The SCO Package Manual

Simplicial Cohomology of Orbifolds
Version 2008.08.24

August 2008

Simon Goertzen

Simon Goertzen
— Email: simon.goertzen@rwth-aachen.de
— Homepage: http://wwwb.math.rwth-aachen.de/goertzen/
— Address: Lehrstuhl B fiir Mathematik
RWTH Aachen
Templergraben 64
52062 Aachen
(Germany)

mailto://simon.goertzen@rwth-aachen.de
http://wwwb.math.rwth-aachen.de/goertzen/

The SCO Package Manual 2

Abstract

This document explains the primary uses of the SCO package. Included in this manual is a documented list of
the most important methods and functions you will need. For the theoretical basis of this package please refer
to my diploma thesis and the corresponding paper (work in progress; [Gor08a]).

Copyright

(© 2007-2008 by Simon Goertzen
This package may be distributed under the terms and conditions of the GNU Public License Version 2.

Acknowledgements

The SCO package would not have been possible without the theoretical work by I. Moerdijk and D. A. Pronk
concerning simplicial cohomology of orbifolds [MP99]. Many thanks to these two, as well as Mohamed
Barakat and the Lehrstuhl B fiir Mathematik at RWTH Aachen University in general. It should be noted that
SCO in its current functionality is dependent on the GAP package homalg by M. Barakat [BR08], as it relies
on homalg to do the actual computations. This manual was created with the help of the GAPDoc package by
M. Neunhoffer and F. Liibeck.

Contents

1 Introduction

1.1 Overviewoverthismanual
1.2 Installation of the SCO Package
2 Usage
2.1 The Examples Script e e
2.2 Working Manually e
3 Examples
3.1 Example 1: KleinBottle,
32 Example2: Vo . . . o oL e
3.3 Example 3: The "Teardrop” orbifold
4 SCO methods and functions
4.1 Methods and functions for orbifold triangulations
4.1.1 OrbifoldTriangulation
4.1.2 0 VertiCes v v v v i e e e e e
413 Simplices e e
414 TSOUOPY . .« v v v v o e e e e e e e e
415 Mu ... e
41.6 MuData
4.1.7 InfoString
4.2 Methods and functions for simplicial sets
4.2.1 SimplicialSet (constructor)o
4.2.2 SimplicialSet (dataaccess)
423 ComputeNextDimension
424 Extend e
4.3 Methods and functions for matrix creation and computation
4.3.1 BoundaryOperator
4.3.2 CreateBoundaryMatrices i e e
433 Homology e
4.3.4 CreateCoboundaryMatrices v v v v v i i
435 Cohomology e
43.6 SCOExamples e e

A An Overview of the SCO package source code

N

W

O 00 3

11

11
11
11
12
12
12
12
12
12
13
13
13
14
14
14
14
15
15
15

17

Chapter 1

Introduction

1.1 Overview over this manual

Chapter 1 is concerned with the technical details of installing and running this package. The follow-
ing chapter 2 explains how to use SCO to compute simplicial (co-)homology of orbifolds. For the
theoretical parts please refer to my diploma thesis and the corresponding paper (work in progress;
[GorO8a]). After this chapter you will find some simple examples on using SCO with (finite) groups,
manifolds, or some easy orbifolds. Also included in this manual is a documented list of the most
important methods and functions you will need to work with SCO’s data types OrbifoldTriangulation
and SimplicialSet and to create the matrices needed for computations. Anyone interested in source
code should just check out the files in the gap/pkg/SCO/gap/ folder (— Appendix A).

1.2 Installation of the SCO Package

To install this package just extract the package’s archive file to the GAP pkg/ directory. By default
the SCO package is not automatically loaded by GAP when it is installed. You must load the package
with LoadPackage ("SCO") ; before its functions become available. Please, send me an e-mail if you
have any questions, remarks, suggestions, etc. concerning SCO. Also, I would like to hear about
applications of this package.

Simon Goertzen

Chapter 2

Usage

There are different ways to use SCO. Please note that for the actual computations the homalg package
is required, and you will need both the RingsForHomalg and the GaussForHomalg package to make
use of the full computational capabilities. For your information, RingsForHomalg offers support for
external computer algebra systems and the rings they support, while GaussForHomalg extends GAP
functionality with regards to sparse matrices and computations over fields and Z/ (p").

2.1 The Examples Script

Regardless of the extend of your installation, you will always be able to call the example script
SCO/examples/examples.qg. This script is not only callable in-GAP by SCO_Examples (4.3.6), but
also automatically checks which packages you have installed and provides you with the available op-
tions. The example script is designed to take you through the ring creation process and then load one
of the files of your choice located in the SCO/examples/orbifolds/ directory. In there you will find
a lot of test files with small O- or 1-dimensional orbifolds, but also the complete triangulations of the
17 orbifolds corresponding to the 2-dimensional wallpaper groups (these should be exactly the un-
capitalized files, ranging from pl.g to p6m.qg). Computing the cohomology of these orbifolds was an
important part of my diploma thesis [G6r08a] and I have also created a separate document [G6r08b]
to present my results.

Please note that the variables M, i so, and mu in the orbifold files have to keep their name for the
example script to work correctly. Refer to chapter 3 for concrete examples.

2.2 Working Manually

Once you are familiar with the example script and want to try out your own triangulations, it is best to
create your own . g file in the SCO/examples/orbifolds/ directory, then call the script again. If for
any reason you do not want to create a file or work with the script, you can always do every step by
hand. Check 4 if you need to know more about specific methods and functions. The basic steps are:

o Define a list of maximum simplices
e If applicable, define an isotropy record

e If applicable, define a list encoding the y-map

The SCO Package Manual

From the above data, create an orbifold triangulation
Define the simplicial set of the orbifold triangulation
Create a homalg ring R

Create boundary or coboundary matrices over R

Calculate their homology or cohomology

Chapter 3

Examples

Although there are some small examples embedded in chapter 4, we will give some complete examples
in this chapter. Most of these could easily be called with the example script mentioned in chapter 2,
but we will do them step by step for best reproducability.

3.1 Example 1: Klein Bottle

Suppose we want to calculate the cohomology of the Klein Bottle. First, we need a triangulation. It
could look like this:

1 2 3 1
4 5 6 4
7 8 9 7
1 3 2 1

Figure 3.1: triangulation

This results in the following list of maximum simplices:
Example

gap> M := [[112/4}1 [17217]/ [113!6}1 [17318]7 [1/476]1 [17718]7
> [2/375]/ [273/917 [2/475]/ [217/917 [37576]/ [318/917
> [4,5,7), [4,6,9], [4,7,91, 15,6,8], [5,7,8], [6,8,9] 1;;

As there is no isotropy and therefore no y-map, we can continue with the orbifold triangulation and
simplicial set:

The SCO Package Manual 8

Example
gap> ot := OrbifoldTriangulation(M, "Klein Bottle");

<OrbifoldTriangulation "Klein Bottle" of dimension 2. 18 simplices on 9 vertic)\
es without Isotropy>

gap> ss := SimplicialSet(ot);

<The simplicial set of the orbifold triangulation "Klein Bottle", computed up \
to dimension 0 with Length vector [18]>

Now we will need a homalg ring. As this is a small example we can compute directly over Z, so we can
use GAP. In case you have RingsForHomalg installed you might want to try computing in another com-
puter algebra system with the command HomalgRingOf IntegersInCAS (), replacing "CAS” with the
corresponding system.

Example
gap> R := HomalgRingOfIntegers();
<A homalg internal ring>

We are almost there. Let us create some coboundary matrices and compute their cohomology:

Example
gap> ¢ := CreateCoboundaryMatrices(ss, 4, R);;
gap> C := Cohomology(¢, R);
——— >>>> 727 (1 x 1)
——— >>>> 77 (1 x 1)
——— >>>> 7/< 2 >
777 >>>> 0
——— >>>> 0
<A graded cohomology object consisting of 5 left modules at degrees
[0 .. 41>

This is the cohomology of the Klein Bottle.

3.2 Example 2: V;

SCO can also be used to compute group cohomology, as every group can be represented as an orbifold
with just a single point. For V4, it would look like this:

Example
gap> M := [[1] 1;;
gap> V4 := Group((1,2), (3,4));;
gap> iso := rec(1 := V4);;

gap> ot := OrbifoldTriangulation(M, iso, "V4");

<OrbifoldTriangulation "V4" of dimension 0. 1 simplex on 1 vertex with Isotrop)\
y on 1 vertex>

gap> ss := SimplicialSet(ot);

<The simplicial set of the orbifold triangulation "V4", computed up to dimensi\
on 0 with Length vector [1]>

gap> R := HomalgRingOfIntegers();

<A homalg internal ring>

gap> c := CreateCoboundaryMatrices(ss, 4, R);;

gap> C := Cohomology(c, R);

——— >>>> 727 (1 x 1)

The SCO Package Manual 9

——— >>>> Z/< 2 >+ Z/< 2 >
777 >>>> 7/< 2 >
——— >>>> Z/< 2 >+ 7/< 2 >+ 7/< 2\

<A graded cohomology object consisting of 5 left modules at degrees
[0 .. 4 1>

This is the V4 group cohomology up to degree 4.

3.3 Example 3: The ”Teardrop” orbifold

You have seen a manifold in example 1, and group cohomology in example 2. Now we will meet
our first proper orbifold, the Teardrop. This is the example Moerdijk and Pronk used in their paper
[MP99] on which my work is based. It is an easy example, but includes both nontrivial isotropy and
p-maps. We take the isotropy at the top to be C;. The triangulation looks like this, with the gluing
being at [1,3].

5

Figure 3.2: triangulation

The source code:

Example
gap> M := [[1,2,3], [1,2,4]1, [1,3,4]1, 12,3,5], [2,4,5], [3,4,5] 1;;
gap> i1so := rec(1 := Group((1,2)));;
gap> mu := [
> [(31, 1,31, [1,2,31, [1,3,41, x -> (1,2) 1,
> [(31, 1,31, [1,3,41, [1,2,3]1, x => (1,2)]
> 1ii
gap> ot := OrbifoldIriangulation(M, iso, mu, "Teardrop");

<OrbifoldTriangulation "Teardrop" of dimension 2. 6 simplices on 5 vertices wi\
th Isotropy on 1 vertex and nontrivial mu-maps>

gap> ss := SimplicialSet(ot);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 0 with Length vector [6]>

gap> R := HomalgRingOfIntegers();

<A homalg internal ring>

The SCO Package Manual

gap> ¢ := CreateCoboundaryMatrices(ss, 6, R);;
gap> C := Cohomology(c, R);

[0 .. 6]>

10

<A graded cohomology object consisting of 7 left modules at degrees

This is the Teardrop cohomology.

Chapter 4

SCO methods and functions

4.1 Methods and functions for orbifold triangulations

4.1.1 OrbifoldTriangulation

Q OrbifoldTriangulation(M[, I, mu_data, info]) (function)
Returns: OrbifoldTriangulation
The constructor for OrbifoldTriangulations. Needs the list M of maximal simplices, the Isotropy
at certain vertices as a record I, and the list mu_data that encodes the function mu. If only one
argument is given, I and mu_data are supposed to be empty. In case of two arguments, mu_data is
supposed to be empty. If the last argument i nfo is given as a string, it is stored in the info component

of the orbifold triangulation and does not count towards the total number of arguments.

Example

gap> M := [[1,2,31, [1,2,41, [1,3,41, [2,3,4] 1;;

gap> S2 := OrbifoldTriangulation(M, "S"2");

<OrbifoldTriangulation "S"2" of dimension 2. 4 simplices on 4 vertices without)\
Isotropy>

gap> I := rec(1 := Group((1,2)));;

gap> mu_data := [

> [[21, (1,21, 11,2,31, I11,2,4], x->x*(1,2) 1,

> [[2], [1,21, [1,2,41, [1,2,3], x—>x*(1,2)]

> 1ii

gap> Teardrop := OrbifoldTriangulation(M, I, mu_data, "Teardrop");

<OrbifoldTriangulation "Teardrop" of dimension 2. 4 simplices on 4 vertices wi\

th Isotropy on 1 vertex and nontrivial mu-maps>

4.1.2 Vertices

{ Vertices (ot) (method)
Returns: List V
This returns the list of vertices V of the orbifold triangulation ot. Should be preferred to the
equivalent ot ! .vertices.

4.1.3 Simplices

O Simplices (ot) (method)
Returns: List M

11

The SCO Package Manual 12

This returns the list of maximal simplices M of the orbifold triangulation ot. Should be preferred
to the equivalent ot ! .max_simplices.

4.1.4 Isotropy

{Q Isotropy(ot) (method)
Returns: Record T
This returns the isotropy record I of the orbifold triangulation ot. Should be preferred to the
equivalent ot ! .isotropy.

4.1.5 Mu

<> Mu (ot) (method)
Returns: Function mu
This returns the function mu of the orbifold triangulation ot. Should be preferred to the equivalent
ot!.mu.

4.1.6 MuData

{ MuData (ot) (method)
Returns: List mu_data
This returns the list mu_data that encodes the function mu of the orbifold triangulation ot.
Should be preferred to the equivalent ot ! .mu_data.

4.1.7 InfoString

Q InfoString(ot) (method)
Returns: String info
This return the string info of the orbifold triangulation ot. Should be preferred to the equivalent
ot!.info.

4.2 Methods and functions for simplicial sets

4.2.1 SimplicialSet (constructor)

O SimplicialSet (ot) (method)
Returns: SimplicialSet
The constructor for simplicial sets based on an orbifold triangulation ot. This just sets up the
object without any computations. These can be triggered later, either explicitly or by SimplicialSet
(4.2.2).

Example
gap> Teardrop;

<OrbifoldTriangulation "Teardrop" of dimension 2. 4 simplices on 4 vertices wi\
th Isotropy on 1 vertex and nontrivial mu-maps>

gap> S := SimplicialSet(Teardrop);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 0 with Length vector [4 1>

The SCO Package Manual 13

4.2.2 SimplicialSet (data access)

O SimplicialSet (S, 1) (method)
Returns: List S_i1
This returns the components of dimension i of the simplicial set S. Should be used to access
existing data instead of using S!.simplicial_set[i + 1], as it has the additional side effect of

computing S up to dimension i, thus always returning the desired result.
Example

gap> S := SimplicialSet(Teardrop);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 0 with Length vector [4]>

gap> S!.simplicial_set([1];

(ot 2,311, 00y, 2,411, 001 3 411, 1102 3, 4111
gap> S!.simplicial_set([2];;

List Element: <list>[2] must have an assigned value

not in any function

Entering break read-eval-print loop ...

you can 'quit;’ to quit to outer loop, or

you can 'return;’ after assigning a value to continue

brk>

gap> SimplicialSet(S, 0);

(rryL, 2,311, 100, 2,411, 00,3 411, 102 3 47111
gap> SimplicialSet(S, 1);;

gap> S;

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 1 with Length vector [4, 12]>

4.2.3 ComputeNextDimension

¢ ComputeNextDimension (S) (method)
Returns: S
This computes the component of the next dimension of the simplicial set S. S is extended as a

side effect.
Example

gap> S;

<The simplicial set of the orbifold trianqulation "Teardrop", computed up to d\
imension 1 with Length vector [4, 12]>

gap> ComputeNextDimension(S);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 2 with Length vector [4, 12, 22]>

4.2.4 Extend

O Extend (S, 1) (method)
Returns: S
This computes the components of the simplicial set S up to dimension 1. S is extended as a side
effect. This method is equivalent to calling ComputeNextDimension (4.2.3) the appropriate number

of times.
Example

gap> S;
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\

The SCO Package Manual 14

imension 2 with Length vector [4, 12, 22 1>

gap> Extend(S, 5);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 5 with Length vector [4, 12, 22, 33, 51, 73 1>

4.3 Methods and functions for matrix creation and computation

4.3.1 BoundaryOperator

Q BoundaryOperator (i, L, mu) (function)
Returns: List B
This returns the ith boundary of L, which has to be an element of a simplicial set. mu is the
function u that has to be taken into account when computing orbifold boundaries. This function is
used for matrix creation, there should not be much reason for calling it independently.

4.3.2 CreateBoundaryMatrices

Q CreateBoundaryMatrices (S, d, R) (method)
Returns: List M
This returns the list M of homalg matrices over the homalg ring R up to dimension d, correspond-
ing to the boundary matrices induced by the simplicial set S. If d is not given, the current dimension

of S is used.
Example

gap> S := SimplicialSet(Teardrop);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 0 with Length vector [4 1>

gap> M := CreateBoundaryMatrices(S, 4, HomalgRingOfIntegers());;

gap> S;

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 5 with Length vector [4, 12, 22, 33, 51, 73 1>

4.3.3 Homology

Q Homology (M[, R]J) (method)
Returns: a homalg complex

This returns the homology complex of a list M ofl homalg matrices over the homalg ring R.
Example

gap> S := SimplicialSet(Teardrop);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 0 with Length vector [4 1>

gap> R := HomalgRingOfIntegers();

<A homalg internal ring>

gap> M := CreateBoundaryMatrices(S, 4, R);;

gap> Homology(M, R);

777 >>>> 727 (1 x 1)
——— >>>> 0
——— >>>> 727 (1 x 1)
——— >>>> 7/< 2 >
——— >>>> 0

<A graded homology object consisting of 5 left modules at degrees [0 .. 4]>

The SCO Package Manual 15

4.3.4 CreateCoboundaryMatrices

{Q CreateCoboundaryMatrices(S[, dJ, R) (method)
Returns: List M
This returns the list M of homalg matrices over the homalg ring R up to dimension d, correspond-
ing to the coboundary matrices induced by the simplicial set S. If d is not given, the current dimension
of S is used.

Example
gap> S := SimplicialSet(Teardrop);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 0 with Length vector [4 1>

gap> M := CreateCoboundaryMatrices(S, 4, HomalgRingOfIntegers());;

gap> S;

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 5 with Length vector [4, 12, 22, 33, 51, 73 1>

4.3.5 Cohomology

{ Cohomology (M[, R]) (method)
Returns: a homalg complex

This returns the cohomology complex of a list M of homalg matrices over the homalg ring R.
Example

gap> S := SimplicialSet(Teardrop);

<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
imension 0 with Length vector [4 1>

gap> R := HomalgRingOfIntegers();

<A homalg internal ring>

gap> M := CreateCoboundaryMatrices(S, 4, R);;

gap> Cohomology(M, R);

——— >>>> 72°(1 x 1)
——— >>>> 0
——— >>>> 727 (1 x 1)
777 >>>> 0

——— >>>> Z/< 2 >
<A graded cohomology object consisting of 5 left modules at degrees
[0 .. 4]>

4.3.6 SCO_Examples

{ SCO_Examples () (function)
Returns: nothing
This is just an easy way to call the script examples.g, which is located in
gap/pkg/SCO/examples/.
Example

gap> SCO_Examples();
@QEEEEEE SCO (eEEEeee

Select base ring:

1) Integers (default)
2) Rationals

3) z/n7%

The SCO Package Manual

Select Computer Algebra System:
1) GAP (default)

2) External GAP
3) MAGMA

4) Maple

5) Sage

:3

Magma V2.14-14 Tue Aug 19 2008 08:36:19 on evariste [Seed = 1054613462]
Type ? for help. Type <Ctrl>-D to quit.

Select Method:

1) Full syzygy computation (default)

2) matrix creation and rank computation only
11

Select orbifold (default="C2")
:Torus

Select mode:

1) Cohomology (default)
2) Homology

01

Select dimension (default = 4)

14

Creating the coboundary matrices
Starting cohomology computation ...

Appendix A

An Overview of the SCO package source
code

Filename Content

OrbifoldTriangulation.gi | Definitions and methods for orbifold triangulations
SimplicialSet.gi Definitions and methods for simplicial sets

Matrices.gi Methods for (Co-)homology matrix creation

SCO.gi (Co-)homology computations and SCO_Examples (4.3.6)

Table: The SCO package files.

17

References

[BRO8] M. Barakat and D. Robertz. homalg project, 2003-2008.
http://wwwb.math.rwth-aachen.de/homalg. 2

[GorO8a] S. Gortzen. Simplicial cohomology of orbifolds. Master’s thesis, RWTH Aachen Univer-
sity, 2008. in preparation. 2, 4, 5

[GorO8b] S. Gortzen. Wallpaper group cohomology. http://wwwb.math.rwth-aachen.de/
goertzen/, 2008. 5

[MP99] 1. Moerdijk and D. A. Pronk. Simplicial cohomology of orbifolds. Indag. Math. (N.S.),
10(2):269-293, 1999. 2,9

18

http://wwwb.math.rwth-aachen.de/homalg
http://wwwb.math.rwth-aachen.de/goertzen/
http://wwwb.math.rwth-aachen.de/goertzen/

Index

SCO, 4
BoundaryOperator, 14

Cohomology, 15
ComputeNextDimension, 13
CreateBoundaryMatrices, 14
CreateCoboundaryMatrices, 15

Extend, 13
Homology, 14

InfoString, 12
Isotropy, 12

Mu, 12
MuData, 12

OrbifoldTriangulation, 11

SCO_Examples, 15

Simplices, 11

SimplicialSet
constructor, 12
data access, 13

Vertices, 11

19

