MPQC
2.3.1
|
00001 // 00002 // mbpt.h 00003 // 00004 // Copyright (C) 1996 Limit Point Systems, Inc. 00005 // 00006 // Author: Ida Nielsen <ibniels@kemi.aau.dk> 00007 // Maintainer: LPS 00008 // 00009 // This file is part of the SC Toolkit. 00010 // 00011 // The SC Toolkit is free software; you can redistribute it and/or modify 00012 // it under the terms of the GNU Library General Public License as published by 00013 // the Free Software Foundation; either version 2, or (at your option) 00014 // any later version. 00015 // 00016 // The SC Toolkit is distributed in the hope that it will be useful, 00017 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00018 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00019 // GNU Library General Public License for more details. 00020 // 00021 // You should have received a copy of the GNU Library General Public License 00022 // along with the SC Toolkit; see the file COPYING.LIB. If not, write to 00023 // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 00024 // 00025 // The U.S. Government is granted a limited license as per AL 91-7. 00026 // 00027 00028 #ifndef _chemistry_qc_mbpt_mbpt_h 00029 #define _chemistry_qc_mbpt_mbpt_h 00030 00031 #ifdef __GNUC__ 00032 #pragma interface 00033 #endif 00034 00035 #include <util/group/memory.h> 00036 #include <util/group/message.h> 00037 #include <util/group/thread.h> 00038 #include <chemistry/qc/basis/obint.h> 00039 #include <chemistry/qc/basis/tbint.h> 00040 #include <chemistry/qc/scf/scf.h> 00041 00042 namespace sc { 00043 00044 // ////////////////////////////////////////////////////////////////////////// 00045 00048 class MBPT2: public Wavefunction { 00049 protected: 00050 #define ref_to_mp2_acc 100.0 00051 00052 Ref<SCF> reference_; 00053 Ref<MemoryGrp> mem; 00054 int nfzc, nfzv; 00055 size_t mem_alloc; 00056 00057 double cphf_epsilon_; 00058 int eliminate_in_gmat_; 00059 const double *intbuf_; 00060 Ref<TwoBodyInt> tbint_; 00061 Ref<TwoBodyInt> *tbints_; 00062 Ref<TwoBodyDerivInt> *tbintder_; 00063 int nbasis; 00064 int noso; 00065 Ref<MessageGrp> msg_; 00066 int nvir, nocc, nsocc; 00067 00068 Ref<ThreadGrp> thr_; 00069 00070 // use a dynamic load balance algorithm if possible if true 00071 // (will not work if messagegrp not thread safe and 00072 // memorygrp needs catchup to work) 00073 int dynamic_; 00074 00075 // control how frequently progress is printed 00076 double print_percent_; 00077 00078 // The maximum number of orbitals in a pass. 00079 int max_norb_; 00080 00081 // the irreps of the orbitals and the offset within the irrep 00082 int *symorb_irrep_; 00083 int *symorb_num_; 00084 00085 char *method_; 00086 char *algorithm_; 00087 // if do_d1_ is true, D1(MP2) will be computed even if the gradient is not 00088 int do_d1_; 00089 // if do_d2_ is true, D2(MP1) will be computed 00090 int do_d2_; 00091 00092 int nfuncmax; 00093 00094 double hf_energy_; 00095 RefSCVector hf_gradient_; 00096 00097 double restart_ecorr_; 00098 int restart_orbital_v1_; 00099 int restart_orbital_memgrp_; 00100 00101 protected: 00102 void init_variables(); 00103 00104 // implement the Compute::compute() function 00105 void compute(); 00106 00107 // Fill in the eigenvectors and eigenvalues (Guest & Saunders general 00108 // form is used for the Fock matrix in the open shell case). 00109 void eigen(RefDiagSCMatrix &vals, RefSCMatrix &vecs, 00110 RefDiagSCMatrix &occs); 00111 00112 // calculate the opt2 energy using algorithm v1 00113 void compute_hsos_v1(); 00114 00115 // calculate the opt2 energy using algorithm v2 00116 distsize_t compute_v2_memory(int ni, 00117 int nfuncmax, int nbfme, int nshell, 00118 int ndocc, int nsocc, int nvir, int nproc); 00119 void compute_hsos_v2(); 00120 00121 // calculate the opt2 energy using the load balanced version of v2 00122 void compute_hsos_v2_lb(); 00123 00124 // calculate the closed shell mp2 energy and gradient 00125 int compute_cs_batchsize(size_t mem_static, int nocc_act); 00126 // distsize_t is used to allow memory requirements to be 00127 // estimated by starting the calculation on a single processor 00128 distsize_t compute_cs_dynamic_memory(int ni, int nocc_act); 00129 int make_cs_gmat(RefSymmSCMatrix& Gmat, double *DPmat); 00130 int make_cs_gmat_new(RefSymmSCMatrix& Gmat, const RefSymmSCMatrix& DPmat); 00131 void form_max_dens(double *DPmat, signed char *maxp); 00132 int init_cs_gmat(); 00133 void done_cs_gmat(); 00134 int make_g_d_nor(RefSymmSCMatrix& Gmat, 00135 double *DPmat, const double *mgdbuff); 00136 void cs_cphf(double **scf_vector, 00137 double *Laj, double *eigval, RefSCMatrix& P2aj); 00138 void s2pdm_contrib(const double *intderbuf, double *PHF, 00139 double *P2AO, double **hf_ginter, double **ginter); 00140 void hcore_cs_grad(double *PHF, double *PMP2, 00141 double **hf_ginter, double **ginter); 00142 void overlap_cs_grad(double *WHF, double *WMP2, 00143 double **hf_ginter, double **ginter); 00144 void compute_cs_grad(); 00145 public: 00146 MBPT2(StateIn&); 00230 MBPT2(const Ref<KeyVal>&); 00231 ~MBPT2(); 00232 00233 void save_data_state(StateOut&); 00234 00235 Ref<SCF> ref() { return reference_; } 00236 double ref_energy(); 00237 double corr_energy(); 00238 RefSCVector ref_energy_gradient(); 00239 RefSCVector corr_energy_gradient(); 00240 00241 int nelectron(); 00242 00243 int nfzcore() const { return nfzc; }; 00244 int nfzvirt() const { return nfzv; }; 00245 00246 RefSymmSCMatrix density(); 00247 int spin_polarized(); 00248 00249 int gradient_implemented() const; 00250 int value_implemented() const; 00251 00252 void symmetry_changed(); 00253 00254 // override compute's obsolete so we can call the reference's obsolete 00255 void obsolete(); 00256 00257 void print(std::ostream&o=ExEnv::out0()) const; 00258 }; 00259 00260 } 00261 00262 #endif 00263 00264 // Local Variables: 00265 // mode: c++ 00266 // c-file-style: "CLJ" 00267 // End: