
OS Mon

version 2.0

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 OS Mon Reference Manual 1

1.1 os mon . 4

1.2 cpu sup . 6

1.3 disksup . 10

1.4 memsup . 13

1.5 nteventlog . 17

1.6 os mon mib . 19

1.7 os sup . 20

iiiOS Mon

iv OS Mon

OS Mon Reference Manual

Short Summaries

� Application os mon [page 4] – OS Monitoring Application

� Erlang Module cpu sup [page 6] – A CPU Load and CPU Utilization Supervisor
Process

� Erlang Module disksup [page 10] – A Disk Supervisor Process

� Erlang Module memsup [page 13] – A Memory Supervisor Process

� Erlang Module nteventlog [page 17] – Interface to Windows Event Log

� Erlang Module os mon mib [page 19] – Loading and Unloading of
OTP-OS-MON-MIB

� Erlang Module os sup [page 20] – Interface to OS System Messages

os mon

No functions are exported.

cpu sup

The following functions are exported:

� nprocs() -> UnixProcesses | ferror, Reasong
[page 7] Get the number of UNIX processes running on this host

� avg1() -> SystemLoad | ferror, Reasong
[page 7] Get the system load average for the last minute

� avg5() -> SystemLoad | ferror, Reasong
[page 7] Get the system load average for the last five minutes

� avg15() -> SystemLoad | ferror, Reasong
[page 7] Get the system load average for the last fifteen minutes

� util() -> CpuUtil | ferror, Reasong
[page 7] Get the CPU utilization

� util(Opts) -> UtilSpec | ferror, Reasong
[page 8] Get the CPU utilization

1OS Mon

OS Mon Reference Manual

disksup

The following functions are exported:

� get disk data() -> [DiskData]
[page 11] Get data for the disks in the system

� get check interval() -> MS
[page 11] Get time interval, in milliseconds, for the periodic disk space check

� set check interval(Minutes) -> ok
[page 11] Set time interval, in minutes, for the periodic disk space check

� get almost full threshold() -> Percent
[page 11] Get threshold, in percent, for disk space utilization

� set almost full threshold(Float) -> ok
[page 11] Set threshold, as percentage represented by a float, for disk space
utilization

memsup

The following functions are exported:

� get memory data() -> fTotal,Allocated,Worstg
[page 14] Get data for the memory in the system

� get system memory data() -> MemDataList
[page 15] Get system dependent memory data

� get check interval() -> MS
[page 15] Get time interval, in milliseconds, for the periodic memory check

� set check interval(Minutes) -> ok
[page 15] Set time interval, in minutes, for the periodic memory check

� get procmem high watermark() -> int()
[page 15] Get threshold, in percent, for process memory allocation

� set procmem high watermark(Float) -> ok
[page 16] Set threshold, as percentage represented by a float, for process memory
allocation

� get sysmem high watermark() -> int()
[page 16] Get threshold, in percent, for system memory allocation

� set sysmem high watermark(Float) -> ok
[page 16] Set threshold, given as a float, for system memory allocation

� get helper timeout() -> Seconds
[page 16] Get the timeout value, in seconds, for memory checks

� set helper timeout(Seconds) -> ok
[page 16] Set the timeout value, in seconds, for memory checks

2 OS Mon

OS Mon Reference Manual

nteventlog

The following functions are exported:

� start(Identifier, MFA) -> Result
[page 17] Start the NT eventlog server

� start link(Identifier, MFA) -> Result
[page 17] Start the NT eventlog server

� stop() -> stopped
[page 18] Stop the NT eventlog server

os mon mib

The following functions are exported:

� load(Agent) -> ok | ferror, Reasong
[page 19] Load the OTP-OS-MON-MIB

� unload(Agent) -> ok | ferror, Reasong
[page 19] Unload the OTP-OS-MON-MIB

os sup

The following functions are exported:

� enable() -> ok | ferror, Resg
[page 21] Enable the service (Solaris only)

� enable(Dir, Conf) -> ok | ferror, Errorg
[page 21] Enable the service (Solaris only)

� disable() -> ok | ferror, Resg
[page 22] Disable the service (Solaris only)

� disable(Dir, Conf) -> ok | ferror, Errorg
[page 22] Disable the service (Solaris only)

3OS Mon

os mon OS Mon Reference Manual

os mon
Application

The operating system monitor, OS Mon, provides the following services:

� cpu sup [page 6] CPU load and utilization supervision (Unix)

� disksup [page 10] Disk supervision(Unix, Windows)

� memsup [page 13] Memory supervision (Unix, Windows, VxWorks)

� os sup [page 20] Interface to OS system messages (Solaris, Windows)

To simplify usage of OS Mon on distributed Erlang systems, it is not considered an error
trying to use a service at a node where it is not available (either because OS Mon is not
running, or because the service is not available for that OS, or because the service is not
started). Instead, a warning message is issued via error logger and a dummy value is
returned, which one is specified in the man pages for the respective services.

Configuration

When OS Mon is started, by default all services available for the OS, except os sup, are
automatically started. This configuration can be changed using the following application
configuration parameters:

start cpu sup = bool() Specifies if cpu sup should be started. Defaults to true.

start disksup = bool() Specifies if disksup should be started. Defaults to true.

start memsup = bool() Specifies if memsup should be started. Defaults to true.

start os sup = bool() Specifies if os sup should be started. Defaults to false.

Configuration parameters effecting the different OS Mon services are described in the
respective man pages.

See [config(4)] for information about how to change the value of configuration
parameters.

4 OS Mon

OS Mon Reference Manual os mon

SNMP MIBs

The following MIBs are defined in OS Mon:

OTP-OS-MON-MIB This MIB contains objects for instrumentation of disk, memory
and CPU usage of the nodes in the system.

The MIB is stored in the mibs directory. It is defined in SNMPv2 SMI syntax. An
SNMPv1 version of the MIB is delivered in the mibs/v1 directory.

The compiled MIB is located under priv/mibs, and the generated .hrl file under the
include directory. To compile a MIB that IMPORTS the OTP-OS-MON-MIB, give the
option fil, ["os mon/priv/mibs"]g to the MIB compiler.

If the MIB should be used in a system, it should be loaded into an agent with a call to
os mon mib:load(Agent), where Agent is the pid or registered name of an SNMP
agent. Use os mon mib:unload(Agent) to unload the MIB. The implementation of this
MIB uses Mnesia to store a cache with data needed, which implicates that Mnesia must
be up and running. The MIB also use functions defined for the OTP-MIB, thus that MIB
must be loaded as well.

See Also

cpu sup(3) [page 6], disksup(3) [page 10], memsup(3) [page 13], os sup(3) [page 20],
nteventlog(3) [page 17], [snmp(3)].

5OS Mon

cpu sup OS Mon Reference Manual

cpu sup
Erlang Module

cpu sup is a process which supervises the CPU load and CPU utilization. It is part of
the OS Mon application, see os mon(6) [page 4]. Available for Unix, although CPU
utilization values (util/0,1) are only available for Solaris and Linux.

The load values are proportional to how long time a runnable Unix process has to spend
in the run queue before it is scheduled. Accordingly, higher values mean more system
load. The returned value divided by 256 produces the figure displayed by rup and top.
What is displayed as 2.00 in rup, is displayed as load up to the second mark in xload.

For example, rup displays a load of 128 as 0.50, and 512 as 2.00.

If the user wants to view load values as percentage of machine capacity, then this way of
measuring presents a problem, because the load values are not restricted to a fixed
interval. In this case, the following simple mathematical transformation can produce the
load value as a percentage:

PercentLoad = 100 * (1 - D/(D + Load))

D determines which load value should be associated with which percentage. Choosing D
= 50 means that 128 is 60% load, 256 is 80%, 512 is 90%, and so on.

Another way of measuring system load is to divide the number of busy CPU cycles by
the total number of CPU cycles. This produces values in the 0-100 range immediately.
However, this method hides the fact that a machine can be more or less saturated. CPU
utilization is therefore a better name than system load for this measure.

A server which receives just enough requests to never become idle will score a CPU
utilization of 100%. If the server receives 50% more requests, it will still scores 100%.
When the system load is calculated with the percentage formula shown previously, the
load will increase from 80% to 87%.

The avg1/0, avg5/0, and avg15/0 functions can be used for retrieving system load
values, and the util/0 and util/1 functions can be used for retrieving CPU utilization
values.

When run on Linux, cpu sup assumes that the /proc file system is present and
accessible by cpu sup. If it is not, cpu sup will terminate.

6 OS Mon

OS Mon Reference Manual cpu sup

Exports

nprocs() -> UnixProcesses | ferror, Reasong

Types:

� UnixProcesses = int()
� Reason = term()

Returns the number of UNIX processes running on this machine. This is a crude way of
measuring the system load, but it may be of interest in some cases.

Returns 0 if cpu sup is not available.

avg1() -> SystemLoad | ferror, Reasong

Types:

� SystemLoad = int()
� Reason = term()

Returns the average system load in the last minute, as described above. 0 represents no
load, 256 represents the load reported as 1.00 by rup.

Returns 0 if cpu sup is not available.

avg5() -> SystemLoad | ferror, Reasong

Types:

� SystemLoad = int()
� Reason = term()

Returns the average system load in the last five minutes, as described above. 0
represents no load, 256 represents the load reported as 1.00 by rup.

Returns 0 if cpu sup is not available.

avg15() -> SystemLoad | ferror, Reasong

Types:

� SystemLoad = int()
� Reason = term()

Returns the average system load in the last 15 minutes, as described above. 0 represents
no load, 256 represents the load reported as 1.00 by rup.

Returns 0 if cpu sup is not available.

util() -> CpuUtil | ferror, Reasong

Types:

� CpuUtil = float()
� Reason = term()

7OS Mon

cpu sup OS Mon Reference Manual

Returns CPU utilization since the last call to util/0 or util/1 by the calling process.

Note:
The returned value of the first call to util/0 or util/1 by a process will on most
systems be the CPU utilization since system boot, but this is not guaranteed and the
value should therefore be regarded as garbage. This also applies to the first call after a
restart of cpu sup.

The CPU utilization is defined as the sum of the percentage shares of the CPU cycles
spent in all busy processor states (see util/1 below) in average on all CPUs.

Returns 0 if cpu sup is not available.

util(Opts) -> UtilSpec | ferror, Reasong

Types:

� Opts = [detailed | per cpu]
� UtilSpec = UtilDesc | [UtilDesc]
� UtilDesc = fCpus, Busy, NonBusy, Miscg
� Cpus = all | int() | [int()]()
� Busy = NonBusy = fState, Shareg | Share
� State = user | nice user | kernel
� | wait | idle | atom()
� Share = float()
� Misc = []
� Reason = term()

Returns CPU utilization since the last call to util/0 or util/1 by the calling process, in
more detail than util/0.

Note:
The returned value of the first call to util/0 or util/1 by a process will on most
systems be the CPU utilization since system boot, but this is not guaranteed and the
value should therefore be regarded as garbage. This also applies to the first call after a
restart of cpu sup.

Currently recognized options:

detailed The returned UtilDesc(s) will be even more detailed.

per cpu Each CPU will be specified separately (assuming this information can be
retrieved from the operating system), that is, a list with one UtilDesc per CPU
will be returned.

Description of UtilDesc = fCpus, Busy, NonBusy, Miscg:

8 OS Mon

OS Mon Reference Manual cpu sup

Cpus If the detailed and/or per cpu option is given, this is the CPU number, or a list
of the CPU numbers.
If not, this is the atom all which implies that the UtilDesc contains information
about all CPUs.

Busy If the detailed option is given, this is a list of fState, Shareg tuples, where
each tuple contains information about a processor state that has been identified as
a busy processor state (see below). The atom State is the name of the state, and
the float Share represents the percentage share of the CPU cycles spent in this
state since the last call to util/0 or util/1.
If not, this is the sum of the percentage shares of the CPU cycles spent in all states
identified as busy.
If the per cpu is not given, the value(s) presented are the average of all CPUs.

NonBusy Similar to Busy, but for processor states that have been identified as non-busy
(see below).

Misc Currently unused; reserved for future use.

Currently these processor states are identified as busy:

user Executing code in user mode.

nice user Executing code in low priority (nice) user mode. This state is currently only
identified on Linux.

kernel Executing code in kernel mode.

Currently these processor states are identified as non-busy:

wait Waiting. This state is currently only identified on Solaris.

idle Idle.

Note:
Identified processor states may be different on different operating systems and may
change between different versions of cpu sup on the same operating system. The
sum of the percentage shares of the CPU cycles spent in all busy and all non-busy
processor states will always add up to 100%, though.

Returns fall,0,0,[]g if cpu sup is not available.

See Also

os mon(3) [page 4]

9OS Mon

disksup OS Mon Reference Manual

disksup
Erlang Module

disksup is a process which supervises the available disk space in the system. It is part of
the OS Mon application, see os mon(6) [page 4]. Available for Unix and Windows.

Periodically checks the disks. For each disk or partition which uses more than a certain
amount of the available space, the alarm ffdisk almost full, MountedOng, []g is
set.

On Unix All (locally) mounted disks are checked, including the swap disk if it is
present.

On WIN32 All logical drives of type “FIXED DISK” are checked.

Alarms are reported to the SASL alarm handler, see [alarm handler(3)]. To set an alarm,
alarm handler:set alarm(Alarm) is called where Alarm is the alarm specified above.

The alarms are cleared automatically when the alarm cause is no longer valid.

Configuration

The following configuration parameters can be used to change the default values for
time interval and threshold:

disk space check interval = int()>0 The time interval, in minutes, for the
periodic disk space check. The default is 30 minutes.

disk almost full threshold = float() The threshold, as percentage of total disk
space, for how much disk can be utilized before the disk almost full alarm is
set. The default is 0.80 (80%).

See [config(4)] for information about how to change the value of configuration
parameters.

10 OS Mon

OS Mon Reference Manual disksup

Exports

get disk data() -> [DiskData]

Types:

� DiskData = fId, KByte, Capacityg
� Id = string()
� KByte = int()
� Capacity = int()

Returns the result of the latest disk check. Id is a string that identifies the disk or
partition. KByte is the total size of the disk or partition in kbytes. Capacity is the
percentage of disk space used.

The function is asynchronous in the sense that it does not invoke a disk check, but
returns the latest available value.

Returns [f"none",0,0g] if disksup is not available.

get check interval() -> MS

Types:

� MS = int()

Returns the time interval, in milliseconds, for the periodic disk space check.

set check interval(Minutes) -> ok

Types:

� Minutes = int()>=1

Changes the time interval, given in minutes, for the periodic disk space check.

The change will take effect after the next disk space check and is non-persistant. That
is, in case of a process restart, this value is forgotten and the default value will be used.
See Configuration [page 10] above.

get almost full threshold() -> Percent

Types:

� Percent = int()

Returns the threshold, in percent, for disk space utilization.

set almost full threshold(Float) -> ok

Types:

� Float = float(), 0=<Float=<1

Changes the threshold, given as a float, for disk space utilization.

The change will take effect during the next disk space check and is non-persistant. That
is, in case of a process restart, this value is forgotten and the default value will be used.
See Configuration [page 10] above.

11OS Mon

disksup OS Mon Reference Manual

See Also

[alarm handler(3)], os mon(3) [page 4]

12 OS Mon

OS Mon Reference Manual memsup

memsup
Erlang Module

memsup is a process which supervises the memory usage for the system and for
individual processes. It is part of the OS Mon application, see os mon(6) [page 4].
Available for Unix, Windows and VxWorks.

Periodically performs a memory check:

� If more than a certain amount of available system memory is allocated, as reported
by the underlying operating system, the alarm fsystem memory high watermark,
[]g is set.

� If any Erlang process Pid in the system has allocated more than a certain amount of
total system memory, the alarm fprocess memory high watermark, Pidg is set.

Alarms are reported to the SASL alarm handler, see [alarm handler(3)]. To set an
alarm, alarm handler:set alarm(Alarm) is called where Alarm is either of the alarms
specified above.

The alarms are cleared automatically when the alarm cause is no longer valid.

The function get memory data() [page 14] can be used to retrieve the result of the
latest periodic memory check.

There is also a interface to system dependent memory data, get system memory data()
[page 15]. The result is highly dependent on the underlying operating system and the
interface is targeted primarily for systems without virtual memory (e.g. VxWorks). The
output on other systems is however still valid, although sparse.

A call to get system memory data/0 is more costly than a call to get memory data/0
as data is collected synchronously when this function is called.

The total system memory reported under UNIX is the number of physical pages of
memory times the page size, and the available memory is the number of available
physical pages times the page size. This is a reasonable measure as swapping should be
avoided anyway, but the task of defining total memory and available memory is difficult
because of virtual memory and swapping.

13OS Mon

memsup OS Mon Reference Manual

Configuration

The following configuration parameters can be used to change the default values for
time intervals and thresholds:

memory check interval = int()>0 The time interval, in minutes, for the periodic
memory check. The default is one minute.

system memory high watermark = float() The threshold, as percentage of system
memory, for how much system memory can be allocated before the corresponding
alarm is set. The default is 0.80 (80%).

process memory high watermark = float() The threshold, as percentage of system
memory, for how much system memory can be allocated by one Erlang process
before the corresponding alarm is set. The default is 0.05 (5%).

memsup helper timeout = int()>0 A timeout, in seconds, for how long the memsup
process should wait for a result from a memory check. If the timeout expires, a
warning message "OS MON (memsup) timeout" is issued via error loger and any
pending, synchrous client calls will return a dummy value. Normally, this situation
should not occur. There have been cases on Linux, however, where the pseudo file
from which system data is read is temporarily unavailable when the system is
heavily loaded.
The default is 30 seconds.

memsup system only = bool() Specifies whether the memsup process should only
check system memory usage (true) or not. The default is false, meaning that
information regarding both system memory usage and Erlang process memory
usage is collected.
It is recommended to set this parameter to false on systems with many
concurrent processes, as each process memory check makes a traversal of the entire
list of processes.

See [config(4)] for information about how to change the value of configuration
parameters.

Exports

get memory data() -> fTotal,Allocated,Worstg

Types:

� Total = Allocated = int()
� Worst = fPid, PidAllocatedg | undefined
� Pid = pid()
� PidAllocated = int()

Returns the result of the latest memory check, where Total is the total memory size
and Allocated the allocated memory size, in bytes.

Worst is the pid and number of allocated bytes of the largest Erlang process on the
node. If memsup should not collect process data, that is if the configuration parameter
memsup system only was set to true, Worst is undefined.

The function is normally asynchronous in the sense that it does not invoke a memory
check, but returns the latest available value. The one exception if is the function is

14 OS Mon

OS Mon Reference Manual memsup

called before a first memory check is finished, in which case it does not return a value
until the memory check is finished.

Returns f0,0,fpid(),0gg or f0,0,undefinedg if memsup is not available, or if all
memory checks so far have timed out.

get system memory data() -> MemDataList

Types:

� MemDataList = [fTag, Sizeg]
� Tag = atom()
� Size = int()

Invokes a memory check and returns the resulting, system dependent, data as a list of
tagged tuples, where Tag can be one of the following:

total memory The total amount of memory available to the Erlang emulator, allocated
and free. May or may not be equal to the amount of memory configured in the
system.

free memory The amount of free memory available to the Erlang emulator for
allocation.

system total memory The amount of memory available to the whole operating system.
This may well be equal to total memory but not necessarily.

largest free The size of the largest contiguous free memory block available to the
Erlang emulator.

number of free The number of free blocks available to the Erlang runtime system.
This gives a fair indication of how fragmented the memory is.

All memory sizes are presented as number of bytes.

The largest free and number of free tags are currently only returned on a VxWorks
system.

Returns the empty list [] if memsup is not available, or if the memory check times out.

get check interval() -> MS

Types:

� MS = int()

Returns the time interval, in milliseconds, for the periodic memory check.

set check interval(Minutes) -> ok

Types:

� Minutes = int()>0

Changes the time interval, given in minutes, for the periodic memory check.

The change will take effect after the next memory check and is non-persistant. That is,
in case of a process restart, this value is forgotten and the default value will be used. See
Configuration [page 14] above.

get procmem high watermark() -> int()

Returns the threshold, in percent, for process memory allocation.

15OS Mon

memsup OS Mon Reference Manual

set procmem high watermark(Float) -> ok

Changes the threshold, given as a float, for process memory allocation.

The change will take effect during the next periodic memory check and is
non-persistant. That is, in case of a process restart, this value is forgotten and the default
value will be used. See Configuration [page 14] above.

get sysmem high watermark() -> int()

Returns the threshold, in percent, for system memory allocation.

set sysmem high watermark(Float) -> ok

Changes the threshold, given as a float, for system memory allocation.

The change will take effect during the next periodic memory check and is
non-persistant. That is, in case of a process restart, this value is forgotten and the default
value will be used. See Configuration [page 14] above.

get helper timeout() -> Seconds

Types:

� Seconds = int()

Returns the timeout value, in seconds, for memory checks.

set helper timeout(Seconds) -> ok

Types:

� Seconds = int() (>= 1)

Changes the timeout value, given in seconds, for memory checks.

The change will take effect for the next memory check and is non-persistant. That is, in
the case of a process restart, this value is forgotten and the default value will be used.
See Configuration [page 14] above.

See Also

[alarm handler(3)], os mon(3) [page 4]

16 OS Mon

OS Mon Reference Manual nteventlog

nteventlog
Erlang Module

nteventlog provides a generic interface to the Windows event log. It is part of the
OS Mon application, see os mon(6) [page 4]. Available for Windows versions where
the event log is available. That is, not for Windows 98 and some other older Windows
versions, but for most (all?) newer Windows versions.

This module is used as the Windows backend for os sup, see os sup(3) [page 20].

To retain backwards compatibility, this module can also be used to start a standalone
nteventlog process which is not part of the OS Mon supervision tree. When starting
such a process, the user has to supply an identifier as well as a callback function to
handle the messages.

The identifier, an arbitrary string, should be reused whenever the same application (or
node) wants to start the process. nteventlog is informed about all events that have
arrived to the eventlog since the last accepted message for the current identifier. As long
as the same identifier is used, the same eventlog record will not be sent to nteventlog
more than once (with the exception of when graved system failures arise, in which case
the last records written before the failure may be sent to Erlang again after reboot).

If the event log is configured to wrap around automatically, records that have arrived to
the log and been overwritten when nteventlog was not running are lost. It however
detects this state and loses no records that are not overwritten.

The callback function works as described in os sup(3).

Exports

start(Identifier, MFA) -> Result

start link(Identifier, MFA) -> Result

Types:

� Identifier = string() | atom()
� MFA = fMod, Func, Argsg
� Mod = Func = atom()
� Args = [term()]
� Result = fok, Pidg | ferror, falready started, Pidgg
� Pid = pid()

17OS Mon

nteventlog OS Mon Reference Manual

This function starts the standalone nteventlog process and, if start link/2 is used,
links to it.

Identifier is an identifier as described above.

MFA is the supplied callback function. When nteventlog receives information about a
new event, this function will be called as apply(Mod, Func, [Event|Args]) where
Event is a tuple

stop() -> stopped

Types:

� Result = stopped

Stops nteventlog. Usually only used during development. The server does not have to
be shut down gracefully to maintain its state.

See Also

os mon(6) [page 4], os sup(3) [page 20]

Windows NT documentation

18 OS Mon

OS Mon Reference Manual os mon mib

os mon mib
Erlang Module

Functions for loading and unloading the OTP-OS-MON-MIB into/from an SNMP
agent. The instrumentation of the OTP-OS-MON-MIB uses Mnesia, hence Mnesia
must be started prior to loading the OTP-OS-MON-MIB.

Exports

load(Agent) -> ok | ferror, Reasong

Types:

� Agent = pid() | atom()
� Reason = term()

Loads the OTP-OS-MON-MIB.

unload(Agent) -> ok | ferror, Reasong

Types:

� Agent = pid() | atom()
� Reason = term()

Unloads the OTP-OS-MON-MIB.

See Also

os mon(6) [page 4], [snmp(3)]

19OS Mon

os sup OS Mon Reference Manual

os sup
Erlang Module

os sup is a process providing a message passing service from the operating system to the
error logger in the Erlang runtime system. It is part of the OS Mon application, see
os mon(6) [page 4]. Available for Solaris and Windows.

Messages received from the operating system results in an user defined callback function
being called. This function can do whatever filtering and formatting is necessary and
then deploy any type of logging suitable for the user's application.

Solaris Operation

The Solaris (SunOS 5.x) messages are retrieved from the syslog-daemon, syslogd.

Enabling the service includes actions which require root privileges, such as change of
ownership and file privileges of an executable binary file, and creating a modified copy
of the configuration file for syslogd. When os sup is terminated, the service must be
disabled, meaning the original configuration must be restored. Enabling/disabling can be
done either outside or inside os sup, see Configuration [page 21] below.

Warning:
This process cannot run in multiple instances on the same hardware. OS Mon must
be configured to start os sup on one node only if two or more Erlang nodes execute
on the same machine.

The format of received events is not defined.

Windows Operation

The Windows messages are retreived from the eventlog file.

The nteventlog module is used to implement os sup. See nteventlog(3) [page 17].
Note that the start functions of nteventlog does not need to be used, in this case the
process is started automatically as part of the OS Mon supervision tree.

OS messages are formatted as a tuple fTime, Category, Facility, Severity,
Messageg:

Time = fMegaSecs, Secs, MicroSecsg A time stamp as returned by the BIF now().

20 OS Mon

OS Mon Reference Manual os sup

Category = string() Usually one of "System", "Application" or "Security". Note
that the NT eventlog viewer has another notion of category, which in most cases is
totally meaningless and therefore not imported into Erlang. What is called a
category here is one of the main three types of events occuring in a normal NT
system.

Facility = string() The source of the message, usually the name of the application
that generated it. This could be almost any string. When matching messages from
certain applications, the version number of the application may have to be
accounted for. This is what the NT event viewer calls “source”.

Severity = string() One of "Error", "Warning", "Informational",
"Audit Success", "Audit Faulure" or, in case of a currently unknown Windows
NT version "Severity Unknown".

Message = string() Formatted exactly as it would be in the NT eventlog viewer.
Binary data is not imported into Erlang.

Configuration

os sup mfa = fModule, Function, Argsg The callback function to use. Module and
Function are atoms and Args is a list of terms. When an OS message Msg is
received, this function is called as apply(Module, Function, [Msg | Args]).
Default is fos sup, error report, [Tag]g which will send the event to the
error logger using [error logger:error report(Tag, Msg)]. Tag is the value of
os sup errortag, see below.

os sup errortag = atom() This parameter defines the error report type used when
messages are sent to error logger using the default callback function. Default is
std error, which means the events are handled by the standard event handler.

os sup enable = bool() Solaris only. Defines if the service should be enabled (and
disabled) inside (true) or outside (false) os sup. For backwards compatibility
reasons, the default is true. The recommended value is false, as the Erlang
emulator should normally not be run with root privileges, as is required for
enabling the service.

os sup own = string() Solaris only. Defines the directory which contains the backup
copy and the Erlang specific configuration files for syslogd, and a named pipe to
receive the messages from syslogd. Default is "/etc".

os sup syslogconf = string() Solaris only. Defines the full name of the
configuration file for syslogd. Default is "/etc/syslog.conf".

Exports

enable() -> ok | ferror, Resg

enable(Dir, Conf) -> ok | ferror, Errorg

Types:

� Dir = Conf = Res = string()

21OS Mon

os sup OS Mon Reference Manual

Enables the os sup service. Needed on Solaris only.

If the configuration parameter os sup enable is false, this function is called
automatically by os sup, using the values of os sup own and os sup syslogconf as
arguments.

If os sup enable is true, this function must be called before OS Mon/os sup is started.
Dir defines the directory which contains the backup copy and the Erlang specific
configuration files for syslogd, and a named pipe to receive the messages from
syslogd. Defaults to "/etc". Conf defines the full name of the configuration file for
syslogd. Default is "/etc/syslog.conf".

Results in a OS call to:

<PRIVDIR>/bin/mod_syslog otp Dir Conf

where <PRIVDIR> is the priv directory of OS Mon, code:priv dir(os mon).

Returns ok if this yields the expected result "0", and ferror, Resg if it yields anything
else.

Note:
This function requires root privileges to succeed.

disable() -> ok | ferror, Resg

disable(Dir, Conf) -> ok | ferror, Errorg

Types:

� Dir = Conf = Res = string()

Disables the os sup service. Needed on Solaris only.

If the configuration parameter os sup enable is false, this function is called
automatically by os sup, using the same arguments as when enable/2 was called.

If os sup enable is true, this function must be called after OS Mon/os sup is stopped.
Dir defines the directory which contains the backup copy and the Erlang specific
configuration files for syslogd, and a named pipe to receive the messages from
syslogd. Defaults to "/etc". Conf defines the full name of the configuration file for
syslogd. Default is "/etc/syslog.conf".

Results in a OS call to:

<PRIVDIR>/bin/mod_syslog nootp Dir Conf

where <PRIVDIR> is the priv directory of OS Mon, code:priv dir(os mon).

Returns ok if this yields the expected result "0", and ferror, Resg if it yields anything
else.

Note:
This function requires root privileges to succeed.

22 OS Mon

OS Mon Reference Manual os sup

See also

[error logger(3)], os mon(3) [page 4]

syslogd(1M), syslog.conf(4) in the Solaris documentation.

23OS Mon

os sup OS Mon Reference Manual

24 OS Mon

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

avg1/0
cpu sup , 7

avg15/0
cpu sup , 7

avg5/0
cpu sup , 7

cpu sup
avg1/0, 7
avg15/0, 7
avg5/0, 7
nprocs/0, 7
util/0, 7
util/1, 8

disable/0
os sup , 22

disable/2
os sup , 22

disksup
get_almost_full_threshold/0, 11
get_check_interval/0, 11
get_disk_data/0, 11
set_almost_full_threshold/1, 11
set_check_interval/1, 11

enable/0
os sup , 21

enable/2
os sup , 21

get_almost_full_threshold/0
disksup , 11

get_check_interval/0
disksup , 11
memsup , 15

get_disk_data/0

disksup , 11

get_helper_timeout/0
memsup , 16

get_memory_data/0
memsup , 14

get_procmem_high_watermark/0
memsup , 15

get_sysmem_high_watermark/0
memsup , 16

get_system_memory_data/0
memsup , 15

load/1
os mon mib , 19

memsup
get_check_interval/0, 15
get_helper_timeout/0, 16
get_memory_data/0, 14
get_procmem_high_watermark/0, 15
get_sysmem_high_watermark/0, 16
get_system_memory_data/0, 15
set_check_interval/1, 15
set_helper_timeout/1, 16
set_procmem_high_watermark/1, 16
set_sysmem_high_watermark/1, 16

nprocs/0
cpu sup , 7

nteventlog
start/2, 17
start_link/2, 17
stop/0, 18

os mon mib
load/1, 19
unload/1, 19

25OS Mon

os sup
disable/0, 22
disable/2, 22
enable/0, 21
enable/2, 21

set_almost_full_threshold/1
disksup , 11

set_check_interval/1
disksup , 11
memsup , 15

set_helper_timeout/1
memsup , 16

set_procmem_high_watermark/1
memsup , 16

set_sysmem_high_watermark/1
memsup , 16

start/2
nteventlog , 17

start_link/2
nteventlog , 17

stop/0
nteventlog , 18

unload/1
os mon mib , 19

util/0
cpu sup , 7

util/1
cpu sup , 8

26 OS Mon

