ww. springframework. or g/ schenma/ aop http://ww. springfranmewor k. or g/ schema/ aop/ spri ng- aop- 2. 5. xsd">

<aop: confi g>

<aop: poi ntcut id="serviceOperation"
expressi on="execution(* x.y.service..*Service.*(..))"/>

<aop: advi sor pointcut-ref="serviceOperati on" advice-ref="txAdvice"/>
</ aop: confi g>
<l-- these two beans will be transactional... -->

<bean i d="fooService" class="x.y.service. Defaul t FooService"/>
<bean i d="bar Servi ce" class="x.y. service. extras. Si npl eBar Service"/>

<!-- ... and these two beans won't -->
<bean i d="anot her Servi ce" cl ass="org.xyz. SoneService"/> <!-- (not in the right package) -->
<bean i d="bar Manager" class="x.y. service. Si npl eBar Manager"/> <!-- (doesn't end in 'Service') -->

<t x: advi ce id="t xAdvi ce">
<tx:attributes>
<t x: met hod nane="get*" read-only="true"/>
<t x: net hod name="*"/>
</tx:attributes>
</t x: advi ce>

<l-- other transaction infrastructure beans such as a Platformiransacti onManager om tted... -->

</ beans>

Find below an example of configuring two distinct beans with totally different transactional settings.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xm ns: tx="http://wwm. spri ngframework. org/ schema/t x"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schenma/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/tx http://ww. springframework. org/ schema/tx/spring-tx-2.5.xsd
http://ww. springframework. or g/ schenma/ aop http://ww. springframewor k. or g/ schenma/ aop/ spri ng-aop- 2. 5. xsd">

<aop: confi g>

<aop: poi ntcut id="defaul t Servi ceCperation"
expressi on="execution(* x.y.service.*Service.*(..))"/>

Spring Framework (2.5.5) 232

Transaction management

<aop: poi ntcut id="noTxServi ceQperation"
expressi on="execution(* x.y.service.ddl.DefaultDdl Manager.*(..))"/>

<aop: advi sor pointcut-ref="defaultServi ceOperation" advice-ref="defaul t TxAdvi ce"/>
<aop: advi sor pointcut-ref="noTxServi ceOperation" advi ce-ref="noTxAdvice"/>
</ aop: confi g>

<l-- this bean will be transactional (see the 'defaultServiceCperation' pointcut) -->
<bean i d="fooService" class="x.y.service. Def aul t FooServi ce"/ >

<l-- this bean will also be transactional, but with totally different transactional settings -->
<bean i d="anot her FooServi ce" cl ass="x.y. servi ce. ddl . Def aul t Ddl Manager"/ >

<t x: advi ce id="def aul t TxAdvi ce" >
<tx:attributes>
<t x: net hod nane="get*" read-only="true"/>
<t x: net hod nane="*"/>
</tx:attributes>
</t x: advi ce>

<t x: advi ce i d="noTxAdvi ce">
<tx:attributes>
<t x: met hod name="*" propagati on="NEVER'/ >
</tx:attributes>
</tx:advi ce>
<l-- other transaction infrastructure beans such as a Platformiransacti onManager om tted... -->

</ beans>

9.5.5. <t x: advi ce/ > settings

This section summarises the various transactional settings that can be specified using the <t x: advi ce/ > tag.
The default <t x: advi ce/ > settings are:

» The propagation setting is REQUI RED

* Theisolation level is DEFAULT
* Thetransaction is read/write

« The transaction timeout defaults to the default timeout of the underlying transaction system, or or none if
timeouts are not supported

e Any Runt i meExcept i on Will trigger rollback, and any checked Except i on will not

These default settings can be changed; the various attributes of the <t x: net hod/ > tags that are nested within
<t x: advi ce/ > and <t x: att ri but es/ > tags are summarized below:

Table 9.1. <t x: net hod/ > settings

Attribute Required? Default Description

name Yes
The method name(s) with

which the transaction
attributes are to be
associated. The wildcard
(*) character can be used

Spring Framework (2.5.5) 233

Transaction management

Attribute Required? Default Description

to associate the same
transaction attribute
settings with a number of
methods;, for example,
‘get*', " handl e*"' ,
"on*Event ', and so forth.

propagat i on No REQUIRED The transaction
propagation behavior

i sol ation No DEFAULT The transaction isolation
level

ti meout No -1 The transaction timeout

value (in seconds)

read-only No false Is this transaction
read-only?

rol | back-f or No
The Exception(s) that

will trigger rollback;
comma-delimited. For

example,

' com f 0o. MyBusi nessExcepti on, Ser

no-rol | back-f or No
The Exception(s) that

will not trigger rollback;
comma-delimited. For

example,

' com f oo. MyBusi nessExcepti on, Ser

At the time of writing it is not possible to have explicit control over the name of a transaction, where 'name'
means the transaction name that will be shown in a transaction monitor, if applicable (for example, WebL ogic's
transaction monitor), and in logging output. For declarative transactions, the transaction name is aways the
fully-qualified class name + " + method name of the transactionally-advised class. For example
' com f 00. Busi nessServi ce. handl ePaynent ' .

9.5.6. Using @r ansacti onal

Note

"9
The functionality offered by the @ransactional annotation and the support classes is only
availableto you if you are using at least Java 5 (Tiger).

In addition to the XML-based declarative approach to transaction configuration, you can also use an
annotation-based approach to transaction configuration. Declaring transaction semantics directly in the Java
source code puts the declarations much closer to the affected code, and there is generally not much danger of
undue coupling, since code that is meant to be used transactionally is almost always deployed that way anyway.

Spring Framework (2.5.5) 234

Transaction management

The ease-of-use afforded by the use of the @ ansacti onal annotation is best illustrated with an example, after
which all of the details will be explained. Consider the following class definition:

/'l the service class that we want to nake transacti onal
@r ansacti onal
public class Default FooService inplenments FooService {

Foo get Foo(String fooNane);
Foo get Foo(String fooName, String barNane);
voi d insertFoo(Foo foo0);

voi d updat eFoo(Foo f 00);

}

When the above POJO is defined as a bean in a Spring 10C container, the bean instance can be made
transactional by adding merely one line of XML configuration, like so:

<l-- fromthe file 'context.xm"' -->
<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xm ns: tx="http://ww. spri ngframework. or g/ schema/ t x"
xsi : schemaLocati on="
htt p: // ww. spri ngf ranmewor k. or g/ schenma/ beans http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xs
http://ww. springfranework. org/ schema/tx http://ww.springfranework. org/ schema/tx/spring-tx-2.5. xsd
htt p: // ww. spri ngf ranewor k. or g/ schena/ aop http://ww. spri ngfranework. or g/ schena/ aop/ spri ng- aop- 2. 5. xsd" >

<l-- this is the service object that we want to neke transactional -->
<bean i d="fooService" class="x.y. service. Defaul t FooService"/>

<l-- enable the configuration of transactional behavior based on annotations -->
<t x:annotation-driven transaction-manager ="t xManager"/>

<l-- a PlatforniransactionManager i s still required -->
<bean i d="t xManager" cl ass="org. springfranmework.j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<l-- (this dependency is defined sonewhere else) -->
<property nanme="dat aSour ce" ref="dataSource"/>
</ bean>
<!-- other <bean/> definitions here -->
</ beans>
Tip

You can actually omit the' transact i on- manager* attribute in the <t x: annot ati on-dri ven/ > tag
if the bean name of the PI at f or mlr ansact i onManager that you want to wire in has the name
"transacti onManager' . If the Pl at f or niTr ansact i onManager bean that you want to dependency
inject has any other name, then you have to be explicit and use the ' transacti on- manager"
attribute as in the example above.

Method visibility and @r ansact i onal

When using proxies, the @ransactional annotation should only be applied to methods with public
visibility. If you do annotate protected, private or package-visible methods with the @ransacti onal
annotation, no error will be raised, but the annotated method will not exhibit the configured transactional
settings. Consider the use of AspectJ (see below) if you need to annotate non-public methods.

The @r ansact i onal annotation may be placed before an interface definition, a method on an interface, a class

Spring Framework (2.5.5) 235

Transaction management

definition, or a public method on a class. However, please note that the mere presence of the @r ansact i onal
annotation is not enough to actually turn on the transactional behavior - the @ransactional annotation is
simply metadata that can be consumed by something that is @r ansacti onal -aware and that can use the
metadata to configure the appropriate beans with transactional behavior. In the case of the above example, it is
the presence of the <t x: annot at i on- dri ven/ > element that switches on the transactional behavior.

The Spring team's recommendation is that you only annotate concrete classes with the @ransacti onal

annotation, as opposed to annotating interfaces. You certainly can place the @r ansact i onal annotation on an
interface (or an interface method), but this will only work as you would expect it to if you are using
interface-based proxies. The fact that annotations are not inherited means that if you are using class-based
proxies (proxy-target-class="true") or the weaving-based aspect (node="aspectj") then the transaction
settings will not be recognised by the proxying/weaving infrastructure and the object will not be wrapped in a
transactional proxy (which would be decidedly bad). So please do take the Spring team's advice and only
annotate concrete classes (and the methods of concrete classes) with the @r ansacti onal annotation.

Note: In proxy mode (which is the default), only 'external’ method calls coming in through the proxy will be
intercepted. This means that 'self-invocation’, i.e. a method within the target object calling some other method
of the target object, won't lead to an actual transaction at runtime even if the invoked method is marked with
@r ansact i onal !

Consider the use of Aspect] mode (see below) if you expect self-invocations to be wrapped with transactions as
well. In this case, there won't be a proxy in the first place; instead, the target class will be ‘weaved (i.e. its byte
code will be maodified) in order to turn @r ansacti onal into runtime behavior on any kind of method.

Table9.2. <t x: annot at i on-dri ven/ > settings

Attribute Default Description

transact i on- manager transactionManager '
The name of transaction manager

to use. Only required if the name
of the transaction manager is not
transacti onManager, as in the
example above.

node proxy
The default mode "proxy" will

process annotated beans to be
proxied using Springs AOP
framework (following proxy
semantics, as discussed above,
applying to method calls coming in
through the proxy only). The
alternative mode “aspectj" will
instead weave the affected classes
with Spring's AspectJ transaction
aspect (modifying the target class
byte code in order to apply to any
kind of method call). Aspect]
weaving requires spring-aspects.jar
on the classpath as wel as
|oad-time weaving (or
compile-time weaving) enabled.
(See the section entitled

Spring Framework (2.5.5) 236

Transaction management

Attribute

proxy-target-class

or der

e

Note

Default

false

Ordered. LOWEST_PRECEDENCE

Description

Section 6.8.4.5, “Spring
configuration” for details on how
to set up load-time weaving.)

Applies to proxy mode only.
Controls what type of transactional
proxies are created for classes
annotated with the
@r ansactional annotation. If
"proxy-target-class" atribute is
set to "true", then class-based
proxies will be created. If
"proxy-target-class" is "fal se"
or if the attribute is omitted, then
standard JDK interface-based
proxies will be created. (See the
section entitled Section 6.6,
“Proxying mechanisms’ for a
detailed examination of the
different proxy types.)

Defines the order of the transaction
advice that will be applied to beans
annotated with @ransactional .
More on the rules reated to
ordering of AOP advice can be
found in the AOP chapter (see
section Section 6.2.4.7, “Advice
ordering”’). Note that not
specifying any ordering will leave
the decision as to what order
advice is run in to the AOP
subsystem.

The"proxy-t ar get - cl ass" attribute on the <t x: annot at i on-dri ven/ > element controls what type
of transactional proxies are created for classes annotated with the @r ansacti onal annotation. If
"proxy-target-class" attribute is set to "true", then class-based proxies will be created. If
"proxy-target-class" is"fal se" or if the attribute is omitted, then standard JDK interface-based
proxies will be created. (See the section entitled Section 6.6, “Proxying mechanisms” for a detailed
examination of the different proxy types.)

The most derived location takes precedence when eval uating the transactional settings for a method. In the case
of the following example, the Def aul t FooSer vi ce class is annotated at the class level with the settings for a
read-only transaction, but the @ransactional annotation on the updat eFoo(Foo) method in the same class

takes precedence over the transactional settings defined at the classlevel.

@ransactional (readOnly = true)

public cl ass Defaul t FooService inplenents FooService {

Spring Framework (2.5.5)

237

Transaction management

public Foo getFoo(String fooNane) {

/1 do somet hi ng

}

/'l these settings have precedence for this method
propagati on = Propagati on. REQUI RES_NEW

@ransactional (readOnly = fal se,

public void updat eFoo(Foo foo) {

/1 do sonet hi ng
}
}

9.5.6.1. @ransactional settings

The @ransactional annotation is metadata that specifies that an interface, class, or method must have
transactional semantics; for example, “start a brand new read-only transaction when this method is invoked,
suspending any existing transaction”. The default @r ansact i onal settings are:

* The propagation setting iS PROPAGATI ON_REQUI RED

* Theisolation level is1 SOLATI ON_DEFAULT

¢ Thetransaction is read/write

« The transaction timeout defaults to the default timeout of the underlying transaction system, or or none if

timeouts are not supported

e Any Runt i meExcept i on Will trigger rollback, and any checked Except i on will not

These default settings can be changed; the various properties of the @ransactional annotation are

summarized in the following table:

Table9.3. @ransacti onal properties

Property
propagation
i sol ation
readOnly

ti meout

rol | backFor

rol | backFor Cl assnane

noRol | backFor

Type

enum: Propagati on

enum: | sol ati on

boolean

int (in seconds granularity)

an array of dass objects, which
must be derived from Thr owabl e

an array of class names. Classes
must be derived from Thr owabl e

an array of dass objects, which
must be derived from Thr owabl e

Description

optional propagation setting
optional isolation level

read/write vs. read-only transaction
the transaction timeout

an optional array of exception
classes which must cause rollback

an optional array of names of
exception classes that must cause
rollback

an optional array of exception
classes that must not cause
rollback.

noRol | backFor Cl assnane

an array of String class names,
which must be derived from
Thr owabl e

an optional array of names of
exception classes that must not
cause rollback

Spring Framework (2.5.5)

238

Transaction management

Currently it is not possible to have explicit control over the name of a transaction, where 'name’ means the
transaction name that will be shown in a transaction monitor, if applicable (for example, WebLogic's
transaction monitor), and in logging output. For declarative transactions, the transaction name is always the
fully-qualified class name + "." + method name of the transactionally-advised class. For example, if the
handl ePaynent (..) method of the Busi nessServi ce class started a transaction, the name of the transaction
would be:

com f 0o. Busi nessSer vi ce. handl ePaynent

9.5.7. Transaction propagation

Please note that this section of the Soring reference documentation is not an introduction to transaction
propagation proper; rather it details some of the semantics regarding transaction propagation in Spring.

In the case of Spring-managed transactions, please be aware of the difference between physical and logical
transactions, and how the propagation setting appliesto this difference.

9.5.7.1. Required

REQUIRED Transaction
Caller '. Transactional method 1 I \ Transactional method 2 ‘

/ /

Method 2 executes in the existing transaction. ‘

Transaction created,
committed or rolled back as
needed

PROPAGATION_REQUIRED

When the propagation setting iS PROPAGATI ON_REQUI RED, a logical transaction scope is created for each method
that it gets applied to. Each such logical transaction scope can individually decide on rollback-only status, with
an outer transaction scope being logically independent from the inner transaction scope. Of course, in case of
standard PROPAGATI ON_REQUI RED behavior, they will be mapped to the same physical transaction. So a
rollback-only marker set in the inner transaction scope does affect the outer transactions chance to actually
commit (as you would expect it to).

However, in the case where an inner transaction scopes sets the rollback-only marker, the outer transaction
itself has not decided on the rollback itself, and so the rollback (silently triggered by the inner transaction
scope) is unexpected: a corresponding Unexpect edRol | backExcept i on will be thrown at that point. This is
expected behavior so that the caller of a transaction can never be misled to assume that a commit was
performed when it really was not. So if an inner transaction (that the outer caller is not aware of) silently marks
a transaction as rollback-only, the outer caller would still innocently call commit - and needs to receive an
Unexpect edRol | backExcept i on to indicate clearly that arollback was performed instead.

Spring Framework (2.5.5) 239

Transaction management

9.5.7.2. RequiresNew

REQUIRES_NEW Transaction 1 .
Q ' Transaction 2
Caller , Transactional method 1 Transactional method 2
Transaction created, Method 2 executes in a new transaction, and the
committed or rolled back as outer transaction is suspended.
needed

PROPAGATION_REQUIRES NEW

PROPAGATI ON_REQUI RES_NEW in contrast, uses a completely independent transaction for each affected
transaction scope. In that case, the underlying physical transactions will be different and hence can commit or
rollback independently, with an outer transaction not affected by an inner transaction's rollback status.

9.5.7.3. Nested

PROPAGATI ON_NESTED is different again in that it uses a single physical transaction with multiple savepoints that
it can roll back to. Such partia rollbacks allow an inner transaction scope to trigger a rollback for its scope,
with the outer transaction being able to continue the physical transaction despite some operations having been
rolled back. This is typically mapped onto JDBC savepoints, so will only work with JDBC resource
transactions (see Spring's Dat aSour ceTr ansact i onManager).

9.5.8. Advising transactional operations

Consider the situation where you would like to execute both transactional and (to keep things simple) some
basic profiling advice. How do you effect this in the context of using <t x: annot at i on-dri ven/ >?

What we want to see when we invoke the updat eFoo(Foo) method is:

the configured profiling aspect starting up,

* then the transactional advice executing,

* then the method on the advised object executing

« then the transaction committing (we'll assume a sunny day scenario here),

« and then finally the profiling aspect reporting (somehow) exactly how long the whole transactional method
invocation took

Note

“a
This chapter is not concerned with explaining AOP in any great detail (except as it applies to
transactions). Please see the chapter entitled Chapter 6, Aspect Oriented Programming with Spring
for detailed coverage of the various bits and pieces of the following AOP configuration (and AOP

Spring Framework (2.5.5) 240

Transaction management

in general).

Here is the code for a simple profiling aspect. The ordering of advice is controlled via the o der ed interface.
For full details on advice ordering, see Section 6.2.4.7, “ Advice ordering”.

package x.y;

i mport org. aspectj .| ang. Proceedi ngJoi nPoi nt ;
i mport org.springframework. util.StopWatch;
i mport org.springframework. core. O dered;

public class SinpleProfiler inplements O dered {
private int order;

// allows us to control the ordering of advice
public int getOder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

/1 this method is the around advice
public Object profile(ProceedingdoinPoint call) throws Throwabl e {
oj ect returnVal ue;
St opWat ch cl ock = new St opWat ch(get Cl ass(). get Nane());
try {
clock.start(call.toShortString());
returnVal ue = call.proceed();
} finally {
cl ock. stop();
System out. println(clock.prettyPrint());
}
return returnVal ue;
}
}

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xm ns: tx="http://ww. springfranmework. org/schena/tx"
xsi : schemaLocat i on="
htt p: // ww. spri ngfranewor k. or g/ schena/ beans http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/tx http://ww. springframework. org/schema/t x/spring-tx-2.5.xsd
htt p: // ww. spri ngf ranmewor k. or g/ schena/ aop http://ww. spri ngfranework. or g/ schena/ aop/ spri ng- aop- 2. 5. xsd" >

<bean i d="fooService" class="x.y.service. Def aul t FooServi ce"/ >

<l-- this is the aspect -->

<bean id="profiler" class="x.y.SinpleProfiler">
<I-- execute before the transactional advice (hence the |ower order nunber) -->
<property name="order" val ue="1"/>

</ bean>

<t x: annot ation-driven transaction-manager ="t xManager" order="200"/>

<aop: confi g>
<!-- this advice will execute around the transactional advice -->
<aop: aspect id="profilingAspect" ref="profiler">
<aop: poi ntcut id="servi ceMet hodW t hRet ur nVal ue"
expressi on="execution(!void x.y..*Service.*(..))"/>
<aop: around net hod="profile" pointcut-ref="serviceMet hodW t hRet ur nVal ue"/ >
</ aop: aspect >
</ aop: confi g>

<bean i d="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy- met hod="cl ose">
<property name="driverCl assNane" val ue="oracle.jdbc.driver. O acleDriver"/>
<property name="url" val ue="jdbc:oracle:thin: @j-t42:1521: el vis"/>
<property name="usernane" val ue="scott"/>
<property name="password" val ue="tiger"/>
</ bean>

Spring Framework (2.5.5) 241

Transaction management

<bean i d="t xManager" cl ass="org. springframework.j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property name="dat aSource" ref="dataSource"/>
</ bean>

</ beans>

The result of the above configuration will be a' f ooSer vi ce' bean that has profiling and transactional aspects
applied to it in that order. The configuration of any number of additiona aspects is effected in a similar

fashion.

Finally, find below some example configuration for effecting the same setup as above, but using the purely
XML declarative approach.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schema/ aop"
xm ns: tx="http://ww. springframework. org/ schenma/tx"

xsi : schemalLocat i on="
http://ww. springfranework. org/ schenma/ beans http://ww. springfranmework. org/ schema/ beans/ spri ng- beans- 2. 5. xsd

htt p: // ww. spri ngfranmewor k. or g/ schema/tx http://ww. springfranework. org/ schema/tx/spring-tx-2.5.xsd
http://ww. springframework. or g/ schema/ aop http://ww. springframewor k. or g/ schena/ aop/ spri ng-aop- 2. 5. xsd">

<bean i d="fooService" class="x.y.service. Defaul t FooService"/>

<!-- the profiling advice -->

<bean id="profiler" class="x.y.SinpleProfiler">
<!-- execute before the transactional advice (hence the |ower order nunber) -->
<property name="order" val ue="1"/>

</ bean>

<aop: confi g>
<aop: poi ntcut id="entryPoi nt Met hod" expressi on="execution(* x.y..*Service.*(..))"/>

<l-- will execute after the profiling advice (c.f. the order attribute) -->
<aop: advi sor

advi ce-ref ="t xAdvi ce"

poi nt cut - ref ="ent r yPoi nt Met hod"

order="2"/> <!-- order value is higher than the profiling aspect -->

<aop: aspect id="profilingAspect"” ref="profiler">
<aop: poi ntcut id="servi ceMet hodW t hRet ur nVal ue"
expressi on="execution(!void x.y..*Service.*(..))"/>
<aop: around net hod="profile" pointcut-ref="serviceMet hodW t hRet ur nval ue"/ >

</ aop: aspect >
</ aop: confi g>

<t x: advi ce id="txAdvi ce" transaction-nmanager ="t xManager" >
<tx:attributes>
<t x: met hod name="get*" read-only="true"/>
<t x: net hod name="*"/>
</tx:attributes>
</ tx: advi ce>

<l -- other <bean/> definitions such as a DataSource and a Pl atforniransacti onManager here -->

</ beans>

The result of the above configuration will be a' f ooSer vi ce' bean that has profiling and transactional aspects
applied to it in that order. If we wanted the profiling advice to execute after the transactional advice on the way
in, and before the transactional advice on the way out, then we would simply swap the value of the profiling
aspect bean's* order* property such that it was higher than the transactional advice's order value.

The configuration of any number of additional aspectsis achieved in asimilar fashion.

Spring Framework (2.5.5) 242

Transaction management

9.5.9. Using @r ansacti onal with AspectJ

It is aso possible to use the Spring Framework's @ ansacti onal support outside of a Spring container by
means of an AspectJ aspect. To use this support you must first annotate your classes (and optionally your
classes methods with the @r ansacti onal annotation, and then you must link (weave) your application with
the org. springframework.transaction. aspectj.AnnotationTransacti onAspect defined in the
spring-aspects. j ar file. The aspect must also be configured with a transaction manager. Y ou could of course
use the Spring Framework's 10C container to take care of dependency injecting the aspect. The simplest way to
configure the transaction management aspect is to use the ' <t x: annot ati on-dri ven/ > element and specify
the mode attribute to asepctj asdescribed in Section 9.5.6, “Using @r ansact i onal ”. Since we're focusing here
on applications running outside of a Spring container, we'll show you how to do it programmatically.

Note

"9
Prior to continuing, you may well want to read the previous sections entitled Section 9.5.6, “Using
@r ansacti onal " and Chapter 6, Aspect Oriented Programming with Spring respectively.

/] construct an appropriate transacti on nanager
Dat aSour ceTr ansact i onManager txManager = new Dat aSour ceTr ansact i onManager (get Dat aSour ce());

/1 configure the AnnotationTransactionAspect to use it; this nmust be done before executing any transactional nethods
Annot ati onTransacti onAspect . aspect O (). set Transact i onManager (t xManager) ;

Note

When using this aspect, you must annotate the implementation class (and/or methods within that
class), not the interface (if any) that the class implements. Aspect] follows Javas rule that
annotations on interfaces are not inherited.

The @ransacti onal annotation on a class specifies the default transaction semantics for the execution of any
method in the class.

The @r ansact i onal annotation on a method within the class overrides the default transaction semantics given
by the class annotation (if present). Any method may be annotated, regardless of visibility.

To weave your applications with the Annot ati onTr ansact i onAspect you must either build your application
with Aspectd (see the Aspect] Development Guide) or use load-time weaving. See the section entitled
Section 6.8.4, “Load-time weaving with Aspect] in the Spring Framework” for a discussion of load-time
weaving with AspectJ.

9.6. Programmatic transaction management

The Spring Framework provides two means of programmatic transaction management:

» Usingthe Transacti onTenpl at e.
» Using aPl at f or nilr ansact i onManager implementation directly.

If you are going to use programmatic transaction management, the Spring team generally recommends using
the Transact i onTenpl at e. The second approach is similar to using the JTA User Transacti on API (athough
exception handling is less cumbersome).

Spring Framework (2.5.5) 243

http://www.eclipse.org/aspectj/doc/released/devguide/index.html

Transaction management

9.6.1. Using the Transacti onTenpl at e

The Transacti onTenpl at e adopts the same approach as other Spring templates such as the JdbcTenpl ate. It
uses a callback approach, to free application code from having to do the boilerplate acquisition and release of
transactional resources, and resultsin code that is intention driven, in that the code that is written focuses solely
on what the developer wants to do.

Note

-

e

As you will immediately see in the examples that follow, using the TransactionTenpl ate
absolutely couples you to Spring's transaction infrastructure and APIs. Whether or not
programmatic transaction management is suitable for your development needs is a decision that
you will have to make yoursalf.

Application code that must execute in a transactional context, and that will use the Transacti onTenpl at e
explicitly, looks like this. Y ou, as an application developer, will write a Tr ansact i onCal | back implementation
(typically expressed as an anonymous inner class) that will contain all of the code that you need to have execute
in the context of a transaction. You will then pass an instance of your custom Transacti onCal | back to the
execut e(..) method exposed on the Tr ansact i onTenpl at e.

public class SinpleService inplenments Service {

/1 single TransactionTenplate shared anongst all nethods in this instance
private final TransactionTenplate transacti onTenpl ate;

/1 use constructor-injection to supply the Platforniransacti onManager

public SinpleService(Platforniransacti onManager transacti onManager) {
Assert.not Nul | (transacti onManager, "The 'transacti onManager' argunment nust not be null.");
this.transacti onTenpl ate = new Transacti onTenpl at e(transacti onManager);

}

public Onbject soneServiceMethod() {
return transacti onTenpl at e. execut e(new Transacti onCal | back() {

/] the code in this nethod executes in a transactional context

public nject dolnTransacti on(Transacti onStatus status) {
updat eOper ati onl();
return resul t Of Updat eOperati on2();

}

1)
}
}

If there is no return value, use the convenient Transacti onCal | backW t hout Resul t class via an anonymous
classlike so:

transacti onTenpl at e. execut e(new Transacti onCal | backW t hout Resul t () {
protected void dol nTransacti onW t hout Resul t (Transacti onStatus status) {

updat eOperationl();
updat eOper ati on2();

}
1)

Code within the callback can roll the transaction back by caling the set Rol | backnl y() method on the
supplied Transact i onSt at us object.

transacti onTenpl at e. execut e(new Transacti onCal | backW t hout Resul t () {

protected voi d dol nTransacti onWt hout Resul t (Transacti onStatus status) {
try {
updat eOperationl();
updat eOper ati on2();

Spring Framework (2.5.5) 244

Transaction management

} catch (SonmeBusi nessExeption ex) {
st at us. set Rol | backOnl y();

}
}
});

9.6.1.1. Specifying transaction settings

Transaction settings such as the propagation mode, the isolation level, the timeout, and so forth can be set on
the TransactionTenpl ate either programmatically or in configuration. Transacti onTenpl ate instances by
default have the default transactional settings. Find below an example of programmatically customizing the
transactional settings for a specific Transact i onTenpl at e.

public class SinpleService inplenents Service {
private final TransactionTenplate transacti onTenpl ate

public Sinpl eService(Platfornlransacti onManager transactionManager) {
Assert.not Nul | (transacti onManager, "The 'transacti onManager' argunent nust not be null.");
this.transacti onTenpl ate = new Transacti onTenpl at e(transacti onManager);

// the transaction settings can be set here explicitly if so desired

this.transacti onTenpl ate. setlsol ati onLevel (Transacti onDefi niti on. | SOLATI ON_READ_UNCOWM TTED) ;
this.transacti onTenpl ate. set Ti meout (30); // 30 seconds

// and so forth...

Find below an example of defining a Transacti onTenpl at e with some custom transactional settings, using
Spring XML configuration. The 'shar edTr ansact i onTenpl at e' can then be injected into as many services as
arerequired.

<bean i d="sharedTransacti onTenpl at e"
class="org. springframework.transaction. support. Transacti onTenpl ate">
<property nanme="isol ati onLevel Nane" val ue="1SOLATI ON_READ UNCOWM TTED'/ >
<property name="tinmeout" val ue="30"/>
</ bean>"

Finally, instances of the TransactionTenpl ate class are threadsafe, in that instances do not maintain any
conversational state. TransactionTenpl ate instances do however maintain configuration state, so while a
number of classes may choose to share a single instance of a Transacti onTenpl at e, if a class needed to use a
TransactionTenpl ate with different settings (for example, a different isolation level), then two distinct
Transact i onTenpl at e instances would need to be created and used.

9.6.2. Using the PI at f or nilr ansact i onManager

You can aso use the or g. spri ngf ramewor k. t ransact i on. Pl at f or milt ansact i onManager directly to manage
your transaction. Simply pass the implementation of the PI at f or milr ansact i onManager you're using to your
bean via a bean reference. Then, using the Transact i onDefi ni ti on and Transact i onSt at us objects you can
initiate transactions, rollback and commit.

Def aul t Transacti onDefinition def = new DefaultTransacti onDefinition();

Il explicitly setting the transaction nanme is sonething that can only be done programmatically
def . set Nane(" SoneTxNane") ;

def . set Propagat i onBehavi or (Transacti onDefi ni ti on. PROPAGATI ON_REQUI RED) ;

TransactionStatus status = txManager. get Transacti on(def);
try {
/| execute your business |ogic here

}
catch (MyException ex) {

Spring Framework (2.5.5) 245

Transaction management

t xManager . rol | back(status);
t hrow ex;

}

t xManager . commi t (st atus);

9.7. Choosing between programmatic and declarative
transaction management

Programmatic transaction management is usually a good idea only if you have a small number of transactional
operations. For example, if you have a web application that require transactions only for certain update
operations, you may not want to set up transactional proxies using Spring or any other technology. In this case,
using the Transacti onTenpl at e may be a good approach. Being able to set the transaction name explicitly is
also something that can only be done using the programmatic approach to transaction management.

On the other hand, if your application has numerous transactional operations, declarative transaction
management is usually worthwhile. It keeps transaction management out of business logic, and is not difficult
to configure. When using the Spring Framework, rather than EJB CMT, the configuration cost of declarative
transaction management is greatly reduced.

9.8. Application server-specific integration

Spring's transaction abstraction generaly is application server agnostic. Additionally, Spring's
JtaTransact i onManager class, which can optionally perform a INDI lookup for the JTA User Transact i on and
Transact i onManager Objects, autodetects the location for the latter object, which varies by application server.
Having access to the JTA Transacti onManager alows for enhanced transaction semantics, in particular
supporting transaction suspension. Please seethe Jt aTr ansact i onvanager Javadocs for details.

Spring's Jt aTr ansact i onManager IS the standard choice when running on J2EE application servers, known to
work on all common servers. Its advanced functionality such as transaction suspension is known to work on
many servers as well - including GlassFish, JBoss, Geronimo and Oracle OC4J - without any special
configuration required. However, for fully supported transaction suspension and further advanced integration,
Spring ships special adapters for IBM WebSphere and BEA WebL ogic and also for Oracle OC4J. Welll discuss
these adapters in the following sections.

For standard scenarios, including WebLogic, WebShere and OC4J, consider using the convenient
'<tx:jta-transaction-mnager/> configuration element. This will automatically detect the underlying
server and choose the best transaction manager available for the platform. This means that you won't have to
configure server-specific adapter classes (as discussed in the following sections) explicitly; they will rather be
chosen automatically, with the standard Jt aTr ansact i onManager as default fallback.

9.8.1. IBM WebSphere

On WebSphere 6.0 and above, the recommended Spring JTA transaction manager to use is
WebSpher eUowTr ansact i onManager . This special adapter leverages IBM's uowanager APl which is available
in WebSphere Application Server 6.0.2.19 or above and 6.1.0.9 or above. With this adapter, Spring-driven
transaction suspension (suspend/resume as initiated by PROPAGATI ON_REQUI RES_NEW is officially supported by
IBM!

In a WebSphere 5.1 environment, you may wish to use Spring's WebSpher eTr ansact i onManager Fact or yBean
class. Thisis afactory bean which retrieves the JTA Transact i onManager in a WebSphere environment, which

Spring Framework (2.5.5) 246

Transaction management

is done via WebSphere's static access methods. Once the JTA Transacti onManager instance has been
obtained via this factory bean, Spring's Jt aTr ansact i onManager may be configured with a reference to it, for
enhanced transaction semantics over the use of only the JTA User Transact i on object. Please see the Javadocs
for full details.

Note that webSpher eTr ansact i onManager Fact or yBean usage is known to work on WAS 5.1 and 6.0 but is not
officially supported by IBM. Prefer webSpher eUowTr ansact i onManager when running on WAS 6.0 or higher
(see above).

9.8.2. BEA WebLogic

On WebL ogic 8.1 or above, you will generally prefer to use the WebLogi cJt aTr ansact i onManager instead of
the stock JtaTransactionManager class. This special WebLogic-specific subclass of the normal
JtaTransact i onManager supports the full power of Spring's transaction definitions in a WebL ogic-managed
transaction environment, beyond standard JTA semantics. Features include transaction names, per-transaction
isolation levels, and proper resuming of transactionsin all cases.

9.8.3. Oracle OC4J

Spring ships a special adapter class for OC4J 10.1.3 or above: 0c4JJdt aTr ansact i onManager . This is analogous
to the WebLogi cJt aTr ansact i onManager class discussed in the previous section, providing similar value-adds
on OCA4J: transaction names and per-transaction isolation levels.

Note that the full JTA functionality, including transaction suspension, works fine with Spring's
JtaTransact i onManager on OC4J as well. The special 0c4JJt aTr ansact i onManager adapter simply provides
value-adds beyond standard JTA.

9.9. Solutions to common problems

9.9.1. Use of the wrong transaction manager for a specific bat aSour ce

Y ou should take care to use the correct Pl at f or nilr ansact i onManager implementation for their requirements.
Used properly, the Spring Framework merely provides a straightforward and portable abstraction. If you are
using global transactions, you must use the or g. spri ngf r amewor k. t ransacti on. j t a. Jt aTr ansact i onManager
class (or an application server-specific subclass of it) for al your transactional operations. Otherwise the
transaction infrastructure will attempt to perform local transactions on resources such as container Dat aSour ce
instances. Such local transactions do not make sense, and a good application server will treat them as errors.

9.10. Further Resources

Find below links to further resources about the Spring Framework's transaction support.

« Java Transaction Design Strategies is a book available from InfoQ that provides a well-paced introduction to
transactions in Java. It also includes side-by-side examples of how to configure and use transactions using
both the Spring Framework and EJB3.

Spring Framework (2.5.5) 247

http://www.infoq.com/minibooks/JTDS
http://www.infoq.com/

Chapter 10. DAO support

10.1. Introduction

The Data Access Object (DAO) support in Spring is aimed at making it easy to work with data access
technologies like JDBC, Hibernate or JDO in a consistent way. This alows one to switch between the
aforementioned persistence technologies fairly easily and it also allows one to code without worrying about
catching exceptions that are specific to each technology.

10.2. Consistent exception hierarchy

Spring provides a convenient trandation from technology-specific exceptions like SQLExcepti on to its own
exception class hierarchy with the Dat aAccessExcepti on as the root exception. These exceptions wrap the
original exception so there is never any risk that one might lose any information as to what might have gone
wrong.

In addition to JDBC exceptions, Spring can also wrap Hibernate-specific exceptions, converting them from
proprietary, checked exceptions (in the case of versions of Hibernate prior to Hibernate 3.0), to a set of focused
runtime exceptions (the same is true for JDO and JPA exceptions). This alows one to handle most persistence
exceptions, which are non-recoverable, only in the appropriate layers, without having annoying boilerplate
catch-and-throw blocks and exception declarations in one's DAOs. (One can still trap and handle exceptions
anywhere one needs to though.) As mentioned above, JDBC exceptions (including database-specific diaects)
are also converted to the same hierarchy, meaning that one can perform some operations with JDBC within a
consistent programming model.

The above holds true for the various template classes in Springs support for various ORM frameworks. If one
uses the interceptor-based classes then the application must care about handling Hi ber nat eExcept i ons and
JDOExcept i ons itself, preferably via delegating to Sessi onFactoryUtils'
convert Hi ber nat eAccessException(..) Of convertJdoAccessException methods respectively. These
methods convert the exceptions to ones that are compatible with the exceptions in the
org. spri ngf r amewor k. dao exception hierarchy. As JDOExcept i ons are unchecked, they can simply get thrown
too, sacrificing generic DA O abstraction in terms of exceptions though.

The exception hierarchy that Spring provides can be seen below. (Please note that the class hierarchy detailed
in the image shows only a subset of the entire Dat aAccessExcept i on hierarchy.)

Spring Framework (2.5.5) 248

DAO support

|D ataficeeszResourceF ailureExceptio n| |l’.,\"?categorfzedDataAccessExcepﬁonl

|CIeanupFaiIureDataAccessExceptionl |DataIntegrihr\fiolationExceptionl

|I nvaIidDataAccessApiUsageExceptionl |Dead|ookLoserD ataAccessExceptionl

|In\ra|idDataAccessResourceUsageExceptionl |DataRetrieualFaiIureExceptionI |ElptimisticLod(ingFaiIuleExceptionl

I I I

l?rco.'rectqbo'ate S‘emanﬁcsDataAccessExce,aﬁonI |Dbjec{R etrie\taIFaiIureExceptionl |Dbject0 ptimisticLackingF ailureExece ptionl

|T3rpeMismatchDataAccessExceptionl

10.3. Consistent abstract classes for DAO support

To make it easier to work with a variety of data access technologies such as JDBC, JDO and Hibernate in a
consistent way, Spring provides a set of abstract DAO classes that one can extend. These abstract classes
have methods for providing the data source and any other configuration settings that are specific to the relevant
data-access technology.

JdbcDaoSupport - superclass for JDBC data access objects. Requires a Dat aSour ce to be provided; in turn,
this class provides a JdbcTenpl at e instance initialized from the supplied Dat aSour ce to subclasses.

* Hi ber nat eDaoSupport - superclass for Hibernate data access objects. Requires a Sessi onFactory to be
provided; in turn, this class provides a Hi bernateTenpl ate instance initialized from the supplied
Sessi onFact ory t0 subclasses. Can aternatively be initialized directly via a Hi ber nat eTenpl at e, t0 reuse
the latters settings like Sessi onFact or y, flush mode, exception translator, and so forth.

» JdoDaoSupport - super class for JDO data access objects. Requires a Per si st enceManager Fact ory to be
provided; in turn, this class provides a JdoTenplate instance initidized from the supplied
Per si st enceManager Fact or y t0 subclasses.

e JpaDaoSupport - super classfor JPA data access objects. Requires aEnt i t yManager Fact ory to be provided,
in turn, this class provides a JpaTenpl at e instance initialized from the supplied Ent i t yManager Fact ory to
subclasses.

Spring Framework (2.5.5) 249

Chapter 11. Data access using JDBC

11.1. Introduction

The value-add provided by the Spring Framework's JDBC abstraction framework is perhaps best shown by the
following list (note that only the italicized lines need to be coded by an application devel oper):

8.

0.

Define connection parameters

Open the connection

Foecify the statement

Prepare and execute the statement

Set up the loop to iterate through the results (if any)
Do the work for each iteration

Process any exception

Handle transactions

Close the connection

The Spring Framework takes care of al the grungy, low-level details that can make JDBC such atedious API
to develop with.

11.1.1. Choosing a style

There are a number of options for selecting an approach to form the basis for your JDBC database access.
There are three flavors of the JdbcTemplate, a new "SimpleJdbc" approach taking advantage of database
metadata, and there is also the "RDBMS Object" style for a more object oriented approach similar in style to
the JDO Query design. We'l briefly list the primary reasons why you would pick one of these approaches.
Keep in mind that even if you start using one of these approaches, you can still mix and match if there is a
feature in a different approach that you would like to take advantage of. All approaches requires a JDBC 2.0
compliant driver and some advanced features require aJDBC 3.0 driver.

JdbcTemplate - this is the classic Spring JDBC approach and the most widely used. This is the "lowest
level" approach and all other approaches use a JdbcTemplate under the covers. Works well in a JDK 1.4 and
higher environment.

NamedPar ameter JdbcTemplate - wraps a JdbcTemplate to provide more convenient usage with named
parameters instead of the traditional JIDBC "7?' place holders. This provides better documentation and ease of
use when you have multiple parameters for an SQL statement. Works with JDK 1.4 and up.

SimpleJdbcTemplate - this class combines the most frequently used features of both JdbcTemplate and
NamedParameterJdbcTemplate plus it adds additional convenience by taking advantage of some Java 5
features like varargs, autoboxing and generics to provide an easier to use API. Requires JDK 5 or higher.

SimpleJdbcinsert and SimpleJdbcCall - designed to take advantage of database metadata to limit the

Spring Framework (2.5.5) 250

Data access using JDBC

amount of configuration needed. This will simplify the coding to a point where you only need to provide the
name of the table or procedure and provide a Map of parameters matching the column names. Designed to
work together with the SimpleJdbcTemplate. Requires JDK 5 or higher and a database that provides
adequate metadata.

* RDBMS Objects including MappingSqlQuery, SqlUpdate and StoredProcedure - an approach where
you create reusable and thread safe objects during initialization of your data access layer. This approach is
modeled after JDO Query where you define your query string, declare parameters and compile the query.
Once that is done any execute methods can be called multiple times with various parameter values passed in.
Works with JDK 1.4 and higher.

11.1.2. The package hierarchy

The Spring Framework's JDBC abstraction framework consists of four different packages, namely core,
dat asour ce, obj ect, and support .

The org. spri ngf ramework. j dbc. core package contains the JdbcTenpl ate class and its various callback
interfaces, plus a variety of related classes. A sub-package named or g. spri ngf ramework. j dbc. core. si npl e
contains the Sinpl eJdbcTenpl ate class and the related Sinpl eddbel nsert and Si npl eJdbcCal | classes.
Another sub-package named org. springframework. j dbc. core. nanmedpar am contains the
NarredPar anmet er JdbcTenpl at e class and the related support classes.

The or g. spri ngf ramewor k. j dbc. dat asour ce package contains a utility class for easy Dat aSour ce access, and
various simple Dat aSour ce implementations that can be used for testing and running unmodified JDBC code
outside of a J2EE container. The utility class provides static methods to obtain connections from JNDI and to
close connections if necessary. It has support for thread-bound connections, eg. for use with
Dat aSour ceTr ansact i onManager .

Next, the org. springframework. j dbc. obj ect package contains classes that represent RDBMS queries,
updates, and stored procedures as thread safe, reusable objects. This approach is modeled by JDO, although of
course objects returned by queries are “disconnected” from the database. This higher level of JDBC abstraction
depends on the lower-level abstraction in the or g. spri ngf r amewor k. j dbc. cor e package.

Finally the org. spri ngframework. j dbc. support package is where you find the SQLException trandation
functionality and some utility classes.

Exceptions thrown during JDBC processing are trandated to exceptions defined in the
org. spri ngframewor k. dao package. This means that code using the Spring JDBC abstraction layer does not
need to implement JDBC or RDBM S-specific error handling. All translated exceptions are unchecked giving
you the option of catching the exceptions that you can recover from while allowing other exceptions to be
propagated to the caller.

11.2. Using the JDBC Core classes to control basic JDBC
processing and error handling

11.2.1. JdbcTenpl at e

The JdbcTenpl at e class is the central class in the JDBC core package. It simplifies the use of JDBC since it
handles the creation and release of resources. This helps to avoid common errors such as forgetting to always
close the connection. It executes the core JDBC workflow like statement creation and execution, leaving

Spring Framework (2.5.5) 251

Data access using JDBC

application code to provide SQL and extract results. This class executes SQL queries, update statements or
stored procedure calls, imitating iteration over Resul t Set S and extraction of returned parameter values. It also
catches JDBC exceptions and translates them to the generic, more informative, exception hierarchy defined in
the or g. spri ngf r amewor k. dao package.

Code using the JdbcTenpl ate only need to implement callback interfaces, giving them a clearly defined
contract. The Pr epar edSt at enent Cr eat or callback interface creates a prepared statement given a Connecti on
provided by this class, providing SQL and any necessary parameters. The same is true for the
Cal | abl eSt at enent Cr eat or interface which creates callable statement. The RowCal | backHandl er interface
extracts values from each row of aResul t Set .

The JdbcTenpl ate can be used within a DAO implementation via direct instantiation with a Dat aSour ce
reference, or be configured in a Spring 10OC container and given to DAOs as a bean reference. Note: the
Dat aSour ce should always be configured as a bean in the Spring 10C container, in the first case given to the
service directly, in the second case to the prepared template.

Finally, al of the SQL issued by this classislogged at the ' DEBUG level under the category corresponding to
the fully qualified class name of the template instance (typically JdbcTenpl at e, but it may be different if a
custom subclass of the JdbcTenpl at e classis being used).

11.2.1.1. Examples

Find below some examples of using the JdbcTenpl at e class. (These examples are not an exhaustive list of all
of the functionality exposed by the JdbcTenpl at e; see the attendant Javadocs for that).

11.2.1.1.1. Querying (SELECT)

A simple query for getting the number of rowsin arelation.

int rowCount = this.jdbcTenpl ate. queryForlnt("select count(0) fromt_accrual");

A simple query using abind variable.

int count O Act or sNanedJoe = this.jdbcTenpl ate. queryFor | nt (
"select count(0) fromt_actors where first_name = ?", new Object[]{"Joe"});

Querying for astri ng.

String surname = (String) this.jdbcTenpl ate. queryFor Qbj ect (
"sel ect surnane fromt_actor where id = ?",
new Cbject[]{new Long(1212)}, String.class);

Querying and populating a single domain object.

Actor actor = (Actor) this.jdbcTenpl ate. queryFor Obj ect (
"select first_name, surname fromt_actor where id = ?",
new Cbj ect[]{new Long(1212)},
new RowMapper () {

public Object mapRow(ResultSet rs, int rowNun) throws SQ.Exception {
Actor actor = new Actor();
actor.setFirstName(rs.getString("first_name"));
actor.set Surname(rs. getString("surnane"));
return actor;
}
b

Querying and populating a number of domain objects.

Spring Framework (2.5.5) 252

Data access using JDBC

Col l ection actors = this.jdbcTenpl ate. query(
"select first_nane, surname fromt_actor",
new RowMapper () {

public Object mapRow(ResultSet rs, int rowmun) throws SQLException {
Actor actor = new Actor();
actor.setFirstNane(rs.getString("first_name"));
actor.set Surnanme(rs. getString("surnane"));
return actor;

1)

If the last two snippets of code actually existed in the same application, it would make sense to remove the
duplication present in the two RowMapper anonymous inner classes, and extract them out into a single class
(typicaly astatic inner class) that can then be referenced by DAO methods as needed. For example, the last
code snippet might be better off written like so:

public Collection findAllActors() {
return this.jdbcTenpl ate. query("select first_name, surnane fromt_actor", new Actor Mapper());
}

private static final class ActorMapper inplenments RowVapper {

public Object nmapRow(ResultSet rs, int rowNum) throws SQLException {
Actor actor = new Actor();
actor.setFirstNane(rs.getString("first_name"));
actor.set Surname(rs. getString("surnane"));
return actor;

11.2.1.1.2. Updating (INSERT/UPDATE/DELETE)

t hi s.j dbcTenpl at e. updat e(
"insert into t_actor (first_nane, surnane) values (?, ?)",
new Cbject[] {"Leonor", "Watling"});

t hi s.j dbcTenpl at e. updat e(
"update t_actor set weapon = ? where id = ?",
new Cbject[] {"Banjo", new Long(5276)});

t hi s.j dbcTenpl at e. updat e(
"delete fromactor where id = ?",
new Cbject[] {new Long.val ueOf (actorld)});

11.2.1.1.3. Other operations

The execute(..) method can be used to execute any arbitrary SQL, and as such is often used for DDL
statements. It is heavily overloaded with variants taking callback interfaces, binding variable arrays, and
suchlike.

this.jdbcTenpl ate. execute("create table nytable (id integer, nanme varchar(100))");

Invoking a simple stored procedure (more sophisticated stored procedure support is covered later).

t hi s.j dbcTenpl at e. updat e(
"cal | SUPPORT. REFRESH_ACTORS_SUWARY(?) ",
new Cbj ect[]{Long. val ueC (unionld)});

11.2.1.2. JdbcTenpl at e idioms (best practices)

Spring Framework (2.5.5) 253

Data access using JDBC

Instances of the JdbcTenpl at e class are threadsafe once configured. This is important because it means that
you can configure a single instance of aJdbcTenpl at e and then safely inject this shared reference into multiple
DAOs (or repositories). To be clear, the JdbcTenpl ate is stateful, in that it maintains a reference to a
Dat aSour ce, but this state is not conversational state.

A common idiom when using the JdbcTenpl ate class (and the associated SinpleldbcTenplate and
NanedPar amet er JdbcTenpl at e classes) iSto configure aDat aSour ce in your Spring configuration file, and then
dependency inject that shared Dat aSour ce bean into your DAO classes; the JdbcTenpl at e is created in the
setter for the Dat aSour ce. Thisleadsto DAOsthat look in part like this:

public class JdbcCor porat eEvent Dao i npl ement s Cor por at eEvent Dao {
private JdbcTenpl ate j dbcTenpl at e;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
this.jdbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
}

// JDBC-backed i npl enentations of the methods on the CorporateEventDao fol |l ow. ..

The attendant configuration might look like this.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd" >

<bean i d="cor por at eEvent Dao" cl ass="com exanpl e. JdbcCor por at eEvent Dao" >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

<I-- the DataSource (paraneterized for configuration via a PropertyPl acetHol der Configurer) -->
<bean i d="dat aSource" destroy-nethod="cl ose" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" >
<property nanme="driverC assNane" val ue="${j dbc. dri verC assNane}"/>
<property nanme="url" val ue="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernnane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>

</ beans>

If you are using Spring's JdbcDaoSupport class, and your various JDBC-backed DAO classes extend from it,
then you inherit aset Dat aSour ce(. .) method for free from said superclass. It istotally up to you as to whether
or not you inherit from said class, you certainly are not forced to. If you look at the source for the
JdbcDaoSupport class you will see that thereis not awholelot toit... it is provided as a convenience only.

Regardless of which of the above template initialization styles you choose to use (or not), there is (almost)
certainly no need to create a brand new instance of a JdbcTenpl at e class each and every time you wish to
execute some SQL ... remember, once configured, a JdbcTenpl at e instance is threadsafe. A reason for wanting
multiple JdbcTenpl at e instances would be when you have an application that accesses multiple databases,
which requires multiple bat aSour ces, and subsequently multiple differently configured JdbcTenpl at es.

11.2.2. NanedPar anet er JdbcTenpl at e

The NanedPar anet er JdbcTenpl ate class adds support for programming JDBC statements using named
parameters (as opposed to programming JDBC statements using only classic placeholder (' ?*) arguments. The
NarredPar anmet er JdbcTenpl at e Class wraps a JdbcTenpl at e, and delegates to the wrapped JdbcTenpl at e to do
much of its work. This section will describe only those areas of the NamedPar anet er JdbcTenpl at e class that

Spring Framework (2.5.5) 254

Data access using JDBC

differ from the JdbcTenpl at e itself; namely, programming JDBC statements using named parameters.

/'l some JDBC- backed DAO cl ass. ..
private NamedPar anmet er JdbcTenpl at e nanmedPar anet er JdbcTenpl at e;

public voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. nanedPar anet er JdbcTenpl ate = new NanedPar anet er JdbcTenpl at e(dat aSour ce) ;
}
public int countOf Act or sByFirst Name(String firstName) {
String sql = "select count(0) from T_ACTOR where first_name = :first_nanme";
Sql Par anet er Sour ce nanmedPar anet ers = new MapSql Par anet er Sour ce("first_nanme", firstNane);

return nanmedPar anmet er JdbcTenpl at e. queryFor I nt (sql, namedPar anet ers);

Notice the use of the named parameter notation in the value assigned to the *sql* variable, and the
corresponding value that is plugged into the* nanedPar anet er s’ variable (of type MapSql Par anet er Sour ce).

If you like, you can also pass aong named parameters (and their corresponding values) to a
NamedPar amet er JdbcTenpl at e instance using the (perhaps more familiar) map-based style. (The rest of the
methods exposed by the NanedParaneterJdbcQperations - and implemented by the
NanedPar amet er JdbcTenpl at e class) follow asimilar pattern and will not be covered here.)

/'l some JDBC- backed DAO cl ass. ..
private NamedPar anmet er JdbcTenpl at e nanedPar anet er JdbcTenpl at e;

public voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. nanedPar anet er JdbcTenpl ate = new NanedPar anet er JdbcTenpl at e(dat aSour ce) ;
}

public int countOf Act or sByFirst Name(String firstName) {
String sql = "select count(0) from T_ACTOR where first_name = :first_nanme";
Map nanedParaneters = Col |l ections. si ngl etonMap("first_nane", firstNane);

return this.namedPar anet er JdbcTenpl at e. queryFor | nt (sql, nanedParaneters);

Another nice feature related to the NamedPar anet er JdbcTenpl at e (and existing in the same Java package) is
the sql Par anet er Sour ce interface. You have already seen an example of an implementation of this interface in
one of the preceding code snippets (the MapSql Paraneter Source class). The entire point of the
Sql Par anet er Sour ce IS t0 serve as a source of named parameter values to a NanedPar anet er JdbcTenpl at e.
The MapSql Par anet er Source class is a very simple implementation, that is simply an adapter around a
java. util . Map, where the keys are the parameter names and the values are the parameter values.

Another sgl Par anet er Sour ce implementation is the BeanPropertySql Par amet er Source class. This class
wraps an arbitrary JavaBean (that is, an instance of a class that adheres to the JavaBean conventions), and uses
the properties of the wrapped JavaBean as the source of named parameter val ues.

public class Actor {

private Long id;
private String firstNang;
private String | astNaneg;

public String getFirstNanme() {

return this.firstNane;
}

public String getlLastNane() ({
return this.|astNane;
}

Spring Framework (2.5.5) 255

http://java.sun.com/products/javabeans/docs/spec.html

Data access using JDBC

public Long getld() {
return this.id,
}

/] setters omtted...

/'l some JDBC- backed DAO cl ass. ..
private NamedPar anmet er JdbcTenpl at e nanedPar anet er JdbcTenpl at e;

public voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. nanedPar anet er JdbcTenpl at e = new NanedPar anet er JdbcTenpl at e(dat aSour ce) ;

}

public int countOf Act ors(Actor exanpleActor) {

/1 notice how the naned paraneters match the properties of the above 'Actor' class
String sql = "select count(0) from T_ACTOR where first_name = :firstName and | ast_nanme = :|astNanme";

Sqgl Par anet er Sour ce nanedPar anet ers = new BeanPr opert ySgl Par anet er Sour ce(exanpl eAct or) ;

return this.nanedPar anet er JdbcTenpl at e. queryFor I nt (sql, nanedPar aneters);

Remember that the NamedPar anet er JdbcTenpl at e class wraps a classic JdbcTenpl at e template; if you need
access to the wrapped JdbcTenpl ate instance (to access some of the functionality only present in the
JdbcTenpl at e class), then you can use the get JdbcOper at i ons() method to access the wrapped JdbcTenpl at e
viathe JdbcOper at i ons interface.

See aso the section entitled Section 11.2.1.2, “JdbcTenpl at e idioms (best practices)” for some advice on how
to best use the NanedPar anet er JdbcTenpl at e classin the context of an application.

11.2.3. Si npl eJdbcTenpl at e

Note

-

e

The functionality offered by the Si npl eJdbcTenpl at e is only available to you if you are using Java
5or later.

The si npl eJdbcTenpl at e class is a wrapper around the classic JdbcTenpl at e that takes advantage of Java 5
language features such as varargs and autoboxing. The Si npl eJdbcTenpl at e class is somewhat of a sop to the
syntactic-sugar-like features of Java 5, but as anyone who has developed on Java 5 and then had to move back
to developing on a previous version of the JDK will know, those syntactic-sugar-like features sure are nice.

The value-add of the Si npl eJdbcTenpl at e classin the area of syntactic-sugar is best illustrated with a 'before
and after’ example. The following code snippet shows first some data access code using the classic
JdbcTenpl at e, followed immediately thereafter by a code snippet that does the same job, only this time using
the si npl eJdbcTenpl at e.

// classic JdbcTenplate-style...
private JdbcTenpl ate j dbcTenpl at e;

public voi d set Dat aSour ce(Dat aSour ce dat aSource) {
this.jdbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
}

public Actor findActor(long id) {
String sql = "select id, first_nanme, |last_name from T_ACTOR where id = ?";

Rowivapper nmapper = new Rowivapper () {

Spring Framework (2.5.5) 256

Data access using JDBC

public oject mapRow ResultSet rs, int rowNunm) throws SQLException {
Actor actor = new Actor();
actor.setld(rs.getlLong("id"));
actor.setFirstNane(rs.getString("first_name"));
actor.setLast Name(rs. getString("last_nanme"));
return actor;

e

/'l notice the cast, the wapping up of the 'id argunent
/1 in an array, and the boxing of the 'id" argunent as a reference type
return (Actor) jdbcTenpl ate. queryFor Cbj ect (sql, mapper, new Object[] {Long.valueO(id)});

Here is the same method, only thistime using the Si npl eJdbcTenpl at e; notice how much 'cleaner' the codeis.

/'] SinpleldbcTenpl ate-style. ..
private SinpleJdbcTenpl ate sinpl eJdbcTenpl at e;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
this.sinpleldbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
}

public Actor findActor(long id) {
String sql = "select id, first_name, |ast_name from T_ACTOR where id = ?";

Par amet er i zedRowVapper <Act or > mapper = new Par anet eri zedRowVapper <Actor>() {

/! notice the return type with respect to Java 5 covariant return types
public Actor mapRow(ResultSet rs, int rowNun) throws SQLException {
Actor actor = new Actor();
actor.setld(rs.getlLong("id"));
actor.setFirstNane(rs.getString("first_name"));
actor.setlLast Name(rs.getString("last_nanme"));
return actor;

1%

return this.sinpleldbcTenpl at e. quer yFor Obj ect (sqgl, mapper, id);

See aso the section entitled Section 11.2.1.2, “JdbcTenpl at e idioms (best practices)” for some advice on how
to best use the Si npl eJdbcTenpl at e classin the context of an application.

Note

s

"8

The si npl eJdbcTenpl at e class only offers a subset of the methods exposed on the JdbcTenpl at e
class. If you need to use a method from the JdbcTenplate that is not defined on the
Si mpl eJdbcTenpl ate, you can aways access the underlying JdbcTenpl ate by calling the
get JdbcQper at i ons() method on the si npl eJdbcTenpl at e, which will then allow you to invoke
the method that you want. The only downside is that the methods on the JdbcOper at i ons interface
are not generified, so you are back to casting and such again.

11.2.4. Dat aSour ce

In order to work with data from a database, one needs to obtain a connection to the database. The way Spring
does this is through a Dat aSource. A Dat aSource is part of the JDBC specification and can be seen as a
generalized connection factory. It allows a container or aframework to hide connection pooling and transaction
management issues from the application code. As a developer, you don not need to know any details about how
to connect to the database, that is the responsibility for the administrator that sets up the datasource. Y ou will
most likely have to fulfill both roles while you are developing and testing you code though, but you will not
necessarily have to know how the production data source is configured.

Spring Framework (2.5.5) 257

Data access using JDBC

When using Spring's JDBC layer, you can either obtain a data source from JNDI or you can configure your
own, using an implementation that is provided in the Spring distribution. The latter comes in handy for unit
testing outside of a web container. We will use the Dri ver Manager Dat aSour ce implementation for this section
but there are several additional implementations that will be covered later on. The Dri ver Manager Dat aSour ce
works the same way that you probably are used to work when you obtain a JDBC connection. You have to
specify the fully qualified class name of the JDBC driver that you are using so that the Dr i ver Manager can load
the driver class. Then you have to provide a URL that varies between JDBC drivers. You have to consult the
documentation for your driver for the correct value to use here. Finally you must provide a username and a
password that will be used to connect to the database. Here is an example of how to configure a
Dri ver Manager Dat aSour ce:

Dri ver Manager Dat aSour ce dat aSource = new Dri ver Manager Dat aSour ce() ;
dat aSour ce. set Dri ver Cl assNanme(" or g. hsql db. j dbcDri ver");

dat aSour ce. set Url ("j dbc: hsql db: hsqgl : //1 ocal host:");

dat aSour ce. set User nanme("sa");

dat aSour ce. set Password("");

11.2.5. SQLExcept i onTr ansl at or

SQLExceptionTransl ator iS an interface to be implemented by classes that can translate between
SQLExcept i ons and Spring's own data-access-strategy-agnostic
org. spri ngf ramewor k. dao. Dat aAccessExcept i on. Implementations can be generic (for example, using
SQL State codes for JDBC) or proprietary (for example, using Oracle error codes) for greater precision.

SQLEr r or CodeSQLExcept i onTransl ator iS the implementation of SQLExcepti onTransl ator that is used by
default. This implementation uses specific vendor codes. More precise than sQ. St ate implementation, but
vendor specific. The error code trandations are based on codes held in a JavaBean type class named
SQLError Codes. This class is created and populated by an SQLEr r or CodesFact ory which as the name suggests
is a factory for creating SQ.ErrorCodes based on the contents of a configuration file named
"sql -error-codes. xm ' . This file is populated with vendor codes and based on the DatabaseProductName
taken from the Dat abaseMet aDat a, the codes for the current database are used.

The SQLEr r or CodeSQLExcept i onTr ans| at or applies the following matching rules:

e Try custom trandation implemented by any subclass. Note that this class is concrete and is typically used
itself, in which case this rule does not apply.

» Apply error code matching. Error codes are obtained from the SQLEr r or CodesFact ory by default. This looks
up error codes from the classpath and keys into them from the database name from the database metadata.

» Usethefallback translator. SQLSt at eSQLExcept i onTr ansl at or iSthe default fallback translator.

SQLEr r or CodeSQLExcept i onTr ansl at or can be extended the following way:

public class MySQLError CodesTransl at or extends SQLError CodeSQLExcepti onTransl ator {

prot ect ed Dat aAccessException custonilranslate(String task, String sql, SQ.Exception sqglex) {
if (sqlex.getErrorCode() == -12345) {
return new Deadl ockLoser Dat aAccessExcepti on(task, sqgl ex);
}

return null;

In this example the specific error code ' - 12345' is trandlated and any other errors are simply left to be
tranglated by the default translator implementation. To use this custom trandlator, it is necessary to passit to the
JdbcTenpl at e using the method set Excepti onTransl ator and to use this JdbcTenpl at e for al of the data
access processing where this trandator is needed. Here is an example of how this custom translator can be used:

Spring Framework (2.5.5) 258

Data access using JDBC

/] create a JdbcTenplate and set data source

JdbcTenpl ate jt = new JdbcTenpl ate();

j t. set Dat aSour ce(dat aSour ce) ;

Il create a customtranslator and set the Datasource for the default translation |ookup
MySQLEr r or CodesTransal ator tr = new MySQLError CodesTr ansal at or () ;

tr. set Dat aSour ce(dat aSour ce) ;

jt.set ExceptionTransl ator(tr);

/] use the JdbcTenplate for this SglUpdate

Sql Updat e su = new Sqgl Updat e() ;

su. set JdbcTenpl ate(jt);

su. set Sql ("updat e orders set shipping_charge = shipping_charge * 1.05");
su. conpil e();

su. update();

The custom tranglator is passed a data source because we still want the default translation to ook up the error
codesinsgql - error-codes. xni .

11.2.6. Executing statements

To execute an SQL statement, there is very little code needed. All you need is a DataSource and a
JdbcTenpl at e. Once you have that, you can use a number of convenience methods that are provided with the
JdbcTenpl at e. Here is a short example showing what you need to include for a minimal but fully functional
class that creates a new table.

i nport javax. sql . Dat aSour ce;
i mport org.springframework.jdbc. core.JdbcTenpl at e;

public cl ass Execut eAStatenment {
private JdbcTenpl ate j dbcTenpl at e;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
this.jdbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
}

public void doExecute() {
this.jdbcTenpl ate. execute("create table nytable (id integer, name varchar(100))");
}

11.2.7. Running Queries

In addition to the execute methods, there is a large number of query methods. Some of these methods are
intended to be used for queries that return a single value. Maybe you want to retrieve a count or a specific value
from one row. If that is the case then you can use queryForint(..), queryForLong(..) Of
quer yFor Obj ect (. .). The latter will convert the returned JDBC Type to the Java class that is passed in as an
argument. If the type conversion is invalid, then an I nval i dDat aAccessApi UsageExcept i on Will be thrown.
Hereis an example that contains two query methods, one for ani nt and one that queriesfor astri ng.

i nport javax. sql . Dat aSour ce;
i mport org.springframework.jdbc. core.JdbcTenpl at e;

public class RunAQuery ({
private JdbcTenpl ate j dbcTenpl at e;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
this.jdbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;

}

public int getCount() {
return this.jdbcTenpl ate. queryForlint("sel ect count(*) fromnytable");
}

Spring Framework (2.5.5) 259

Data access using JDBC

public String get Name() {
return (String) this.jdbcTenpl ate. queryFor bj ect ("sel ect name from nmytable", String.class);

}

public voi d set Dat aSour ce(Dat aSour ce dat aSource) {
thi s. dat aSour ce = dat aSour ce;

}

In addition to the single results query methods there are several methods that return a List with an entry for
each row that the query returned. The most generic method is quer yFor Li st (..) which returns a Li st where
each entry is a vap with each entry in the map representing the column value for that row. If we add a method
to the above example to retrieve alist of all the rows, it would look like this:

private JdbcTenpl ate jdbcTenpl at e;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
this.jdbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
}

public List getList() {
return this.jdbcTenpl at e. queryForLi st ("select * from nytable");
}

The list returned would look something like this:

[{nane=Bob, id=1}, {nanme=Mary, id=2}]

11.2.8. Updating the database

There are adso a number of update methods that you can use. Find below an example where a column is
updated for a certain primary key. In this example an SQL statement is used that has place holders for row
parameters. Note that the parameter values are passed in as an array of objects (and thus primitives have to be
wrapped in the primitive wrapper classes).

i mport javax. sql . Dat aSource;
i mport org.springframework.jdbc. core.JdbcTenpl at e;
public cl ass Execut eAnUpdat e {

private JdbcTenpl ate j dbcTenpl at e;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
this.jdbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;

}

public void setNane(int id, String name) ({
thi s.j dbcTenpl at e. updat e(
"update nmytable set nane = ? where id = ?",
new Cbject[] {name, new Integer(id)});

11.2.9. Retrieving auto-generated keys

One of the updat e convenience methods provides support for acquiring the primary keys generated by the
database (part of the JDBC 3.0 standard - see chapter 13.6 of the specification for details). The method takes a
Pr epar edSt at enent Cr eat or asits first argument, and this is the way the required insert statement is specified.
The other argument is a KeyHol der , which will contain the generated key on successful return from the update.

Spring Framework (2.5.5) 260

Data access using JDBC

There is not a standard single way to create an appropriate PreparedsStat ement (which explains why the
method signature isthe way it is). An example that works on Oracle and may not work on other platformsis:

final String INSERT_SQL = "insert into my_test (nanme) values(?)";
final String name = "Rob";

KeyHol der keyHol der = new Gener at edKeyHol der () ;
j dbcTenpl at e. updat e(
new PreparedSt at enent Creator () {
publ i c PreparedStatenment createPreparedStatenent(Connection connection) throws SQLException {
Pr epar edSt at enent ps =
connecti on. prepareSt at enent (I NSERT_SQL, new String[] {"id"});
ps.setString(1, nane);
return ps;

}
},
keyHol der);

/'l keyHol der. get Key() now contains the generated key

11.3. Controlling database connections

11.3.1. Dat aSourceltils

The Dat aSour celti | s class is a convenient and powerful helper class that provides st ati ¢ methods to obtain
connections from JNDI and close connections if necessary. It has support for thread-bound connections, for
example for use with Dat aSour ceTr ansact i onManager .

11.3.2. Snart Dat aSour ce

The smar t Dat aSour ce interface is to be implemented by classes that can provide a connection to a relational
database. Extends the Dat aSour ce interface to alow classes using it to query whether or not the connection
should be closed after a given operation. This can sometimes be useful for efficiency, in the cases where one
knows that one wants to reuse a connection.

11.3.3. Abstract Dat aSour ce

Thisis an abstract base class for Spring's bat aSour ce implementations, that takes care of the "uninteresting”
glue. Thisisthe class one would extend if one was writing one's own Dat aSour ce implementation.

11.3.4. si ngl eConnect i onDat aSour ce

The Si ngl eConnect i onDat aSour ce class is an implementation of the Smar t Dat aSour ce interface that wraps a
single Connect i on that is not closed after use. Obvioudly, thisis not multi-threading capable.

If client code will call close in the assumption of a pooled connection, like when using persistence tools, set
suppressd ose 10 true. This will return a close-suppressing proxy instead of the physical connection. Be
aware that you will not be able to cast thisto a native Oracle Connect i on or the like anymore.

This is primarily a test class. For example, it enables easy testing of code outside an application server, in
conjunction with a simple JNDI environment. In contrast to Dri ver Manager Dat aSour ce, it reuses the same
connection all the time, avoiding excessive creation of physical connections.

11.3.5. Dri ver Manager Dat aSour ce

Spring Framework (2.5.5) 261

Data access using JDBC

The Driver Manager Dat aSource class is an implementation of the standard DataSource interface that
configures aplain old JDBC Driver via bean properties, and returns anew Connect i on every time.

This is potentially useful for test or standalone environments outside of a J2EE container, either as a
Dat aSour ce bean in a Spring 10C container, or in conjunction with a ssmple JINDI environment. Pool-assuming
Connection. cl ose() callswill simply close the connection, so any Dat aSour ce-aware persistence code should
work. However, using JavaBean style connection pools such as commons-dbcp is so easy, even in a test
environment, that it is almost always preferable to use such a connection pool over Dri ver Manager Dat aSour ce.

11.3.6. Transact i onAwar eDat aSour cePr oxy

Transact i onAwar eDat aSour cePr oxy iSaproxy for atarget bat aSour ce, which wraps that target Dat aSour ce t0
add awareness of Spring-managed transactions. In this respect it is similar to a transactional JINDI Dat aSour ce
as provided by a J2EE server.

Note

e
It should almost never be necessary or desirable to use this class, except when existing code exists
which must be called and passed a standard JDBC Dat aSour ce interface implementation. In this
case, it's possible to still have this code be usable, but participating in Spring managed transactions.
It is generally preferable to write your own new code using the higher level abstractions for
resource management, such as JdbcTenpl at e Or Dat aSour celti |l s.

(Seethe Transact i onAwar eDat aSour cePr oxy Javadocs for more details.)

11.3.7. Dat aSour ceTr ansact i onManager

The Dat aSour ceTransacti onManager class iS a Pl atfor nilr ansact i onManager implementation for single
JDBC datasources. It binds a JDBC connection from the specified data source to the currently executing thread,
potentialy allowing for one thread connection per data source.

Application code is required to retrieve the JDBC connection via
Dat aSour ceUti | s. get Connect i on(Dat aSour ce) instead of J2EE's standard Dat aSour ce. get Connecti on. This
is recommended anyway, as it throws unchecked or g. spri ngf r anmewor k. dao exceptions instead of checked
SQLExcept i ons. All framework classes like JdbcTenpl at e use this strategy implicitly. If not used with this
transaction manager, the lookup strategy behaves exactly like the common one - it can thus be used in any case.

The Dat aSour ceTransact i onManager class supports custom isolation levels, and timeouts that get applied as
appropriate JDBC statement query timeouts. To support the latter, application code must either use
JdbcTenpl at e or call Dat aSourcelti | s. appl yTransacti onTi meout (. .) method for each created statement.

This implementation can be used instead of Jt aTr ansact i onManager in the single resource case, as it does not
require the container to support JTA. Switching between both is just a matter of configuration, if you stick to
the required connection lookup pattern. Note that JTA does not support custom isolation levels!

11.3.8. NativeJddbcExtractor

There are times when we need to access vendor specific JDBC methods that differ from the standard JDBC
API. This can be problematic if we are running in an application server or with a Dat aSour ce that wraps the
Connection, Statement and Resul t Set objects with its own wrapper objects. To gain access to the native
objects you can configure your JdbcTenpl at e OF Or acl eLobHandl er With aNat i veJdbcExt ract or.

Spring Framework (2.5.5) 262

Data access using JDBC

The NativeJdbcExtractor comes in avariety of flavors to match your execution environment:

» SimpleNativeJdbcExtractor

» C3PONativedbcExtractor

e CommonsDbcpNativeJdbcExtractor
» JBossNativeJdbcExtractor

» WebL ogicNativeJdbcExtractor

* WebSphereNativeJdbcExtractor

» XAPoolNativeJdbcExtractor

Usually the sinpleNativeddbcExtractor is sufficient for unwrapping a Connection oObject in most
environments. See the Java Docs for more details.

11.4. JDBC batch operations

Most JDBC drivers provide improved performance if you batch multiple calls to the same prepared statement.
By grouping updates into batches you limit the number of round trips to the database. This section will cover
batch processing using both the JdbcTemplate and the SimpleJdbcTemplate.

11.4.1. Batch operations with the JdbcTemplate

Using the JdbcTemplate batch processing is accomplished by implementing a specia interface,
Bat chPr epar edSt at enent Set t er, and passing that in as the second parameter in your bat chUpdat e method
call. This interface has two methods you must implement. One is named get Bat chSi ze and here you provide
the size of the current batch. The other method is set val ues and it alows you to set the values for the
parameters of the prepared statement and. This method will get called the number of times that you specified in
the get Bat chSi ze call. Here is an example of this where we update the actor table based on entriesin alist. The
entire list is used as the batch in his example.

public class JdbcActorDao inplements ActorDao {
private JdbcTenpl ate j dbcTenpl at e;

public void setDat aSour ce(Dat aSour ce dat aSource) {
this.jdbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
}

public int[] batchUpdate(final List actors) {
int[] updateCounts = jdbcTenpl at e. bat chUpdat e(
"update t_actor set first_name = ?, last_nane = ? where id = ?",
new Bat chPrepar edSt at enment Setter() {
public void setVal ues(PreparedStatenment ps, int i) throws SQ.Exception {
ps.setString(1, ((Actor)actors.get(i)).getFirstNane());
ps.setString(2, ((Actor)actors.get(i)).getLastName());
ps.setLong(3, ((Actor)actors.get(i)).getld().longValue());
}

public int getBatchSize() {
return actors.size();
}

})

return updat eCounts;

Spring Framework (2.5.5) 263

Data access using JDBC

/1 ... additional nethods

}

If you are processing stream of updates or reading from a file then you might have a preferred batch size, but
the last batch might not have that number of entries. In this case you can use the
I nterruptibl eBat chPrepar edSt at ement Set t er interface which allows you to interrupt a batch once the input
source is exhausted. Thei sBat chExhaust ed method allows you to signal the end of the batch.

11.4.2. Batch operations with the SimpleJdbcTemplate

The si npl eJdbcTenpl at e provides an alternate way of providing the batch update. Instead of implementing a
specia batch interface, you simply provide al parameter values in the call and the framework will loop over
these values and use an internal prepared statement setter. The APl varies depending on whether you use named
parameters or not. For the named parameters you provide an array of Sgl Par anet er Sour ce, one entry for each
member of the batch. You can use the Sql Par anet er Sour ce. cr eat eBat ch method to create this array, passing
in either an array of JavaBeans or an array of Maps containing the parameter values.

This example shows a batch update using named parameters:

public class JdbcActorDao inplenments ActorDao {
private Sinpl eldbcTenpl ate sinpl eJdbcTenpl at e;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;

}

public int[] batchUpdate(final List<Actor> actors) {
Sql Par anet er Source[] batch = Sgl Paranet er Sourceltils. createBatch(actors.toArray());
int[] updateCounts = sinplelddbcTenpl at e. bat chUpdat e(
"update t_actor set first _nane = :firstNane, |ast_nane = :|astName where id = :id",
bat ch) ;
return updat eCounts;

/1 ... additional nethods

}

For an SQL statement using the classic "?" place holders you passin a List containing an object array with the
update values. This object array must have one entry for each placeholder in the SQL statement and they must
be in the same order asthey are defined in the SQL statement.

The same example using classic JDBC "?" place holders:

public class JdbcActorDao inplements ActorDao {
private Sinpl eldbcTenpl ate si npl eJdbcTenpl at e;

public void setDat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
}

public int[] batchUpdate(final List<Actor> actors) {
Li st <Obj ect[]> batch = new ArrayList<Cbject[]>();
for (Actor actor : actors) {
oj ect[] values = new Object[] {
actor. get FirstNane(),
actor. get Last Nane(),
actor.getld()};
bat ch. add(val ues);

}

int[] updateCounts = sinpleldbcTenpl at e. bat chUpdat e(
"update t_actor set first_name = ?, last_nane = ? where id = ?",
bat ch) ;

return updat eCounts;

Spring Framework (2.5.5) 264

Data access using JDBC

/1 ... additional nethods

}

All batch update methods return an int array containing the number of affected rows for each batch entry. This
count is reported by the JDBC driver and it's not always available in which case the JIDBC driver simply returns
a-2value.

11.5. Simplifying JDBC operations with the SimpleJdbc
classes

The Si npl eJdbcl nsert and Si npl eJdbeCal | classes provide simplified configuration by taking advantage of
database metadata that can be retrieved via the JDBC driver. This means there is less to configure up front,
although you can override or turn off the metadata processing if you prefer to provide al the details in your
code.

11.5.1. Inserting data using SimpleJdbclinsert

Let's start by looking at the Si npl eJdbcl nsert class first. We will use the minimal amount of configuration
options to start with. The Si npl eJdbel nsert should be instantiated in the data access layer's initiaization
method. For this example, the initializing method is the set Dat aSour ce method. There is no need to subclass
the Si npl eJdbcl nsert class, just create a new instance and set the table name using the wi t hTabl eName
method. Configuration methods for this class follows the "fluid" style returning the instance of the
Si npl eJdbel nsert which alows you to chain all configuration methods. In this case there is only one
configuration method used but we will see examples of multiple ones soon.

public class JdbcActorDao inplements ActorDao {
private Sinpl eldbcTenpl ate si npl eJdbcTenpl at e;
private SinpleJddbclnsert insertActor;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
this.sinpleldbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
this.insertActor =
new Si npl eJdbcl nsert (dat aSource) . wi t hTabl eNane("t _actor");
}

public void add(Actor actor) {
Map<String, Object> paraneters = new HashMap<String, Object>(3);
paraneters. put("id", actor.getld());
paraneters. put ("first_nane", actor.getFirstNane());
paraneters. put ("l ast_nane", actor.getlLastNane());
i nsert Act or. execut e(par aneters);

/1 ... additional nethods

The execute method used heretakesaplainj ava. uti | s. Map asit's only parameter. The important thing to note
here is that the keys used for the Map must match the column names of the table as defined in the database.
Thisis because we read the metadata in order to construct the actual insert statement.

11.5.2. Retrieving auto-generated keys using SimpleJdbcinsert

Next we'll look at the same insert, but instead of passing in the id we will retrieve the auto-generated key and
set it on the new Actor object. When we create the Si npl eJdbcl nsert, in addition to specifying the table name,

Spring Framework (2.5.5) 265

Data access using JDBC

we specify the name of the generated key column using the usi ngGener at edkey Col unms method.

public class JdbcActorDao inplenments ActorDao {
private Sinpl eldbcTenpl ate sinpl eJdbcTenpl at e;
private Sinpleddbclnsert insertActor;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
this.insertActor =
new Si npl eJdbcl nsert (dat aSour ce)
. Wit hTabl eNane("t _actor")
. usi ngGener at edkeyCol utms("i d");

}

public void add(Actor actor) {
Map<String, Object> paraneters = new HashMap<String, Object>(2);
paraneters. put ("first_name", actor.getFirstNanme());
paraneters. put ("l ast_nane", actor.getlLastNane());
Nunber newid = insertActor. execut eAndRet ur nKey(par anet ers);
actor.setld(new d. | ongVal ue());

/1 ... additional nethods

}

Here we can see the main difference when executing the insert is that we don't add the id to the Map and we
call the execut eRet ur ni ngkey method. This returns a j ava. | ang. Number object that we can use to create an
instance of the numerical type that is used in our domain class. It's important to note that we can't rely on al
databases to return a specific Java class here, j ava. | ang. Nunber is the base class that we can rely on. If you
have multiple auto-generated columns or the generated values are non-numeric then you can use a KeyHol der
that is returned from the execut eRet ur ni ngKeyHol der method.

11.5.3. Specifying the columns to use for a SimpleJdbclinsert

It's possible to limit the columns used for the insert by specifying a list of column names to be used. Thisis
accomplished using the usi ngCol urms method.

public class JdbcActorDao inplenents ActorbDao {
private Sinpl eldbcTenpl ate sinpl eJdbcTenpl at e;
private Sinpleddbclnsert insertActor;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
this.insertActor =
new Si npl eJdbcl nsert (dat aSour ce)
.wi t hTabl eNane("t _actor")
. usi ngCol ums("first_nane", "last_nane")
. usi ngGener at edkeyCol utms("i d");

}

public void add(Actor actor) {
Map<String, Object> paraneters = new HashMap<String, Object>(2);
paraneters. put ("first_nane", actor.getFirstNane());
paraneters. put ("l ast_nane", actor.getlLastNane());
Nurmber newl d = insertActor. execut eAndRet ur nKey(paraneters);
actor.setld(new d. | ongVal ue());

/1 ... additional nethods

}

The execution of the insert is the same as if we had relied on the metadata for determining what columns to use.

11.5.4. Using SqlParameterSource to provide parameter values

Using a Map to provide parameter values works fine, but it's not the most convenient class to use. Spring

Spring Framework (2.5.5) 266

Data access using JDBC

provides a couple of implementations of the Sql Par anet er Sour ce interface that can be used instead. The first
one we'll look at is BeanPr oper t ySql Par anet er Sour ce Which is a very convenient class as long as you have a
JavaBean compliant class that contains your values. It will use the corresponding getter method to extract the
parameter values. Here is an example:

public class JdbcActorDao i npl ements ActorDao {
private Sinpl eldbcTenpl ate sinpl eJdbcTenpl at e;
private Sinpleddbclnsert insertActor;

public voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
this.insertActor =
new Si npl eJdbcl nsert (dat aSour ce)
.w t hTabl eNane("t_actor")
. usi ngGener at edkeyCol uims("i d");

}

public void add(Actor actor) {
Sqgl Par anet er Sour ce paraneters = new BeanPr opertySgl Par anet er Sour ce(actor);
Nunmber newl d = insertActor. execut eAndRet ur nKey(paraneters);
actor.setld(new d. | ongVal ue());

// ... additional nethods

}

Another option is the MapSql Par anet er Sour ce that resembles a Map but provides a more convenient addval ue
method that can be chained.

public class JdbcActorDao inplenments ActorDao {
private Sinpl eldbcTenpl ate sinpl eJdbcTenpl at e;
private Sinpleddbclnsert insertActor;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
this.insertActor =
new Si npl eJdbcl nsert (dat aSour ce)
. Wit hTabl eNane("t_actor")
. usi ngGener at edkeyCol utms("i d");

}

public void add(Actor actor) {
Sql Par anmet er Sour ce paraneters = new MapSqgl Par armet er Sour ce()
.addVal ue("first_nane", actor.getFirstNane())
.addVal ue("l ast _nane", actor.getlLastNane());
Nunber newid = insertActor. execut eAndRet ur nKey(par anet ers);
actor.setld(new d. | ongVal ue());

/1 ... additional nethods

}

As you can see, the configuration is the same, it;s just the executing code that has to change to use these
alternative input classes.

11.5.5. Calling a stored procedure using SimpleJdbcCall

Let's now turn our attention to calling stored procedures using the Si npl eJdbcCal | class. This classis designed
to make it as simple as possible to call a stored procedure. It takes advantage of metadata present in the
database to look up names of in and out parameters. This means that you don't have to explicitly declare
parameters. You can of course still declare them if you prefer to do that or if you have parameters that don't
have an automatic mapping to a Java class like ARRAY or STRUCT parameters. In our first example we will
look at a plain vanilla procedure that only returns scalar valuesin form of VARCHAR and DATE. | have added
a birthDate property to the Actor class to get some variety in terms of return values. The example procedure

Spring Framework (2.5.5) 267

Data access using JDBC

reads a specified actor entry and returns first_name, last_name, and birth_date columns in the form of out
parameters. Here is the source for the procedure as it would ook when using MySQL as the database:

CREATE PROCEDURE read_actor (
INin_id I NTEGER,
QUT out _first_nane VARCHAR(100),
QUT out _| ast_nane VARCHAR(100),
QUT out_birth_date DATE)
BEG N
SELECT first_name, |ast_name, birth_date
I NTO out _first_nanme, out_last_nane, out_birth _date
FROM t _actor where id = in_id;
END;

As you can see there are four parameters. One is an in parameter "in_id" containing the id of the Actor we are
looking up. The remaining parameters are out parameters and they will be used to return the data read from the
table.

The Si npl eddbcCal | is declared in a similar manner to the Si npl eJdbel nsert, No need to subclass and we
declareit in the initialization method. For this example, al we need to specify is the name of the procedure.

public class JdbcActorDao inplenments ActorDao {
private SinpleldbcTenpl ate sinpl eJdbcTenpl at e;
private SinpleJdbcCall procReadActor;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
this. procReadActor =
new Si npl eJdbcCal | (dat aSour ce)
. Wi t hProcedur eNane("read_actor");

}

public Actor readActor(Long id) {

Sql Par anet er Source in = new MapSgl Par anet er Sour ce()
.addval ue("in_id", id);

Map out = procReadActor.execute(in);
Actor actor = new Actor();
actor.setld(id);
actor.setFirstNanme((String) out.get("out_first_nane"));
actor.setLast Name((String) out.get("out_last_name"));
actor.setBirthDate((Date) out.get("out_birth _date"));
return actor;

/1 ... additional nethods

}

The execution of the call involves creating an Sql Par anet er Sour ce containing the in parameter. It's important
to match the name of the parameter declared in the stored procedure. The case doesn't have to match since we
use metadata to determine how database objects should be referred to - what you specify in your source for the
stored procedure is not necessarily the way it is stored in the database, some databases transform names to all
upper case while others use lower case or the case as specified.

The execut e method takes the in parameters and returns a Map containing any out parameters keyed by the
name as specified in the stored procedure. In this case they are out _first_nanme, out_|ast_name and
out _birth_date.

The last part of the execut e method just creates an Actor instance to use to return the data retrieved. Again, it's
important to match the names of the out parameters here. Also, the case used for the names of the out
parameters stored in the results map are as they were defined in the database. You will either have to do a
case-insensitive lookup or instruct Spring to use a Casel nsensi ti veMap from the Jakarta Commons project.
The way you do that is by creating your own JdbcTenpl at e and setting the set Resul t sMapCasel nsensiti ve
property to true. Then you pass this customized JdbcTenpl ate instance into the constructor of your
Si npl eJdbcCal | . You aso have to include the commons- col | ections. j ar on your classpath for this to work.

Spring Framework (2.5.5) 268

Data access using JDBC

Here is an example of this configuration:

public class JdbcActorDao inplenments ActorDao {
private SinpleJdbcCall procReadActor;

publ i c void set Dat aSour ce(Dat aSour ce dat aSource) {
JdbcTenpl at e j dbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
j dbcTenpl at e. set Resul t sMapCasel nsensi tive(true);
t hi s. procReadActor =
new Si npl eJdbcCal | (j dbcTenpl at e)
. Wi t hProcedur eNane("read_actor");

// ... additional nethods

}

By doing this, you don't have to worry about the case used for the names of your returned out parameters.

11.5.6. Declaring parameters to use for a SimpleJdbcCall

We have seen how the parameters are deduced based on metadata, but you can declare then explicitly if you
wish. This is done when the si npl eJdbccCal | is created and configured using the decl ar ePar anet er s method
that takes a variable number of Sqgl Par anet er objects asinput. See the next section for details on how to define
an Sqgl Par anet er.

We can opt to declare one, some or all of the parameters explicitly. The parameter metadata is still being used.
By calling the method wi t hout Pr ocedur eCol unmMet aDat aAccess We can specify that we would like to bypass
any processing of the metadata lookups for potential parameters and only use the declared ones. Another
situation that can arise is that one or more in parameters have default values and we would like to leave them
out of the call. To do that we will just call the usel nPar anet er Names to specify the list of in parameter names
toinclude.

Thisiswhat afully declared procedure call declaration of our earlier example would look like:

public class JdbcActorDao inplenments ActorDao {
private SinpleJdbcCall procReadActor;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
JdbcTenpl ate j dbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
j dbcTenpl at e. set Resul t sMapCasel nsensi tive(true);
this. procReadActor =
new Si npl eJdbcCal | (j dbcTenpl at e)
. W t hProcedur eName("read_actor")
.wi t hout Pr ocedur eCol uimMet aDat aAccess()
. usel nPar armet er Nanmes("in_i d")
. decl ar ePar anet er s(
new Sql Paraneter ("in_id", Types. NUVERI C),
new Sql Qut Par anmet er ("out _first_name", Types.VARCHAR),
new Sql Qut Par anet er ("out _| ast _name", Types. VARCHAR),
new Sql Qut Par anmet er ("out _birth_date", Types. DATE)

/1 ... additional nethods

}

The execution and end results are the same, we are just specifying al the details explicitly rather than relying
on metadata. This will be necessary if the database we use is not part of the supported databases. Currently we
support metadata lookup of stored procedure calls for the following databases: Apache Derby, DB2, MySQL,
Microsoft SQL Server, Oracle and Sybase. We also support metadata lookup of stored functions for: MySQL,
Microsoft SQL Server and Oracle.

Spring Framework (2.5.5) 269

Data access using JDBC

11.5.7. How to define SqglParameters

To define a parameter to be used for the SimpleJdbc classes, and also for the RDBMS operations classes
covered in the following section, you use an Sgl Par anet er oOr one of its subclasses. You typicaly specify the
parameter name and SQL type in the constructor. The SQL type is specified using the j ava. sql . Types
constants. We have already seen declarations like:

new Sql Paraneter ("in_id", Types.NUVERI C),
new Sql Qut Par aneter ("out _first_nane", Types.VARCHAR),

The first line with the sql Par anet er declares an in parameter. In parameters can be used for both stored
procedure calls and for queries using the sql Quer y and its subclasses covered in the following section.

The second line with the sql cut Par anet er declares an out parameter to be used in a stored procedure call.
Thereisaso an sgl | nout Par arret er for inout parameters, parameters that provide an in value to the procedure
and that also return avalue

Note

"
Only parameters declared as Sql Par anet er and Sql | ncut Par anet er Will be used to provide input
values. This is different from the St oredProcedure class which for backwards compatibility
reasons allows input values to be provided for parameters declared as Sql Qut Par anet er .

In addition to the name and the SQL type you can specify additional options. For in parameters you can specify
a scale for numeric data or a type name for custom database types. For out parameters you can provide a
RowMvapper to handle mapping of rows returned from a REF cursor. Another option is to specify an
Sql Ret ur nType that provides and opportunity to define customized handling of the return values.

11.5.8. Calling a stored function using SimpleJdbcCall

Calling a stored function is done almost exactly the same way as caling a stored procedure. The only
difference is that you need to provide a function name rather than a procedure name. This is done by using the
wi t hFunct i onName method. Using this method indicates that your call is to a function and the corresponding
call string for a function call will be generated. There is also a specialized execute call execut eFuncti on that
will return the function return value as an object of a specified type. This way you don't have to retrieve the
return value from the results map. A similar convenience method named execut etoj ect is also available for
stored procedures that only have one out parameter. The following example is based on a stored function
named get _act or _nare that returns an actor's full name. Here is the MySQL source for this function:

CREATE FUNCTI ON get _actor_nane (in_id | NTEGER)
RETURNS VARCHAR(200) READS SQL DATA

BEG N
DECLARE out _name VARCHAR(200) ;
SELECT concat (first_nane, ' ', |ast_nane)

I NTO out _nane
FROM t _actor where id = in_id;
RETURN out _nane;
END;

To call thisfunction we again create aSi npl eJdbcecCal | in theinitialization method.

public class JdbcActorDao inplenments ActorDao {
private Sinpl eJdbcTenpl ate sinpl eJdbcTenpl at e;

Spring Framework (2.5.5) 270

Data access using JDBC

private SinpleJddbcCall funcGetActor Nane;

public void setDat aSour ce(Dat aSource dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
JdbcTenpl ate j dbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
j dbcTenpl at e. set Resul t sMapCasel nsensi tive(true);
this. funcGet Act or Name =
new Si npl eJdbcCal | (j dbcTenpl at e)
.wi t hFuncti onName(" get _act or _nane");

}

public String getActorNane(Long id) {
Sql Par anmet er Source in = new MapSgl Par anet er Sour ce()
.addval ue("in_id", id);
String nane = funcGet Act or Nane. execut eFunction(String.class, in);
return name;

/1 ... additional nethods

}

The execute method used returnsa st ri ng containing the return value from the function call.

11.5.9. Returning ResultSet/REF Cursor from a SimpleJdbcCall

Calling a stored procedure or function that returns a result set has aways been a bit tricky. Some databases
return result sets during the JDBC results processing while others require an explicitly registered out parameter
of a specific type. Both approaches still needs some additional processing to loop over the result set and process
the returned rows. With the Sinpl eJdbcCall you use the returni ngResul t Set method and declare a
RowMapper implementation to be used for a specific parameter. In the case where the result set is returned
during the results processing, there are no names defined, so the returned results will have to match the order
you declare the Rowvapper implementations. The name specified will still be used to store the processed list of
resultsin the results map returned from the execute statement.

For this example we will use a stored procedure that takes no in parameters and returns all rows from the
t_actor table. Here isthe MySQL source for this procedure:

CREATE PROCEDURE read_al | _actors()
BEG N

SELECT a.id, a.first_nane, a.last_nane, a.birth_date FROMt _actor a;
END;

In order to call this procedure we need to declare the Rowvapper to be used. Since the class we want to map to
follows the JavaBean rules, we can use a Par anet eri zedBeanPr oper t yRowVapper that is created by passing in
the required class to map to in the newl nst ance method.

public class JdbcActorDao inplenments ActorDao {
private SinpleJddbcTenpl ate sinpl eJdbcTenpl at e;
private SinpleJdbcCall procReadAll Actors;

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. si npl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;
JdbcTenpl ate j dbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
j dbcTenpl at e. set Resul t sMapCasel nsensi tive(true);
this. procReadAl | Actors =
new Si npl eJdbcCal | (j dbcTenpl at e)
. Wit hProcedureNane("read_al | _actors")
.returni ngResul t Set ("actors",
Par anet er i zedBeanPr oper t yRowiVapper . newi nst ance(Act or . cl ass));

}

public List getActorsList() {
Map m = procReadAl | Act ors. execut e(new HashMap<Stri ng, Object>(0));
return (List) maget("actors");

Spring Framework (2.5.5) 271

Data access using JDBC

/1 ... additional nethods

}

The execute call passes in an empty Map since this call doesn't take any parameters. The list of Actors s then
retrieved from the results map and returned to the caller.

11.6. Modeling JDBC operations as Java objects

The org. spri ngf ramewor k. j dbc. obj ect package contains classes that allow one to access the database in a
more object-oriented manner. By way of an example, one can execute queries and get the results back as a list
containing business objects with the relational column data mapped to the properties of the business object.
One can also execute stored procedures and run update, delete and insert statements.

Note

“a
There is aview borne from experience acquired in the field amongst some of the Spring devel opers
that the various RDBMS operation classes described below (with the exception of the
St or edPr ocedur e class) can often be replaced with straight JdbcTenpl at e calls... oftenitis simpler
to use and plain easier to read a DAO method that simply calls a method on a JdbcTenpl at e direct
(as opposed to encapsulating a query as afull-blown class).

It must be stressed however that this is just a view... if you fed that you are getting measurable
value from using the RDBMS operation classes, feel free to continue using these classes.

11.6.1. Sql Query

Sqgl Query is a reusable, threadsafe class that encapsulates an SQL query. Subclasses must implement the
newRowMapper (..) method to provide a Rowvapper instance that can create one object per row obtained from
iterating over the Resul t Set that is created during the execution of the query. The sql Query classisrarely used
directly since the Mappi ngSgl Query subclass provides a much more convenient implementation for mapping
rows to Java classes. Other implementations that extend Sql Query are Mappi ngSql Quer yW t hPar anet ers and
Updat abl eSqgl Query.

11.6.2. Mappi ngSql Query

Mappi ngSql Query IS a reusable query in which concrete subclasses must implement the abstract mapRow(. .)
method to convert each row of the supplied Resul t Set into an object. Find below a brief example of a custom
query that maps the data from the customer relation to an instance of the Ccust oner class.

private class Custoner Mappi ngQuery ext ends Mappi ngSql Query {

publ i ¢ Cust onmer Mappi ngQuer y(Dat aSource ds) {
super (ds, "SELECT id, name FROM customer WHERE id = ?");
super. decl arePar anet er (new Sql Paraneter ("id", Types.|NTECER));

conpi l e();

public oject mapRow ResultSet rs, int rowNunber) throws SQ.Exception {
Cust omer cust = new Custoner();
cust.setld((Integer) rs.getject("id"));
cust.set Nane(rs. getString("nane"));
return cust;

Spring Framework (2.5.5) 272

Data access using JDBC

We provide a constructor for this customer query that takes the Dat aSour ce as the only parameter. In this
constructor we call the constructor on the superclass with the Dat aSour ce and the SQL that should be executed
to retrieve the rows for this query. This SQL will be used to create a Prepar edSt at enent SO it may contain
place holders for any parameters to be passed in during execution. Each parameter must be declared using the
decl ar ePar amet er method passing in an Sql Par amet er . The Sql Par anet er takes a name and the JDBC type as
defined in j ava. sql . Types. After all parameters have been defined we call the conpil e() method so the
statement can be prepared and later be executed.

public Custoner getCustoner(lnteger id) {
Cust omer Mappi ngQuery custQy = new Cust oner Mappi ngQuer y(dat aSour ce) ;
oj ect[] parms = new Cbject[1];
parns[0] = id;
Li st customers = custQy. execute(parnms);
if (custoners.size() > 0) {
return (Custoner) custoners. get(0);

el se {
return null;
}

The method in this example retrieves the customer with the id that is passed in as the only parameter. After
creating an instance of the cust omer Mappi ngQuery class we create an array of objects that will contain all
parameters that are passed in. In this case there is only one parameter and it is passed in asan | nt eger . Now we
are ready to execute the query using this array of parameters and we get aLi st that contains a cust oner object
for each row that was returned for our query. In thiscase it will only be one entry if there was a match.

11.6.3. Sqgl Updat e

The sql Updat e class encapsulates an SQL update. Like a query, an update object is reusable, and like all
Rdbrs Qper at i on classes, an update can have parameters and is defined in SQL. This class provides a number of
updat e(. .) methods analogous to the execut e(. .) methods of query abjects. This class is concrete. Although
it can be subclassed (for example to add a custom update method) it can easily be parameterized by setting SQL
and declaring parameters.

i mport java.sql. Types;
i mport j avax. sql . Dat aSour ce;

i nport org.springfranework. jdbc. core. Sql Par anet er;
i mport org.springframework. j dbc. obj ect. Sql Updat e;

public class UpdateCreditRating extends Sql Update {

publ i ¢ Updat eCredit Rati ng(Dat aSource ds) {
set Dat aSour ce(ds) ;
set Sgl ("update custoner set credit_rating = ? where id = ?");
decl ar ePar anet er (new Sql Par anet er (Types. NUMERI C)) ;
decl ar ePar anet er (new Sql Par anet er (Types. NUMERI Q)) ;
conpi l e();
}
/**
* @aramid for the Custonmer to be updated
* @aramrating the new value for credit rating
* @eturn nunber of rows updated
*/
public int run(int id, int rating) {
Obj ect[] parans =
new Cbject[] {
new | nteger(rating),
new | nteger(id)};

Spring Framework (2.5.5) 273

Data access using JDBC

return update(parans);

11.6.4. St or edProcedure

The st or edProcedur e class is a superclass for object abstractions of RDBMS stored procedures. This class is
abstract, and its various execut e(. .) methods have prot ect ed access, preventing use other than through a
subclass that offers tighter typing.

Theinherited sql property will be the name of the stored procedure in the RDBMS.

To define a parameter to be used for the StoredProcedure classe, you use an Sql Par aneter oOr one of its
subclasses. You must specify the parameter name and SQL type in the constructor. The SQL type is specified
using thej ava. sql . Types constants. We have already seen declarations like:

new Sql Paraneter("in_id", Types.NUVERI C),
new Sql Qut Par anet er ("out _first_name", Types.VARCHAR),

The first line with the Sql Paranet er declares an in parameter. In parameters can be used for both stored
procedure calls and for queries using the sql Query and its subclasses covered in the following section.

The second line with the sqgl cut Par anet er declares an out parameter to be used in the stored procedure call.
Thereisalso an sgl | nout Par amet er for inout parameters, parameters that provide an in value to the procedure
and that also return avalue

Note

Parameters declared as Sql Paranet er and Sgl | nQut Par anet er will always be used to provide
input values. In addition to this any parameter declared as Sql Qut Par amet er where an non-null
input valueis provided will aso be used as an input paraneter.

In addition to the name and the SQL type you can specify additional options. For in parameters you can specify
a scale for numeric data or a type name for custom database types. For out parameters you can provide a
RowMvapper to handle mapping of rows returned from a REF cursor. Another option is to specify an
Sql Ret ur nType that provides and opportunity to define customized handling of the return values.

Here is an example of a program that calls afunction, sysdat e() , that comes with any Oracle database. To use
the stored procedure functionality one has to create a class that extends St or edPr ocedur e. There are no input
parameters, but there is an output parameter that is declared as a date type using the class Sql Qut Par anet er .
The execut e() method returns a map with an entry for each declared output parameter using the parameter
name as the key.

i mport java.sql. Types;

i nport java.util.HashMap;
inmport java.util.lterator;
i nport java.util.Mp;

i nport javax. sql . Dat aSour ce;
i mport org.springframework. jdbc. core. Sql Qut Par anet er ;
i mport org.springframework. j dbc. dat asource. *;

i mport org.springframework. jdbc. obj ect. St oredProcedure;

public class Test StoredProcedure {

Spring Framework (2.5.5) 274

Data access using JDBC

public static void main(String[] args) {
Test St oredProcedure t = new Test St or edProcedure();
t.test();
System out. println("Done!");

}

void test() {
Dri ver Manager Dat aSource ds = new Dri ver Manager Dat aSour ce() ;
ds. setDriverC assNanme("oracl e. jdbc. Oracl eDriver");
ds.set Ul ("jdbc:oracl e:thin: @ocal host: 1521: nydb");
ds. set User nanme("scott");
ds. set Password("tiger");

My St or edPr ocedure sproc = new MySt or edProcedure(ds);
Map results = sproc. execute();
print Map(results);

}

private class MyStoredProcedure extends StoredProcedure {
private static final String SQ. = "sysdate";

public MyStoredProcedure(Dat aSource ds) {
set Dat aSour ce(ds);
set Function(true);
set Sgl (SQL) ;
decl ar ePar anet er (new Sgl Qut Par anet er ("date", Types. DATE));
conpil e();
}

public Map execute() {
/'l the 'sysdate' sproc has no input paraneters, so an enpty Map is supplied...
return execute(new HashMap());

}

private static void printMap(Map results) {
for (lterator it = results.entrySet().iterator(); it.hasNext();) {
Systemout.printin(it.next());
}

Find below an example of a StoredProcedure that has two output parameters (in this case Oracle REF
Cursors).

i mport oracle.jdbc.driver. O acl eTypes;
i mport org.springframework. jdbc. core. Sql Qut Par anet er ;
i mport org.springframework. jdbc. obj ect. St oredProcedure;

i mport javax. sql . Dat aSource;
i nport java.util.HashMap;
i mport java.util.Map;

public class TitlesAndGenresStoredProcedure extends StoredProcedure {
private static final String SPROC_ NAME = "Al I Titl esAndCGenres”;

public Titl esAndGenr esSt or edProcedur e(Dat aSour ce dat aSource) {
super (dat aSour ce, SPROC_NAME) ;
decl ar ePar anet er (new Sql Qut Paranmeter("titles", Oracl eTypes. CURSOR, new TitleMapper()));
decl ar ePar anet er (new Sql Qut Par anet er ("genres”, Oracl eTypes. CURSOR, new GenreMapper()));
conpi l e();

}

public Map execute() {
/1 again, this sproc has no input paraneters, so an enpty Map is supplied...
return super.execute(new HashMap());

Notice how the overloaded variants of the decl areParaneter(..) method that have been used in the
Ti t | esAndGenr esSt or edPr ocedur e constructor are passed Rowvapper implementation instances; this is a very

Spring Framework (2.5.5) 275

Data access using JDBC

convenient and powerful way to reuse existing functionality. (The code for the two Rowvapper implementations
is provided below in the interest of completeness.)

Firstly the Ti t | emapper class, which simply maps a Resul t Set to aTi t1 e domain object for each row in the
supplied Resul t Set .

i mport com foo. sprocs. donain. Title;
i mport org. springframework. j dbc. core. RowMapper ;

i nport java.sql.Result Set;
i mport java.sql.SQLException;

public final class TitleMapper inplenents Rowvapper {

public Ooject mapRow ResultSet rs, int rowNum) throws SQLException {
Title title = new Title();
title.setld(rs.getLong("id"));
title.setName(rs. getString("nane"));
return title;

Secondly, the Genr eMapper class, which again Simply maps aResul t Set to a Genr e domain object for each row
in the supplied Resul t Set .

i nport org.springfranework. jdbc. core. Rowiapper;

i nport java.sql.Result Set;
i mport java.sql.SQLException;

i mport com f oo. donmi n. Genr e;
public final class GenreMapper inplenents RowMapper {

public oject mapRowm ResultSet rs, int rowNunm) throws SQLException {
return new Genre(rs.getString("nanme"));

}

If one needs to pass parameters to a stored procedure (that is the stored procedure has been declared as having
one or more input parameters in its definition in the RDBMS), one would code a strongly typed execut e(. .)
method which would delegate to the superclass (untyped) execut e(Map par anet ers) (which has prot ect ed
access); for example:

i nport oracle.jdbc.driver. O acl eTypes;
i mport org.springframework. jdbc. core. Sql Qut Par anet er ;
i nport org. springfranework. jdbc. obj ect. St oredProcedur e;

i nport javax. sql . Dat aSour ce;
i nport java.util.HashMap;
i mport java.util.Mp;

public class Titl esAfterDateStoredProcedure extends StoredProcedure {

private static final String SPROC_ NAME = "Titl esAfterDate";
private static final String CUTOFF_DATE _PARAM = "cut of f Date";

public TitlesAfterDateStoredProcedure(DataSource dataSource) {
super (dat aSour ce, SPROC_NAME) ;
decl ar ePar anet er (new Sgl Par anet er (CUTOFF_DATE_PARAM Types. DATE) ;
decl ar ePar anet er (new Sql Qut Paranmeter("titles", Oracl eTypes. CURSOR, new TitleMapper()));
conmpi l e();
}

public Map execute(Date cutoffDate) {
Map i nputs = new HashMap();
i nput s. put (CUTOFF_DATE_PARAM cut of f Dat e) ;
return super.execute(inputs);

Spring Framework (2.5.5) 276

Data access using JDBC

11.6.5. Sql Functi on

The sql Functi on RDBMS operation class encapsulates an SQL "function” wrapper for a query that returns a
single row of results. The default behavior isto return ani nt, but that can be overridden by using the methods
with an extra return type parameter. This is similar to using the quer yFor Xxxx methods of the JdbcTenpl ate.
The advantage with sqgl Function is that you don't have to create the JdbcTenpl at e, it is done behind the
scenes.

This classisintended to use to call SQL functions that return asingle result using a query like "select user()" or
"select sysdate from dual”. It is not intended for calling more complex stored functions or for using a
Cal | abl eSt at enent to invoke a stored procedure or stored function. (Use the St or edProcedure or Sql Cal |
classes for this type of processing).

Sql Function is a concrete class, and there is typically no need to subclass it. Code using this package can
create an object of this type, declaring SQL and parameters, and then invoke the appropriate run method
repeatedly to execute the function. Here is an example of retrieving the count of rows from atable:

public int countRows() ({
Sgl Function sf = new Sgl Functi on(dataSource, "select count(*) fromnytable");
sf.conpile();
return sf.run();

11.7. Common issues with parameter and data value handling

There are some issues involving parameters and data values that are common across all the different approaches
provided by the Spring JDBC Framework.

11.7.1. Providing SQL type information for parameters

Most of the time Spring will assume the SQL type of the parameters based on the type of parameter passed in.
It is possible to explicitly provide the SQL type to be used when setting parameter values. This is sometimes
necessary to correctly set NULL values.

There are afew different ways this can be accomplished:

* Many of the update and query methods of the JdbcTenpl at e take an additional parameter in the form of an
int array. This array should contain the SQL type using constant values from the j ava. sql . Types class.
There must be one entry for each parameter.

¢ You can wrap the parameter value that needs this additional information using the Sql Par anet er Val ue class.
Create a new instance for each value and pass in the SQL type and parameter value in the constructor. You
can aso provide an optional scale parameter for numeric values.

e For methods working with named parameters, you can use the Sgl ParaneterSource classes
BeanPr oper t ySql Par amet er Sour ce OF MapSql Par anet er Sour ce. They both have methods for registering the
SQL type for any of the named parameter values.

11.7.2. Handling BLOB and CLOB objects

Spring Framework (2.5.5) 277

Data access using JDBC

Y ou can store images and other binary objects as well and large chunks of text. These large object are called
BLOB for binary data and CLOB for character data. Spring lets you handle these large objects using the
JdbcTemplate directly and also when using the higher abstractions provided by RDBMS Objects and the
Simpleddbe classes. All of these approaches use an implementation of the LobHandl er interface for the actual
management of the LOB data. The LobHandl er provides access to a LobCreator, Vvia the get LobCr eat or
method, for creating new LOB abjects to be inserted.

The LobCr eat or / LobHandl er provides the following support for LOB in- and output:

e BLOB
 byte[] — getBlobAsBytes and setBlobAsBytes

* InputStream — getBlobA sBinaryStream and setBlobAsBinaryStream

« CLOB
* String — getClobAsString and setClobAsString
* InputStream — getClobAsAscii Stream and setClobAsAscii Stream
* Reader — getClobAsCharacterStream and setClobA sCharacterStream

We will now show an example of how to create and insert a BLOB. We will later see how to read it back from
the database.

This example uses a JdbcTemplate and an implementation of the
AbstractL obCreatingPreparedStatementCallback. There is one method that must be implemented and it is
"setValues'. In this method you will be provided with a LobCreator that can be used to set the values for the
LOB columnsin your SQL insert statement.

We are assuming that we have a variable named ‘lobHandler' that already is set to an instance of a
Def aul t LobHand! er . Thisistypically done using dependency injection.

final File blobln = new Fil e("spring2004.jpg");
final | nputStream bl obls = new Fil el nput St rean(bl obl n);
final File clobln = new File("large.txt");
final I nputStream clobls = new Fil el nput Strean(cl obln);
final |nputStreanReader cl obReader = new | nput StreanReader (cl obl s);
j dbcTenpl at e. execut e(
"I NSERT INTO | ob_table (id, a_clob, a_blob) VALUES (?, ?, ?2)",
new Abstract LobCreati ngPrepar edSt at enent Cal | back(| obhandl er) { O
protected voi d setVal ues(PreparedSt at ement ps, LobCreator |obCreator)
throws SQLException {
ps.setlLong(1, 1L);
| obCr eat or . set O obAsChar act er Strean{ps, 2, clobReader, (int)clobln.length()); O
| obCreat or. set Bl obAsBi naryStrean{ps, 3, blobls, (int)blobln.length()); O
}
}

bl obl s. cl ose();
cl obReader . cl ose();

0 Herewe usethelobHandler that in this exampleisaplain Def aul t LobHandl er
O Using the method set A obAsChar act er St r eam We pass in the contents of the CLOB
O Using the method set Bl obAsBi nart St r eamwe pass in the contents of the BLOB

Now it's time to read the LOB data from the database. Again, we use a JdbcTempate and we have the same

Spring Framework (2.5.5) 278

Data access using JDBC

instance variable 'lobHandler' with areference to a Def aul t LobHandl er .

List | = jdbcTenpl ate. query("select id, a_clob, a_blob fromlob_table",
new RowMapper () {
public Onject mapRow ResultSet rs, int i) throws SQLException {
Map results = new HashMap();

String cl obText = | obHandl er. getC obAsString(rs, "a_clob"); O
resul ts. put ("CLOB", clobText);
byte[] bl obBytes = | obHandl er. get Bl obAsBytes(rs, "a_bl ob"); O

resul ts. put ("BLOB", bl obBytes);
return results;

}
58

O Using the method get d obAsStri ng we retrieve the contents of the CLOB
O Using the method get Bl obAsByt es We retrieve the contents of the BLOB

11.7.3. Passing in lists of values for IN clause

The SQL standard allows for selecting rows based on an expression that includes a variable list of values. A
typical example would be "select * from T_ACTOR where id in (1, 2, 3)". This variable list is not directly
supported for prepared statements by the JDBC standard - there is no way of declaring a variable number of
place holders. Y ou would have to either have a number of variations with the desired number of place holders
prepared or you would have to dynamically generate the SQL string once you know how many place holders
are required. The named parameter support provided in the NanedParaneterJdbcTenpl ate and
Si npl eJdbcTenpl at e takes the latter approach. When you pass in the values you should pass them in as a
java.util.List of primitive objects. Thislist will be used to insert the required place holders and pass in the
values during the statement execution.

Note

e
You need to be careful when passing in a large number of values. The JDBC standard doesn't
guarantee that you can use more than 100 values for an IN expression list. Various databases
exceed this number, but they usually have a hard limit for how many values are allowed. Oracle's
limit for instance is 1000.

In addition to the primitive values in the value list, you can create ajava. util . List of object arrays. This
would support a case where there are multiple expressions defined for the IN clause like "select * from
T_ACTOR where (id, last_name) in ((1, 'Johnson’), (2, 'Harrop"))". This of course requires that your database
supports this syntax.

11.7.4. Handling complex types for stored procedure calls

When calling stored procedures it's sometimes possible to use complex types specific to the database. To
accommodate these types Spring provides a Sql Ret ur nType for handling them when they are returned from the
stored procedure call and sql TypeVal ue when they are passed in as a parameter to the stored procedure.

Here is an example of returning the value of an Oracle STRUCT object of the user declared type
"ITEM_TYPE". The sgl ReturnType interface has a single method named "get TypeVal ue" that must be
implemented. Thisinterface is used as part of the declaration of an Sgl Qut Par anet er .

decl ar ePar anet er (new Sql Qut Paraneter("item', O acl eTypes. STRUCT, "I TEM TYPE",
new Sql Ret urnType() {
public Onject getTypeVal ue(Call abl eStatenment cs, int collndx, int sql Type, String typeNane)

Spring Framework (2.5.5) 279

Data access using JDBC

throws SQLException {
STRUCT struct = (STRUCT)cs. get Obj ect (col | ndx) ;
Object[] attr = struct.getAttributes();
Testltemitem = new Testlten();
itemset!ld(((Nunber) attr[0]).|ongVal ue());
item setDescription((String)attr[1]);
item set ExpirationDate((java.util.Date)attr[2]);
return item

1)

Going from Java to the database and passing in the value of a Test I t eminto a stored procedure is done using
the sql Typeval ue. The Sql TypeVval ue interface has a single method named "cr eat eTypeVal ue" that must be
implemented. The active connection is passed in and can be used to create database specific objects like
Struct DescriptorSOr ArrayDescriptorS

Sql TypeVal ue val ue = new Abstract Sql TypeVal ue() {
protected Obj ect createTypeVal ue(Connection conn, int sql Type, String typeNane) throws SQ.Exception {
Struct Descriptor itenDescriptor = new StructDescriptor(typeNanme, conn);
Struct item = new STRUCT(itenDescriptor, conn,
new Cbject[] {
testltemgetld(),
testltem get Description(),
new j ava.sql . Date(test|tem get ExpirationDate().getTine())
N
return item
}
IE

This sgl Typeval ue can how be added to the Map containing the input parameters for the execute call of the
stored procedure.

Spring Framework (2.5.5) 280

Chapter 12. Object Relational Mapping (ORM) data
access

12.1. Introduction

The Spring Framework provides integration with Hibernate, JDO, Oracle TopLink, iBATIS SQL Maps and
JPA: in terms of resource management, DAO implementation support, and transaction strategies. For example
for Hibernate, there is first-class support with lots of 10C convenience features, addressing many typical
Hibernate integration issues. All of these support packages for O/R (Object Relational) mappers comply with
Spring's generic transaction and DAO exception hierarchies. There are usualy two integration styles. either
using Spring's DAO ‘templates or coding DAOs against plain Hibernate/JDO/TopLink/etc APIs. In both cases,
DAOs can be configured through Dependency Injection and participate in Spring's resource and transaction
management.

Spring adds significant support when using the O/R mapping layer of your choice to create data access
applications. First of all, you should know that once you started using Spring's support for O/R mapping, you
don't have to go all the way. No matter to what extent, you're invited to review and leverage the Spring
approach, before deciding to take the effort and risk of building a similar infrastructure in-house. Much of the
O/R mapping support, no matter what technology you're using may be used in a library style, as everything is
designed as a set of reusable JavaBeans. Usage inside a Spring 10C container does provide additional benefits
in terms of ease of configuration and deployment; as such, most examples in this section show configuration
inside a Spring container.

Some of the benefits of using the Spring Framework to create your ORM DAOs include:

» Ease of testing. Spring's 10C approach makes it easy to swap the implementations and config locations of
Hibernate Sessi onFact ory instances, JDBC Dat aSour ce instances, transaction managers, and mappes object
implementations (if needed). This makes it much easier to isolate and test each piece of persistence-related
code in isolation.

e Common data access exceptions. Spring can wrap exceptions from your O/R mapping tool of choice,
converting them from proprietary (potentially checked) exceptions to a common runtime
DataAccessException hierarchy. This allows you to handle most persistence exceptions, which are
non-recoverable, only in the appropriate layers, without annoying boilerplate catches/throws, and exception
declarations. You can still trap and handle exceptions anywhere you need to. Remember that JDBC
exceptions (including DB specific dialects) are aso converted to the same hierarchy, meaning that you can
perform some operations with JDBC within a consistent programming model.

* General resource management. Spring application contexts can handle the location and configuration of
Hibernate SessionFactory instances, JDBC Dat aSource instances, iBATIS SQL Maps configuration
objects, and other related resources. This makes these values easy to manage and change. Spring offers
efficient, easy and safe handling of persistence resources. For example: related code using Hibernate
generally needs to use the same Hibernate Sessi on for efficiency and proper transaction handling. Spring
makes it easy to transparently create and bind a Sessi on to the current thread, either by using an explicit
‘template’ wrapper class at the Java code level or by exposing a current Sessi on through the Hibernate
Sessi onFactory (for DAOs based on plain Hibernate API). Thus Spring solves many of the issues that
repeatedly arise from typical Hibernate usage, for any transaction environment (local or JTA).

* Integrated transaction management. Spring alows you to wrap your O/R mapping code with either a
declarative, AOP style method interceptor, or an explicit 'template’ wrapper class at the Java code level. In

Spring Framework (2.5.5) 281

Object Relational Mapping (ORM) data access

either case, transaction semantics are handled for you, and proper transaction handling (rollback, etc) in case
of exceptions is taken care of. As discussed below, you also get the benefit of being able to use and swap
various transaction managers, without your Hibernate/JDO related code being affected: for example, between
local transactions and JTA, with the same full services (such as declarative transactions) available in both
scenarios. As an additional benefit, JDBC-related code can fully integrate transactionally with the code you
use to do O/R mapping. This is useful for data access that's not suitable for O/R mapping, such as batch
processing or streaming of BLOBS, which still needs to share common transactions with ORM operations.

The PetClinic sample in the Spring distribution offers aternative DAO implementations and application
context configurations for JDBC, Hibernate, Oracle TopLink, and JPA. PetClinic can therefore serve as
working sample app that illustrates the use of Hibernate, TopLink and JPA in a Spring web application. It also
leverages declarative transaction demarcation with different transaction strategies.

The JPetStore sample illustrates the use of iBATIS SQL Maps in a Spring environment. It also features two
web tier versions: one based on Spring Web MV C, one based on Struts.

Beyond the samples shipped with Spring, there are a variety of Spring-based O/R mapping samples provided
by specific vendors: for example, the JDO implementations JPOX (http://www.jpox.org/) and Kodo
(http://www.bea.com/kodo/).

12.2. Hibernate

We will start with a coverage of Hibernate 3 in a Spring environment, using it to demonstrate the approach that
Spring takes towards integrating O/R mappers. This section will cover many issues in detail and show different
variations of DAO implementations and transaction demarcation. Most of these patterns can be directly
trandlated to all other supported ORM tools. The following sections in this chapter will then cover the other
ORM technologies, showing briefer examples there.

Note: As of Soring 2.5, Spring requires Hibernate 3.1 or higher. Neither Hibernate 2.1 nor Hibernate 3.0 are
supported anymore.

12.2.1. Resource management

Typical business applications are often cluttered with repetitive resource management code. Many projects try
to invent their own solutions for this issue, sometimes sacrificing proper handling of failures for programming
convenience. Spring advocates strikingly simple solutions for proper resource handling, namely loC via
templating; for example infrastructure classes with callback interfaces, or applying AOP interceptors. The
infrastructure cares for proper resource handling, and for appropriate conversion of specific APl exceptions to
an unchecked infrastructure exception hierarchy. Spring introduces a DAO exception hierarchy, applicable to
any data access strategy. For direct JDBC, the JdbcTenpl at e class mentioned in a previous section cares for
connection handling, and for proper conversion of SQ.Exception tO the Dat aAccessException hierarchy,
including trandlation of database-specific SQL error codes to meaningful exception classes. It supports both
JTA and JDBC transactions, via respective Spring transaction managers.

Spring also offers Hibernate and JDO support, consisting of a Hi ber nat eTenpl at e / JdoTenpl at e analogous to
JdbcTenpl at e, @ Hi ber nat el nt er cept or / Jdol nt er cept or, and a Hibernate / JDO transaction manager. The
major goal isto allow for clear application layering, with any data access and transaction technology, and for
loose coupling of application objects. No more business service dependencies on the data access or transaction
strategy, no more hard-coded resource lookups, no more hard-to-replace singletons, no more custom service
registries. One simple and consistent approach to wiring up application objects, keeping them as reusable and
free from container dependencies as possible. All the individual data access features are usable on their own but

Spring Framework (2.5.5) 282

http://www.jpox.org/
http://www.bea.com/kodo/
http://www.hibernate.org/

Object Relational Mapping (ORM) data access

integrate nicely with Spring's application context concept, providing XML-based configuration and
crossreferencing of plain JavaBean instances that don't need to be Spring-aware. In a typica Spring
application, many important objects are JavaBeans. data access templates, data access objects (that use the
templates), transaction managers, business services (that use the data access objects and transaction managers),
web view resolvers, web controllers (that use the business services),and so on.

12.2.2. Sessi onFact ory setup in a Spring container

To avoid tying application objects to hard-coded resource lookups, Spring allows you to define resources such
as a JDBC Dat aSour ce Or a Hibernate Sessi onFact ory as beans in the Spring container. Application objects
that need to access resources just receive references to such pre-defined instances via bean references (the DAO
definition in the next section illustrates this). The following excerpt from an XML application context
definition shows how to set up a JDBC Dat aSour ce and a Hibernate Sessi onFact ory on top of it:

<beans>

<bean i d="nyDat aSour ce" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">
<property nanme="driver Cl assNane" val ue="org. hsgl db. j dbcDriver"/>
<property name="url" val ue="j dbc: hsql db: hsql : //1 ocal host: 9001"/ >
<property name="usernane" val ue="sa"/>
<property name="password" val ue=""/>
</ bean>

<bean i d="nySessi onFactory" class="org. springfranework.orm hi bernat e3. Local Sessi onFact or yBean" >
<property nanme="dat aSource" ref="nmyDataSource"/>
<property name="nappi ngResour ces" >
<list>
<val ue>product . hbm xm </ val ue>
</list>
</ property>
<property nanme="hi bernat eProperties">
<val ue>
hi ber nat e. di al ect =or g. hi ber nat e. di al ect. HSQLDi al ect
</ val ue>
</ property>
</ bean>

</ beans>

Note that switching from a local Jakarta Commons DBCP Basi cDat aSour ce t0 a JNDI-located Dat aSour ce
(usually managed by an application server) isjust a matter of configuration:

<beans>

<bean i d="nyDat aSour ce" cl ass="org. spri ngframework.jndi.Jndi Cbj ect Fact or yBean" >
<property name="j ndi Nane" val ue="j ava: conp/ env/j dbc/ nyds"/>
</ bean>

</ beans>

You can also access a INDI-located Sessi onFact ory, Using Spring's Jndi Gbj ect Fact or yBean to retrieve and
exposeit. However, that istypically not common outside of an EJB context.

12.2.3. The Hi bernat eTenpl ate

The basic programming model for templating looks as follows, for methods that can be part of any custom data
access object or business service. There are no restrictions on the implementation of the surrounding object at
all, it just needs to provide a Hibernate Sessi onFact ory. It can get the latter from anywhere, but preferably as
bean reference from a Spring 10C container - via a smple set Sessi onFactory(..) bean property setter. The
following snippets show a DAO definition in a Spring container, referencing the above defined
Sessi onFact or y, and an example for a DAO method implementation.

Spring Framework (2.5.5) 283

Object Relational Mapping (ORM) data access

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="sessi onFactory" ref="nySessionFactory"/>
</ bean>

</ beans>

public class Product Daol npl inplenments ProductDao {
private Hi bernateTenpl ate hi bernat eTenpl at e;

public void set Sessi onFact ory(Sessi onFactory sessi onFactory) {
t hi s. hi bernat eTenpl ate = new Hi ber nat eTenpl at e(sessi onFactory);
}

public Collection | oadProductsByCategory(String category) throws DataAccessException {
return this.hibernateTenplate.find("fromtest.Product product where product.category=?", category);
}

The Hi bernat eTenpl ate class provides many methods that mirror the methods exposed on the Hibernate
Sessi on interface, in addition to a number of convenience methods such as the one shown above. If you need
access to the sessi on to invoke methods that are not exposed on the Hi ber nat eTenpl at e, you can aways drop
down to a callback-based approach like so.

public class Product Daol npl inplenments ProductDao {
private Hi bernateTenpl ate hi ber nat eTenpl at e;

public void set Sessi onFact ory(Sessi onFactory sessi onFactory) {
t hi s. hi bernat eTenpl ate = new Hi ber nat eTenpl at e(sessi onFactory);
}

public Collection | oadProductsByCategory(final String category) throws DataAccessException {
return this. hibernateTenpl at e. execut e(new Hi bernat eCal | back() {

public oject dol nHi bernat e(Sessi on session) {
Criteria criteria = session.createCriteria(Product.class);
criteria.add(Expression. eq("category", category));
criteria.set MaxResul ts(6);
return criteria.list();

A calback implementation effectively can be used for any Hibernate data access. Hi ber nat eTenpl at e Will
ensure that Sessi on instances are properly opened and closed, and automatically participate in transactions.
The template instances are thread-safe and reusable, they can thus be kept as instance variables of the
surrounding class. For simple single step actions like a single find, load, saveOrUpdate, or delete call,
Hi ber nat eTenpl ate Offers aternative convenience methods that can replace such one line callback
implementations. Furthermore, Spring provides a convenient Hi ber nat eDaoSupport base class that provides a
set Sessi onFactory(..) method for receiving a SessionFactory, and getSessionFactory() and
get Hi ber nat eTenpl at e() for use by subclasses. In combination, this alows for very simple DAO
implementations for typical requirements:

public class Product Daol npl extends Hi bernat eDaoSupport inplenents ProductDao {
public Collection | oadProductsByCategory(String category) throws DataAccessException {

return this.getH bernateTenplate().find(
"fromtest.Product product where product.category=?", category);

Spring Framework (2.5.5) 284

Object Relational Mapping (ORM) data access

12.2.4. Implementing Spring-based DAOs without callbacks

As dternative to using Spring's Hi ber nat eTenpl at e to implement DAQOs, data access code can aso be written
in a more traditional fashion, without wrapping the Hibernate access code in a callback, while still respecting
and participating in Spring's generic Dat aAccessExcepti on hierarchy. The Hi ber nat eDaoSupport base class
offers methods to access the current transactional Sessi on and to convert exceptions in such a scenario; similar
methods are also available as static helpers on the Sessi onFact oryUt i | s class. Note that such code will usually
pass 'f al se' as the value of the get Sessi on(..) methods 'al | owCr eat e’ argument, to enforce running within a
transaction (which avoids the need to close the returned Sessi on, asitslifecycleis managed by the transaction).

public class HibernateProduct Dao extends Hi bernateDaoSupport inplenments ProductDao {

public Collection | oadProductsByCategory(String category) throws DataAccessException, M/Exception {
Sessi on session = get Session(false);

try {
Query query = session.createQuery("fromtest.Product product where product.category=?");
query.setString(0, category);
List result = query.list();
if (result == null) {
t hrow new MyExcepti on("No search results.");
}

return result;

catch (Hi bernateException ex) {
t hrow convert Hi ber nat eAccessExcepti on(ex);
}

The advantage of such direct Hibernate access code is that it allows any checked application exception to be
thrown within the data access code; contrast this to the Hi bernat eTenpl ate class which is restricted to
throwing only unchecked exceptions within the callback. Note that you can often defer the corresponding
checks and the throwing of application exceptions to after the callback, which still allows working with
Hi ber nat eTenpl at e. INn general, the Hi ber nat eTenpl at e class convenience methods are smpler and more
convenient for many scenarios.

12.2.5. Implementing DAOs based on plain Hibernate 3 API

Hibernate 3 provides a feature called "contextual Sessions’, where Hibernate itself manages one current
Sessi on per transaction. This is roughly equivalent to Spring's synchronization of one Hibernate Sessi on per
transaction. A corresponding DAO implementation looks like as follows, based on the plain Hibernate API:

public class ProductDaol npl inplenments ProductDao {
private SessionFactory sessionFactory;

public voi d set Sessi onFact ory(Sessi onFactory sessi onFactory) {
t hi s. sessi onFactory = sessi onFactory;
}

public Collection | oadProductsByCategory(String category) {
return this.sessionFactory. getCurrent Sessi on()
.createQuery("fromtest.Product product where product. category=?")
. set Paranet er (0, category)
ist();

This style is very similar to what you will find in the Hibernate reference documentation and examples, except
for holding the Sessi onFact ory in an instance variable. We strongly recommend such an instance-based setup
over the old-school static HibernateUtil class from Hibernate's CaveatEmptor sample application. (In

Spring Framework (2.5.5) 285

Object Relational Mapping (ORM) data access

general, do not keep any resourcesin st at i ¢ variables unless absolutely necessary.)

The above DAO follows the Dependency Injection pattern: it fits nicely into a Spring 10C container, just like it
would if coded against Spring's Hi ber nat eTenpl at e. Of course, such a DAO can also be set up in plain Java
(for example, in unit tests): simply instantiate it and call set Sessi onFactory(..) with the desired factory
reference. As a Spring bean definition, it would look as follows:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="sessi onFactory" ref="nySessionFactory"/>
</ bean>

</ beans>

The main advantage of this DAO style is that it depends on Hibernate API only; no import of any Spring class
is required. This is of course appealing from a non-invasiveness perspective, and will no doubt feel more
natural to Hibernate developers.

However, the DAO throws plain H ber nat eExcept i on (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
Hibernate's own exception hierarchy. Catching specific causes such as an optimistic locking failure is not
possible without tieing the caler to the implementation strategy. This tradeoff might be acceptable to
applications that are strongly Hibernate-based and/or do not need any special exception treatment.

Fortunately, Spring's Local Sessi onFact or yBean SUpports Hibernate's Sessi onFact ory. get Curr ent Sessi on()
method for any Spring transaction strategy, returning the current Spring-managed transactional Sessi on even
with Hi ber nat eTr ansact i onManager . Of course, the standard behavior of that method remains. returning the
current Sessi on associated with the ongoing JTA transaction, if any (no matter whether driven by Spring's
JtaTr ansact i onManager , by EJB CMT, or by JTA).

In summary: DAOs can be implemented based on the plain Hibernate 3 API, while still being able to
participate in Spring-managed transactions.

12.2.6. Programmatic transaction demarcation

Transactions can be demarcated in a higher level of the application, on top of such lower-level data access
services spanning any number of operations. There are no restrictions on the implementation of the surrounding
business service here as well, it just needs a Spring Pl at f or nilr ansact i onManager . Again, the latter can come
from anywhere, but preferably as bean reference via a set Transact i onManager (..) method - just like the
pr oduct DAO should be set via a set Product Dao(..) method. The following snippets show a transaction
manager and a business service definition in a Spring application context, and an example for a business
method implementation.
<beans>
<bean id="nyTxManager" cl ass="org. springfranmewor k. orm hi ber nat e3. Hi ber nat eTr ansact i onManager " >
<property nanme="sessi onFactory" ref="nySessionFactory"/>
</ bean>
<bean i d="nyProduct Servi ce" class="product. Product Servicel npl ">
<property name="transacti onManager" ref="nyTxManager"/>
<property name="product Dao" ref="nmyProduct Dao"/>

</ bean>

</ beans>

public class Product Servicel npl inplenents ProductService {

Spring Framework (2.5.5) 286

Object Relational Mapping (ORM) data access

private TransactionTenpl ate transacti onTenpl at e;
private ProductDao product Dao;

public void setTransacti onManager (Pl at f or nilr ansact i onManager transacti onManager) {
this.transacti onTenpl ate = new Transacti onTenpl at e(transacti onManager);

}

public void setProduct Dao(Product Dao product Dao) {
t hi s. product Dao = product Dao;

}

public void increasePriceO All ProductslnCategory(final String category) {
this.transacti onTenpl at e. execut e(new Transacti onCal | backW t hout Resul t () {

public void dol nTransacti onWt hout Resul t (Transacti onStatus status) {
Li st product sToChange = this. product Dao. | oadPr oduct sByCat egor y(cat egory);
// do the price increase...

12.2.7. Declarative transaction demarcation

Alternatively, one can use Spring's declarative transaction support, which essentially enables you to replace
explicit transaction demarcation API calls in your Java code with an AOP transaction interceptor configured in
a Spring container. This allows you to keep business services free of repetitive transaction demarcation code,
and allows you to focus on adding business logic which is where the real value of your application lies.
Furthermore, transaction semantics like propagation behavior and isolation level can be changed in a
configuration file and do not affect the business service implementations.

<beans>

<bean i d="nyTxManager" cl ass="org. spri ngfranework. orm hi ber nat e3. H ber nat eTr ansact i onManager " >
<property nanme="sessi onFactory" ref="nySessionFactory"/>
</ bean>

<bean i d="nyProduct Servi ce" class="org. springfranmework. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="proxyl nterfaces" val ue="product. Product Servi ce"/>
<property nanme="target">
<bean cl ass="product . Def aul t Product Servi ce" >
<property nanme="product Dao" ref="nyProductDao"/>
</ bean>
</ property>
<property name="inter cept or Nanes" >
<list>
<val ue>nyTxl nt erceptor</val ue> <!-- the transaction interceptor (configured el sewhere) -->
</list>
</ property>
</ bean>

</ beans>

public class Product Servicel npl inplenents ProductService {
private ProductDao product Dao;

public void setProduct Dao(Product Dao product Dao) {
t hi s. product Dao = product Dao;
}

/1 notice the absence of transaction denmarcation code in this nethod
/1 Spring's declarative transaction infrastructure will be demarcating transacti ons on your behal f
public void increasePriceC All ProductslnCategory(final String category) {

Li st product sToChange = this. product Dao. | oadPr oduct sByCat egor y(cat egory);

/1

Spring Framework (2.5.5) 287

Object Relational Mapping (ORM) data access

Spring's Transact i onl nt ercept or allows any checked application exception to be thrown with the callback
code, while TransactionTenplate is restricted to unchecked exceptions within the callback.
TransactionTenpl ate Will trigger a rollback in case of an unchecked application exception, or if the
transaction has been marked rollback-only by the application (via TransactionStatus).
Transacti onl nterceptor behaves the same way by default but allows configurable rollback policies per
method.

The following higher level approach to declarative transactions doesn't use the Pr oxyFact or yBean, and as such
may be easier to use if you have alarge number of service objects that you wish to make transactional.

Note

.

"9
You are strongly encouraged to read the section entitled Section 9.5, “Declarative transaction

management” if you have not done so aready prior to continuing.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xm ns: tx="http://ww. springfranmework. org/ schena/tx"
xsi : schemaLocat i on="
http://ww. spri ngframework. or g/ schena/ beans http://ww. spri ngfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5.
http://ww. springframework. org/ schema/tx http://ww. springframework. org/schema/t x/spring-tx-2.5.xsd
htt p: // ww. spri ngf ranmewor k. or g/ schena/ aop http://ww. spri ngfranework. or g/ schena/ aop/ spri ng- aop- 2. 5. xsd" >

<l -- SessionFactory, DataSource, etc. omtted -->

<bean i d="nyTxManager" cl ass="org. springfranmework. orm hi ber nat e3. H ber nat eTr ansact i onManager " >
<property nanme="sessi onFactory" ref="nySessionFactory"/>
</ bean>

<aop: confi g>
<aop: poi ntcut id="product Servi ceMet hods" expressi on="executi on(* product.ProductService.*(..))"/>
<aop: advi sor advi ce-ref="txAdvi ce" pointcut-ref="product Servi ceMet hods"/ >

</ aop: confi g>

<t x: advi ce i d="txAdvi ce" transacti on-nmanager="nyTxManager" >
<tx:attributes>
<t x: met hod nanme="increasePrice*" propagati on="REQU RED'/ >
<t x: met hod name="someQ her Busi nessMet hod" propagati on="REQUI RES_NEW />
<t x: met hod nanme="*" propagati on="SUPPORTS" read-only="true"/>
</tx:attributes>
</tx: advi ce>

<bean i d="nyProduct Servi ce" class="product. Si npl eProduct Service">
<property nanme="product Dao" ref="nmyProduct Dao"/>
</ bean>

</ beans>

12.2.8. Transaction management strategies

Both TransactionTenpl ate and Transactionl nterceptor delegate the actua transaction handling to a
Pl at f or nTr ansact i onManager instance, which can be a Hi bernateTransactionvanager (for a single
Hibernate Sessi onFactory, USINg a ThreadlLocal Session under the hood) or a JtaTransacti onManager
(delegating to the JTA subsystem of the container) for Hibernate applications. You could even use a custom
Pl at f or niTr ansact i onManager implementation. So switching from native Hibernate transaction management to
JTA, such as when facing distributed transaction requirements for certain deployments of your application, is
just a matter of configuration. Simply replace the Hibernate transaction manager with Spring's JTA transaction
implementation. Both transaction demarcation and data access code will work without changes, as they just use
the generic transaction management APIs.

Spring Framework (2.5.5) 288

Object Relational Mapping (ORM) data access

For distributed transactions across multiple Hibernate session factories, simply combine
JtaTransact i onManager as a transaction strategy with multiple Local Sessi onFact or yBean definitions. Each
of your DAOs then gets one specific Sessi onFact ory reference passed into it's respective bean property. If al
underlying JDBC data sources are transactional container ones, a business service can demarcate transactions
across any number of DAOs and any number of session factories without special regard, as long as it is using
JtaTransact i onManager asthe strategy.

<beans>

<bean i d="nyDat aSour cel" cl ass="org. springframework.jndi.Jndi Obj ect Fact or yBean">
<property nanme="j ndi Nane val ue="j ava: conp/ env/j dbc/ nyds1"/ >
</ bean>

<bean i d="nyDat aSour ce2" cl ass="org. springframework.jndi.Jndi Obj ect Fact oryBean">
<property nanme="jndi Nane" val ue="j ava: conp/ env/j dbc/ nyds2"/ >
</ bean>

<bean i d="nySessi onFactoryl" cl ass="org. springfranework. orm hi bernat e3. Local Sessi onFact or yBean" >
<property name="dat aSource" ref="myDat aSourcel"/>
<property name="nappi ngResources" >

<list>
<val ue>pr oduct . hbm xml </ val ue>
</list>

</ property>
<property nanme="hi bernat eProperties">
<val ue>
hi ber nat e. di al ect =or g. hi ber nat e. di al ect. M\ySQLDi al ect
hi ber nat e. show_sql =t rue
</ val ue>
</ property>
</ bean>

<bean i d="nySessi onFactory2" cl ass="org. spri ngfranework. orm hi ber nat e3. Local Sessi onFact or yBean" >
<property name="dat aSource" ref="myDat aSource2"/>
<property name="nappi ngResources" >

<list>
<val ue>i nvent ory. hbm xml </ val ue>
</list>

</ property>
<property nanme="hi bernat eProperties">
<val ue>
hi ber nat e. di al ect =or g. hi bernat e. di al ect. Oracl eDi al ect
</ val ue>
</ property>
</ bean>

<bean i d="nyTxManager" cl ass="org.springfranmework.transaction.jta.JtaTransacti onManager"/>
<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="sessi onFactory" ref="nySessionFactoryl"/>

</ bean>

<bean i d="nyl nvent oryDao" cl ass="product. | nvent oryDaol npl ">
<property name="sessi onFactory" ref="nySessionFactory2"/>

</ bean>
<l-- this shows the Spring 1.x style of declarative transaction configuration -->
<l-- it is totally supported, 100%legal in Spring 2.x, but see al so above for the sleeker, Spring 2.0 style -

<bean i d="nyProduct Servi ce"
cl ass="org. springframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager" ref="nyTxManager"/>
<property nanme="target">
<bean cl ass="product. Product Servi cel npl ">
<property name="product Dao" ref="nmyProduct Dao"/>
<property name="inventoryDao" ref="nylnventoryDao"/>
</ bean>
</ property>
<property name="transactionAttri butes">
<pr ops>
<prop key="increasePrice*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="someQ her Busi nessMet hod" >PROPAGATI ON_REQUI RES_NEW&/ pr op>
<prop key="*">PROPAGATI ON_SUPPORTS, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

Spring Framework (2.5.5) 289

Object Relational Mapping (ORM) data access

</ beans>

Both Hi ber nat eTr ansact i onManager and Jt aTr ansact i onManager allow for proper JVM-level cache handling
with Hibernate - without container-specific transaction manager lookup or JCA connector (as long as not using
EJB to initiate transactions).

Hi ber nat eTr ansact i onManager can export the JDBC Connecti on used by Hibernate to plain JDBC access
code, for a specific DataSource. This allows for high-level transaction demarcation with mixed
Hibernate/JDBC data access completely without JTA, as long as you are just accessing one database!
Hi ber nat eTr ansact i onManager Will automatically expose the Hibernate transaction as JDBC transaction if the
passed-in Sessi onFact ory has been set up with a Dat aSource (through the "dataSource" property of the
Local Sessi onFact oryBean class). Alternatively, the Dat aSour ce that the transactions are supposed to be
exposed for can aso be gpecified explicitly, through the "dataSource" property of the
Hi ber nat eTr ansact i onManager Class.

12.2.9. Container resources versus local resources

Spring's resource management allows for simple switching between a JINDI Sessi onFact ory and a local one,
without having to change a single line of application code. The decision as to whether to keep the resource
definitions in the container or locally within the application, is mainly a matter of the transaction strategy being
used. Compared to a Spring-defined local Sessi onFact ory, a manually registered JNDI Sessi onFact ory does
not provide any benefits. Deploying a Sessi onFact ory through Hibernate's JCA connector provides the added
value of participating in the J2EE server's management infrastructure, but does not add actual value beyond
that.

An important benefit of Spring's transaction support isthat it isn't bound to a container at all. Configured to any
other strategy than JTA, it will work in a standalone or test environment too. Especially for the typical case of
single-database transactions, this is a very lightweight and powerful aternative to JTA. When using local EJB
Statel ess Session Beans to drive transactions, you depend both on an EJB container and JTA - even if you just
access a single database anyway, and just use SLSBs for declarative transactions via CMT. The aternative of
using JTA programmatically requires a J2EE environment as well. JTA does not just involve container
dependencies in terms of JTA itself and of JNDI Dat aSour ce instances. For non-Spring JTA-driven Hibernate
transactions, you have to use the Hibernate JCA connector, or extra Hibernate transaction code with the
Transact i onManager Lookup being configured for proper JVM-level caching.

Spring-driven transactions can work with a locally defined Hibernate Sessi onFact ory nicely, just like with a
local JDBC Dat aSour ce - if accessing a single database, of course. Therefore you just have to fall back to
Spring's JTA transaction strategy when actually facing distributed transaction requirements. Note that a JCA
connector needs container-specific deployment steps, and obviously JCA support in the first place. Thisis far
more hassle than deploying a simple web app with local resource definitions and Spring-driven transactions.
And you often need the Enterprise Edition of your container, as for example WebLogic Express does not
provide JCA. A Spring application with local resources and transactions spanning one single database will
work in any J2EE web container (without JTA, JCA, or EJB) - like Tomcat, Resin, or even plain Jetty.
Additionally, such amiddle tier can be reused in desktop applications or test suites easily.

All things considered: if you do not use EJB, stick with local SessionFactory setup and Spring's
Hi ber nat eTr ansact i onManager Or Jt aTransacti onManager. You will get al of the benefits including proper
transactional JVM-level caching and distributed transactions, without any container deployment hassle. INDI
registration of a Hibernate Sessi onFactory via the JCA connector really only adds value when used in
conjunction with EJBs.

Spring Framework (2.5.5) 290

Object Relational Mapping (ORM) data access

12.2.10. Spurious application server warnings when using Hibernate

In some JTA environments with very strict XADat aSour ce implementations -- currently only some WebL ogic
and WebSphere versions -- when using Hibernate configured without any awareness of the JTA
Pl at f or niTr ansact i onManager object for that environment, it is possible for spurious warning or exceptions to
show up in the application server log. These warnings or exceptions will say something to the effect that the
connection being accessed is no longer vaid, or JDBC access is no longer valid, possibly because the
transaction is no longer active. As an example, hereis an actual exception from WebL ogic:

j ava. sql . SQLException: The transaction is no |longer active - status: 'Conmmitted' .
No further JDBC access is allowed within this transaction.

This warning is easy to resolve by smply making Hibernate aware of the JTA PI at f or niTr ansact i onManager
instance, to which it will also synchronize (along with Spring). This may be done in two ways:

» If in your application context you are already directly obtaining the JTA Pl at f or nilr ansact i onManager
object (presumably from JNDI via Jndi Ooj ect Fact oryBean) and feeding it for example to Spring's
JtaTransact i onManager, then the easiest way is to simply specify a reference to this as the value of
Local Sessi onFact or yBean's jtaTransactionManager property. Spring will then make the object available to
Hibernate.

e More likely you do not aready have the JTA Pl atforniransacti onManager instance (since Spring's
JtaTransacti onManager can find it itself) so you need to instead configure Hibernate to aso look it up
directly. This is done by configuring an AppServer specific Transacti onManager Lookup class in the
Hibernate configuration, as described in the Hibernate manual .

It is not necessary to read any more for proper usage, but the full sequence of events with and without
Hibernate being aware of the JTA Pl at f or niTr ansact i onManager Will now be described.

When Hibernate is not configured with any awareness of the JTA Pl at f or nilr ansact i onManager , the sequence
of eventswhen a JTA transaction commitsis as follows;

« JTA transaction commits

» Spring's JtaTransacti onManager iS synchronized to the JTA transaction, so it is caled back via an
after Completion callback by the JTA transaction manager.

« Among other activities, this can trigger a calback by Spring to Hibernate, via Hibernate's
af ter Transact i onConpl et i on callback (used to clear the Hibernate cache), followed by an explicit cl ose()
call on the Hibernate Session, which resultsin Hibernate trying to cl ose() the JDBC Connection.

« In some environments, this Connection. cl ose() call then triggers the warning or error, as the application
server no longer considers the Connect i on usable at all, since the transaction has aready been committed.

When Hibernate is configured with awareness of the JTA Pl at f or nilt ansact i onManager, the sequence of
eventswhen aJTA transaction commitsisinstead as follows:

e JTA transaction is ready to commit

e Spring's JtaTransactionManager iS synchronized to the JTA transaction, so it is caled back via a
beforeCompletion callback by the JTA transaction manager.

» Spring is aware that Hibernate itself is synchronized to the JTA transaction, and behaves differently than in

Spring Framework (2.5.5) 291

Object Relational Mapping (ORM) data access

the previous scenario. Assuming the Hibernate Sessi on needsto be closed at all, Spring will close it now.
e JTA Transaction commits

» Hibernate is synchronized to the JTA transaction, so it is called back via an afterCompletion callback by the
JTA transaction manager, and can properly clear its cache.

12.3. JDO

Spring supports the standard JDO 2.0/2.1 APl as data access strategy, following the same style as the Hibernate
support. The corresponding integration classesreside in the or g. spri ngf r amewor k. or m j do package.

12.3.1. Persi st enceManager Fact ory setup

Spring provides a Local Persi st enceManager Fact oryBean class that allows for defining a local JDO
Per si st enceManager Fact ory Within a Spring application context:

<beans>

<bean id="nyPnf" class="org. springfranmework. ormjdo. Local Persi st enceManager Fact or yBean" >
<property nanme="configLocati on" val ue="cl asspat h: kodo. properties"/>
</ bean>

</ beans>

Alternatively, a PersistenceManager Factory can also be set up through direct instantiation of a
Per si st enceManager Fact ory implementation class. A JDO Persi st enceManager Fact ory implementation
classis supposed to follow the JavaBeans pattern, just like a JDBC Dat aSour ce implementation class, which is
anatura fit for a Spring bean definition. This setup style usually supports a Spring-defined JDBC Dat aSour ce,
passed into the "connectionFactory" property. For example, for the open source JDO implementation JPOX
(http://www.jpox.org):

<beans>

<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose" >
<property nanme="driverC assNane" val ue="${j dbc. dri verC assNane}"/>
<property nanme="url" val ue="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>

<bean i d="nyPnf" class="org.] pox. Persi stenceManager Factoryl npl " destroy- nmet hod="cl ose" >
<property nanme="connectionFactory" ref="dataSource"/>
<property nanme="nontransacti onal Read" val ue="true"/>

</ bean>

</ beans>

A JDO per si st enceManager Fact ory can also be set up in the INDI environment of a J2EE application server,
usually through the JCA connector provided by the particular JDO implementation. Spring's standard
Jndi Obj ect Fact or yBean can be used to retrieve and expose such a Per si st enceManager Fact ory. However,
outside an EJB context, there is often no compelling benefit in holding the Per si st enceManager Factory in
JNDI: only choose such setup for a good reason. See "container resources versus local resources' in the
Hibernate section for a discussion; the arguments there apply to JDO as well.

Spring Framework (2.5.5) 292

http://www.jpox.org

Object Relational Mapping (ORM) data access

12.3.2. JdoTenpl at e and JdoDaoSuppor t

Each JDO-based DAO will then receive the Per si st enceManager Fact or y through dependency injection. Such
a DAO could be coded against plain JDO API, working with the given Per si st enceManager Fact ory, but will
usually rather be used with the Spring Framework's JdoTenpl at e:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="persi st enceManager Factory" ref="nyPnf"/>
</ bean>

</ beans>

public class Product Daol npl inplements ProductDao {
private JdoTenpl ate jdoTenpl at e;

public void setPersistenceManager Fact or y(Persi st enceManager Factory pnf) {
this.jdoTenpl ate = new JdoTenpl at e(pnf);
}

public Collection | oadProductsByCategory(final String category) throws DataAccessException {
return (Coll ection) this.jdoTenpl ate. execut e(new JdoCal | back() {
public Object dol nJdo(PersistenceManager pn) throws JDOException {
Query query = pm newQuery(Product.class, "category = pCategory");
query. decl areParaneters("String pCategory");
Li st result = query. execute(category);
/'l do some further stuff with the result |ist
return result;

1)

A calback implementation can effectively be used for any JDO data access. JdoTenpl at e Will ensure that
Persi st enceManager S are properly opened and closed, and automatically participate in transactions. The
template instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding
class. For simple single-step actions such asasinglefi nd, | oad, makePer si st ent , Or del et e call, JdoTenpl at e
offers alternative convenience methods that can replace such one line callback implementations. Furthermore,
Spring provides a convenient JdoDaoSupport base class that provides a set Per si st enceManager Fact ory(. .)
method for receiving a PersistenceManagerFactory, and get PersistenceManager Factory() and
get JdoTenpl at e() for use by subclasses. In combination, this alows for very simple DAO implementations
for typical requirements:

public class Product Daol npl extends JdoDaoSupport inplenents ProductDao {

public Collection | oadProductsByCategory(String category) throws DataAccessException {
return getJdoTenpl ate().find(
Product.cl ass, "category = pCategory", "String category", new Cbject[] {category});

As dlternative to working with Spring's JdoTenpl at e, you can also code Spring-based DAOs at the JDO AP
level, explicitly opening and closing a Per si st enceManager . As elaborated in the corresponding Hibernate
section, the main advantage of this approach is that your data access code is able to throw checked exceptions.
JdoDaoSupport oOffers a variety of support methods for this scenario, for fetching and releasing a transactional
Per si st enceManager aswell asfor converting exceptions.

12.3.3. Implementing DAOs based on the plain JDO API

Spring Framework (2.5.5) 293

Object Relational Mapping (ORM) data access

DAOs can also be written against plain JDO API, without any Spring dependencies, directly using an injected
Per si st enceManager Fact ory. A corresponding DA O implementation looks like as follows:

public class Product Daol npl inplenments ProductDao {
private PersistenceManager Factory persi stenceManager Fact ory;

public void setPersistenceManager Fact ory(Persi st enceManager Factory pnf) {
t hi s. persi st enceManager Factory = pnf;

}

public Collection |oadProductsByCategory(String category) {
Per si st enceManager pm = thi s. persi st enceManager Fact ory. get Per si st enceManager () ;

try {
Query query = pm newQuery(Product.class, "category = pCategory");
query. decl areParaneters("String pCategory");
return query. execut e(category);

}
finally {

pm cl ose();
}

Asthe above DAO 4till follows the Dependency Injection pattern, it still fits nicely into a Spring container, just
likeit would if coded against Spring's JdoTenpl at e:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="persi st enceManager Factory" ref="nyPnf"/>
</ bean>

</ beans>

The main issue with such DAOs is that they aways get a new Per si st enceManager from the factory. To till
access a Spring-managed transactional Per si st enceManager , consider defining a
Transact i onAwar ePer si st enceManager FactoryProxy (as included in Spring) in front of your target
Per si st enceManager Fact ory, passing the proxy into your DAOs.

<beans>

<bean i d="nyPnf Pr oxy"
cl ass="org. spri ngfranmewor k. orm jdo. Transact i onAwar ePer si st enceManager Fact or yPr oxy" >
<property name="t ar get Per si st enceManager Fact ory" ref="nmyPnf"/>
</ bean>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="persi stenceManager Factory" ref="nyPnfProxy"/>
</ bean>

</ beans>

Your data access code will then receive a transactiona PersistenceManager (if any) from the
Per si st enceManager Fact ory. get Per si st enceManager () method that it calls. The latter method call goes
through the proxy, which will first check for a current transactional Per si st enceManager before getting a new
one from the factory. cl ose() calls on the persi st enceManager will be ignored in case of a transactional
Per si st enceManager .

If your data access code will always run within an active transaction (or at least within active transaction
synchronization), it is safe to omit the Per si st enceManager . cl ose() call and thus the entire final Iy block,
which you might prefer to keep your DAO implementations concise:

public class Product Daol npl inplenments ProductDao {

Spring Framework (2.5.5) 294

Object Relational Mapping (ORM) data access

private PersistenceManager Factory persi st enceManager Fact ory;

public void setPersistenceManager Fact ory(Persi st enceManager Factory pnf) {
t hi s. persi st enceManager Factory = pnf;
}

public Collection | oadProductsByCategory(String category) {
Per si st enceManager pm = thi s. persi st enceManager Fact ory. get Per si st enceManager () ;
Query query = pm newQuery(Product.class, "category = pCategory");
query. decl areParaneters("String pCategory");
return query. execute(category);

With such DAOs that rely on active transactions, it is recommended to enforce active transactions through
turning Tr ansact i onAwar ePer si st enceManager Fact or yPr oxy's "alowCreate" flag off:

<beans>

<bean i d="nyPnf Pr oxy"
cl ass="org. spri ngframewor k. orm j do. Transact i onAwar ePer si st enceManager Fact or yPr oxy" >
<property nanme="t ar get Per si st enceManager Factory" ref="nyPnf"/>
<property name="al | owCreate" val ue="fal se"/>
</ bean>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property nanme="persi st enceManager Factory" ref="nyPnf Proxy"/>
</ bean>

</ beans>

The main advantage of this DAO style is that it depends on JDO API only; no import of any Spring class is
required. Thisis of course appealing from a non-invasiveness perspective, and might feel more natural to JDO
developers.

However, the DAO throws plain JDOExcept i on (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
JDO's own exception structure. Catching specific causes such as an optimistic locking failure is not possible
without tying the caller to the implementation strategy. This tradeoff might be acceptable to applications that
are strongly JDO-based and/or do not need any specia exception treatment.

In summary: DAOs can be implemented based on plain JDO API, while still being able to participate in
Spring-managed transactions. This might in particular appeal to people already familiar with JDO, feeling more
natural to them. However, such DAOs will throw plain JDOException; conversion to Spring's
Dat aAccessExcept i on would have to happen explicitly (if desired).

12.3.4. Transaction management

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans
xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schenma/ aop"
xm ns: tx="http://ww. springframework. org/ schenma/tx"
xsi : schemaLocat i on="

http://ww. spri ngfranmework. org/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd

htt p: // ww. spri ngfranewor k. or g/ schema/tx http://ww. springfranework. org/ schenma/tx/spring-tx-2.5. xsd

http://ww. springframework. org/ schenma/ aop http://ww. springframewor k. or g/ schena/ aop/ spri ng-aop- 2. 5. xsd">

<bean i d="nyTxManager" cl ass="org. spri ngfranework.orm jdo.JdoTransacti onManager" >
<property name="persi stenceManager Factory" ref="nyPnf"/>

Spring Framework (2.5.5) 295

Object Relational Mapping (ORM) data access

</ bean>

<bean i d="nyProduct Servi ce" class="product. Product Servi cel npl ">
<property name="product Dao" ref="nmyProduct Dao"/>
</ bean>

<t x:advi ce id="txAdvi ce" transacti on-nmanager ="t xManager" >
<tx:attributes>
<t x: met hod nanme="i ncreasePri ce*" propagati on="REQU RED'/ >
<t x: net hod nane="sonmeQ her Busi nessMet hod" propagati on="REQUI RES_NEW />
<t x: net hod name="*" propagati on="SUPPORTS" read-only="true"/>
</tx:attributes>
</tx:advi ce>

<aop: confi g>
<aop: poi nt cut id="product Servi ceMet hods" expressi on="executi on(* product.ProductService.*(..))"/>
<aop: advi sor advi ce-ref="txAdvi ce" pointcut-ref="product Servi ceMet hods"/ >

</ aop: confi g>

</ beans>

Note that JDO requires an active transaction when modifying a persistent object. There is no concept like a
non-transactional flush in JDO, in contrast to Hibernate. For this reason, the chosen JDO implementation needs
to be set up for a specific environment: in particular, it needs to be explicitly set up for JTA synchronization, to
detect an active JTA transaction itself. This is not necessary for local transactions as performed by Spring's
JdoTr ansact i onManager , but it is necessary for participating in JTA transactions (whether driven by Spring's
JtaTransact i onManager or by EJB CMT / plain JTA).

JdoTr ansact i onManager is capable of exposing a JDO transaction to JDBC access code that accesses the same
JDBC Dat aSource, provided that the registered JdoDi al ect supports retrieval of the underlying JDBC
Connect i on. Thisisthe case for JIDBC-based JDO 2.0 implementations by default.

12.3.5. JdoDi al ect

As an advanced feature, both JdoTenpl at e and i nt er f acename support a custom Jdobi al ect , to be passed into
the "jdoDialect" bean property. In such a scenario, the DAOs won't receive a Per si st enceManager Fact ory
reference but rather a full JdoTenpl ate instance instead (for example, passed into JdoDaoSupport's
"jdoTemplate’ property). A JdobDi al ect implementation can enable some advanced features supported by
Spring, usually in a vendor-specific manner:

 applying specific transaction semantics (such as custom isolation level or transaction timeout)

* retrieving the transactional JDBC Connect i on (for exposure to JDBC-based DAOs)

* applying query timeouts (automatically calculated from Spring-managed transaction timeout)

» eagerly flushing a Per si st enceManager (to make transactional changes visible to JDBC-based data access
code)

 advanced trangation of JDOExcept i ons t0 Spring Dat aAccessExcept i ons

See the JdoDi al ect Javadoc for more details on its operations and how they are used within Spring's JDO
support.

12.4. Oracle TopLink

Since Spring 1.2, Spring supports Oracle TopLink (http://www.oracle.com/technol ogy/products/ias/toplink) as

Spring Framework (2.5.5) 296

http://www.oracle.com/technology/products/ias/toplink

Object Relational Mapping (ORM) data access

data access strategy, following the same style as the Hibernate support. Both TopLink 9.0.4 (the production
version as of Spring 1.2) and 10.1.3 (still in beta as of Spring 1.2) are supported. The corresponding integration
classesresideintheorg. spri ngf r amewor k. or m t opl i nk package.

Spring's TopLink support has been co-developed with the Oracle TopLink team. Many thanks to the TopLink
team, in particular to Jim Clark who helped to clarify detailsin all areas!

12.4.1. Sessi onFact ory abstraction

TopLink itself does not ship with a SessionFactory abstraction. Instead, multi-threaded access is based on the
concept of a central ServerSession, which in turn is able to spawn dient Session instances for
single-threaded usage. For flexible setup options, Spring defines a Sessi onFact ory abstraction for TopLink,
enabling to switch between different Sessi on creation strategies.

As a one-stop shop, Spring provides a Local Sessi onFact or yBean class that alows for defining a TopLink
Sessi onFact ory with bean-style configuration. It needs to be configured with the location of the TopLink
session configuration file, and usually also receives a Spring-managed JDBC Dat aSour ce t0 USe.

<beans>

<bean i d="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy- met hod="cl ose" >
<property name="driverC assNane" val ue="${j dbc. dri verC assNane}"/>
<property name="url" value="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/ >
<property nane="password" val ue="${j dbc. password}"/>
</ bean>

<bean i d="nySessi onFactory" class="org.springfranmework.ormtoplink.Local Sessi onFact or yBean" >
<property name="configLocati on" val ue="topli nk-sessions.xm"/>
<property nanme="dat aSource" ref="dataSource"/>

</ bean>

</ beans>

<t opl i nk- confi gurati on>

<sessi on>
<nanme>Sessi on</ nanme>
<pr oj ect - xm >t opl i nk- mappi ngs. xm </ proj ect - xm >
<sessi on-type>
<server-sessi on/ >
</ sessi on-type>
<enabl e- | oggi ng>t r ue</ enabl e- | oggi ng>
<l oggi ng- opti ons/ >
</ sessi on>

</toplink-configuration>

Usually, Local Sessi onFact or yBean Will hold a multi-threaded TopLink Ser ver Sessi on underneath and create
appropriate client Sessions for it: either a plain Session (typical), a managed Cient Session, Or a
transaction-aware Sessi on (the latter are mainly used internally by Spring's TopLink support). It might also
hold a single-threaded TopLink Dat abaseSessi on; thisis rather unusual, though.

12.4.2. TopLi nkTenpl at e and TopLi nkDaoSuppor t

Each TopLink-based DAO will then receive the Sessi onFact ory through dependency injection, i.e. through a
bean property setter or through a constructor argument. Such a DAO could be coded against plain TopLink
API, fetching a Session from the given SessionFactory, but will usually rather be used with Spring's
TopLi nkTenpl at e:

<beans>

Spring Framework (2.5.5) 297

Object Relational Mapping (ORM) data access

<bean i d="nyProduct Dao" cl ass="product . Product Daol npl ">
<property name="sessi onFactory" ref="mnySessionFactory"/>
</ bean>

</ beans>

public class TopLi nkProduct Dao i npl enents Product Dao {
private TopLinkTenpl ate tl| Tenpl ate;

public voi d set Sessi onFact ory(Sessi onFactory sessi onFactory) {
this.tl Tenpl ate = new TopLi nkTenpl at e(sessi onFactory);

}

public Collection | oadProductsByCategory(final String category) throws DataAccessException {
return (Collection) this.tl Tenpl ate. execute(new TopLi nkCal | back() {
public Onject dol nTopLi nk(Sessi on session) throws TopLi nkException {
ReadAl | Query findOamnersQuery = new ReadAl | Query(Product. cl ass);
fi ndOmner sQuery. addAr gunent (" Cat egory") ;
Expr essi onBui | der builder = this.findOwersQuery. get Expressi onBui |l der () ;
findOmersQuery. set Sel ectionCriteria(
bui | der. get ("category").|ike(buil der. get Paraneter("Category")));

Vector args = new Vector();

args. add(cat egory);

Li st result = session. executeQuery(findOmersQuery, args);
/'l do some further stuff with the result |ist

return result;

1)

A callback implementation can effectively be used for any TopLink data access. TopLi nkTenpl at e will ensure
that Sessi ons are properly opened and closed, and automatically participate in transactions. The template
instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class. For
simple single-step actions such as a single execut eQuery, readAl |, readByl d, or nerge cal, JdoTenpl at e
offers alternative convenience methods that can replace such one line callback implementations. Furthermore,
Spring provides a convenient TopLi nkDaoSupport base class that provides a set Sessi onFact ory(..) method
for receiving a Sessi onFact ory, and get Sessi onFact ory() and get TopLi nkTenpl at e() for use by subclasses.
In combination, this allows for simple DAO implementations for typical requirements:

public class Product Daol npl extends TopLi nkDaoSupport inplements Product Dao {

public Collection | oadProductsByCategory(String category) throws DataAccessException {
ReadAl | Query findOwnersQuery = new ReadAl | Query(Product. cl ass);
fi ndOmner sQuery. addAr gunent (" Cat egory") ;
Expr essi onBui | der buil der = this.findOwersQuery. get Expressi onBuil der();
fi ndOmer sQuery. set Sel ectionCriteria(
bui | der. get ("category").|ike(builder. getParaneter("Category")));

return get TopLi nkTenpl at e() . execut eQuer y(fi ndOmnersQuery, new Object[] {category});

Side note: TopLink query objects are thread-safe and can be cached within the DAQ, i.e. created on startup and
kept in instance variables.

As dternative to working with Spring's TopLi nkTenpl at e, you can aso code your TopLink data access based
on the raw TopLink API, explicitly opening and closing a Sessi on. As elaborated in the corresponding
Hibernate section, the main advantage of this approach is that your data access code is able to throw checked
exceptions. TopLi nkDaoSupport Offers avariety of support methods for this scenario, for fetching and releasing
atransactional Sessi on aswell asfor converting exceptions.

Spring Framework (2.5.5) 298

Object Relational Mapping (ORM) data access

12.4.3. Implementing DAOs based on plain TopLink API

DAOs can aso be written against plain TopLink API, without any Spring dependencies, directly using an
injected TopLink Session. The latter will usualy be based on a SessionFactory defined by a
Local Sessi onFact oryBean, exposed for bean references of type Session through Spring's
Transact i onAwar eSessi onAdapt er .

The get Act i veSessi on() method defined on TopLink's Sessi on interface will return the current transactional
Sessi on in such a scenario. If there is no active transaction, it will return the shared TopLink Ser ver Sessi on
as-is, which is only supposed to be used directly for read-only access. There is aso an anaogous
get Act i veUni t Of Wor k() method, returning the TopLink uni t Of Wer k associated with the current transaction, if
any (returning nul | else).

A corresponding DAO implementation looks like as follows:

public cl ass Product Daol npl inpl ements ProductDao {
private Session session

public void setSessi on(Sessi on session) {
thi s.session = session

}

public Collection |oadProductsByCategory(String category) {
ReadAl | Query findOwnersQuery = new ReadAl | Query(Product. cl ass);
fi ndOmner sQuery. addAr gunent (" Cat egory") ;
Expr essi onBui | der buil der = this.findOwersQuery. get Expressi onBuil der();
fi ndOmersQuery. set Sel ectionCriteria(
bui | der. get ("category").like(buil der.get Paraneter("Category")))

Vector args = new Vector();
ar gs. add(cat egory);
return session. get Acti veSessi on().executeQuery(findOmersQuery, args);

As the above DAO till follows the Dependency Injection pattern, it still fits nicely into a Spring application
context, analogous to like it would if coded against Spring's TopLinkTenplate. Spring's
Transact i onAwar eSessi onAdapt er IS used to expose a bean reference of type Sessi on, to be passed into the
DAO:

<beans>

<bean i d="nySessi onAdapter"
cl ass="org. spri ngframework. ormtoplink. support. Transacti onAwar eSessi onAdapt er " >
<property nanme="sessi onFactory" ref="nySessi onFactory"/>
</ bean>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="session" ref="nySessi onAdapter"/>
</ bean>

</ beans>

The main advantage of this DAO styleis that it depends on TopLink API only; no import of any Spring classis
required. This is of course appeaing from a non-invasiveness perspective, and might feel more natura to
TopLink developers.

However, the DAO throws plain TopLi nkExcepti on (which is unchecked, so does not have to be declared or
caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on
TopLink's own exception structure. Catching specific causes such as an optimistic locking failure is not
possible without tying the caller to the implementation strategy. This tradeoff might be acceptable to

Spring Framework (2.5.5) 299

Object Relational Mapping (ORM) data access

applications that are strongly TopLink-based and/or do not need any special exception treatment.

A further disadvantage of that DAO style is that TopLink's standard get Acti veSessi on() feature just works
within JTA transactions. It does not work with any other transaction strategy out-of-the-box, in particular not
with local TopLink transactions.

Fortunately, Spring's Transacti onAwar eSessi onAdapt er exposes a corresponding proxy for the TopLink
Ser ver Sessi on which supports TopLink's Sessi on. get Acti veSessi on() and
Sessi on. get Act i veUni t Of Wrk() methods for any Spring transaction strategy, returning the current
Spring-managed transactional Session even with TopLi nkTransacti onManager. Of course, the standard
behavior of that method remains: returning the current Sessi on associated with the ongoing JTA transaction, if
any (no matter whether driven by Spring's Jt aTr ansact i onManager , by EJB CMT, or by plain JTA).

In summary: DAOs can be implemented based on plain TopLink API, while still being able to participate in
Spring-managed transactions. This might in particular appeal to people already familiar with TopLink, feeling
more natural to them. However, such DAOs will throw plain TopLi nkException; conversion to Spring's
Dat aAccessExcept i on would have to happen explicitly (if desired).

12.4.4. Transaction management

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans
xm ns="http://wwm. spri ngframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframework. or g/ scherma/ aop"
xm ns: tx="http://ww:. springframework. org/ schenma/tx"
xsi : schemalLocat i on="

http://ww. springframework. or g/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd

http://ww. springfranework. org/ schema/tx http://ww.springfranework. org/schenma/tx/spring-tx-2.5.xsd

http://ww. springframework. or g/ schema/ aop http://ww. springframewor k. or g/ schema/ aop/ spri ng-aop- 2. 5. xsd">

<bean i d="nyTxManager" cl ass="org. springfranmework. orm toplink. TopLi nkTransacti onManager" >
<property name="sessi onFactory" ref="nySessionFactory"/>
</ bean>

<bean i d="nyProduct Servi ce" class="product. Product Servicel npl ">
<property nanme="product Dao" ref="nyProductDao"/>
</ bean>

<aop: confi g>
<aop: poi ntcut id="product Servi ceMet hods" expressi on="execution(* product.ProductService.*(..))"/>
<aop: advi sor advi ce-ref="txAdvi ce" pointcut-ref="product Servi ceMet hods"/ >

</ aop: confi g>

<t x:advi ce id="txAdvi ce" transaction-nmanager="nmyTxManager" >
<tx:attributes>
<t x: met hod nanme="i ncreasePri ce*" propagati on="REQU RED'/ >
<t x: net hod nane="someQ her Busi nessMet hod" propagati on="REQUI RES_NEW />
<t x: met hod name="*" propagati on="SUPPORTS" read-only="true"/>
</tx:attributes>
</tx:advi ce>

</ beans>

Note that TopLink requires an active uni t of Wor k for modifying a persistent object. (Y ou should never modify
objects returned by a plain TopLink Session - those are usualy read-only objects, directly taken from the
second-level cache!) Thereis no concept like a non-transactional flush in TopLink, in contrast to Hibernate. For
this reason, TopLink needs to be set up for a specific environment: in particular, it needs to be explicitly set up
for JTA synchronization, to detect an active JTA transaction itself and expose a corresponding active Sessi on
and unitOorwerk. This is not necessary for local transactions as performed by Spring's

Spring Framework (2.5.5) 300

Object Relational Mapping (ORM) data access

TopLi nkTransact i onManager, but it is necessary for participating in JTA transactions (whether driven by
Spring's Jt aTr ansact i onManager or by EJB CMT / plain JTA).

Within your TopLink-based DAO code, use the Sessi on. get Acti veUnit Of Wrk() method to access the
current Uni t Of Wor k and perform write operations through it. This will only work within an active transaction
(both within Spring-managed transactions and plain JTA transactions). For special needs, you can also acquire
separate Uni t O Wor k instances that won't participate in the current transaction; thisis hardly needed, though.

TopLi nkTransact i onManager is capable of exposing a TopLink transaction to JDBC access code that accesses
the same JDBC Dat aSour ce, provided that TopLink works with JDBC in the backend and is thus able to expose
the underlying JDBC Connection. The Dat aSource to expose the transactions for needs to be specified
explicitly; it won't be autodetected.

12.5. iBATIS SQL Maps

The iBATIS support in the Spring Framework much resembles the JDBC / Hibernate support in that it supports
the same template style programming and just as with JDBC or Hibernate, the iBATIS support works with
Spring's exception hierarchy and let's you enjoy the all 10C features Spring has.

Transaction management can be handled through Spring's standard facilities. There are no special transaction
strategies for iBATIS, as there is no special transactional resource involved other than a JDBC Connect i on.
Hence, Spring's standard JDBC Dat aSour ceTransact i onManager Or Jt aTransacti onManager are perfectly
sufficient.

Note

e
Spring does actualy support both iBatis 1.x and 2.x. However, only support for iBatis 2.x is
actually shipped with the core Spring distribution. The iBatis 1.x support classes were moved to the
Spring Modules project as of Spring 2.0, and you are directed there for documentation.

12.5.1. Setting up the sSgl Mapd i ent

If we want to map the previous Account class with iBATIS 2.x we need to create the following SQL map
"Account . xm ' :

<sgl Map nanespace="Account ">

<resultMap id="result" class="exanpl es. Account">
<result property="nanme" col um="NAME" col uml ndex="1"/>
<result property="email" colum="EMAI L" col uml ndex="2"/>
</resul t Map>

<sel ect id="get Account ByEmail|l" resultMap="result">
sel ect ACCOUNT. NAME, ACCOUNT. EMAI L
from ACCOUNT
wher e ACCOUNT. EMAI L = #val ue#

</ sel ect >

<insert id="insertAccount">
insert into ACCOUNT (NAME, EMAIL) val ues (#nane#, #email#)
</insert>

</ sql Map>

The configuration file for iBATIS 2 looks like this:

<sgl MapConfi g>

Spring Framework (2.5.5) 301

Object Relational Mapping (ORM) data access

<sgl Map resour ce="exanpl e/ Account.xm "/ >

</ sql MapConfi g>

Remember that iBATIS loads resources from the class path, so be sure to add the ' Account . xm * file to the
class path.

We can use the Sql Mapd i ent Fact or yBean in the Spring container. Note that with iBATIS SQL Maps 2.x, the
JDBC Dat aSour ce isusually specified on the sql Mapd i ent Fact or yBean, which enables lazy |oading.

<beans>

<bean i d="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy- nmet hod="cl ose" >
<property name="driverd assNane" val ue="${j dbc. dri verC assNane}"/>
<property name="url" value="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>

<bean i d="sqgl Mapdient" class="org.springframework.ormibatis. Sqgl Mapd i ent Fact or yBean" >
<property name="configLocati on" val ue="WEB- | NF/ sql map-config.xm"/>
<property nanme="dat aSource" ref="dataSource"/>

</ bean>

</ beans>

12.5.2. Using Sql Mapd i ent Tenpl at e and Sgl Mapd i ent DaoSuppor t

The sql Mapd i ent DaoSupport class offers a supporting class similar to the sql MapDaoSupport . We extend it to
implement our DAO:

public class Sgl MapAccount Dao ext ends Sgl Mapd i ent DaoSupport inplements Account Dao {

public Account getAccount(String email) throws DataAccessException {
return (Account) get Sgl Mapd i ent Tenpl at e() . quer yFor Obj ect (" get Account ByEmai | ", email);

}

public void insertAccount (Account account) throws DataAccessException {
get Sql Mapd i ent Tenpl at e() . updat e("i nsert Account”, account);

}

In the DAO, we use the pre-configured Sgl MapCl i ent Tenpl at e t0 execute the queries, after setting up the
Sql MapAccount Dao in the application context and wiring it with our Sql Mapd i ent instance:

<beans>
<bean i d="account Dao" cl ass="exanpl e. Sql MapAccount Dao" >
<property name="sqgl Mapdient" ref="sql Mapdient"/>
</ bean>

</ beans>

Note that a sSql MapTenpl ate instance could also be created manualy, passing in the Sgl MapQdient as
constructor argument. The Sql Mapd i ent DaoSupport base class sSimply pre-initidizes a
Sql Mapd i ent Tenpl at e instance for us.

The sqgl Mapd i ent Tenpl at e also offers a generic execut e method, taking a custom Sqgl Mapd i ent Cal | back
implementation as argument. This can, for example, be used for batching:

public class Sqgl MapAccount Dao ext ends Sgl MapCl i ent DaoSupport i npl ements Account Dao {

Spring Framework (2.5.5) 302

Object Relational Mapping (ORM) data access

public void insertAccount (Account account) throws DataAccessException {
get Sql Mapd i ent Tenpl at e() . execut e(new Sgl Mapd i ent Cal | back() {
public Object dolnSgl Mapd i ent (Sqgl MapExecut or executor) throws SQLException {
executor.startBatch();
execut or. updat e("i nsert Account", account);
execut or. updat e("i nsert Address", account.get Address());
execut or. execut eBat ch() ;

1)

In general, any combination of operations offered by the native sql MapExecut or API can be used in such a
calback. Any sSQ.Exception thrown will automatically get converted to Spring's generic
Dat aAccessExcept i on hierarchy.

12.5.3. Implementing DAOs based on plain iBATIS API

DAOs can aso be written against plain iBATIS API, without any Spring dependencies, directly using an
injected sql Mapd i ent . A corresponding DAO implementation looks like as follows:
public class Sgl MapAccount Dao i npl ements Account Dao {
private Sgl MapCient sqgl MapCient;

public void setSql Mapd i ent (Sql Mapdient sql Mapdient) {
this.sql MapCient = sql Mapd i ent;

}
public Account get Account(String email) {
try {
return (Account) this.sql MapCient. queryFor Cbject("get Account ByEmail", email);
}
catch (SQ.Exception ex) {
t hrow new MyDaoExcepti on(ex);
}
}
public void insertAccount (Account account) throws DataAccessException {
try {
this. sql MapCl i ent. update("insertAccount”, account);
}
catch (SQLException ex) {
t hr ow new MyDaoExcepti on(ex);
}
}

In such a scenario, the sQLExcepti on thrown by the iBATIS APl needs to be handled in a custom fashion:
usually, wrapping it in your own application-specific DAO exception. Wiring in the application context would
still look like before, due to the fact that the plain iBATIS-based DAO till follows the Dependency Injection
pattern:
<beans>
<bean i d="account Dao" cl ass="exanpl e. Sgl MapAccount Dao" >
<property name="sqgl Mapdient" ref="sql Mapdient"/>

</ bean>

</ beans>

12.6. JPA

Spring Framework (2.5.5) 303

Object Relational Mapping (ORM) data access

Spring JPA (available under the org. spri ngf ramewor k. or m j pa package) offers comprehensive support for
the Java Persistence API in asimilar manner to the integration with Hibernate or JDO, while being aware of the
underlying implementation in order to provide additional features.

12.6.1. JPA setup in a Spring environment

Spring JPA offers three ways of setting up JPA Ent i t yManager Fact ory:

12.6.1.1. Local Enti t yManager Fact or yBean

The Local Entit yManager Fact or yBean Create€s an EntityManager Fact ory Suitable for environments which
solely use JPA for data access. The factory bean will use the JPA Persi st enceProvi der autodetection
mechanism (according to JPA's Java SE bootstrapping) and, in most cases, requires only the persistence unit
name to be specified:

<beans>

<bean id="nyEnf" class="org. springframework. ormjpa.Local EntityManager Fact oryBean">
<property nanme="persistenceUni t Nanme" val ue="nyPersistencelnit"/>
</ bean>

</ beans>

Thisisthe simplest but a'so most limited form of JPA deployment. There is no way to link to an existing JDBC
Dat aSource and no support for global transactions, for example. Furthermore, weaving (byte-code
transformation) of persistent classes is provider-specific, often requiring a specific VM agent to specified on
startup. All in all, this option is only really sufficient for standalone applications and test environments (which
is exactly what the JPA specification designed it for).

Only use this option in simple deployment environments like standal one applications and integration tests.

12.6.1.2. bt ai ning an EntityManager Factory from JND

Obtaining an Ent i t yManager Fact ory from JNDI (for example in a Java EE 5 environment), is just a matter of
changing the XML configuration:

<beans>
<j ee:jndi-lookup id="nmyEnf" jndi-nanme="persistence/ nyPersistenceUnit"/>

</ beans>

This assumes standard Java EE 5 bootstrapping, with the Java EE server autodetecting persistence units (i.e.
META- | NF/ per si st ence. xni files in application jars) and persistence-unit-ref entries in the Java EE
deployment descriptor (e.g. web. xni) defining environment naming context locations for those persistence
units.

In such a scenario, the entire persistence unit deployment, including the weaving (byte-code transformation) of
persistent classes, is up to the Java EE server. The JDBC Dat aSour ce is defined through a INDI location in the
META- | NF/ per si stence. xm file; EntityManager transactions are integrated with the server's JTA subsystem.
Spring merely uses the obtained Ent i t yManager Fact ory, passing it on to application objects via dependency
injection, and managing transactions for it (typicaly through Jt aTr ansact i onManager).

Note that, in case of multiple persistence units used in the same application, the bean names of such a
JNDI-retrieved persistence units should match the persistence unit names that the application uses to refer to

Spring Framework (2.5.5) 304

http://java.sun.com/developer/technicalArticles/J2EE/jpa/index.html

Object Relational Mapping (ORM) data access

them (e.g. in @er si st enceUni t and @er si st enceCont ext annotations).

Use this option when deploying to a Java EE 5 server. Check your server's documentation on how to deploy a
custom JPA provider into your server, allowing for a different provider than the server's default.

12.6.1.3. Local Cont ai ner Ent i t yManager Fact or yBean

The Local Cont ai ner Ent i t yManager Fact or yBean gives full control over Ent i t yManager Fact ory configuration
and is appropriate for environments where finegrained customization is required. The
Local Cont ai ner Enti t yManager FactoryBean Will create a PersistenceUnitinfo based on the
persi stence. xm file, the supplied dat aSour ceLookup strategy and the specified | oadTi mreweaver . It is thus
possible to work with custom DataSources outside of INDI and to control the weaving process.

<beans>

<bean id="nyEnf" class="org. springframework. ormjpa. Local Contai ner EntityManager Fact or yBean" >
<property name="dat aSource" ref="soneDataSource"/>
<property nanme="| oadTi mreWeaver ">
<bean cl ass="org. springframework.instrunent.cl assl oadi ng. | nstrunent ati onLoadTi mreWaver"/ >
</ property>
</ bean>

</ beans>

A typical persi stence. xm filelooks asfollows:

<persi stence xm ns="http://java. sun. conf xm / ns/ persi stence" version="1.0">

<persi stence-unit name="nyUnit" transaction-type="RESOURCE LOCAL" >
<mappi ng-fil e>META- | NF/ or m xm </ mappi ng-fil e>
<excl ude-unl i st ed-cl asses/ >

</ per si st ence- uni t >

</ persi st ence>

NOTE: The "exclude-unlisted-classes" element always indicates that NO scanning for annotated entity classes
is supposed to happen, in order to support the <excl ude- unl i st ed- cl asses/ > shortcut. Thisisin line with the
JPA specification (which suggests that shortcut) but unfortunately in conflict with the JPA XSD (which implies
"false® for that shortcut). As a consequence, “<exclude-unlisted-classes> fal se
</ excl ude- unl i st ed- cl asses/>" is not supported! Smply omit the "exclude-unlisted-classes" element if you
would like entity class scanning to actually happen.

This is the most powerful JPA setup option, allowing for flexible local configuration within the application. It
supports links to an existing JDBC Dat aSour ce, supports both local and global transactions, etc. However, it
also imposes requirements onto the runtime environment, such as the availability of a weaving-capable
ClassL oader if the persistence provider demands byte-code transformation.

Note that this option may conflict with the built-in JPA capabilities of a Java EE 5 server. So when running in a
full Java EE 5 environment, consider obtaining your Ent i t yManager Fact ory from JNDI. Alternatively, specify
a custom "persistenceXmlLocation" on your Local Cont ai ner Enti t yManager Fact or yBean definition, e.g.
"META-INF/my-persistencexml”, and only include a descriptor with that name in your application jar files.
Since the Java EE 5 server will only look for default META- | NF/ per si st ence. xmi files, it will ignore such
custom persistence units and hence avoid conflicts with a Spring-driven JPA setup upfront. (This applies to
Resin 3.1, for example.)

Use this option for full JPA capabilities in a Soring-based application environment. This includes web
containers such as Tomcat as well as standalone applications and integration tests with sophisticated
persistence requirements.

Spring Framework (2.5.5) 305

Object Relational Mapping (ORM) data access

When is load-time weaving required?

Not al JPA providers impose the need of a VM agent (Hibernate being an example). If your provider
does not require an agent or you have other alternatives (for example applying enhancements at build
time through a custom compiler or an ant task) the load-time weaver should not be used.

The LoadTi neweaver interface is a Spring-provided class that allows JPA d assTransf or ner instances to be
plugged in a specific manner depending on the environment (web container/application server). Hooking
C assTransfor mer s through aJava 5 agent is typically not efficient - the agents work against the entire virtual
machine and inspect every class that is loaded - something that is typically undesirable in a production server
enviroment.

Spring provides a number of LoadTi reveaver implementations for various environments, alowing
C assTransf or mer instancesto be applied only per ClassLoader and not per VM.

The following sections will discuss typical JPA weaving setup on Tomcat as well as using Spring's VM agent.
See the AOP chapter section entitled Section 6.8.4.5, “Spring configuration” for details on how to set up
general load-time weaving, covering Tomcat and the VM agent as well as WebLogic, OC4J, GlassFish and
Resin.

12.6.1.3.1. Tomcat load-time weaving setup (5.0+)

Apache Tomcat's default ClassL oader does not support class transformation but alows custom ClassL oaders to
be used. Spring offers the Tontat | nst r unent abl ed assLoader (inside the
org. springframework. i nstrunent. cl assl oadi ng. t oncat package) which extends the Tomcat ClassLoader
(Webappd assLoader) and alows JPA d assTransformer instances to 'enhance’ all classes loaded by it. In
short, JPA transformers will be applied only inside a specific web application (which uses the
Tontat | nst runent abl ed assLoader).

In order to use the custom ClassL oader on:
1. Copy spring-tontat-weaver.jar into $CATALINA HOME/server/lib (where $CATALINA HOME
represents the root of the Tomcat installation).

2. Instruct Tomcat to use the custom ClassLoader (instead of the default one) by editing the web application
context file:

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocati on">
<Loader | oaderC ass="org. springframework.instrunment.classl oadi ng.tontat. Tontat| nstrunent abl eCl assLoader"/ >
</ Cont ext >

Tomcat 5.0x and 55x series support several context locations: server configuration file

($CATALINA_HOME/conf/server.xml), the default context configuration
($CATALINA_HOME/conf/context.xml) that affects al deployed web applications and per-webapp
configurations, deployed on the server

($CATALINA_HOME/conf/[enginename]/[hostname] /my-webapp-context.xml) side or aong with the
webapp (your-webapp.war/META-INF/context.xml). For efficiency, inside the web-app configuration style
is recommended since only applications which use JPA will use the custom ClassLoader. See the Tomcat
5.x documentation for more details about available context |ocations.

Note that versions prior to 5.5.20 contained a bug in the XML configuration parsing preventing usage of
Loader tag inside server.xml (no matter if a ClassLoader is specified or not (be it the official or a custom

Spring Framework (2.5.5) 306

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://tomcat.apache.org/
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html

Object Relational Mapping (ORM) data access

one). See Tomcat's bugzilla for more details.

If you are using Tomcat 5.5.20+ you can set useSystemClassLoader AsParent to f al se to fix the problem:

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocati on">
<Loader | oader Cl ass="org. springframework.instrument.cl assl oadi ng.tontat. Tontat | nstrunent abl eCl assLoader"
useSyst enCl assLoader AsPar ent ="f al se"/ >
</ Cont ext >

1. Copy spring-toncat -vweaver . jar into $SCATALINA_ HOME/lib (where $CATALINA_HOME represents the
root of the Tomcat installation).

2. Instruct Tomcat to use the custom ClassLoader (instead of the default one) by editing the web application
context file:

<Cont ext pat h="/nmyWebApp" docBase="/ny/webApp/| ocati on">
<Loader | oaderCl ass="org. springframework.instrunent.classl oadi ng.tontat. Tontat| nstrunent abl eCl assLoader"/ >
</ Cont ext >

Tomcat 6.0.x (similar to 5.0.x/5.5.xX) series support several context locations. server configuration file

($CATALINA_HOME/conf/server.xml), the default context configuration
($CATALINA_HOME/conf/context.xml) that affects al deployed web applications and per-webapp
configurations, deployed on the server

($CATALINA_HOME/conf/[enginename]/[hostname] /my-webapp-context.xml) side or aong with the
webapp (your-webapp.war/META-INF/context.xml). For efficiency, inside the web-app configuration style
is recommended since only applications which use JPA will use the custom ClassLoader. See the Tomcat
5.x documentation for more details about available context locations.

¢ Tomcat 5.0.x/5.5.x

 Tomcat 6.0.X

The last step required on all Tomcat versions, is to use the appropriate the LoadTi meweaver when configuring
Local Cont ai ner Ent i t yManager Fact or yBean:

<bean id="enf" class="org. springframework. ormjpa. Local Contai ner EntityManager Fact or yBean">
<property nane="| oadTi reWeaver" >
<bean cl ass="org. springfranmework.instrunent. cl assl oadi ng. Ref | ecti veLoadTi nreWeaver"/ >
</ property>
</ bean>

Using this technique, JPA applications relying on instrumentation, can run in Tomcat without the need of an
agent. This is important especially when hosting applications which rely on different JPA implementations
since the JPA transformers are applied only at ClassL oader level and thus, are isolated from each other.

Note

"9
If TopLink isbeing used a JPA provider under Tomcat, please place the toplink-essentials jar under
$CATALINA _HOME/shared/lib folder instead of your war.

12.6.1.3.2. General load-time weaving using the VM agent

For environments where class instrumentation is required but are not supported by the existing
LoadTimeWeaver implementations, a JDK agent can be the only solution. For such cases, Spring provides

Spring Framework (2.5.5) 307

http://issues.apache.org/bugzilla/show_bug.cgi?id=39704
http://tomcat.apache.org/tomcat-6.0-doc/config/context.html

Object Relational Mapping (ORM) data access

I nstrument ati onLoadTi meWeaver Wwhich requires a Spring-specific (but very general) VM agent
(spring-agent.jar):

<bean i d="enf" class="org.springfranmework.orm jpa.Local Contai ner EntityManager Fact or yBean">
<property nanme="| oadTi mreWeaver" >
<bean cl ass="org. springframework.instrunent. cl assl oadi ng. | nstrunent ati onLoadTi mreWaver "/ >
</ property>
</ bean>

Note that the virtual machine has to be started with the Spring agent, by supplying the following VM options:

-j avaagent:/path/to/ spring-agent.jar

12.6.1.3.3. Context-wide load-time weaver setup

Since Spring 2.5, a context-wide LoadTi meWeaver can be configured using the cont ext : | oad-t i me- weaver
configuration element. Such a ‘'globa' weaver will be picked up by al JPA
Local Cont ai ner Ent i t yManager Fact or yBeans automatically.

Thisisthe preferred way of setting up aload-time weaver, delivering autodetection of the platform (WebL ogic,
0OC4J, GlassFish, Tomcat, Resin, VM agent) as well as automatic propagation of the weaver to all
weaver-aware beans.

<cont ext:| oad-ti me-weaver/>
<bean i d="enf" class="org.springfranework.orm jpa.Local Contai ner EntityManager Fact or yBean" >

</ bean>

See the section entitled Section 6.8.4.5, “ Spring configuration” for details on how to set up general load-time
weaving, covering Tomcat and the VM agent as well as WebL ogic, OC4J, GlassFish and Resin.

12.6.1.4. Dealing with multiple persistence units

For applications that rely on multiple persistence units locations (stored in various jars in the classpath for
example), Spring offers the Per si st enceUni t Manager t0 act as a central repository and avoid the (potentially
expensive) persistence units discovery process. The default implementation alows multiple locations to be
specified (by default, the classpath is searched for * META- I NF/ per si st ence. xm ' files) which are parsed and
later on retrieved through the persistence unit name:

<bean id="puni' class="org. springfranmework. ormjpa. persistenceunit.Defaul tPersistenceUnitManager">
<property name="persistenceXn Location">
<list>
<val ue>or g/ spri ngf ramewor k/ or nf j pa/ domai n/ per si st ence-nul ti.xm </val ue>
<val ue>cl asspat h: / ny/ package/ **/ cust om per si st ence. xm </ val ue>
<val ue>cl asspat h*: META- | NF/ per si st ence. xml </ val ue>
</list>
</ property>
<property name="dat aSources">
<map>
<entry key="local Dat aSour ce" val ue-ref="1ocal -db"/>
<entry key="renoteDat aSource" val ue-ref="renote-db"/>

</ map>
</ property>
<l-- if no datasource is specified, use this one -->
<property nanme="def aul t Dat aSour ce" ref ="renot eDat aSour ce"/ >
</ bean>

<bean id="enf" class="org. springframework. ormjpa. Local Contai ner EntityManager Fact or yBean">
<property name="persistenceUnitManager" ref="pun/>
</ bean>

Spring Framework (2.5.5) 308

Object Relational Mapping (ORM) data access

Note that the default implementation allows customization of the persistence unit infos before feeding them to
the JPA provider declaratively through its properties (which affect all hosted units) or programmatically,
through the PersistenceunitPostProcessor (which allows persistence unit selection). If no
Persi stenceUni t Manager IS specified, one will be «created and used internaly by
Local Cont ai ner Ent i t yManager Fact or yBean.

12.6.2. JpaTenpl at e and JpaDaoSuppor t

Each JPA-based DAO will then receive aEnti t yManager Fact ory Via dependency injection. Such a DAO can
be coded against plain JPA and work with the given Ent i t yManager Fact or y or through Spring's JpaTenpl at e:

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="entityManager Factory" ref="nyEnf"/>
</ bean>

</ beans>

public class JpaProductDao i npl enents ProductDao {
private JpaTenpl ate jpaTenpl at e;

public void setEntityManager Factory(EntityManagerFactory enf) {
this.jpaTenpl ate = new JpaTenpl ate(enf);
}

public Collection | oadProductsByCategory(final String category) throws DataAccessException {
return (Coll ection) this.jpaTenpl ate. execut e(new JpacCal | back() {
public nject dolndpa(EntityManager en) throws PersistenceException {
Query query = emcreateQuery("from Product as p where p.category = :category");
query. set Paranet er ("cat egory", category);
List result = query.getResultList();
// do sone further processing with the result |ist
return result;

});

The Jpacal | back implementation alows any type of JPA data access. The JpaTenpl ate will ensure that
Enti t yManager S are properly opened and closed and automatically participate in transactions. Moreover, the
JpaTenpl ate properly handles exceptions, making sure resources are cleaned up and the appropriate
transactions rolled back. The template instances are thread-safe and reusable and they can be kept as instance
variable of the enclosing class. Note that JpaTenpl at e offers single-step actions such as find, load, merge, etc
along with alternative convenience methods that can replace one line callback implementations.

Furthermore, Spring provides a convenient JpaDaoSupport base class that provides the
get/ set Enti t yManager Fact ory and get JpaTenpl at e() to be used by subclasses:

public class Product Daol npl extends JpaDaoSupport inplenments ProductDao {

public Collection | oadProductsByCategory(String category) throws DataAccessException {
Map<String, String> parans = new HashMap<String, String>();
par ans. put (“cat egory", category);
return getJpaTenpl ate().fi ndByNanedParans("from Product as p where p.category = :category", parans);

Besides working with Spring's JpaTenpl at e, one can aso code Spring-based DAOs against the JPA, doing
one's own explicit entityManager handling. As also elaborated in the corresponding Hibernate section, the

Spring Framework (2.5.5) 309

Object Relational Mapping (ORM) data access

main advantage of this approach is that your data access code is able to throw checked exceptions.
JpaDaoSupport oOffers a variety of support methods for this scenario, for retrieving and releasing a transaction
Enti t yManager , as well asfor converting exceptions.

JpaTemplate mainly exists as a sibling of JdoTemplate and HibernateTemplate, offering the same style for
people used to it. For newly started projects, consider adopting the native JPA style of coding data access
objects instead, based on a "shared EntityManager" reference obtained through the JPA
@er si st enceCont ext annotation (using Spring's Per si st enceAnnot at i onBeanPost Pr ocessor ; See below for
details.)

12.6.3. Implementing DAOs based on plain JPA

Note

e
While Ent it yManager Fact ory instances are thread-safe, EntityManager instances are not. The
injected JPA EntityManager behave just like an EntityManager fetched from an application
server's INDI environment, as defined by the JPA specification. It will delegate all calls to the
current transactional EntityManager, if any; else, it will fal back to a newly created
Enti t yManager per operation, making it thread-safe.

It is possible to write code against the plain JPA without using any Spring dependencies, using an injected
EntityManager Factory OF EntityManager. Note that Spring can understand @persistenceUnit and
@er si st enceCont ext annotations both at field and method level if a
Per si st enceAnnot at i onBeanPost Processor IS enabled. A corresponding DAO implementation might look
like this:

public class Product Daol npl inplements Product Dao {
private EntityManagerFactory enf;

@er si st enceUni t

public void setEntityManager Factory(EntityManagerFactory enf) {
this.enf = enf;

}

public Collection | oadProductsByCategory(String category) {
EntityManager em = this.enf.createEntityManager();
try {
Query query = emcreateQuery("from Product as p where p.category = ?1");
query. set Paraneter (1, category);
return query.getResultList();

}
finally {
if (em!=null) {
em cl ose();

}

The DAO above has no dependency on Spring and still fits nicely into a Spring application context, just like it
would if coded against Spring's JpaTenpl at e. Moreover, the DAO takes advantage of annotations to require the
injection of the default Ent i t yManager Fact ory:

<beans>

<!-- bean post-processor for JPA annotations -->
<bean cl ass="org. springframework. orm j pa. support. Persi st enceAnnot at i onBeanPost Processor"/ >

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl "/ >

</ beans>

Spring Framework (2.5.5) 310

Object Relational Mapping (ORM) data access

Note: As aternative to defining a Persi st enceAnnot at i onBeanPost Processor explicitly, consider using
Spring 2.5's cont ext : annot at i on-confi g XML element in your application context configuration. This will
automatically register all of Spring's standard post-processors for annotation-based configuration (including
ConmonAnnot at i onBeanPost Processor €fC).

<beans>

<I-- post-processors for all standard config annotations -->
<cont ext : annot ati on- confi g/ >

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl "/ >

</ beans>

The main issue with such a DAO is that it always creates a new Enti t yManager Via the factory. This can be
easily overcome by requesting a transactional Enti t yManager (also called "shared EntityManager”, sinceitisa
shared, thread-safe proxy for the actual transactional EntityManager) to be injected instead of the factory:

public class Product Daol npl inpl enents ProductDao {

@Per si st enceCont ext
private EntityManager em

public Collection | oadProductsByCategory(String category) {
Query query = emcreateQuery("from Product as p where p.category = :category");
query. set Paranet er ("cat egory", category);
return query.getResultList();

}

Note that the @persistenceContext annotation has an optional attribute type, which defaults to
Per si st enceCont ext Type. TRANSACTI ON. This default is what you need to receive a "shared EntityManager"
proxy. The aternative, Persi st enceCont ext Type. EXTENDED, is a completely different affair: This resultsin a
so-called "extended EntityManager”, which is not thread-safe and hence must not be used in a concurrently
accessed component such as a Spring-managed singleton bean. Extended EntityManagers are only supposed to
be used in stateful components that, for example, reside in a session, with the lifecycle of the EntityManager
not tied to a current transaction but rather being completely up to the application.

Method and Field level Injection

Annotations that indicate dependency injections (such as @er si st enceUni t and @er si st enceCont ext)
can be applied on field or methods inside a class, therefore the expression "method/field level injection”.
Field-level annotations concise and easier to use while method-level allow for processing the injected
dependency. In both cases the member visibility (public, protected, private) does not matter.

What about class level annotations?

On the Java EE 5 platform, they are used for dependency declaration and not for resource injection.

The injected Ent i t yManager IS Spring-managed (aware of the ongoing transaction). It is important to note that
even though the new implementation prefers method level injection (of an EntityManager instead of an
Enti t yManager Fact ory) , no change is required in the application context XML due to annotation usage.

The main advantage of this DAO style is that it depends on Java Persistence API; no import of any Spring class
is required. Moreover, as the JPA annotations are understood, the injections are applied automaticaly by the
Spring container. Thisis of course appealing from a non-invasiveness perspective, and might feel more natural
to JPA developers.

Spring Framework (2.5.5) 311

Object Relational Mapping (ORM) data access

12.6.4. Exception Translation

However, the DAO throws the plain Per si st enceExcept i on exception class (which is unchecked, and so does
not have to be declared or caught) but also I 1 | egal Argunent Exception and I | | egal St at eExcept i on, Which
means that callers can only treat exceptions as generally fatal - unless they want to depend on JPA's own
exception structure. Catching specific causes such as an optimistic locking failure is not possible without tying
the caller to the implementation strategy. This tradeoff might be acceptable to applications that are strongly
JPA-based and/or do not need any specia exception treatment. However, Spring offers a solution allowing
exception trandation to be applied transparently through the @eposi t or y annotation:

@Reposi tory
public class Product Daol npl inpl ements ProductDao {

/'l class body here...

<beans>

<!-- Exception translati on bean post processor -->
<bean cl ass="org. spri ngfranmewor k. dao. annot ati on. Persi st enceExcepti onTr ansl ati onPost Processor"/ >

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl "/ >

</ beans>

The postprocessor will automatically look for all exception trandators (implementations of the
Per si st enceExcepti onTransl at or interface) and advise all beans marked with the @eposi t ory annotation so
that the discovered translators can intercept and apply the appropriate translation on the thrown exceptions.

In summary: DAOs can be implemented based on the plain Java Persistence APl and annotations, while still
being able to benefit from Spring-managed transactions, dependency injection, and transparent exception
conversion (if desired) to Spring's custom exception hierarchies.

12.7. Transaction Management

To execute service operations within transactions, you can use Spring's common declarative transaction
facilities. For example:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww. spri ngframework. or g/ scherma/ aop"”
xm ns: tx="http://wwm. spri ngframework. or g/ schema/ t x"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5.
http://ww. springfranework. org/ schema/tx http://ww.springfranework. org/schema/tx/spring-tx-2.5.xsd
http://ww. springframework. or g/ schema/ aop http://ww. springframewor k. or g/ schema/ aop/ spri ng-aop- 2. 5. xsd">

<bean i d="nyTxManager" cl ass="org. springfranework.orm j pa.JpaTransacti onManager" >
<property name="entityManager Factory" ref="nyEnf"/>
</ bean>

<bean i d="nyProduct Servi ce" class="product. Product Servicel npl ">
<property nanme="product Dao" ref="nyProduct Dao"/>
</ bean>

<aop: confi g>
<aop: poi nt cut id="product Servi ceMet hods" expressi on="executi on(* product.ProductService.*(..))"/>
<aop: advi sor advi ce-ref="txAdvi ce" pointcut-ref="product Servi ceMet hods"/ >

</ aop: confi g>

<t x:advi ce id="txAdvi ce" transacti on-nmanager="nmyTxManager" >

Spring Framework (2.5.5) 312

Object Relational Mapping (ORM) data access

<tx:attributes>
<t x: net hod nanme="i ncreasePri ce*" propagati on="REQU RED'/ >
<t x: met hod name="someQ her Busi nessMet hod" propagati on="REQUI RES_NEW />
<t x: net hod nanme="*" propagati on="SUPPORTS" read-only="true"/>
</tx:attributes>
</t x: advi ce>

</ beans>

Spring JPA allows a configured JpaTr ansact i onManager to expose aJPA transaction to JDBC access code that
accesses the same JDBC Dat aSour ce, provided that the registered Jpabi al ect supports retrieval of the
underlying JDBC connection. Out of the box, Spring provides didects for the Toplink, Hibernate and
OpenJPA JPA implementations. See the next section for details on the Jpabi al ect mechanism.

12.8. Jpabi al ect

As an advanced feature JpaTenpl ate, JpaTransact i onManager and subclasses of
Abstract Ent i t yManager Fact or yBean Support a custom Jpabi al ect, to be passed into the "jpaDialect” bean
property. In such a scenario, the DAOs won't receive an Enti t yManager Fact ory reference but rather a full
JpaTenpl ate instance instead (for example, passed into JpaDaoSupport's "jpaTemplate” property). A
JpaDi al ect implementation can enable some advanced features supported by Spring, usualy in a
vendor-specific manner:;

« applying specific transaction semantics (such as custom isolation level or transaction timeout)
* retrieving the transactional JDBC Connect i on (for exposure to JDBC-based DAQS)
» advanced tranglation of Per si st enceExcept i ons t0 Spring Dat aAccessExcept i ons

This is particularly valuable for specia transaction semantics and for advanced trandation of exception. Note
that the default implementation used (Def aul t JpaDi al ect) doesn't provide any specia capabilities and if the
above features are required, the appropriate dialect has to be specified.

See the Jpabi al ect Javadoc for more details of its operations and how they are used within Spring's JPA
support.

Spring Framework (2.5.5) 313

Part llIl. The Web

This part of the reference documentation covers the Spring Framework's support for the presentation tier (and
specifically web-based presentation tiers).

The Spring Framework's own web framework, Spring Web MV C, is covered in the first couple of chapters. A
number of the remaining chapters in this part of the reference documentation are concerned with the Spring
Framework's integration with other web technologies, such as Struts and JSF (to name but two).

This section concludes with coverage of Spring's MV C portlet framework.

Chapter 13, Web MVC framework

Chapter 14, View technologies

Chapter 15, Integrating with other web frameworks

Chapter 16, Portlet MVC Framework

Spring Framework (2.5.5) 314

Chapter 13. Web MVC framework

13.1. Introduction

Spring's Web MV C framework is designed around a Di spat cher Ser vl et that dispatches requests to handlers,
with configurable handler mappings, view resolution, locale and theme resolution as well as support for upload
files. The default handler is a very simple Controller interface, just offering a Model AndVvi ew
handl eRequest (r equest, response) method. This can already be used for application controllers, but you will
prefer the included implementation hierarchy, consisting of, for example AbstractController,
Abst ract CommandCont rol | er and Si npl eFor nCont rol | er . Application controllers will typically be subclasses
of those. Note that you can choose an appropriate base class: if you don't have a form, you don't need a form
controller. Thisisamajor difference to Struts.

Tip

Since Spring 2.5, an annotated controller style is available for Java 5+ users. Thisis a compelling
alternative to implementing traditional Control I er (sub-)classes, allowing for flexible multi-action
handling. See the Section 13.11, “ Annotation-based controller configuration” section for details.

“Open for extension...”

One of the overarching design principlesin Spring Web MV C (and in Spring in general) is the “ Open for
extension, closed for modification” principle.

The reason that this principle is being mentioned here is because a number of methods in the core classes
in Spring Web MV C are marked fi nal . This means of course that you as a developer cannot override
these methods to supply your own behavior... thisis by design and has not been done arbitrarily to annoy.

The book 'Expert Spring Web MV C and Web Flow' by Seth Ladd and others explains this principle and
the reasons for adhering to it in some depth on page 117 (first edition) in the section entitled 'A Look At
Design'.

If you don't have access to the aforementioned book, then the following article may be of interest the next
time you find yourself going “ Gah! Why can't | override this method?’ (if indeed you ever do).

1. Bob Martin, The Open-Closed Principle (PDF)

Note that you cannot add advice to final methods using Spring MV C. This means it won't be possible to
add advice to for example the Abstract Control | er. handl eRequest () method. Refer to Section 6.6.1,
“Understanding AOP proxies’ for more information on AOP proxies and why you cannot add advice to
final methods.

Spring Web MV C alows you to use any object as a command or form object - there is no need to implement a
framework-specific interface or base class. Spring's data binding is highly flexible: for example, it treats type
mismatches as validation errors that can be evaluated by the application, not as system errors. All this means
that you don't need to duplicate your business objects' properties as simple, untyped strings in your form objects
just to be able to handle invalid submissions, or to convert the Strings properly. Instead, it is often preferable to
bind directly to your business objects. This is another major difference to Struts which is built around required

Spring Framework (2.5.5) 315

Web MV C framework

base classes such as Act i on and Act i onForm

Compared to WebWork, Spring has more differentiated object roles. It supports the notion of aControl I er, an
optional command or form object, and a model that gets passed to the view. The model will normally include
the command or form object but also arbitrary reference data; instead, a WebWork Acti on combines all those
rolesinto one single object. WebWork does alow you to use existing business objects as part of your form, but
only by making them bean properties of the respective Acti on class. Finaly, the same Acti on instance that
handles the request is used for evaluation and form population in the view. Thus, reference data needs to be
modeled as bean properties of the Act i on t00. These are (arguably) too many roles for one object.

Spring's view resolution is extremely flexible. A Control | er implementation can even write a view directly to
the response (by returning nul | for the Mbdel AndVi ew). In the normal case, a Mbdel AndVi ew instance consists of
aview name and amodel Map, which contains bean names and corresponding objects (like a command or form,
containing reference data). View name resolution is highly configurable, either via bean names, via a properties
file, or via your own vi ewResol ver implementation. The fact that the model (the M in MV C) is based on the
vap interface alows for the complete abstraction of the view technology. Any renderer can be integrated
directly, whether JSP, Velocity, or any other rendering technology. The model Map is simply transformed into
an appropriate format, such as JSP request attributes or a Vel ocity template model.

13.1.1. Pluggability of other MVC implementations

There are severa reasons why some projects will prefer to use other MVC implementations. Many teams
expect to leverage their existing investment in skills and tools. In addition, there is a large body of knowledge
and experience available for the Struts framework. Thus, if you can live with Struts' architectural flaws, it can
till be aviable choice for the web layer; the same applies to WebWork and other web MV C frameworks.

If you don't want to use Spring's web MV C, but intend to leverage other solutions that Spring offers, you can
integrate the web MV C framework of your choice with Spring easily. Simply start up a Spring root application
context via its Cont ext Loader Li st ener, and access it via its Ser vl et Cont ext attribute (or Spring's respective
helper method) from within a Struts or WebWork action. Note that there aren't any "plug-ins’ involved, so no
dedicated integration is necessary. From the web layer's point of view, you'll simply use Spring as a library,
with the root application context instance as the entry point.

All your registered beans and all of Spring's services can be at your fingertips even without Spring's Web
MV C. Spring doesn't compete with Struts or WebWork in this scenario, it just addresses the many areas that
the pure web MV C frameworks don't, from bean configuration to data access and transaction handling. So you
are able to enrich your application with a Spring middle tier and/or data accesstier, even if you just want to use,
for example, the transaction abstraction with JDBC or Hibernate.

13.1.2. Features of Spring Web MVC

Spring Web Flow
Spring Web Flow (SWF) aims to be the best solution for the management of web application page flow.

SWEF integrates with existing frameworks like Spring MV C, Struts, and JSF, in both serviet and portlet
environments. If you have a business process (or processes) that would benefit from a conversational
model as opposed to a purely request model, then SWF may be the solution.

SWEF alows you to capture logical page flows as self-contained modules that are reusable in different
situations, and as such is idea for building web application modules that guide the user through

Spring Framework (2.5.5) 316

Web MV C framework

controlled navigations that drive business processes.

For more information about SWF, consult the Spring Web Flow website.

Spring's web module provides awealth of unique web support features, including:

e Clear separation of roles - controller, validator, command object, form object, model object,
Di spat cher Servl et , handler mapping, view resolver, etc. Each role can be fulfilled by a specialized object.

« Powerful and straightforward configuration of both framework and application classes as JavaBeans,
including easy referencing across contexts, such as from web controllers to business objects and validators.

« Adaptability, non-intrusiveness. Use whatever controller subclass you need (plain, command, form, wizard,
multi-action, or a custom one) for a given scenario instead of deriving from a single controller for
everything.

» Reusable business code - no need for duplication. Y ou can use existing business objects as command or form
objectsinstead of mirroring them in order to extend a particular framework base class.

« Customizable binding and validation - type mismatches as application-level validation errors that keep the
offending value, localized date and number binding, etc instead of String-only form objects with manual
parsing and conversion to business objects.

» Customizable handler mapping and view resolution - handler mapping and view resolution strategies range
from simple URL-based configuration, to sophisticated, purpose-built resolution strategies. This is more
flexible than some web MV C frameworks which mandate a particular technique.

» Flexible model transfer - model transfer via a nhame/value Map supports easy integration with any view
technology.

» Customizable locale and theme resolution, support for JSPs with or without Spring tag library, support for
JSTL, support for Velocity without the need for extra bridges, etc.

« A simple yet powerful JSP tag library known as the Spring tag library that provides support for features such
as data binding and themes. The custom tags allow for maximum flexibility in terms of markup code. For
information on the tag library descriptor, see the appendix entitled Appendix D, spring.tld

« A JSP form tag library, introduced in Spring 2.0, that makes writing forms in JSP pages much easier. For
information on the tag library descriptor, see the appendix entitled Appendix E, spring-form.tld

» Beanswhose lifecycle is scoped to the current HTTP request or HTTP Sessi on. Thisis not a specific feature
of Spring MV C itself, but rather of the webAppl i cat i onCont ext container(s) that Spring MV C uses. These
bean scopes are described in detail in the section entitled Section 3.4.4, “The other scopes”

13.2. The Di spat cher Ser vl et

Spring's web MV C framework is, like many other web MV C frameworks, request-driven, designed around a
central servlet that dispatches requests to controllers and offers other functionality facilitating the development
of web applications. Spring's Di spat cher Ser vl et however, does more than just that. It is completely integrated
with the Spring 10C container and as such allows you to use every other feature that Spring has.

Spring Framework (2.5.5) 317

http://www.springframework.org/webflow

Web MV C framework

The request processing workflow of the Spring Web MV C bi spat cher Servl et is illustrated in the following
diagram. The pattern-savvy reader will recognize that the Di spat cher Servl et IS an expression of the “Front
Controller” design pattern (this is a pattern that Spring Web MVC shares with many other leading web
frameworks).

Delegate Handle
Incoming request request
request —
Front
z controller
Return Delegate Create
response rendering model
m of response
Return
control Render
response
Servlet engine
(e.g. Tomcat)

The requesting processing workflow in Spring Web MV C (high level)

The Di spat cher Servl et is an actual Servl et (it inherits from the Htt pSer vl et base class), and as such is
declared in theweb. xn of your web application. Requests that you want the Di spat cher Ser vl et to handle will
have to be mapped using a URL mapping in the same web. xni file. Thisis standard J2EE servlet configuration;
an example of such abi spat cher Servl et declaration and mapping can be found below.

<web- app>

<servl et >
<ser vl et - nane>exanpl e</ servl et - name>
<servl et -cl ass>or g. spri ngf ranewor k. web. servl et. Di spat cher Servl et </ servl et - cl ass>
<l oad- on- st art up>1</1| oad- on-start up>

</ servl et >

<servl et - mappi ng>
<servl et - name>exanpl e</ servl et - name>
<url-pattern>*.fornx/url-pattern>

</ servl et - mappi ng>

</ web- app>

In the example above, all requests ending with . f or mwill be handled by the ' exanpl e' Di spat cher Servl et .
This is only the first step in setting up Spring Web MV C... the various beans used by the Spring Web MVC
framework (over and above the Di spat cher Ser vl et itself) now need to be configured.

As detailed in the section entitled Section 3.8, “The Appl i cati onCont ext ”, Appl i cati onCont ext instances in
Spring can be scoped. In the web MVC framework, each DispatcherServiet has its own

Spring Framework (2.5.5) 318

Web MV C framework

WebAppl i cati onCont ext, Which inherits al the beans aready defined in the root webAppl i cati onCont ext .
These inherited beans defined can be overridden in the servlet-specific scope, and new scope-specific beans can
be defined local to a given servlet instance.

DispatcherServiet

(awaiting incoming HttpServletRequests)

WebApplicationContext
(containing controllers, view resolvers,
locale resolvers and
other web-related beans)

HandlerMapping -
Controllers . i
lo==gi| | VWebApplication
ViewResolver Conte xt(s)
(containing middle-tier
services, datasources,
H efcetera)
Context hierarchy in Spring Web MVC
The framework will, on initidlization of a DispatcherServiet, look for a file named

[servl et-nane] -servl et. xni in the WeB- | NF directory of your web application and create the beans defined
there (overriding the definitions of any beans defined with the same name in the global scope).

Consider the following Di spat cher Ser vl et servlet configuration (inthe* web. xm * file.)

<web- app>

<servl et >
<servl et - nane>gol fi ng</ servl et - nane>
<servl et - cl ass>or g. spri ngf ranewor k. web. servl et. Di spat cher Servl et </ servl et - cl ass>
<| oad- on- st artup>1</1| oad-on-start up>

</ servl et >

<servl et - mappi ng>
<servl et - nane>gol fi ng</ servl et - name>
<url-pattern>*.do</url-pattern>

</ servl et - mappi ng>

</ web- app>

With the above servlet configuration in place, you will need to have a file cdled
"/ WEB- | NF/ gol fing-servliet.xm"' in your application; this file will contain al of your Spring Web
MVC-specific components (beans). The exact location of this configuration file can be changed via a servlet
initialization parameter (see below for details).

Spring Framework (2.5.5) 319

Web MV C framework

The webAppl i cati onCont ext IS an extension of the plain Appl i cati onCont ext that has some extra features
necessary for web applications. It differs from a normal Appl i cati onCont ext in that it is capable of resolving
themes (see Section 13.7, “Using themes’), and that it knows which servlet it is associated with (by having a
link to the Servl et Cont ext). The WebAppl i cati onContext iS bound in the Servl et Cont ext, and by using
static methods on the Request Cont ext Uti | s class you can always lookup the WebAppl i cat i onCont ext in case
you need access to it.

The Spring bi spat cher Ser vl et has a couple of special beansit usesin order to be able to process requests and
render the appropriate views. These beans are included in the Spring framework and can be configured in the
WebAppl i cat i onCont ext , just as any other bean would be configured. Each of those beans is described in more
detail below. Right now, well just mention them, just to let you know they exist and to enable us to go on
talking about the Di spat cher Servl et . For most of the beans, sensible defaults are provided so you don't
(initially) have to worry about configuring them.

Table 13.1. Special beansin the wbAppl i cat i onCont ext

Bean type Explanation
Controllers Controllers are the components that form the' ¢ part of the MV C.

Handler mappings Handler mappings handle the execution of a list of pre- and post-processors and
controllers that will be executed if they match certain criteria (for instance a matching
URL specified with the controller)

View resolvers View resolvers are components capable of resolving view namesto views

Localeresolver A locale resolver is a component capable of resolving the locale a client is using, in
order to be able to offer internationalized views

Theme resolver A theme resolver is capable of resolving themes your web application can use, for
example, to offer personalized layouts

multipart file. A multipart file resolver offers the functionality to process file uploads from HTML

resolver forms

Handler exception Handler exception resolvers offer functionality to map exceptions to views or
resolver(s) implement other more complex exception handling code

When a Di spat cher Servl et isset up for use and aregquest comesin for that specific Di spat cher Servl et , said
Di spat cher Servl et starts processing the request. The list below describes the complete process a request goes
through when handled by abi spat cher Ser vl et :

1. The webApplicationContext is searched for and bound in the request as an attribute in order for the
controller and other elements in the process to use. It is bound by default under the key
Di spat cher Servl et . WEB_APPL| CATI ON_CONTEXT_ATTRI BUTE.

2. The locale resolver is bound to the request to let elements in the process resolve the locale to use when
processing the request (rendering the view, preparing data, etc.) If you don't use the resolver, it won't affect
anything, so if you don't need locale resolving, you don't have to useit.

3. The theme resolver is bound to the request to let elements such as views determine which theme to use. The
theme resolver does not affect anything if you don't useit, so if you don't need themes you can just ignoreit.

4. If amultipart resolver is specified, the request is inspected for multiparts; if multiparts are found, the request

Spring Framework (2.5.5) 320

Web MV C framework

iswrapped inamul ti part Ht t pSer vl et Request for further processing by other elements in the process. (See
the section entitled Section 13.8.2, “Using the mul ti part Resol ver ” for further information about multipart
handling).

5. An appropriate handler is searched for. If a handler isfound, the execution chain associated with the handler
(preprocessors, postprocessors, and controllers) will be executed in order to prepare amodel (for rendering).

6. If a model is returned, the view is rendered. If no model is returned (which could be due to a pre- or
postprocessor intercepting the request, for example, for security reasons), no view is rendered, since the
regquest could already have been fulfilled.

Exceptions that are thrown during processing of the request get picked up by any of the handler exception
resolvers that are declared in the webAppl i cati onContext . Using these exception resolvers alows you to
define custom behaviorsin case such exceptions get thrown.

The Spring Di spat cher Servl et also has support for returning the last-modification-date, as specified by the
Servlet API. The process of determining the last modification date for a specific request is straightforward: the
Di spat cher Servl et Will first lookup an appropriate handler mapping and test if the handler that is found
implements the interface Last Modi fi ed interface. If so, the value of the | ong get Last Modi fi ed(request)
method of the Last Modi fi ed interface is returned to the client.

You can customize Spring's Di spat cher Servl et by adding context parameters in the web. xn file or servlet
initialization parameters. The possibilities are listed below.

Table 13.2. b spat cher Ser vl et initialization parameters

Par ameter Explanation

cont ext C ass Class that implements WebAppl i cat i onCont ext , which will be used to instantiate the
context used by this sevlet. If this parameter isnt specified, the
Xnl WebAppl i cati onCont ext Will be used.

cont ext Conf i gLocat i Biring which is passed to the context instance (specified by cont ext d ass) to indicate