
Extending LATEX’s color facilities: the xcolor

package

Dr. Uwe Kern∗

v1.06 (2003/12/15)

Abstract

xcolor provides easy driver-independent access to several kinds of color tints,

shades, tones, and mixes of arbitrary colors. It allows to select a document-

wide target color model and offers tools for automatic color schemes, con-

version between eight color models, and alternating table row colors.

Contents

1 Introduction 4
1.1 Purpose of this package . 4
1.2 Color tints, shades, tones, and complements 4

2 The user interface 5
2.1 Package installation . 5
2.2 Package options . 5
2.3 Supported color models . 5
2.4 Color definition . 8
2.5 Color expressions . 9

2.5.1 Trivial color expressions . 9
2.5.2 Non-trivial color expressions 9
2.5.3 Complete mix expressions 10
2.5.4 Incomplete mix expressions 10
2.5.5 Meaning of color expressions 10

2.6 Color extensions . 11
2.6.1 Examples . 11
2.6.2 Using the current color . 11

2.7 Color information . 15
2.8 Color conversion . 16
2.9 Color series . 16

∗Please send error reports and suggestions for improvements to <u.kern@web.de>.

1

2.9.1 Definition of a color series 16
2.9.2 Initialisation of a color series 17
2.9.3 Application of a color series 17
2.9.4 Differences between colors and color series 19

2.10 Color in tables . 19
2.11 A remark on accuracy . 19

3 The formulas 20
3.1 Color mixing . 20
3.2 Color conversion and complements 22

3.2.1 The rgb model . 22
3.2.2 The cmy model . 24
3.2.3 The cmyk model . 25
3.2.4 The hsb model . 25
3.2.5 The gray model . 28
3.2.6 The RGB model . 28
3.2.7 The HSB model . 28
3.2.8 The Gray model . 28

References 29

Known bugs 29

History 29

Index 30

List of Tables

1 Package loading order . 6
2 Package options . 6
3 Supported color models . 7
4 Drivers and color models . 7
5 Color constants . 21
6 Color conversion pairs . 21

List of Figures

1 Color expressions — Example . 12
2 Color extensions — Example . 12
3 Current color — Example . 12
4 Color example: MyGreen . 13
5 Color example: MyGreen-cmy . 13
6 Color example: MyGreen-rgb . 14
7 Color example: MyGreen-hsb . 14

2

8 Color example: MyGreen-gray . 15
9 Color series — Example . 18
10 Alternating row colors in tables: \rowcolors vs. \rowcolors* . . 20

3

1 Introduction

1.1 Purpose of this package

The color package provides a powerful tool for handling colors within (pdf)LATEX in
a consistent and driver-independent way, supporting several color models (slightly
less driver-independent).
Nevertheless, it is sometimes a bit clumsy to use, especially in cases where slight
color variations, color mixes or color conversions are involved: this usually implies
the usage of another program that calculates the necessary parameters, which are
then copied into a \definecolor command in LATEX. Quite often, also a pocket
calculator is involved in the treatment of issues like the following:

• My company has defined a corporate color, and the printing office tells me
how expensive it is to use more than two colors in our new brochure, whereas
all kinds of tints (e.g. a 75% version) of our color can be used at no extra
cost. But how to access these color variations in LATEX?

• My friend uses a nice color which I would like to apply in my own documents;
unfortunately, it is defined in the hsb model which is not supported in my
favorite application pdfLATEX. What to do now?

• How does a mixture of 40% green and 60% yellow look like?

• How does its complementary color look like?

• My printing office wants all color definitions in my document to be trans-
formed into the cmyk model. How can I do the calculations efficiently?

• I have a table with 50 rows. How can I get alternating colors for entire rows
without copying 50 \rowcolor commands?

These are some of the issues solved by the xcolor package.

1.2 Color tints, shades, tones, and complements

According to [8] we define the terms

• tint: a color with white added,

• shade: a color with black added,

• tone: a color with gray added.

These are special cases of a general function mix(C, C ′, p) which constructs a new
color, consisting of p parts of color C and 1−p parts of color C ′, where 0 ≤ p ≤ 1.
Thus, we set

tint(C, p) := mix(C, white, p) (1)

shade(C, p) := mix(C, black, p) (2)

tone(C, p) := mix(C, gray, p) (3)

4

where white, black, and gray are model-specific constants, see table 5 on page 21.
Further we define the term

• complement: a color C∗ that yields white if superposed with the original
color C.

See section 3.2 on page 22 for details.

2 The user interface

2.1 Package installation

First of all, put the file xcolor.sty to some place where (pdf)LATEX finds it. Then
simply use xcolor instead of color in your document. Thus, the general command is
\usepackage[〈options〉]{xcolor} in the document preamble. Here, 〈options〉 are
the usual options of the color package, plus some additional xcolor-specific options,
as described later. Table 1 on the following page shows what has to be taken into
account with respect to the package loading order.

2.2 Package options

In general, there are 4 types of options:

• options that are passed to the color package,

• options that determine the target color model,

• options that determine which other packages are to be loaded,

• options that determine the behaviour of certain other commands.

All available package options are listed in table 2 on the next page.

2.3 Supported color models

The list of supported color models is given in table 3 on page 7. We emphasize\rangeRGB

\rangeHSB

\rangeGray

that this color support is independent of the chosen driver. However, since some
of the drivers omly pretend to support the hsb model, we included some code to
bypass this behaviour. The models actually added by xcolor are shown in the
log file. Table 4 on page 7 lists the drivers that are part of current MiKTEX [6]
distributions and their color model support. Probably, other distributions behave
similarly.
In order to facilitate the cooperation with the hyperref package, there is a command\GetGinDriver

\GinDriver \GetGinDriver that grabs the driver actually used and puts it into the command
\GinDriver. The latter can then be used within hyperref (or other packages), see
the example below. If there is no corresponding hyperref option, hypertex will be
taken as default.

5

Table 1: Package loading order

Action/Package color pstcol colortbl

load before xcolor allowed allowed allowed

load with xcolor option 1 pst table

load after xcolor no no allowed

1 no option required, automatic loading

Table 2: Package options

Option Description

natural (Default.) Keep all colors in their model, except RGB (converted
to rgb), HSB (converted to hsb), and Gray (converted to gray).

rgb Convert all colors to the rgb model.

cmy Convert all colors to the cmy model.

cmyk Convert all colors to the cmyk model.

hsb Convert all colors to the hsb model.

gray Convert all colors to the gray model. Especially useful to simu-
late how a black & white printer will output the document.

RGB Convert all colors to the RGB model (and afterwards to rgb).

HSB Convert all colors to the HSB model (and afterwards to hsb).

Gray Convert all colors to the Gray model (and afterwards to gray).

pst Load the pstcol package, in order to use ‘normal’ color definitions
within pstricks macros.

table Load the colortbl package, in order to use the tools for coloring
rows, columns, and cells within tables.

override Replace the original \definecolor command with the definition
of \xdefinecolor.

showerrors (Default.) Display an error message if an undefined color is being
used (same behaviour as in the original color package).

hideerrors Display only a warning if an undefined color is being used, and
replace this color by black.

6

Table 3: Supported color models

Name Base colors/notions Parameter range Default

rgb red, green, blue [0, 1]3

cmy cyan, magenta, yellow [0, 1]3

cmyk cyan, magenta, yellow, black [0, 1]4

hsb hue, saturation, brightness [0, 1]3

gray gray [0, 1]

RGB Red, Green, Blue {0, 1, . . . , L}3 L = 255

HSB Hue, Saturation, Brightness {0, 1, . . . , M}3 M = 240

Gray Gray {0, 1, . . . , N} N = 15

L, M, N are positive integers

Table 4: Drivers and color models

Driver Version rgb cmy cmyk hsb gray RGB HSB Gray

dvipdf 1999/02/16 v3.0i 1 4 1 4 1 2 4 4

dvips 1999/02/16 v3.0i 1 4 1 1 1 2 4 4

dvipsone 1999/02/16 v3.0i 1 4 1 1 1 2 4 4

pctex32 1999/02/16 v3.0i 1 4 1 1 1 2 4 4

pctexps 1999/02/16 v3.0i 1 4 1 1 1 2 4 4

pdftex 2002/06/19 v0.03k 1 4 1 4 1 2 4 4

dvipdfm 1998/11/24 vx.x 1 1 4 1 3 1 2 4 4

dvipdfm 1999/9/6 vx.x 2 1 4 1 3 1 2 4 4

textures 1997/5/28 v0.3 1 4 1 3 2 4 4 4

vtex 1999/01/14 v6.3 1 4 1 4 2 2 4 4

tcidvi 1999/02/16 v3.0i 2 4 2 4 2 1 4 4

truetex 1999/02/16 v3.0i 2 4 2 4 2 1 4 4

dviwin 1999/02/16 v3.0i 4 4 4 4 4 4 4 4

emtex 1999/02/16 v3.0i 4 4 4 4 4 4 4 4

pctexhp 1999/02/16 v3.0i 4 4 4 4 4 4 4 4

pctexwin 1999/02/16 v3.0i 4 4 4 4 4 4 4 4

dviwindo = dvipsone; oztex = dvips; xdvi = dvips,monochrome
1 part of graphics package 2 additionally distributed with MiKTEX

Driver’s color model support: 1 = direct, 2 = indirect, 3 = alleged, 4 = none

7

Note that the named model is not supported in terms of color extensions, as it is
driver-dependent. Nevertheless, this model may be used as usual.
For the ‘integer models’ RGB, HSB, and Gray, the constants L, M, N of table 3 on
the preceding page are defined via \def\rangeRGB{〈L〉}, \def\rangeHSB{〈M 〉},
and \def\rangeGray{〈N 〉}. Changes of these constants should be done before the
xcolor package is loaded, e.g.:

\documentclass{article}

...

\def\rangeRGB{15}

\usepackage[dvips]{xcolor}

...

\GetGinDriver

\usepackage[\GinDriver]{hyperref}

...

\begin{document}

...

2.4 Color definition

{〈name〉}{〈model〉}{〈color specification〉}\xdefinecolor

This command is key in order to make the extended features (color exten-
sions) available. It replaces \definecolor, although the latter command
is still available with its original meaning. However, it is possible to say
\let\definecolor=\xdefinecolor (or simply use the package option override),
unless the color model named is to be used, which is not supported by
\xdefinecolor (see table 3 on the page before for a list of supported color mod-
els).
Within xcolor.sty, the following colors are being (re)defined via \xdefinecolor:
red , green , blue , cyan , magenta , yellow , black ,
white , darkgray , gray , lightgray .

{〈name〉}[〈model〉]{〈color expression〉}\colorlet

Copies the actual definition of 〈color expression〉 to 〈name〉, independently of
the underlying color model and driver options. If 〈model〉 is non-empty, 〈color
expression〉 is first transformed to the specified model, before 〈name〉 is being
defined. The new color 〈name〉 then can also be used in color expressions. E.g., in
the preamble of this document we said \colorlet{tableheadcolor}{gray!25}.
In most of the tables we then used the command \rowcolor{tableheadcolor}

in order to format the first row.

Technical remark:
\definecolor{foo}{...}{...} generates a command “\\color @foo” which
contains the color definition in a driver-dependent way, therefore it is possible
but non-trivial to access the color model and parameters afterwards (see the col-

orinfo package [7] for a solution).

8

\xdefinecolor{foo}{...}{...}, which is based on \definecolor, generates an
additional command “\\xcolor @foo”, which is driver-independent and makes it
possible to access the relevant information in a standardised way.
The typical content of these macros is shown in the example figures 4 to 8 on
pages 13–15, immediately below the captions.

2.5 Color expressions

For compatibility reasons, the xcolor package allows to use the methods given in
color to define color names. However, this may cause some confusion: unless the
override option is used, we always have to differentiate between

• standard colors , which are being defined directly or indirectly via the origi-
nal \definecolor command (here, an indirect definition of ‘bar’ would be
\colorlet{bar}{foo} after \definecolor{foo}...), and

• extended colors , which are being defined directly or indirectly via the new
\xdefinecolor or \definecolorseries commands.

The current color, denoted by the reserved name ‘.’ (without the quotes), is also
considered to be an extended color .

2.5.1 Trivial color expressions

A trivial color expression is simply

〈color expression〉 = 〈name〉,

where 〈name〉 denotes the name of any standard color or extended color .

2.5.2 Non-trivial color expressions

The general form of a non-trivial 〈color expression〉 is

〈color expression〉 = 〈prefix 〉〈name〉〈mix expression〉〈postfix 〉

where

• 〈prefix 〉 is either an empty string or a minus sign ‘-’ (without the quotes); the
minus sign indicates that the color resulting from the remaining expression
has to be converted into its complementary color;

• 〈name〉 is the name of an extended color ;

• 〈mix expression〉 is either a complete or an incomplete mix expression as
explained below;

• 〈postfix 〉 is either an empty string or the string ‘!!+’ (without the quotes);
the latter case requires that

9

– 〈name〉 denotes the name of a color series,

– 〈mix expression〉 is a complete mix expression as explained below,

and it indicates that after the current color expression has been evaluated,
displayed, etc., the color series 〈name〉 will undergo a step operation (see
section 2.9 on page 16).

2.5.3 Complete mix expressions

The general form of a complete 〈mix expression〉 is either an empty string or

〈mix expression〉 = !〈num1〉!〈name1〉!〈num2〉!〈name2〉! . . . !〈numn〉!〈namen〉

where

• n ≥ 1 is an integer;

• each 〈numi〉 is a real number from the interval [0, 100], i.e. 0 ≤〈numi〉≤ 100;

• each 〈namei〉 denotes the name of an extended color .

2.5.4 Incomplete mix expressions

An incomplete 〈mix expression〉 is simply an abbreviation, introduced to save some
keystrokes in the case of tints:

〈mix expression〉 = !〈num1〉!〈name1〉!〈num2〉!〈name2〉! . . .!〈numn〉

= !〈num1〉!〈name1〉!〈num2〉!〈name2〉! . . .!〈numn〉!white

2.5.5 Meaning of color expressions

We explain now how an expression like

〈prefix 〉〈name〉!〈num1〉!〈name1〉!〈num2〉! . . .!〈numn〉!〈namen〉〈postfix 〉

is being interpreted and processed:

1. First of all, the model and color parameters of 〈name〉 are extracted to define
a temporary color 〈temp〉.

2. Then a color mix, consisting of 〈num1〉% of color 〈temp〉 and (100−〈num1〉)%
of color 〈name1〉 is computed; this is the new temporary color 〈temp〉.

3. The previous step is being repeated for all remaining parameter pairs
(〈num2〉,〈name2〉), . . . , (〈numn〉,〈namen〉).

4. If 〈prefix 〉 is non-empty, 〈temp〉 will be changed into its complementary color.

5. If 〈postfix 〉 is non-empty, the relevant step command is performed.

10

6. Now the color 〈temp〉 is being displayed or serves as an input for other
operations, depending on the invoking command.

Note that in a typical step 2 expression 〈temp〉!〈numi〉!〈namei〉, if 〈numi〉=100
resp. 〈numi〉=0, the color 〈temp〉 resp. 〈namei〉 is used without further transfor-
mations. In the true mix case, 0 <〈numi〉< 100, the two involved colors may have
been defined in different color models, e.g. \xdefinecolor{foo}{rgb}{...} and
\xdefinecolor{bar}{cmyk}{...}. In general, the second color, 〈namei〉, is trans-
formed into the model of the first color, 〈temp〉, then the mix is calculated within
that model. 1 Thus, 〈temp〉!〈numi〉!〈namei〉 and 〈namei〉!〈100−numi〉!〈temp〉,
which should be equivalent theoretically, will not necessarily yield identical visual
results.

2.6 Color extensions

The usual color commands, as defined by the color package, may all be used, but
there is an extended syntax for the colors:
{〈color expression〉}\color

{〈color expression〉}{〈text〉}\textcolor

{〈color expression〉}{〈text〉}\colorbox

{〈frame color expression〉}{〈background color expression〉}{〈text〉}\fcolorbox

{〈color expression〉}\pagecolor

Hence, the formal difference to the color package is that color expressions may
be used instead of pure color names. The previous section explains how color
expressions are constructed.
Additionally, as with the command \color[〈model〉]{〈specification〉}, color spec-
ifications may be used directly as usual; these commands are described in [2].
However, color extensions are only available for colors that have been given a
name via \xdefinecolor.

2.6.1 Examples

Figures 1 to 2 on the next page show some first applications of color extensions.
More examples are given in figures 4 to 8 on pages 13–15.

2.6.2 Using the current color

Within a color expression, ‘.’ serves as a placeholder for the current color. See
figure 3 on the following page for an example.
It is also possible to save the current color for later use, e.g., via the command
\colorlet{foo}{.}.
Note that in some cases the current color is of rather limited use, e.g., the con-
struction of an \fcolorbox implies that at the time when the 〈background color
expression〉 is evaluated, the current color equals the 〈frame color expression〉; in
this case ‘.’ does not refer to the current color outside the box.

1Exception: in order to avoid strange results, this rule is being reversed if 〈temp〉 origins from

the gray model; in this case it is converted into the underlying model of 〈namei〉.

11

Figure 1: Color expressions — Example

red -red

red!75 -red!75

red!75!green -red!75!green

red!75!green!50 -red!75!green!50

red!75!green!50!blue -red!75!green!50!blue

red!75!green!50!blue!25 -red!75!green!50!blue!25

red!75!green!50!blue!25!gray -red!75!green!50!blue!25!gray

Figure 2: Color extensions — Example

\fboxrule6pt

\fcolorbox

{red!70!green}% outer frame

{yellow!30!blue}% outer background

{\fcolorbox

{-yellow!30!blue}% inner frame

{-red!70!green}% inner background

{Test\textcolor{red!72.75}{Test}\color{-green}Test}}

TestTestTest

Figure 3: Current color — Example

\def\test{current, \textcolor{.!50}{50\%},

\textcolor{-.}{complement},

\textcolor{yellow!50!.}{mix}}

\textcolor{blue}{\test}\\

and \textcolor{red}{\test}\\

\def\Test{\color{.!80}Test}

\textcolor{blue}{\Test\Test\Test\Test\Test}\\

and \textcolor{red}{\Test\Test\Test\Test\Test}

current, 50%, complement, mix

and current, 50%, complement, mix

TestTestTestTestTest

and TestTestTestTestTest

12

Figure 4: Color example: MyGreen

color definition: cmyk 0.92 0 0.87 0.09

xcolor definition: {cmyk}{0.92,0,0.87,0.09}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen!P !C } 2\color{-MyGreen!P !C }

Figure 5: Color example: MyGreen-cmy

color definition: cmyk 1 0.09 0.95999 0

xcolor definition: {cmy}{1,0.09,0.95999}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen-cmy!P !C } 2\color{-MyGreen-cmy!P !C }

13

Figure 6: Color example: MyGreen-rgb

color definition: rgb 0 0.91 0.04001

xcolor definition: {rgb}{0,0.91,0.04001}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen-rgb!P !C } 2\color{-MyGreen-rgb!P !C }

Figure 7: Color example: MyGreen-hsb

color definition: hsb 0.34065 1 0.91

xcolor definition: {hsb}{0.34065,1,0.91}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen-hsb!P !C } 2\color{-MyGreen-hsb!P !C }

14

Figure 8: Color example: MyGreen-gray

color definition: gray 0.5383

xcolor definition: {gray}{0.5383}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen-gray!P !C } 2\color{-MyGreen-gray!P !C }

2.7 Color information

{〈color expression〉}{〈cmd〉}\extractcolorspec

Extracts the color specification of 〈color expression〉 and puts it into {〈cmd〉};
equivalent to \def\cmd{{〈model〉}{〈color specification〉}}. This works, of course,
only for colors that have been defined via \xdefinecolor and friends.

={〈integer〉}\tracingcolors

Controls the amount of information that is written into the log file:

• 〈integer 〉 ≤ 0: no specific color logging.

• 〈integer 〉 ≥ 1: whenever a color is used that has been defined via the original
\definecolor command rather than \xdefinecolor and friends, an info
will be logged, since in this case the internal variable \XC@current@color,
which keeps track of all color changes, can’t be updated because of missing
information.

• 〈integer 〉 ≥ 2: every command that sets a color will be logged.

• 〈integer 〉 ≥ 3: whenever a color is used that has been defined via the original
\definecolor command rather than \xdefinecolor and friends, a warning
will be issued.

Like TEX’s \tracing... commands, this command may be used globally (in the
document preamble) or locally/block-wise. The package sets \tracingcolors=0

as default. Remark: since registers are limited and valuable, no counter is wasted
for this issue.

15

2.8 Color conversion

{〈source model〉}{〈color specification〉}{〈target model〉}{〈cmd〉}\convertcolorspec

Converts a color, given by the 〈color specification〉 in model 〈source model〉, into
〈target model〉 and stores the new color specification in \cmd. 〈source model〉 and
〈target model〉 each may be any of the models listed in table 3 on page 7.

2.9 Color series

Automatic coloring may be useful in graphics or chart applications, where a —
potentially large and unspecified — number of colors are needed, and the user does
not want or is not able to specify each individual color. Therefore, we introduce
the term color series, which consists of a base color and a scheme, how the next
color is being constructed from the current color.
The practical application consists of three parts: definition of a color series (usu-
ally once in the document), initialisation of the series (potentially several times),
and application — with or without stepping — of the current color of the series
(potentially many times).

2.9.1 Definition of a color series

{〈name〉}{〈model〉}{〈method〉}[〈b-model〉]{〈b-spec〉}[〈s-model〉]{〈s-spec〉}\definecolorseries

Defines a color series called 〈name〉, whose calculations are performed within the
color model 〈model〉 (one of rgb, cmy, cmyk, hsb, gray), where 〈method〉 selects
the algorithm (one of step, grad, last, see below). The method details are
determined by the remaining arguments:

• [〈b-model〉]{〈b-spec〉} specifies the base (= first) color in the algorithm,
either directly, e.g. [rgb]{1,0.5,0.5}, or as a 〈color expression〉, e.g.
{-yellow!50}, if the optional argument is missing.

• [〈s-model〉]{〈s-spec〉} specifies how the step vector is calculated in the al-
gorithm, according to the chosen 〈method〉:

– step, grad: the optional argument is meaningless, and 〈s-spec〉 is
a parameter vector whose dimension is determined by 〈model〉, e.g.
{0.1,-0.2,0.3} in case of rgb, cmy, or hsb.

– last: the last color is specified either directly, e.g. [rgb]{1,0.5,0.5},
or as a 〈color expression〉, e.g. {-yellow!50}, if the optional argument
is missing.

This is the general scheme:

color1 := base, colorn+1 := U
(

colorn + step
)

(4)

for n = 1, 2, . . . , where U maps arbitrary real m-vectors into the unit m-cube:

U(x1, . . . , xm) = (u(x1), . . . , u(xm)), u(x) =

{

1 if x = 1

x − [x] if x 6= 1
(5)

16

Thus, every step of the algorithm yields a valid color with parameters from the
interval [0, 1].

Now, the different methods use different schemes to calculate the step vector:

• step, grad: the last argument, {〈s-spec〉}, defines the directional vector grad.

• last: {〈s-spec〉} resp. [〈s-model〉]{〈s-spec〉} defines the color parameter vec-
tor last.

Then, during \resetcolorseries, the actual step vector is calculated:

step :=















grad if 〈method 〉 = step

1

〈cycle〉 · grad if 〈method 〉 = grad

1

〈cycle〉 · (last − base) if 〈method 〉 = last

(6)

Please note that it is also possible to use the current color placeholder ‘.’ within the
definition of color series. Thus, \definecolorseries{foo}{rgb}{last}{.}{-.}
will set up a series that starts with the current color and ends with its complement.
Of course, similar to TEX’s \let primitive, the current definition of the current
color at the time of execution is used, there is no relation to current colors in any
later stage of the document.

2.9.2 Initialisation of a color series

[〈cycle〉]{〈name〉}\resetcolorseries

This command has to be applied at least once, in order to make use of the color se-
ries 〈name〉. It resets the current color of the series to the base color and calculates
the actual step vector according to the chosen 〈cycle〉, a non-zero real number, for
the methods grad and last, see equation (6). If the optional argument is empty,\colorseriescycle

the value stored in the macro \colorseriescycle is applied. Its default value is
16, which can be changed by \def\colorseriescycle{〈number〉}, applied before
the xcolor package is loaded (similar to \rangeRGB and friends). The optional
argument is ignored in case of the step method.

2.9.3 Application of a color series

There are two ways to display the current color of a color series: any of the
color expressions in section 2.5 on page 9 used within a \color, \textcolor, . . .
command will display this color according to the usual syntax of such expressions.
However, in the cases when 〈postfix 〉 equals ‘!!+’, \color{〈name〉!!+} etc., will
not only display the color, but it will also perform a step operation. Thus, the
current color of the series will be changed in that case. See figure 9 on the next
page for a demonstration of different methods.

17

Figure 9: Color series — Example

S1 S2 G1 G2 L1 L2 L3 L4 L5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Individual definitions

S1 \definecolorseries{test}{rgb}{step}[rgb]{.95,.85,.55}{.17,.47,.37}

S2 \definecolorseries{test}{hsb}{step}[hsb]{.575,1,1}{.11,-.05,0}

G1 \definecolorseries{test}{rgb}{grad}[rgb]{.95,.85,.55}{3,11,17}

G2 \definecolorseries{test}{hsb}{grad}[hsb]{.575,1,1}{.987,-.234,0}

L1 \definecolorseries{test}{rgb}{last}[rgb]{.95,.85,.55}[rgb]{.05,.15,.55}

L2 \definecolorseries{test}{hsb}{last}[hsb]{.575,1,1}[hsb]{-.425,.15,1}

L3 \definecolorseries{test}{rgb}{last}{yellow!50}{blue}

L4 \definecolorseries{test}{hsb}{last}{yellow!50}{blue}

L5 \definecolorseries{test}{cmy}{last}{yellow!50}{blue}

Common definitions

\resetcolorseries[12]{test}

\rowcolors[\hline]{1}{test!!+}{test!!+}

\begin{tabular}{c}

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\end{tabular}

18

2.9.4 Differences between colors and color series

Although they behave similar if applied within color expressions, the objects de-
fined by \xdefinecolor and \definecolorseries are fundamentally different
with respect to their scope/availability: like color’s original \definecolor com-
mand, \xdefinecolor generates local colors, whereas \definecolorseries gen-
erates global objects (otherwise it would not be possible to use the stepping mech-
anism within tables or graphics conveniently). E.g., if we assume that bar is an
undefined color, then after saying

\begingroup

\definecolorseries{foo}{rgb}{last}{red}{blue}

\resetcolorseries[10]{foo}

\xdefinecolor{bar}{rgb}{.6,.5,.4}

\endgroup

commands like \color{foo} or \color{foo!!+}may be used without restrictions,
whereas \color{bar} will give an error message. However, it is possible to say
\colorlet{bar}{foo} or \colorlet{bar}{foo!!+} in order to save the current
color of a series locally — with or without stepping.

2.10 Color in tables

[〈commands〉]{〈num〉}{〈odd-row color expression〉}{〈even-row color expression〉}\rowcolors

[〈commands〉]{〈num〉}{〈odd-row color expression〉}{〈even-row color expression〉}\rowcolors*

One of these commands has to be executed before a table starts. 〈num〉 tells the
number of the first row which should be colored according to the 〈odd-row color
expression〉 and 〈even-row color expression〉 scheme. Each of the color arguments
may also be left empty (= no color). In the starred version, 〈commands〉 are
ignored in rows with inactive rowcolors status (see below), whereas in the non-
starred version, 〈commands〉 are applied to every row of the table. Such optional
commands may be \hline or \noalign{〈stuff 〉}.
The rowcolors status is activated (i.e., use coloring scheme) by default and/or\showrowcolors

\hiderowcolors \showrowcolors, it is inactivated (i.e., ignore coloring scheme) by the command
\hiderowcolors. The counter \rownum may be used within such a table to access\rownum

the current row number. An example is given in figure 10 on the following page.
These commands require the colortbl package.

2.11 A remark on accuracy

Since the macros presented here require some computation, special efforts were
made to ensure a maximum of accuracy for conversion and mixing formulas — all
within TEX’s limited numerical capabilities. We decided to develop and include
a small set of commands to improve the quality of division and multiplication
results, instead of loading one of the packages that provide multi-digit arithmetic
and a lot more, like realcalc or fp. The marginal contribution of the latter packages
seems not to justify their usage for our purposes. Thus, we stay within a sort of

19

Figure 10: Alternating row colors in tables: \rowcolors vs. \rowcolors*

\rowcolors[\hline]{3}{green!25}{yellow!50}

\begin{tabular}{ll}

test & row \number\rownum\\

test & row \number\rownum\\

test & row \number\rownum\\

test & row \number\rownum\\

test & row \number\rownum\\

test & row \number\rownum\\

\rowcolor{blue!25}

test & row \number\rownum\\

test & row \number\rownum\\

\hiderowcolors

test & row \number\rownum\\

test & row \number\rownum\\

\showrowcolors

test & row \number\rownum\\

test & row \number\rownum\\

\multicolumn{1}%

{>{\columncolor{red!12}}l}{test} & row \number\rownum\\

\end{tabular}

test row 1

test row 2

test row 3

test row 4

test row 5

test row 6

test row 7

test row 8

test row 9

test row 10

test row 11

test row 12

test row 13

test row 1

test row 2

test row 3

test row 4

test row 5

test row 6

test row 7

test row 8

test row 9

test row 10

test row 11

test row 12

test row 13

fixed-point arithmetic framework, providing at most 5 decimal digits via TEX’s
dimension registers.

3 The formulas

3.1 Color mixing

In general, we use linear interpolation for color mixing:

mix(C, C ′, p) = p · C + (1 − p) · C ′ (7)

Note that there is a special situation in the hsb case: if saturation = 0 then
the color equals a gray color of level brightness, independently of the hue value.
Therefore, to achieve smooth transitions of an arbitrary color to a specific gray
(like white or black), we actually use the formulas

tinthsb(C, p) = p · C + (1 − p) ·
(

hue, 0, 1
)

(8)

shadehsb(C, p) = p · C + (1 − p) ·
(

hue, 0, 0
)

(9)

tonehsb(C, p) = p · C + (1 − p) ·
(

hue, 0, 1

2

)

(10)

where C = (hue, saturation, brightness).

20

Table 5: Color constants

model/constant white black gray

rgb (1, 1, 1) (0, 0, 0) (1

2
, 1

2
, 1

2
)

cmy (0, 0, 0) (1, 1, 1) (1

2
, 1

2
, 1

2
)

cmyk (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 1

2
)

hsb (h, 0, 1) (h, 0, 0) (h, 0, 1

2
)

gray 1 0 1

2

RGB (L, L, L) (0, 0, 0) (bL
2
c, bL

2
c, bL

2
c)

HSB (H, 0, M) (H, 0, 0) (H, 0, bM
2
c)

Gray N 0 bN
2
c

Table 6: Color conversion pairs

from/to rgb cmy cmyk hsb gray RGB HSB Gray

rgb id ∗ (cmy) ∗ ∗ ∗ (hsb) (gray)

cmy ∗ id ∗ (rgb) ∗ (rgb) (rgb) (gray)

cmyk (cmy) ∗ id (cmy) ∗ (cmy) (cmy) (gray)

hsb ∗ (rgb) (rgb) id (rgb) (rgb) ∗ (rgb)

gray ∗ ∗ ∗ ∗ id (rgb) (hsb) ∗

RGB ∗ (rgb) (rgb) (rgb) (rgb) id (rgb) (rgb)

HSB (hsb) (hsb) (hsb) ∗ (hsb) (hsb) id (hsb)

Gray (gray) (gray) (gray) (gray) ∗ (gray) (gray) id

id = identity function; ∗ = specific conversion function;

(model) = conversion via specified model

21

3.2 Color conversion and complements

We collect here the specific conversion formulas between the supported color mod-
els. Table 6 on the page before gives an overwiew of how each conversion pair is
handled. In general, PostScript (as described in [1]) is used as a basis for most
of the calculations, since it supports the color models rgb, cmyk, hsb, and gray
natively. Furthermore, Smith’s paper [8] is cited in [1] as reference for hsb-related
formulas.
First, we define a constant which is being used throughout the conversion formulas:

E := (1, 1, 1) (11)

3.2.1 The rgb model

Conversion rgb to cmy Source: [1], p. 475.

(cyan,magenta, yellow) := E − (red, green, blue) (12)

Conversion rgb to hsb (1) We set

x := max{red, green, blue} (13)

y := med{red, green, blue} (14)

z := min{red, green, blue} (15)

(16)

where ‘med’ denotes the median of the values. Then,

brightness := x (17)

Case x = z:

saturation := 0 (18)

hue := 0 (19)

Case x 6= z:

saturation :=
x − z

x
(20)

f :=
x − y

x − z
(21)

hue :=
1

6
·











































1 − f if x = red ≥ green ≥ blue = z

1 + f if x = green ≥ red ≥ blue = z

3 − f if x = green ≥ blue ≥ red = z

3 + f if x = blue ≥ green ≥ red = z

5 − f if x = blue ≥ red ≥ green = z

5 + f if x = red ≥ blue > green = z

(22)

22

This is based on [8], RGB to HSV Algorithm (Hexcone Model), which reads
(slightly reformulated):

r :=
x − red

x − z
, g :=

x − green

x − z
, b :=

x − blue

x − z
(23)

hue :=
1

6
·











































5 + b if red = x and green = z

1 − g if red = x and green > z

1 + r if green = x and blue = z

3 − b if green = x and blue > z

3 + g if blue = x and red = z

5 − r if blue = x and red > z

(24)

Note that the singular case x = z is not covered completely in Smith’s original
algorithm; we stick here to PostScript’s behaviour in real life.
Because we need to sort three numbers in order to calculate x, y, z, several com-
parisons are involved in the algorithm. We present now a second method which is
more suited for TEX.

Conversion rgb to hsb (2) Let β be a function that takes a Boolean expression
as argument and returns 1 if the expression is true, 0 otherwise; set

i := 4 · β(red ≥ green) + 2 · β(green ≥ blue) + β(blue ≥ red), (25)

and

(hue, saturation, brightness) :=























































Φ(blue, green, red, 3, 1) if i = 1

Φ(green, red, blue, 1, 1) if i = 2

Φ(green, blue, red, 3,−1) if i = 3

Φ(red, blue, green, 5, 1) if i = 4

Φ(blue, red, green, 5,−1) if i = 5

Φ(red, green, blue, 1,−1) if i = 6

(0, 0, blue) if i = 7

(26)

where

Φ(x, y, z, u, v) :=
(u · (x − z) + v · (x − y)

6(x − z)
,
x − z

x
, x

)

(27)

The singular case x = z, which is equivalent to red = green = blue, is covered here
by i = 7.

It is not difficult to see that this algorithm is a reformulation of the previous
method. The following table explains how the transition from equation (22) to
equation (26) works:

23

6 · hue Condition red ≥ green green ≥ blue blue ≥ red i

1 − f red ≥ green ≥ blue 1 1 ∗ 6/7

1 + f green ≥ red ≥ blue ∗ 1 ∗ 2/3/6/7

3 − f green ≥ blue ≥ red ∗ 1 1 3/7

3 + f blue ≥ green ≥ red ∗ ∗ 1 1/3/5/7

5 − f blue ≥ red ≥ green 1 ∗ 1 5/7

5 + f red ≥ blue ≥ green 1 ∗ ∗ 4/5/6/7

Here, ∗ denotes possible 0 or 1 values. Bold i values mark the main cases where
all ∗ values of a row are zero. The slight difference to equation (22) in the last
inequality is intentional and does no harm.

Conversion rgb to gray Source: [1], p. 474.

gray := 0.3 · red + 0.59 · green + 0.11 · blue (28)

Conversion rgb to RGB This is straightforward: multiply by L and round to
the next integer.

Red :=
⌊

1

2
+ L · red

⌋

(29)

Green :=
⌊

1

2
+ L · green

⌋

(30)

Blue :=
⌊

1

2
+ L · blue

⌋

(31)

Complement of rgb color We simply take the complementary vector:

(red∗, green∗, blue∗) := E − (red, green, blue) (32)

3.2.2 The cmy model

Conversion cmy to rgb This is simply a reversion of the rgb → cmy case, cf.
section 3.2.1 on page 22.

(red, green, blue) := E − (cyan,magenta, yellow) (33)

Conversion cmy to cmyk This is probably the hardest of our conversion
tasks: many sources emphasize that there does not exist any universal conversion
algorithm for this case because of device-dependence. Source for this algorithm:
[1], p. 476.

k := min{cyan,magenta, yellow} (34)

cyan := min{1, max{0, cyan − UCR(k)}} (35)

magenta := min{1, max{0,magenta − UCR(k)}} (36)

yellow := min{1, max{0, yellow − UCR(k)}} (37)

black := BG(k) (38)

24

Here, two additional functions are required:

UCR : [0, 1] → [−1, 1] undercolor-removal

BG : [0, 1] → [0, 1] black-generation

These functions are device-dependent, see the remarks in [1]. As a default —
without further knowledge about the target device — we set

UCR(k) := BG(k) := k (39)

Conversion cmy to gray This is derived from the conversion chain cmy →
rgb → gray.

gray := 1 − (0.3 · cyan + 0.59 · magenta + 0.11 · yellow) (40)

Complement of cmy color We simply take the complementary vector:

(cyan∗,magenta∗, yellow∗) := E − (cyan,magenta, yellow) (41)

3.2.3 The cmyk model

Conversion cmyk to cmy Based on [1], p. 477, in connection with rgb → cmy
conversion.

cyan := min{1, cyan + black} (42)

magenta := min{1,magenta + black} (43)

yellow := min{1, yellow + black} (44)

Conversion cmyk to gray Source: [1], p. 475.

gray := 1 − min{1, 0.3 · cyan + 0.59 · magenta + 0.11 · yellow + black} (45)

Complement of cmyk color The simple vector complement does not yield
useful results. Therefore, we first convert C = (cyan,magenta, yellow, black) to
the cmy model, calculate the complement there, and convert back to cmyk.

3.2.4 The hsb model

Conversion hsb to rgb

(red, green, blue) := brightness · (E − saturation · F) (46)

with

i := b6 · huec , f := 6 · hue − i (47)

25

and

F :=























































(0, 1− f, 1) if i = 0

(f, 0, 1) if i = 1

(1, 0, 1− f) if i = 2

(1, f, 0) if i = 3

(1 − f, 1, 0) if i = 4

(0, 1, f) if i = 5

(0, 1, 1) if i = 6

(48)

This is based on [8], HSV to RGB Algorithm (Hexcone Model), which reads
(slightly reformulated):

m := 1 − saturation (49)

n := 1 − f · saturation (50)

k := 1 − (1 − f) · saturation (51)

(red, green, blue) := brightness ·











































(1, k, m) if i = 0, 6

(n, 1, m) if i = 1

(m, 1, k) if i = 2

(m, n, 1) if i = 3

(k, m, 1) if i = 4

(1, m, n) if i = 5

(52)

Note that the case i = 6 (which results from hue = 1) is missing in Smith’s
algorithm. Because of

lim
f→1

(0, 1, f) = (0, 1, 1) = lim
f→0

(0, 1− f, 1) (53)

it is clear that there is only one way to define F for i = 6 in order to get a
continuous function, as shown in equation (48). This has been transformed back
to equation (52). A similar argument shows that F indeed is a continuous function
of hue over the whole range [0, 1].

Conversion hsb to HSB This is straightforward: multiply by M and round
to the next integer.

Hue :=
⌊

1

2
+ M · hue

⌋

(54)

Saturation :=
⌊

1

2
+ M · saturation

⌋

(55)

Brightness :=
⌊

1

2
+ M · brightness

⌋

(56)

26

Complement of hsb color We have not found a formula in the literature,
therefore we give a short proof afterwards.

hue∗ :=







hue + 1

2
if hue < 1

2

hue − 1

2
if hue ≥ 1

2

(57)

brightness∗ := 1 − brightness · (1 − saturation) (58)

saturation∗ :=











0 if brightness∗ = 0

brightness · saturation

brightness∗
if brightness∗ 6= 0

(59)

Proof. Starting with the original color C = (h, s, b), we define color C∗ =
(h∗, s∗, b∗) by the given formulas, convert both C and C∗ to the rgb model and
show that

Crgb + C∗
rgb = b · (E − s · F) + b∗ · (E − s′ · F ∗)

!
= E, (60)

which means that Crgb is the complement of C∗
rgb. First we note that the pa-

rameters of C∗ are in the legal range [0, 1]. This is obvious for h∗, b∗. From
b∗ = 1 − b · (1 − s) = 1 − b + b · s we derive b · s = b∗ − (1 − b) ≤ b∗, therefore
s∗ ∈ [0, 1], and

b∗ = 0 ⇔ s = 0 and b = 1.

Thus, equation (60) holds in the case b∗ = 0. Now we assume b∗ 6= 0, hence

Crgb + C∗
rgb = b · (E − s · F) + b∗ ·

(

E −
b · s

b∗
· F ∗

)

= b · E − b · s · F + b∗ · E − b · s · F ∗

= E − b · s · (F + F ∗ − E)

since b∗ = 1 − b + bs. Therefore, it is sufficient to show that

F + F ∗ = E. (61)

From

h < 1

2
⇒ h∗ = h + 1

2
⇒ 6h∗ = 6h + 3 ⇒ i∗ = i + 3 and f∗ = f

it is easy to see from (48) that equation (61) holds for the cases i = 0, 1, 2.
Similarly,

h ≥ 1

2
⇒ h∗ = h − 1

2
⇒ 6h∗ = 6h − 3 ⇒ i∗ = i − 3 and f∗ = f

and again from (48) we derive (61) for the cases i = 3, 4, 5. Finally, if i = 6 then
f = 0 and F + F ∗ = (0, 1, 1) + (1, 0, 0) = E. q.e.d.

27

3.2.5 The gray model

Conversion gray to rgb Source: [1], p. 474.

(red, green, blue) := gray · E (62)

Conversion gray to cmy This is derived from the conversion chain gray →
rgb → cmy.

(cyan,magenta, yellow) := (1 − gray) · E (63)

Conversion gray to cmyk Source: [1], p. 475.

(cyan,magenta, yellow, black) := (0, 0, 0, 1− gray) (64)

Conversion gray to hsb This is derived from the conversion chain gray →
rgb → hsb.

(hue, saturation, brightness) := (0, 0, gray) (65)

Conversion gray to Gray This is straightforward: multiply by N and round
to the next integer.

Gray :=
⌊

1

2
+ N · gray

⌋

(66)

(67)

Complement of gray color This is similar to the rgb case:

gray∗ := 1 − gray (68)

3.2.6 The RGB model

Conversion RGB to rgb This is straightforward:

(red, green, blue) :=
1

L
·
(

Red,Green,Blue
)

(69)

3.2.7 The HSB model

Conversion HSB to hsb This is straightforward:

(hue, saturation, brightness) :=
1

M
·
(

Hue,Saturation,Brightness
)

(70)

3.2.8 The Gray model

Conversion Gray to gray This is straightforward:

gray :=
1

N
· Gray (71)

28

References

[1] Adobe Systems Incorporated: “PostScript Language Reference Manual”.
Addison-Wesley, third edition, 1999.
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf

[2] David P. Carlisle: “Packages in the ‘graphics’ bundle”, 1999.
CTAN/macros/latex/required/graphics/grfguide.tex

[3] David P. Carlisle: color package, “1999/02/16 v1.0i Standard LATEX Color”.
CTAN/macros/latex/required/graphics/color.*

[4] David P. Carlisle: colortbl package, “1999/03/24 v0.1i Color table columns”.
CTAN/macros/latex/contrib/carlisle/colortbl.*

[5] David P. Carlisle: pstcol package, “2001/06/20 v1.1 PSTricks color compati-
bility”. CTAN/macros/latex/required/graphics/pstcol.*

[6] MiKTEX Project: http://www.miktex.org/

[7] Rolf Niepraschk: colorinfo package, “2003/05/04 v0.3c Info from defined col-
ors”. CTAN/macros/latex/contrib/colorinfo/

[8] Alvy Ray Smith: “Color Gamut Transform Pairs”. Computer Graphics (ACM
SIGGRAPH), Volume 12, Number 3, August 1978.

Known bugs

• Currently, no errors known to the author.

History

2003/12/15 v1.06

• New feature: extended color expressions, allowing for cascaded mix opera-
tions, e.g. \color{red!30!green!40!blue}.

• Documentation: new section on color expressions.

• Bugfix: color series stepping did not work correctly within non-displaying
commands like \extractcolorspec{foo!!+} (this bug was introduced in
v1.05).

• Renamed commands: \ukfileversion and similar internal constants re-
named to \XCfileversion etc.

• Removed commands: \ifXCpst and \ifXCtable made obsolete by a simple
trick.

29

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.miktex.org/

2003/11/21 v1.05

• Bugfixes:

– Package option hideerrors should now work as expected.

– Usage of ‘.’ in the first color expression in a document caused an error
due to incorrect initialisation.

• Code re-organisation: \extractcolorspec now uses \XC@splitcolor, mak-
ing \XC@extract obsolete.

2003/11/09 v1.04

• New feature: easy access to current color within color expressions.

• New option: override to replace \definecolor by \xdefinecolor.

• New command: \tracingcolors for logging color-specific information.

2003/09/21 v1.03

• Change: bypass strange behaviour of some drivers.

• New feature: driver-sharing with hyperref.

2003/09/19 v1.02

• Change: \extractcolorspec and \colorlet now also accept color series
as arguments.

2003/09/15 v1.01

• New feature: \definecolorseries and friends.

• Documentation: removed some doc-related side-effects.

• Code re-organisation: all calculation-related tools put to one place.

• Bugfixes:

– \@rdivide: added \relax to fix problem with negative numerators.

– \rowc@l@rs: replaced \@ifempty by \@ifxempty.

2003/09/09 v1.00

• First published release.

30

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

C

\color 11
\colorbox 11
\colorlet 8
\colorseriescycle . 17
\convertcolorspec . 16

D

\definecolorseries . 16

E

extended color 9, 10

\extractcolorspec . 15

F

\fcolorbox 11

G

\GetGinDriver 5
\GinDriver 5

H

\hiderowcolors 19

P

\pagecolor 11

R

\rangeGray 5
\rangeHSB 5
\rangeRGB 5
\resetcolorseries . 17

\rowcolors 19

\rowcolors* 19

\rownum 19

S

\showrowcolors 19

standard color 9

T

\textcolor 11

\tracingcolors 15

X

\xdefinecolor 8

31

	Contents
	Introduction
	Purpose of this package
	Color tints, shades, tones, and complements

	The user interface
	Package installation
	Package options
	Supported color models
	Color definition
	Color expressions
	Trivial color expressions
	Non-trivial color expressions
	Complete mix expressions
	Incomplete mix expressions
	Meaning of color expressions

	Color extensions
	Examples
	Using the current color

	Color information
	Color conversion
	Color series
	Definition of a color series
	Initialisation of a color series
	Application of a color series
	Differences between colors and color series

	Color in tables
	A remark on accuracy

	The formulas
	Color mixing
	Color conversion and complements
	The rgb model
	The cmy model
	The cmyk model
	The hsb model
	The gray model
	The RGB model
	The HSB model
	The Gray model

	References
	Known bugs
	History
	Index

