
Onyx Manual, Version 4.3.0

Jason Evans

January 31, 2003

Preface

This manual primarily documents the Onyx programming language. However, Onyx is designed to
be run either as a stand alone program or as an embeddable interpreter, so the manual also docu-
ments different aspects of the implementation that are important when embedding Onyx into another
program.

Onyx came in to existence when the author started working on a text editor named slate (still in
development) that was meant to be extensible, much in the same way as GNU emacs, JED, and Jade.
One of the goals was to provide robust multi-threading in slate in order to make it simple to avoid
the long pauses that afflict, for example, users of the gnus news/mail reader, which is part of emacs.
Unfortunately, when work began on slate in 1999, the author was unable to find any embeddable
scripting languages that provided adequate support for threads. Thus Onyx was born. The author
was familiar and enamored with Adobe’s PostScriptTM language, which has basic threading support
when used in a Display PostScriptTM environment, so Onyx started off looking very similar. As Onyx
matured, it deviated to the point that it is now a truly different language, with different syntax,
additional and more powerful data types, better debugging capabilities, POSIX-related functionality,
more powerful threading, regular expressions, etc.

As this project grew far beyond what was originally expected, it became clear that in order to justify the
effort being put into Onyx’s design and implementation, Onyx would have to be usable for more than
just slate, or else slate would have to become very popular, which seems unlikely, given the plethora of
text editors. Therefore, Onyx has been structured such that it can be configured in a myriad of ways,
with the hope that others will be able to easily make it fit their needs. This manual documents Onyx
in its full glory without mention that features may be disabled, so there are portions that do not apply
to Onyx interpreters that have been configured without Onyx’s full feature set.

For software distributions, news, and additional project information, see http://www.canonware.
com/ .

iii

http://www.gnu.org/software/emacs/emacs.html
http://space.mit.edu/~davis/jed/
http://www.dcs.warwick.ac.uk/~john/sw/jade/
http://www.gnus.org/
http://www.canonware.com/
http://www.canonware.com/

Contents

1 Onyx Language Tutorial 1

1.1 Syntax . 1

1.2 Data types . 2

1.3 Execution . 3

1.4 Memory management . 3

1.5 Stacks . 4

1.5.1 Using stacks as queues . 5

1.5.2 Using the operand stack as two stacks . 5

1.5.3 Efficiency issues . 5

1.6 Dictionaries . 5

1.6.1 Efficiency issues . 6

1.7 Regular expressions . 6

1.7.1 Matching . 6

1.7.2 Splitting . 7

1.7.3 Substituting . 7

1.8 Code organization . 8

1.8.1 Procedures . 8

1.8.2 Modules . 9

1.9 Error handling . 9

1.10 Introspection . 10

1.11 Threads . 11

1.11.1 Implicit synchronization . 11

1.11.2 General threading concerns . 11

v

1.12 Optimization . 12

1.13 Debugging . 12

2 Onyx Language Reference 15

2.1 Objects . 15

2.2 Syntax . 19

2.3 Stacks . 22

2.4 Standard I/O . 23

2.5 Interpreter recursion . 23

2.6 Error handling . 24

2.7 Threads . 25

2.7.1 Implicit synchronization . 25

2.7.2 Explicit synchronization . 26

2.8 Memory management . 26

2.9 Regular expressions . 27

2.10 Dictionary reference . 28

2.10.1 currenterror . 28

2.10.2 envdict . 32

2.10.3 errordict . 32

2.10.4 gcdict . 34

2.10.5 globaldict . 38

2.10.6 onyxdict . 38

2.10.7 outputsdict . 39

2.10.8 sprintsdict . 50

2.10.9 systemdict . 60

2.10.10threaddict . 205

2.10.11threadsdict . 206

2.10.12userdict . 207

3 The onyx program 209

3.1 Usage . 209

3.1.1 Options . 209

vi

3.2 Environment variables . 209

3.3 Language differences . 209

4 The libonyx library 211

4.1 Compilation . 212

4.2 Types . 212

4.3 Global variables . 212

4.4 Threads . 213

4.5 Garbage collection . 213

4.6 Exceptions . 213

4.7 Integration issues . 213

4.7.1 Thread creation . 213

4.7.2 Restarted interrupted system calls . 214

4.7.3 Signals . 214

4.8 Guidelines for writing extensions . 214

4.9 API . 215

4.10 Classes . 218

4.10.1 ch . 218

4.10.2 cnd . 222

4.10.3 dch . 223

4.10.4 mb . 226

4.10.5 mem . 227

4.10.6 mq . 229

4.10.7 mtx . 232

4.10.8 nx . 233

4.10.9 nxa . 235

4.10.10nxn . 239

4.10.11nxo . 240

4.10.12nxo array . 243

4.10.13nxo boolean . 245

4.10.14nxo condition . 245

vii

4.10.15nxo dict . 246

4.10.16nxo file . 248

4.10.17nxo fino . 255

4.10.18nxo hook . 255

4.10.19nxo integer . 257

4.10.20nxo mark . 258

4.10.21nxo mutex . 258

4.10.22nxo name . 259

4.10.23nxo no . 260

4.10.24nxo null . 260

4.10.25nxo operator . 260

4.10.26nxo pmark . 261

4.10.27nxo real . 261

4.10.28nxo regex . 262

4.10.29nxo regsub . 266

4.10.30nxo stack . 267

4.10.31nxo string . 272

4.10.32nxo thread . 275

4.10.33ql . 283

4.10.34qr . 287

4.10.35qs . 289

4.10.36thd . 292

4.10.37tsd . 295

4.10.38xep . 296

4.11 Dictionaries . 298

4.11.1 gcdict . 298

4.11.2 systemdict . 299

Index 305

viii

List of Tables

2.1 Simple and composite types . 16

2.2 Interpretation of objects by type and attribute . 17

2.3 Evaluation of objects by type and attribute . 18

2.4 Substitution template special characters . 27

2.5 currenterror summary . 28

2.6 errordict summary . 33

2.7 gcdict summary . 34

2.8 onyxdict summary . 38

2.9 outputsdict summary . 40

2.10 sprintsdict summary . 50

2.11 systemdict summary . 61

2.12 threaddict summary . 205

ix

x

Chapter 1

Onyx Language Tutorial

This manual includes a comprehensive Onyx Language Reference chapter, which explains the details
of what Onyx is. However, that chapter is rather dry, and more importantly, it does not discuss how
to best utilize Onyx. This chapter introduces concepts that are important when designing and imple-
menting Onyx programs, though it is not a complete language tutorial. You will need to read the first
several sections of Chapter 2 in order to absorb all of the information in this chapter. However, you
should be able to read this chapter first, then come back to it and glean additional understanding after
having read later chapters.

Onyx is a stack-based language, so although the ideas that are important to program design in other
more traditional languages still apply in many cases, there are different ways of approaching certain
problems that integrate better with the facilities provided by Onyx. The most obvious example of this
is that Onyx programs are more efficient if written to use named variables as little as possible, relying
instead on the power of the operand stack. Another example is error handling. It is possible to write
procedures that check for every error condition, but Onyx provides a form of exception handling that,
if used correctly, can significantly improve code readability and performance.

Accomplished PostScript programmers will find little new in this chapter; Onyx differs from PostScript
in the details, but the concepts are very similar. Accomplished Forth programmers will already be
comfortable with stack management, but the rest of the chapter discusses concepts that either have no
Forth equivalent, or that are significantly different from Forth, as is the case for dictionaries.

1.1 Syntax

Onyx syntax is extremely simple. Code is essentially composed of tokens that are delimited by whites-
pace or a list of self-delimiting tokens (see Section 2.2 for details). As such, there are very few ways
for a syntax error to occur, but typographical mistakes may instead produce other errors. For example,
say that a C programmer forgets he is writing Onyx code and types the following at the interactive
onyx prompt:

onyx:0> 1000L {‘Hello\n’ print} repeat

The intention is to print Hello 1000 times, but 1000L is invalid syntax for an integer, so Onyx creates
an executable name object instead, and then tries to execute the name, resulting in the following error:

1

2 Onyx Manual Chapter 1

Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: 1000L
1: -file-
2: --start--

This is typical of the simple errors encountered when writing Onyx code. The Onyx scanner uses a
simple state machine to try to create objects of various types, and when it fails, the input is instead
used to create an executable name.

The scanner only deals with a few types (ignoring procedures for the moment): integers, reals, names,
and strings. There are many other object types, but none of them are created directly by the scanner.

{ and } are used to delimit procedure bodies, which in actuality are executable arrays. { puts the scan-
ner into deferred execution mode until the matching } is scanned. {} pairs can be nested, so execution
is deferred until matching } characters have been scanned for all { characters. Deferred execution
means that the scanner creates objects as it scans code, but does not execute any of them. While not a
strictly necessary language feature, this greatly simplifies the task of constructing executable arrays,
which can then be treated as procedures.

Following are equivalent examples of how a procedure associated with the name double can be de-
fined:

onyx:0> $double {2 mul} def
onyx:0> $double [2 $mul load] cvx def

As mentioned earlier, there are few ways of generating a syntax error, but it is possible. The most
common syntax errors are due to unmatched ’ and } characters. Generating other syntax errors is left
as an exercise for the reader.

1.2 Data types

Onyx includes a rich set of data types. In fact, Onyx code is represented as data, which means that
there is a whole range of possibilities when writing Onyx programs that are difficult or impossible with
compiled languages such as C. This aspect of Onyx is discussed in Section 1.10.

Onyx is dynamically typed, which means that errors due to object type incompatibilities are detected
during program execution. For example, the following code will always run without an error, even
though the arguments that would be passed to the add operator are invalid.

false {
‘a string’ [1] add

}{
‘This is always printed’ 1 sprint

} ifelse

Dynamic typing has advantages in the flexibility that it offers, but it also means that type errors can
go undetected in code for long periods of time before the invalid code is executed.

1.3. EXECUTION Jason Evans 3

The Onyx type system is not extensible. There is no way to add new types in a program. However, there
are techniques that can be combined with the built in types to simulate an extensible type system. For
example, dictionaries can be created with, say, a type field that indicates the type of the object:

<
$_type $fraction
$num 3
$den 4

>

Logical extensions of this can be used to create object hierarchies with single or multiple inheritance.

1.3 Execution

Onyx code is never compiled, nor is it preprocessed by the interpreter. Onyx code is simply consumed.
This has some interesting implications, some of which are not typical of even other interpreted lan-
guages:

• If a source file is modified during interpreter execution, the changes may affect the currently
running program, usually in unpleasant ways.

• Syntax errors are not discovered until the malformed code is scanned. In order to be sure that
there are no syntax errors, a source file must be completely scanned.

In practice, these are only minor inconveniences, but it is important to keep them in mind when
developing.

1.4 Memory management

Since Onyx includes an automatic mark and sweep garbage collector, memory management typically
requires little thought. There is no risk of leaking memory in such a way that it cannot be freed. How-
ever, it is possible to consume large amounts of memory by creating objects, then keeping references to
them long after they have outlived their usefulness.

Onyx objects fall into two categories according to type: simple and composite. Simple objects take up no
virtual memory of their own; they are embedded into other composite objects. For example, an integer
on the operand stack takes up only the space that the stack requires to store it. The same is true of an
integer that is stored an an element of an array. Composite objects are composed of references that fit
into the same places that an integer is stored, plus additional structures stored elsewhere in virtual
memory. There can be multiple references to the same composite object, and as there is a chain of
references that makes it possible to reach a composite object, the garbage collector will leave it alone.

It is usually pretty obvious how to remove references to objects. Objects on the operand stack can be
popped off. Definitions in the dictionary stack can be undefined. However, there may be situations such
an array that contains references to various objects, and the array cannot be discarded as a whole, but
individual elements are no longer needed. The null type is useful for clobbering such references, and

4 Onyx Manual Chapter 1

can even be effectively used to clobber portions of procedures, since when a null object is executed it
does absolutely nothing. This unique aspect of null objects may not seem significant, but consider that
all other objects, when executed, are either pushed onto the execution stack and executed, or pushed
onto the operand stack. Doing nothing at all can be useful.

1.5 Stacks

Stacks in Onyx are pretty typical. Objects are implicitly or explicitly pushed onto stacks by operators,
and the stack contents can be rearranged and removed. Although stacks are a first class object in
Onyx, most Onyx programs are concerned only with the operand stack, often referred to as ostack,
which is used as a place to store objects, pass arguments into operators and procedures, and return
results.

Onyx is a postfix language, which means that code is written such that operands precede operators.
For example, the following code Calculates 5× (3 + 4) and prints the result:

onyx:0> 5 3 4 add mul
onyx:1> 1 sprint
35
onyx:0>

There are no parentheses to clarify operator precedence, because precedence is implicit in the code.

Stacks are either written bottom to top on one line, or top to bottom on separate lines, as in the
following examples. The example stack contains the numbers 0, 1, and 2, where 0 is the top object and
2 is the bottom object:

onyx:0> 2 1 0
onyx:3> ostack 1 sprint
(2 1 0)
onyx:3> pstack
0
1
2
onyx:3>

Learning to efficiently (and accurately) manage stacks is a mind-warping process that no amount of
reading is likely to impress upon the reader. There are general concepts presented here, but ultimately,
the reader will have to write a good bit of code to get a handle on stacks. Even the author of Onyx found
himself stumbling over stacks well after Onyx was complete, despite limited exposure to stack-based
languages beforehand. The problem seems to be that programmers learn to think in a different way
that doesn’t exercise the parts of the brain necessary for stack manipulation. Some people might argue
that stack manipulation is the job of the compiler. In any case, stack manipulation is an acquired skill
that requires practice.

1.6. DICTIONARIES Jason Evans 5

1.5.1 Using stacks as queues

Stacks are implemented such that access to the top or bottom is very efficient, and efficiency decreases
linearly, the farther into the stack an operation has to iterate. Since pushing and popping is efficient
for both ends of stacks, this means that stacks are suitable for use as queues.

1.5.2 Using the operand stack as two stacks

The ability to efficiently manipulate both ends of the operand stack means that the operand stack
can effectively be thought of as two stacks. This can be very useful in situations where more than
a handful of objects are being manipulated, and an additional location to temporarily stash objects
would be useful. If a program is repeatedly doing large stack rotations, using the bottom of the stack
can often help to simplify the code and reduce stack manipulation overhead.

1.5.3 Efficiency issues

Since stacks are stored internally as doubly linked lists, the cost of indexed access to an object on a
stack is proportional to its offset from the top or bottom of the stack, depending on the operator being
used. Therefore, stacks are not ideal in situations where arbitrary access to an object is a common
operation. An array is a better choice for indexed access, and a dictionary is a better choice for keyed
access.

Indexed access doesn’t just apply to operators like idup; operators like nup and roll are also affected.
However, operators such as rot are not as heavily impacted, since they only need to index into the
stack by the number of positions to rotate.

1.6 Dictionaries

Dictionaries are known by various other names, including hashes and associative arrays. Dictionaries
in Onyx associate keys with values. Keys and values can be of any type, but for each dictionary, all
keys are unique. For example, the following dictionary cannot exist:

<
42 ‘Some value’
42 ‘Another value’

>

To demonstrate this, the following example creates a dictionary with the first key/value pair listed
above, then inserts the second key/value pair.

onyx:0> <42 ‘Some value’>
onyx:1> dup 1 sprint
<42 ‘Some value’>
onyx:1> dup 42 ‘Another value’ put
onyx:1> dup 1 sprint

6 Onyx Manual Chapter 1

<42 ‘Another value’>
onyx:1>

When the second key/value pair is inserted, it replaces the first pair.

1.6.1 Efficiency issues

Although dictionaries can handle keys of any type, they are optimized to use names as keys. The
performance penalty for other key types is slight, but can be exacerbated by the cost of comparison for
other types. Name comparison is a constant time operation, but string comparison is not. Therefore,
use names rather than strings whenever possible.

1.7 Regular expressions

Onyx provides regular expression support that is very similar to what the Perl programming language
provides. There are two special data types, regex and regsub, that are specific to regular expressions,
but there is no special language syntax devoted to regular expressions, unlike Perl. Instead, patterns
and substitution templates are specified via normal strings, and flags are specified via dictionaries.

1.7.1 Matching

The following snippet iteratively searches for capitalized words:

‘This is an Onyx string.’

{dup ‘[A-Z]\w+’ <$g true> match}{
0 submatch 1 sprint

} while

The above code generates the following output:

‘This’
‘Onyx’

The $g flag to the match operator says to store the location to start the next match at, which is what
makes the while loop possible. The submatch operator gets the substring of the input string that the
regular expression most recently matched.

With a slight modification to the previous example, it is possible to get at the capital letters, rather than
the entire capitalized words. This is achieved by using a set of capturing parentheses, and changing
the argument to submatch:

‘This is an Onyx string.’

1.7. REGULAR EXPRESSIONS Jason Evans 7

{dup ‘([A-Z])\w+’ <$g true> match}{
1 submatch 1 sprint

} while

This generates the following output:

‘T’
‘O’

This is a trivial example of how capturing subpatterns can be used, but the possibilities are wide and
varied.

1.7.2 Splitting

Sometimes it is desirable to split a string into pieces, such as when dealing with a comma-delimited
file:

‘Jason Evans, jasone@canonware.com, http://www.canonware.com/˜jasone/’

‘,\s*’ split
1 sprint

This generates the following output:

[‘Jason Evans’ ‘jasone@canonware.com’ ‘http://www.canonware.com/˜jasone/’]

If for some reason preserving the delimiters is important, capturing parentheses can be added to the
splitting pattern:

‘Jason Evans, jasone@canonware.com, http://www.canonware.com/˜jasone/’

‘(,)\s*’ split
1 sprint

This generates the following output:

[‘Jason Evans’ ‘,’ ‘jasone@canonware.com’ ‘,’ ‘http://www.canonware.com/˜jasone/’]

1.7.3 Substituting

The match and split operators provide enough power that with some effort, it is possible to find
regular expression matches, modify the matched text, and create a modified string as output. However,
this is a common operation when using regular expressions for text processing, so the subst operator
is also provided as a more convenient interface for the most common types of substitution.

8 Onyx Manual Chapter 1

Suppose that a comma-delimited file needs to be converted to a colon-delmited file, consecutive separa-
tors need to be merged, and whitespace around the separators needs to be stripped out. The following
snippet does that:

‘Jason Evans (jasone@canonware.com)
Jason O. Evans (jasone@canonware.com)
’

‘(\w[A-Za-z.]*\w) \(\s*([ˆ\s]+)\s*\)’ ‘"\1" <\2>’ <$g true> subst pop
stdout exch write pop

This generates the following output:

"Jason Evans" <jasone@canonware.com>
"Jason O. Evans" <jasone@canonware.com>

1.8 Code organization

As mentioned earlier, Onyx does not have named variables in the same way as many other languages.
However, it does have the dictionary stack (dstack), which is dynamically used for name lookups when-
ever an executable name is interpreted. This section talks about how to effectively manage the names-
pace provided by dstack.

When the Onyx interpreter is first initialized, there are four dictionaries on dstack:

• userdict

• globaldict

• systemdict

• threaddict

dstack can be manipulated any way the application sees fit, though it is generally dangerous to remove
or significantly modify systemdict or threaddict, since there are definitions in those dictionaries that
are critical to the correct functioning of the interpreter.

Each thread has its own userdict, which provides a thread-local namespace. globaldict is shared among
all threads, so it provides a global namespace. systemdict contains all of the default global definitions,
and threaddict contains the default thread-local definitions.

For some applications, it may be desirable to add definitions to systemdict, but care should be taken
not to overwrite existing definitions unless you really know what you are doing. In most cases, using
globaldict is a better way to go.

1.8.1 Procedures

Named procedures can be created by associating a name in one of the dictionaries on dstack with a
procedure. There is nothing magical about this, but some care should be taken in choosing procedure

1.9. ERROR HANDLING Jason Evans 9

names, and in deciding how to manage the namespace. Onyx uses only lower case letters in the names
of its definitions on dstack, so it is easy to avoid namespace collisions by using some other character
in program definitions. There is nothing wrong with using all lowercase letters for names in your
programs, though some extra care is warranted when doing so.

An important consideration in program design is determining what belongs in the global namespace.
For an example of how Onyx partitions its namespace, look at gcdict. There are several operators
defined in gcdict that are only of interest when manipulating the garbage collector, so those definitions
are stashed out of the way. Your program can do the same for definitions that are not of regular
interest.

1.8.2 Modules

Onyx provides the infrastructure for loadable modules, which can be implemented in Onyx and/or
dynamically loaded machine code (shared libraries). See the require and mrequire documentation
for details on how to load modules.

When writing a module that is meant as a library of additional functionality, some choices have to be
made about how to organize the module. Some of the obvious choices for how to organize the loaded
definitions are:

• Insert definitions into globaldict.

• Create a new dictionary full of definitions, and insert the dictionary into globaldict as, say, foodict.

• Create a new dictionary full of definitions, and put the dictionary on dstack somewhere, such as
directly above or below systemdict. Note that this can be done by the application manually, so
simply creating the dictionary and letting the application insert it where it pleases could be a
better choice.

• Insert definitions into systemdict (questionable practice).

Depending on the nature of the module, any of the above solutions may be the right choice. There are
tradeoffs between convenience and cleanliness that should be carefully weighed.

1.9 Error handling

Onyx includes a powerful generic error handling mechanism that can be extended and customized at
several levels. The throw procedure is used to throw an error, and virtually every aspect of the error
handling machinery can be customized, extended, or replaced, since it is all written in Onyx.

Errors have names, with which error handlers can be associated in errordict. errordict’s handleerror
procedure can be modified or replaced. In fact, with some care, an entirely custom errordict can be
defined, then undefined once it is no longer needed.

Following is the standard idiom for setting up and tearing down custom error handling:

Set up custom error handling...
{

10 Onyx Manual Chapter 1

Do error-prone stuff...
} stopped {

An error occurred. Do additional cleanup...
} if
Restore error handling machinery...

The possibilities are extensive. However, a word of caution is in order. If you mess something up in
the error handling machinery, bad things will happen, and you will have a terrible time debugging the
problem. Be careful.

1.10 Introspection

The following code defines a named procedure that calculates factorials.

#n factorial #result
$factorial {

dup 1 gt {
#n-1 factorial
dup 1 sub factorial

}{
Terminate recursion.
1

} ifelse

mul
} def

What this code actually does is create an executable array, which can be examined and modified. The
following transcript shows the effects of modifying the code.

onyx:0> 3 factorial 1 sprint
6
onyx:0> $factorial load 2 sprint
{dup 1 gt {dup 1 sub factorial} {1} ifelse mul}
onyx:0> $factorial load 4 {1 pstack} put
onyx:0> 3 factorial
1
1
2
3
onyx:1> 1 sprint
6
onyx:0>

First 3! is calculated. Then the “else” clause of the ifelse construct is modified to print the stack and 3!
is recalculated. As can be seen, the stack is printed during the calculation.

1.11. THREADS Jason Evans 11

1.11 Threads

The original impetus for Onyx’s creation was the need for scalable threading. Onyx’s threading is
therefore truly powerful, though it comes at a cost. Threading makes asynchronous garbage collection
a necessity, which in turn makes many aspects of Onyx’s implementation a bit more heavyweight than
would be necessary for a single-threaded interpreter.

1.11.1 Implicit synchronization

Onyx provides mechanisms for implicit object synchronization. To see why implicit object synchroniza-
tion is necessary, consider what happens when two threads concurrently modify globaldict (a perfectly
legitimate thing to do, by the way). The internals of a dictionary are rather complex, and if two mod-
ifications were interleaved, havoc would ensue. Therefore, globaldict is implicitly locked. That is a
good thing, except that it slows down every access to globaldict. In contrast, userdict is a per-thread
dictionary, so it is not implicitly locked.

Implicit locking for new objects is controlled via setlocking, and can be queried via currentlocking.
Implicit locking is turned off by default when Onyx is started up, so if an application needs to create
an object that is shared among threads, it should temporarily turn on implicit locking. For example,
the following code creates a stack in globaldict that can be used as a simple message queue.

currentlocking # Save for later restoration.
true currentlocking

Push globaldict onto dstack before calling def.
globaldict begin
$queue stack def
end # globaldict

Restore implicit locking mode.
setlocking

For additional details on the mechanics of implicit synchronization, see Section 2.7.1.

1.11.2 General threading concerns

Onyx’s basic threading mechanisms are typical of those found in modern threading implementations.
One of the aspects of Onyx’s threading implementation to be aware of is that since the operating sys-
tem’s threading implementation is used, there are many types of programming errors that can cause
undefined behavior. With some effort, it is possible to crash the Onyx interpreter without the use of
threads. However, it requires skill and discipline to not crash the Onyx interpreter when using threads.
This was a conscious design decision for Onyx; doing otherwise would have limited the scalability of
threading.

Now prepare for some discouraging pontification on why threaded programming is generally harmful.
In the author’s experience, the vast majority of developers do not have a solid enough grasp of thread-
ing concepts to be seriously engaging in the practice. As a first step to becoming proficient at threaded

12 Onyx Manual Chapter 1

programming, much reading and thought are necessary. The next step is to implement several non-
trivial threaded programs that are doomed to be complete disasters. After that, it may be possible for
a programmer to write threaded programs that do the right thing most of the time. However, even
the most skilled developers still will be unable to consistently write code that is free of race conditions,
deadlocks, livelocks, locksteps, etc. Finally, there are some developers who, despite being otherwise
proficient, will never obtain a solid grasp of threaded programming, regardless of how many times the
basic concepts are reviewed.

In summary, don’t use threads unless there are significant measurable gains in performance or code
complexity. Otherwise, threaded programming just is not worth the unavoidable pain that it inflicts.

1.12 Optimization

There are many fine points to optimizing Onyx code, but they can primarily be distilled down to the
following simple rules:

• Avoid allocating composite objects, in order to reduce pressure on the garbage collector. This
means being very careful about string manipulation in the fast path. The cat operator is conve-
nient, but not friendly to the garbage collector.

• Write code with as few objects as possible, to reduce the number of times through the interpreter
loop. This means getting very familiar with the stack manipulation operators.

• Use the operand stack rather than named variables.

• Use the bind operator for procedure definitions whenever possible, in order to reduce dstack
lookups.

• Avoid the exit, stop, and quit operators when possible, since they are implemented via longjmp().

1.13 Debugging

Onyx does not have an integrated interactive debugger per se, because the introspective power of Onyx
is adequate for almost all debugging purposes. In cases where it is impractical to interactively debug
an application via the main thread, it is possible to launch a thread that listens for connections on a
socket (or a fifo pair) and provides an interactive session.

Following is a contrived example of debugging some bad code, interleaved with explanations. The
intention is to calculate 1 + 5.

onyx:0> 1 5L add
Error $undefined
ostack: (1)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: 5L
1: -file-
2: --start--

1.13. DEBUGGING Jason Evans 13

onyx:2> pstack
5L
1

5L is not a number, nor is it defined in dstack. Try replacing 5L with $five .

onyx:2> pop $five resume
Error $typecheck
ostack: (1 $five)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --add--
1: -file-
2: --start--
onyx:3> pstack
--add--
$five
1

$five is a literal name, so no errors occur directly due to scanning it. However, the add operator
expects two numbers, and $five is not a number. Replace it with 5 and evaluate the operator.

onyx:3> nip 5 exch eval
onyx:1> pstack
6

The result is as desired. However, we forgot to resume after the last error.

onyx:1> estack 1 sprint
(--start-- -file- --add-- --ifelse-- --eval-- -array- -file- --estack--)
onyx:1> resume

Now the estack contents should be back to normal.

onyx:1> estack 1 sprint
(--start-- -file- --estack--)
onyx:1>

The above example only demonstrates the flavor of typical interactive debugging, but there is no magic
involved in debugging, so your debugging ability should improve automatically as you gain an im-
proved understanding of Onyx.

Chapter 2

Onyx Language Reference

Onyx is a stack-based, threaded, interpreted language. Its closest relative is Adobe PostScriptTM ,
followed by Forth. Experienced PostScript programmers should find most aspects of Onyx familiar,
but there are significant differences that will prevent a knowledgeable PostScript programmer from
programming in Onyx without first skimming this chapter. This chapter does not assume specific
knowledge of other programming languages, so stands as a definitive reference for Onyx.

Onyx is different from most languages in that it is not compiled, but rather consumed. For example,
there are mechanisms for creating the equivalent of named procedures that can be called at a later
time, but behind the scenes, the code is actually being interpreted as it is scanned in such a way
that an executable object is created. As such, Onyx is not suited for compilation, native or byte code.
However, the language syntax is very simple and the scanner/parser is extremely fast. There is also an
operator called bind that optimizes interpreted code execution to approximately the same performance
level as would be expected of a byte code interpreter.

Onyx is implemented as a C library that can be embedded in other programs. Mechanisms are provided
for extending the set of operators available. This manual only documents the base language; see
application-specific documentation for any language extensions.

Following is a list of basic language features that are discussed in more detail later in this chapter:

• Stack-based. There are no named variables as in procedural languages. Operations are done
using various stacks, so Onyx operations are coded in postfix order.

• Threaded. Onyx’s threading uses the native POSIX threads implementation of the operating
system (or GNU pth, if so configured).

• Interpreted. Onyx code is never compiled, but is instead interpreted as it is encountered.

• Garbage-collected. There is no need to manually track memory allocation, since the interpreter
has an integrated automatic mark and sweep garbage collector.

2.1 Objects

An Onyx object has three aspects: type, attribute, and value.

15

16 Onyx Manual Chapter 2

Objects fall into two categories according to type: simple and composite. A simple object takes up no
memory of its own; it uses space within a stack, array, or dictionary. A composite object requires space
of its own in addition to the space taken up in stacks, arrays, or dictionaries to refer to the composite
object. See Table 2.1 for object type classifications.

Simple Composite
boolean array
fino condition
integer dict
mark file
name hook
null mutex
operator regex
pmark regsub
real stack

string
thread

Table 2.1: Simple and composite types

There can be multiple references that refer to the same memory backing composite objects. In most
cases, composite objects that refer to the same memory are indistinguishable, but for arrays and
strings, composite objects may only be able to access a subset of the total memory backing them.
This behavior is described in detail later.

All objects have a literal, executable, or evaluatable attribute associated with them. Composite ob-
jects each have their own attribute, even for composite objects that share the same backing memory.
Objects are “interpreted” when they are encountered directly by the interpreter. Objects can also be
“evaluated”. One of two actions is taken when an object is interpreted or evaluated:

• The object may be treated as code (executed). When executed, an object is pushed onto the
execution stack and executed.

• The object may be treated as data. A data object is push onto the operand stack.

Table 2.2 enumerates under what circumstances object interpretation results in execution. Table 2.3
enumerates under what circumstances object evaluation results in execution. Note that executable
arrays are the only objects that behave differently when interpreted versus evaluated.

In practice, attributes are only useful for types that can be executed. Attributes are not considered in
equality test operations.

array: An array is an ordered sequence of objects of any type. The sequence of objects contained in
an array is indexed starting at 0. References to existing arrays may be constructed such that a
contiguous subsequence is visible. The following code creates such an array:

[0 1 2 3 4]
1 3 getinterval

After the code executes, the array left on the operand stack looks like:

2.1. OBJECTS Jason Evans 17

Type Attribute
literal executable evaluatable

array data data code
boolean data data data
condition data data data
dict data data data
file data code code
fino data data data
hook data code code
integer data data data
mark data data data
mutex data data data
name data code code
null data code code
operator data code code
pmark data data data
real data data data
regex data data data
regsub data data data
stack data data data
string data code code
thread data data data

Table 2.2: Interpretation of objects by type and attribute

[1 2 3]

Executable arrays are in effect procedures. When an array is executed, its elements are sequen-
tially interpreted.

boolean: A boolean can have two values: true or false.

condition: A condition is used for thread synchronization. The standard operations on a condition
are to wait and to signal.

dict: A dict (short for dictionary) is a collection of key/value pairs. Other names for dictionaries
include “associative array” and “hash”. A key can be of any type, though in most cases, keys are
of type name. A value can also be of any type.

file: A file is a handle to an ordered sequence of bytes with a current position. Read and write per-
missions are set when a file object is created.
When an executable file is executed, it is used as a source of Onyx code. Data are sequentially
read from the file and interpreted until the end of the file is reached.

fino: A fino (first in, never out) is used as a stack marker when constructing stacks.

hook: The hook type is not used by the core Onyx language. It can be used by applications that extend
the interpreter as a container object. Hooks can be executed, but the results are application
dependent.
Each hook has a tag associated with it that can used by C extension code as a form of type
checking. By default, the tag is a null object. In most cases, an application that extends the
interpreter using hook objects will set hook tags to be name objects.

18 Onyx Manual Chapter 2

Type Attribute
literal executable evaluatable

array data code code
boolean data data data
condition data data data
dict data data data
file data code code
fino data data data
hook data code code
integer data data data
mark data data data
mutex data data data
name data code code
null data code code
operator data code code
pmark data data data
real data data data
regex data data data
regsub data data data
stack data data data
string data code code
thread data data data

Table 2.3: Evaluation of objects by type and attribute

integer: An integer is a signed integer in the range −263 to 263 − 1.

mark: A mark is used as a stack marker for various stack operations.

mutex: A mutex is a mutual exclusion lock. Mutexes cannot be acquired recursively, and the appli-
cation must take care to unlock mutexes before allowing them to be garbage collected (whether
during normal program execution or at program termination).

name: A name is a key that uniquely identifies a sequence of characters. Two name objects that
correspond to the same sequence of characters can be compared for equality with the same ap-
proximate cost as comparing two integers for equality. Names are typically used as keys in
dictionaries.

When an executable name is executed, the topmost value in the dictionary stack associated with
the name is evaluated.

null: A null has no significance other than its existence. When an executable null is executed, it does
nothing. Executable nulls can be useful as place holders that can later be replaced with useful
code, or for replacing obsolete code so that the code is no longer executed.

operator: An operator is an operation that is built in to the interpreter. Operators can be executed.

pmark: A pmark is used as a stack marker when creating procedures in deferred execution mode
(i.e. procedures that use the {} syntax). The application will only encounter pmarks in error
conditions, and there is never a reason for an application to explicitly create a pmark.

real: A real is a double precision (64 bit) floating point number.

2.2. SYNTAX Jason Evans 19

regex: A regex encapsulates a regular expression and associated flags, which can be used to find
substring matches within an input string.

regsub: A regsub encapsulates a regular expression, substitution template, and associated flags,
which can be used to do substring substitutions matches and create an output string from input
string.

stack: A stack provides LIFO (last in, first out) access to objects that it contains, as well as some
more advanced access methods. An application can create, then manipulate stacks in much the
same way that the operand stack can be manipulated.

string: A string is an ordered sequence of 8 bit characters. The bytes contained in an string are
indexed starting at 0. References to existing strings may be constructed such that a contiguous
subsequence is visible. The following code creates such a string:

‘abcde’
1 3 getinterval

After the code executes, the string left on the operand stack looks like:

‘bcd’

When an executable string is executed, its contents are used as a source of Onyx code.

thread: A thread object serves as a handle for operations such as detaching and joining.

2.2 Syntax

Onyx’s syntax is very simple in comparison to most languages. The scanner and parser are imple-
mented as a human-understandable finite state machine (nested C switch statements with a couple of
auxiliary variables), which should give the reader an idea of the simplicity of the language syntax.

CRNL (carriage return, newline) pairs are in all important cases converted to newlines during scan-
ning.

The characters #, !, $, ∼, [,], {, }, (,), ‘, ’, <, and > are special. In most cases, any of the special
characters and whitespace (space, tab, newline, formfeed, null) terminate any preceding token. All
other characters including non-printing characters are considered regular characters.

A comment starts with a # character outside of a string context and extends to the next newline or
formfeed.

Procedures are actually executable arrays, but Onyx provides special syntax for declaring procedures.
Procedures are delimited by { and }, and can be nested. Normally, the interpreter executes code as it is
scanned, but inside of procedure declarations, execution is deferred. Instead of executing a procedure
body as it is encountered, the tokens of the procedure body are pushed onto the operand stack until
the closing } is encountered, at which time an executable array is constructed from the tokens in the
procedure body and pushed onto the operand stack.

A partial grammar specification, using BNF notation (where convenient) is as follows:

<program> ::= <statement>

20 Onyx Manual Chapter 2

<statement> ::= <procedure> <statement> | <object> <statement> | ε

<procedure> ::= {<statement>}

<object> ::= <integer> | <real> | <name> | <string>

<integer> ::= <dec integer> | <radix integer>

<real> ::= <dec real> | <exp real>

<name> : Any token that cannot be interpreted as a number or a string is interpreted as an ex-
ecutable name. There are four syntaxes for names: executable, evaluatable, literal, and im-
mediately evaluated. Executable and evaluatable names are looked up in the dictionary stack
and executed (unless execution is deferred). Evaluatable names behave the same as executable
names, except when bing processed by the bind operator. Literal names are simply pushed onto
the operand stack. Immediately evaluated names are replaced by their values as defined in the
dictionary stack, even if execution is deferred. Examples include:

foo # executable
4noth3r # executable
!bar # evaluatable
$biz # literal
˜baz # immediately evaluated

If the result of an immediately evaluated name is an executable array, the evaluatable attribute
is set for the array so that when the array is interpreted, it is executed. This allows immediate
evaluation to be indiscriminately used without concern for whether the result is an executable
array or, say, an executable operator.

<string> ::= ‘’-delimited string. Ticks may be embedded in the string without escaping them, as
long as the unescaped ticks are balanced. The following sequences have special meaning when
escaped by a \ character:

‘ ‘ character.

’ ’ character.

\ \ character.

0 Nul.

n Newline.

r Carriage return.

t Tab.

b Backspace.

f Formfeed.

a Alarm.

e Escape.

x[0-9a-fA-F][0-9a-fA-F] Hex encoding for a byte.

c[a-zA-Z] Control character.

\n (newline) Ignore.

\r\n (carriage return, newline) Ignore.

2.2. SYNTAX Jason Evans 21

\ has no special meaning unless followed by a character in the above list.
Examples include:

‘’
‘A string.’
‘An embedded \n newline.’
‘Another embedded
newline.’
‘An ignored \
newline.’
‘Balanced ‘ and ’ are allowed.’
‘Manually escaped \‘ tick.’
‘Manually escaped \‘ tick and ‘balanced unescaped ticks’.’
‘An actual \\ backslash.’
‘Another actual \ backslash.’

<dec integer> : Signed integer in the range −263 to 263 − 1. The sign is optional. Examples include:

0
42
-365
+17

<radix integer> : Signed integer with explicit base between 2 and 36, inclusive, in the range −263

to 263 − 1. Integer digits are composed of decimal numbers and lower or upper case letters. The
sign is optional. Examples include:

2@101
16@ff
16@Ff
16@FF
-10@42
10@42
+10@42
9@18
35@7r3x
35@7R3x

<dec real> : Double precision floating point number in decimal notation. At least one decimal digit
and a decimal point are required. Examples include:

0.
.0
3.
.141
3.141
42.75
+3.50
-5.0

<exp real> : Floating point number in exponential notation. The format is the same as for <dec real>,
except that an exponent is appended. The exponent is composed of an “e” or “E”, an optional sign,

22 Onyx Manual Chapter 2

and a base 10 integer that is limited by the precision of the floating point format (approximately
−308 to 307). Examples include:

6.022e23
60.22e22
6.022e+23
1.661e-24
1.661E-24

Arrays do not have explicit syntactic support, but the [and] operators support their construction.
Examples of array construction include:

[]
[0 ‘A string’ ‘Another string.’ true]
[5
42
false]

Dictionaries do not have explicit syntactic support, but the < and > operators support their construc-
tion. Examples of dictionary construction include:

<>
<$answer 42 $question ‘Who knows’ $translate {babelfish} >

Stacks do not have explicit syntactic support, but the (and) operators support their construction.
Examples of stack contstruction include:

()
(1 2 mark ‘a’)

2.3 Stacks

Stacks in Onyx are the core data structure that programs act on. Stacks store objects in a last in, first
out (LIFO) order. Onyx includes a number of operators that manipulate stacks.

Each Onyx thread has four program-visible stacks associated with it:

Operand stack (ostack): Most direct object manipulations are done using the operand stack. Op-
erators use the operand stack for inputs and outputs, and code generally uses the operand stack
for a place to store objects as they are being manipulated.

Dictionary stack (dstack): The dictionary stack is used for looking up names. Each thread starts
with with four dictionaries on its dictionary stack, which are, from top to bottom:

• userdict

• globaldict

• systemdict

2.4. STANDARD I/O Jason Evans 23

• threaddict

The dictionary stack is normally manipulated via the begin and end operators. The initial
dictionaries on the dictionary stack should not generally be removed, since doing so can cause
interpreter crashes.

Execution stack (estack): The interpreter uses the execution stack to store objects that are being
executed. The application generally does not need to explicitly manipulate the execution stack,
but its contents are accessible, mainly for debugging purposes.

Index stack (istack): The interpreter uses the index stack to store execution offsets for arrays that
are being executed. There is a one to one correspondence of the elements of the execution stack
to the elements of the index stack, even though the elements of the index stack that do not
correspond to arrays have no meaning. The index stack does not affect execution, and exists
purely to allow useful execution stack traces when errors occur.

The application can also create additional stacks and manipulate them in much the same way as the
operand stack can be manipulated.

2.4 Standard I/O

Onyx provides operators to access the standard I/O file objects: stdin, stdout, and stderr. Under
normal circumstances, these operators are adequate for all standard I/O operations. However, it may
be desirable to replace these files on a per-thread basis. This can be accomplished using setstdin,
setstdout, and setstderr. Furthermore, the file objects that are inherited by new threads can be
accessed and modified via gstdin, gstdout, gstderr, setgstdin, setgstdout, and setgstderr.

2.5 Interpreter recursion

During typical Onyx interpreter initialization, the start operator is executed, which in turn executes
a file object corresponding to stdin. However, depending on how the interpreter is invoked, the initial
execution stack state may differ.

The interpreter can be recursively invoked. For example, if the following code is executed, the eval
operator recursively invokes the interpreter to interpret the string.

‘2 2 add’ cvx eval

The depth of the execution stack directly corresponds to the recursion depth of the interpreter. Execu-
tion stack depth is limited in order to catch unbounded recursion.

Onyx converts tail calls in order to prevent unbounded execution stack growth due to tail recursion.
For example, the following code does not cause the execution stack to grow:

$foo {foo} def
foo

The following code will result in an execution stack overflow:

24 Onyx Manual Chapter 2

$foo {foo ‘filler’} def
foo

2.6 Error handling

The error handling mechanisms in Onyx are simple but flexible. When an error occurs, throw is
called. An error can have any name, but only the following error names are generated internally by
Onyx:

argcheck: Incorrect argument value.

estackoverflow: Maximum interpreter recursion was exceeded.

invalidaccess: Permission error.

invalidexit: The exit operator was called outside of any loop. This error is generated as a result of
catching an exit, so the execution state for where the error really happened is gone.

invalidfileaccess: Insufficient file permissions.

ioerror: I/O error (read(), write(), etc.).

limitcheck: Value outside of legal range.

neterror: Network error (refused connection, timeout, unreachable net, etc.).

rangecheck: Out of bounds string or array access, or out of bounds value.

regexerror: Regular expression syntax error.

stackunderflow: Not enough objects on stack.

syntaxerror: Scanner syntax error.

typecheck: Incorrect argument type.

undefined: Name not defined in any of the dictionaries on dstack.

undefinedfilename: Bad filename.

undefinedresult: Attempt to divide by 0.

unmatchedfino: No fino on ostack.

unmatchedmark: No mark on ostack.

unregistered: Non-enumerated error.

The Onyx scanner handles syntax errors specially, in that it pushes an executable string onto the
operand stack that represents the code that caused the syntax error and records the line and column
numbers in currenterror before invoking throw.

The Onyx scanner also handles immediate name evaluation errors specially, in that it pushes the name
that could not be evaluated onto ostack before invoking throw.

2.7. THREADS Jason Evans 25

2.7 Threads

Onyx supports multiple threads of execution by using the operating system’s native threading facili-
ties. Along with threads comes the need for methods of synchronization between threads.

2.7.1 Implicit synchronization

Implicit synchronization is a mandatory language feature, since objects such as globaldict are implic-
itly accessed by the interpreter, which makes it impossible to require the user to explicitly handle all
synchronization. Onyx provides optional implicit synchronization capabilities for composite objects on
an object by object basis. Each thread has a setting which can be accessed via currentlocking (ini-
tially set to false) and set via setlocking. If implicit locking is active, then new objects will be created
such that simple accesses are synchronized.

Implicit synchronization can be a source of deadlock, so care must be taken when accessing implicitly
locked objects. For example, if two threads copy two implicitly locked strings to the other string,
deadlock can result.

Initialization.
$A ‘aaaaaa’
$B ‘bbbbbb’

...

In thread A:
A B copy

...

In thread B:
B A copy

The following are descriptions of the implicit locking semantics for each type of composite object:

array: Array copying is protected. Array element modifications are protected, but element reads are
not protected.

condition: No implicit locking is done for conditions.

dict: All dict operations are protected.

file: All file operations are protected. There are no potential deadlocks due to implicit file locking.

hook: No implicit locking is done for hooks.

mutex: No implicit locking is done for mutexes.

stack: All stack operations are protected. There are no potential deadlocks due to implicit stack
locking. However, there are races in stack copying, such that the results of copying a stack that
is concurrently being modified are unpredictable. In addition, removing an object that is being
concurrently accessed from a stack is unsafe.

26 Onyx Manual Chapter 2

string: String copying is protected. Character access is protected by many operators, but string
copying is the only potential cause of deadlock for string access.

thread: Implicit locking is not done for thread operations, since other synchronization is adequate to
protect thread objects.

2.7.2 Explicit synchronization

Onyx includes a foundation of mutexes and condition variables, with which all other synchronization
primitives can be constructed.

2.8 Memory management

Onyx programs do not need to track memory allocations, since memory reclamation is done implicitly
via automatic garbage collection. Onyx uses an atomic mark and sweep garbage collector.

The atomic nature of garbage collection may sound worrisome with regard to performance, but in fact
there are tangible benefits and no significant negative impacts for most applications. Total through-
put is improved, since minimal locking is necessary. Concurrent garbage collection would impose a
significant locking overhead.

On the down side, atomic garbage collection cannot make strong real-time guarantees. However, the
garbage collector is very efficient, and for typical applications, garbage collection delays are measured
in microseconds up to tens of milliseconds on current hardware as of the year 2000. For interactive
applications, anything under about 100 milliseconds is undetectable by the user, so under normal
circumstances the user will not notice that garbage collection is happening.

There are three parameters that can be used to control garbage collection:

1. The garbage collector can be turned off for situations where many objects are being created over
a short period of time.

2. The garbage collector runs whenever a certain number of bytes of memory have been allocated
since the last collection. This threshold can be changed or disabled.

3. If no composite objects have been created for an extended period of time (seconds), the garbage
collector will run if any composite objects have been allocated since the last collection. This idle
timeout period can be changed or disabled.

There is one situation in which it is possible for garbage to never be collected, despite the garbage
collector being properly configured. Suppose that a program creates some objects, the garbage collector
runs, then the program enters a code path that clobbers object references, such that the objects could
be collected, but no new objects are allocated. In such a situation, neither the allocation inactivity
timer (period), nor the object allocation threshold will trigger a collection, and garbage will remain
uncollected. In practice this situation is unlikely, and is not a significant problem since the program
size is not growing.

Garbage collection is controlled via the gcdict dictionary, which is described in Section 2.10.4.

2.9. REGULAR EXPRESSIONS Jason Evans 27

2.9 Regular expressions

Regular expression support is provided by the PCRE library package, which is open source software,
written by Philip Hazel, and copyright by the University of Cambridge, England. PCRE stands for
“Perl-compatible regular expressions”. This manual only documents how Onyx interfaces with PCRE.
For more information about how PCRE’s regular expressions work, see the following:

• The pcre(3) manual page.

• The official PCRE website: http://www.pcre.org/ .

• The official PCRE download site: ftp://ftp.csx.cam.ac.uk/pub/software/programming/
pcre/ .

For general information about Perl regular expressions, the following are recommended:

• Perl 5.6.1 regular expression documentation: http://www.perldoc.com/perl5.6.1/pod/
perlre.html .

• Mastering Regular Expressions, 2nd Ed., by Jeffrey E. F. Friedl. ISBN 0-596-00289-0.

• Perl 5 Pocket Reference, 3rd Ed., by Johan Vromans. ISBN 0-596-00032-4.

• Programming Perl, 3rd Ed., by Larry Wall, Tom Christiansen, and Jon Orwant. ISBN 0-596-
00027-8.

There are two special Onyx object types that support regular expressions: regex and regsub. Objects
of these types are created via the regex and regsub operators, respectively. The match operator
applies a regular expression to an input string, the submatch operator returns a matched substring
of the input string, and the offset operator returns the offset of a substring match relative to the
beginning of the input string. The split operator creates an array of substrings that are separated by
strings that match a regular expression. The subst operator finds regular expression matches within
an input string and applies a substitution template to the matches, thereby creating an output string.
See Section 2.10.9 for detailed documentation on the above-mentioned operators.

Regular expressions are written as strings in Onyx, so all of the standard special sequences within
strings are interpreted directly by the Onyx scanner. Note that the \ character is only special within
strings if it is followed by a special sequence. This allows regular expressions to seamlessly extend the
set of special sequences within strings while maintaining a reasonably consistent syntax.

The following sequences have special meaning within strings that specify substitution templates:

Table 2.4: Substitution template special characters

Sequence Description
\1.. \9 Refer to captured expressions 1 through 9.

http://www.pcre.org/
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
http://www.perldoc.com/perl5.6.1/pod/perlre.html
http://www.perldoc.com/perl5.6.1/pod/perlre.html

28 Onyx Manual Chapter 2

2.10 Dictionary reference

All operators built in to Onyx have corresponding names that are composed entirely of lower case
letters and numbers (with the exception of syntax-supporting operators like [). In order to avoid any
possibility of namespace collisions with names defined by current and future versions of Onyx, use at
least one character that is not a lower case letter or a number in names (for example, capital letters,
underscore, etc.). In practice, namespace collisions usually aren’t a problem, even if they happen,
since the only effect is that the program-defined definition shadows the built in definition during name
lookups.

2.10.1 currenterror

Each thread has its own currenterror dictionary, which is used by the error handling machinery to
store error state.

Table 2.5: currenterror summary

Input(s)
Op/Proc/Var

Output(s)

Description

–
newerror

boolean

Set to true during error handling.

–
errorname

name

Name of most recent error.

–
line

number

Get line number of syntax error.

–
column

number

Get column number of syntax error.

–
ostack

stack

ostack snapshot.

–
dstack

stack

dstack snaphot.

–
estack

stack

estack snapshot.

–
istack

stack

istack snapshot.

– column integer:
Input(s): None.
Output(s):

2.10. DICTIONARY REFERENCE Jason Evans 29

integer: Column number, valid only if the error was a syntaxerror. Column numbering
starts at 0.

Errors(s): None.
Description: Get the column number that a syntaxerror occurred on.
Example(s):

onyx:0> ‘1 2 3}’ cvx eval
At line 1, column 5: Error $syntaxerror
ostack: (1 2 3 ‘}’)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..3):
0: ‘1 2 3}’
1: --eval--
2: -file-
3: --start--
onyx:5> currenterror $column get 1 sprint
5
onyx:5>

– dstack stack:
Input(s): None.
Output(s):

stack: A dstack snapshot.
Errors(s): None.
Description: Get a stack that is a dstack snapshot as of the most recent error.
Example(s):

onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin dstack end 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:1>

– errorname name:
Input(s): None.
Output(s):

name: Name of the most recent error.
Errors(s): None.
Description: Get the name of the most recent error.
Example(s):

onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)

30 Onyx Manual Chapter 2

estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin errorname end 1 sprint
$undefined
onyx:1>

– estack stack:
Input(s): None.

Output(s):
stack: An estack snapshot.

Errors(s): None.

Description: Get a stack that is an estack snapshot as of the most recent error.

Example(s):
onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin estack end 1 sprint
(--start-- -file- x)
onyx:1>

– istack stack:
Input(s): None.

Output(s):
stack: An istack snapshot.

Errors(s): None.

Description: Get a stack that is an istack snapshot as of the most recent error.

Example(s):
onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin istack end 1 sprint
(0 0 0)
onyx:1>

– newerror boolean:
Input(s): None.

2.10. DICTIONARY REFERENCE Jason Evans 31

Output(s):
boolean: False if there has been no error since the last time newerror was reset; true

otherwise.
Errors(s): None.
Description: Get a boolean that represents whether there has been an error since the last

time newerror was set to false (as during interpreter initialization). It is the application’s
responsibility to reset newerror after each error if it expects the value to be useful across
multiple errors.

Example(s):
onyx:0> currenterror begin
onyx:0> newerror 1 sprint
false
onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> newerror 1 sprint
true
onyx:1> $newerror false def
onyx:1> newerror 1 sprint
false
onyx:1> resume
onyx:1> y
Error $undefined
ostack: (x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: y
1: -file-
2: --start--
onyx:2> newerror 1 sprint
true
onyx:2>

– line integer:
Input(s): None.
Output(s):

integer: Line number, valid only if the error was a syntaxerror. Line numbering starts at
1.

Errors(s): None.
Description: Get the line number that a syntaxerror occurred on.
Example(s):

onyx:0> ‘1 2 3}’ cvx eval
At line 1, column 5: Error $syntaxerror
ostack: (1 2 3 ‘}’)

32 Onyx Manual Chapter 2

dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..3):
0: ‘1 2 3}’
1: --eval--
2: -file-
3: --start--
onyx:5> currenterror $line get 1 sprint
1
onyx:5>

– ostack stack:
Input(s): None.
Output(s):

stack: An ostack snapshot.
Errors(s): None.
Description: Get a stack that is an ostack snapshot as of the most recent error.
Example(s):

onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin ostack end 1 sprint
()
onyx:1>

2.10.2 envdict

The envdict dictionary contains keys of type name and values of type string that correspond to the
environment passed into the program. All threads share the same envdict, which is implicitly locked.
Modifications to envdict should be made via the setenv and unsetenv operators. If envdict is modified
directly, the changes will not be visible to programs such as ps.

2.10.3 errordict

Each thread has its own errordict, which is used by default by the error handling machinery.

2.10. DICTIONARY REFERENCE Jason Evans 33

Table 2.6: errordict summary

Input(s)
Op/Proc/Var

Output(s)

Description

–
handleerror

–

Print a state dump.

–
stop

–

Last operation during error handling.

– handleerror –:
Input(s): None.
Output(s): None.
Errors(s): Under normal conditions, no errors occur. However, it is possible for the application

to corrupt the error handling machinery to the point that an error will occur. If that happens,
the result is possible infinite recursion, and program crashes are a real possibility.

Description: Print a dump of the most recent error recorded in the currenterror dictionary.
Example(s):

onyx:0> {true {true 1 sprint x y} if} eval
true
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..5):
0: x
1: {

true
1
sprint

3:--> x
y

}
2: --if--
3: --eval--
4: -file-
5: --start--
onyx:1> errordict begin handleerror end
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..5):
0: x
1: {

true
1
sprint

34 Onyx Manual Chapter 2

3:--> x
y

}
2: --if--
3: --eval--
4: -file-
5: --start--
onyx:1>

– stop –:
Input(s): None.
Output(s): None.
Errors(s): None.
Description: This is called as the very last operation when an error occurs. Initially, its value

is the same as that for the stop operator in systemdict.
Example(s):

onyx:0> errordict begin
onyx:0> $stop {‘Custom stop\n’ print flush quit} def
onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
Custom stop

2.10.4 gcdict

The gcdict dictionary provides garbage collection control and status capabilities.

Table 2.7: gcdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

Control operators
–

collect
–

Force a garbage collection.

boolean
setactive

–

Set whether the garbage collector is active.

seconds
setperiod

–

Set the inactivity period before the garbage collector will run.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 35

Table 2.7: continued

Input(s)
Op/Proc/Var

Output(s)

Description

count
setthreshold

–

Set the number of bytes of memory allocation that will trigger a
garbage collection.

State and statistics operators
–

active
boolean

Get whether the garbage collector is active.

–
period

seconds

Get the inactivity period before the garbage collector will run.

–
threshold

count

Get the number of bytes of memory allocation that will trigger a
garbage collection.

–
stats

array

Get garbage collection statistics.

– active boolean:
Input(s): None.
Output(s):

boolean: If true, the garbage collector is active; otherwise it is not active.
Errors(s): None.
Description: Get whether the garbage collector is active.
Example(s):

onyx:0> gcdict begin active end 1 sprint
false

– collect –:
Input(s): None.
Output(s): None.
Errors(s): None.
Description: Force a garbage collection.
Example(s):

onyx:0> gcdict begin collect end
onyx:0>

– period seconds:
Input(s): None.
Output(s):

seconds: The minimum number of seconds since the last object allocation that the garbage
collector will wait before doing a garbage collection. 0 is treated specially to mean for-
ever.

36 Onyx Manual Chapter 2

Errors(s): None.
Description: Get the minimum number of seconds of object allocation inactivity that the garbage

collector will wait before doing a garbage collection. This setting is disjoint from the thresh-
old setting, and does not prevent garbage collection due to the threshold having been reached.

Example(s):
onyx:0> gcdict begin period end 1 sprint
60
onyx:0>

boolean setactive –:
Input(s):

boolean: If true (initial setting), activate the garbage collector; otherwise deactivate the
garbage collector.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set whether the garbage collector is active. This setting takes effect asynchronously,
so it is possible for the garbage collector to run even after it has been deactivated. This set-
ting overrides the allocation inactivity period and allocation threshold settings, so that if
this setting is set to false, the other settings have no effect.

Example(s):
onyx:0> gcdict begin false setactive end
onyx:0>

seconds setperiod –:
Input(s):

seconds: The minimum number of seconds since the last object allocation that the garbage
collector will wait before doing a garbage collection. 0 is treated specially to mean for-
ever.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.
limitcheck.

Description: Set the minimum number of seconds of object allocation inactivity that the garbage
collector will wait before doing a garbage collection. This setting is disjoint from the thresh-
old setting, and does not prevent garbage collection due to the threshold having been reached.

Example(s):
onyx:0> gcdict begin 60 setperiod end
onyx:0>

count setthreshold –:
Input(s):

count: Number of bytes of memory allocation since the last garbage collection that will
trigger a garbage collection. 0 is treated specially to mean infinity.

Output(s): None.

2.10. DICTIONARY REFERENCE Jason Evans 37

Errors(s):
stackunderflow.
typecheck.
limitcheck.

Description: Set the number of bytes of memory allocation since the last garbage collection
that will trigger a garbage collection. This setting is disjoint from the inactivity period
setting, and does not prevent garbage collection due to the allocation inactivity period having
been exceeded.

Example(s):
onyx:0> gcdict begin 40000 setthreshold end
onyx:0>

– stats array:
Input(s): None.

Output(s):
array: An array with the format [collections count [ccount cmark csweep] [mcount mmark

msweep] [scount smark ssweep]], where the fields have the following meanings:
collections: Total number of collections the garbage collector has performed.
count: Current number of bytes of memory allocated.
ccount: Number of bytes of memory allocated as of the end of the most recent garbage

collection.
cmark: Number of microseconds taken by the most recent garbage collection mark

phase.
csweep: Number of microseconds taken by the most recent garbage collection sweep

phase.
mcount: Largest number of bytes of memory ever allocated at any point in time.
mmark: Maximum number of microseconds taken by any garbage collection mark

phase.
msweep: Number of microseconds taken by any garbage collection sweep phase.
scount: Total number of bytes of memory ever allocated.
smark: Total number of microseconds taken by all garbage collection mark phases.
ssweep: Total number of microseconds taken by all garbage collection sweep phases.

Errors(s): None.

Description: Get statistics about the garbage collector.

Example(s):
onyx:0> gcdict begin
onyx:0> stats 2 sprint
[23 72673 [72268 754 3467] [4752223 930 36492] [51057886 17448 136807]]
onyx:0>

– threshold count:
Input(s): None.

Output(s):
count: Number of bytes of memory allocation since the last garbage collection that will

trigger a garbage collection. 0 is treated specially to mean infinity.

Errors(s): None.

38 Onyx Manual Chapter 2

Description: Get the number of bytes of memory allocation since the last garbage collection
that will trigger a garbage collection. This setting is disjoint from the inactivity period
setting, and does not prevent garbage collection due to the allocation inactivity period having
been exceeded.

Example(s):
onyx:0> gcdict begin threshold end 1 sprint
65536
onyx:0>

2.10.5 globaldict

All threads share the same globaldict, which is meant as a repository for globally shared objects.
globaldict is empty when the Onyx interpreter is initialized, and is implicitly locked.

2.10.6 onyxdict

Various portions of Onyx use the onyxdict dictionary for storage of miscellaneous objects that normally
should not be part of the namespace visible to dstack searches.

Table 2.8: onyxdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

–
mpath post

array

Get path searched by mrequire.

–
mpath pre

array

Get path searched by mrequire.

–
rpath post

array

Get path searched by require.

–
rpath pre

array

Get path searched by require.

– mpath post array:
Input(s): None.

Output(s):
array: An array of strings.

Errors(s): None.

Description: Get an array of strings used by mrequire as prefixes for file searches. The ele-
ments of the array are tried in the order listed.

2.10. DICTIONARY REFERENCE Jason Evans 39

Example(s):
onyx:0> onyxdict $mpath_post get 1 sprint
[‘/usr/local/share/onyx-3.0.0/nxm’]
onyx:0>

– mpath pre array:
Input(s): None.
Output(s):

array: An array of strings.
Errors(s): None.
Description: Get an array of strings used by mrequire as prefixes for file searches. The ele-

ments of the array are tried in the order listed.
Example(s):

onyx:0> onyxdict $mpath_pre get 1 sprint
[‘’ ‘.’]
onyx:0>

– rpath post array:
Input(s): None.
Output(s):

array: An array of strings.
Errors(s): None.
Description: Get an array of strings used by require as prefixes for file searches. The elements

of the array are tried in the order listed.
Example(s):

onyx:0> onyxdict $rpath_post get 1 sprint
[‘/usr/local/share/onyx-3.0.0/nx’]
onyx:0>

– rpath pre array:
Input(s): None.
Output(s):

array: An array of strings.
Errors(s): None.
Description: Get an array of strings used by require as prefixes for file searches. The elements

of the array are tried in the order listed.
Example(s):

onyx:0> onyxdict $rpath_pre get 1 sprint
[‘’ ‘.’]
onyx:0>

2.10.7 outputsdict

The outputsdict dictionary is primarily used to support outputs, but its contents may be of use to an
application that wishes to extend or modify formatted printing.

There is an entry in outputsdict for each Onyx type. Each entry renders objects that correspond to its
name using optional flags stored in a dictionary. The following flags are supported for all types:

40 Onyx Manual Chapter 2

$n : Maximum length, in bytes. Default: disabled.

$w: Minimum length, in bytes. Default: disabled.

$j : Justification. Legal values:

$l : Left.
$c : Center.
$r : Right (default).

$p : Padding character. Default: ‘ ’ .

$r : Syntactic rendering recursion depth. Default: 1.

The following additional flags are supported for integers:

$b : Base, from 2 to 36. Default: 10.

$s : Sign. Legal values:

$- : Only print sign if output is negative (default).
$+: Always print sign.

The following additional flags are supported for reals:

$d : Digits of precision past decimal point. Default: 6.

$e : Exponential notation, if true. Default: false.

Table 2.9: outputsdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

array flags
arraytype

string

Create formatted string from array.

boolean flags
booleantype

string

Create formatted string from boolean.

condition flags
conditiontype

string

Create formatted string from condition.

dict flags
dicttype

string

Create formatted string from dict.

file flags
filetype

string

Create formatted string from file.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 41

Table 2.9: continued

Input(s)
Op/Proc/Var

Output(s)

Description

fino flags
finotype

string

Create formatted string from fino.

hook flags
hooktype

string

Create formatted string from hook.

integer flags
integertype

string

Create formatted string from integer.

mark flags
marktype

string

Create formatted string from mark.

mutex flags
mutextype

string

Create formatted string from mutex.

name flags
nametype

string

Create formatted string from name.

null flags
nulltype

string

Create formatted string from null.

operator flags
operatortype

string

Create formatted string from operator.

pmark flags
pmarktype

string

Create formatted string from pmark.

real flags
realtype

string

Create formatted string from real.

regex flags
regextype

string

Create formatted string from regex.

regsub flags
regsubtype

string

Create formatted string from regsub.

stack flags
stacktype

string

Create formatted string from stack.

string flags
stringtype

string

Create formatted string from string.

Continued on next page...

42 Onyx Manual Chapter 2

Table 2.9: continued

Input(s)
Op/Proc/Var

Output(s)

Description

thread flags
threadtype

string

Create formatted string from thread.

array flags arraytype string:
Input(s):

array: An array object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of array.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of array.
Example(s):

onyx:0> outputsdict begin
onyx:0> [1 [2 3] 4]
onyx:1> dup <$w 9 $p ‘_’ $r 0> arraytype print ‘\n’ print flush
__-array-
onyx:1> dup <$w 9 $p ‘_’ $r 1> arraytype print ‘\n’ print flush
[1 -array- 4]
onyx:1>

boolean flags booleantype string:
Input(s):

boolean: A boolean object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of boolean.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of boolean.
Example(s):

onyx:0> outputsdict begin
onyx:0> false
onyx:1> dup <$n 3> booleantype print ‘\n’ print flush
fal
onyx:1> dup <$n 7> booleantype print ‘\n’ print flush
false
onyx:1>

2.10. DICTIONARY REFERENCE Jason Evans 43

condition flags conditiontype string:
Input(s):

condition: A condition object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of condition.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of condition.

Example(s):
onyx:0> outputsdict begin
onyx:0> condition
onyx:1> <$w 15 $p ‘_’ $j $c> booleantype print ‘\n’ print flush
__-condition-__
onyx:0>

dict flags dicttype string:
Input(s):

dict: A dict object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of dict.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of dict.

Example(s):
onyx:0> outputsdict begin
onyx:0> <$foo ‘foo’> <$w 30 $p ‘.’ $j $r> dicttype print ‘\n’ print flush
..................<$foo ‘foo’>
onyx:0>

file flags filetype string:
Input(s):

file: A file object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of file.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of file.

44 Onyx Manual Chapter 2

Example(s):
onyx:0> outputsdict begin
onyx:0> stdin
onyx:1> <$w 30 $p ‘.’ $j $c> filetype print ‘\n’ print flush
............-file-............
onyx:0>

fino flags finotype string:
Input(s):

fino: A fino object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of fino.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of fino.

Example(s):
onyx:0> outputsdict begin
onyx:0> (
onyx:1> <$w 30 $p ‘.’ $j $c> finotype print ‘\n’ print flush
............-fino-............
onyx:0>

hook flags hooktype string:
Input(s):

hook: A hook object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of hook.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of hook.

Example(s): The following example is a bit contrived, since there is no way to create a hook
object with a stock onyx interpreter. Therefore, imagine that an operator named taggedhook
exists that creates a hook with a tag that is the name “tagged”.

onyx:0> outputsdict begin
onyx:0> taggedhook
onyx:1> <$w 30 $p ‘.’ $j $l hooktype print ‘\n’ print flush
=tagged=......................
onyx:0>

integer flags integertype string:
Input(s):

2.10. DICTIONARY REFERENCE Jason Evans 45

integer: An integer object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of integer.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of integer.

Example(s):
onyx:0> outputsdict begin
onyx:0> 42 <$w 6 $p ‘_’ $j $c $s $-> integertype print ‘\n’ print flush
__42__
onyx:0> 42 <$w 6 $p ‘_’ $j $c $s $+> integertype print ‘\n’ print flush
_+42__
onyx:0> ‘0x’ print 42 <$w 6 $p ‘0’ $b 16> integertype print ‘\n’ print flush
0x00002a
onyx:0>

mark flags marktype string:
Input(s):

mark: A mark object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of mark.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of mark.

Example(s):
onyx:0> outputsdict begin
onyx:0> mark
onyx:1> <$w 30 $p ‘.’ $j $c> marktype print ‘\n’ print flush
............-mark-............
onyx:0>

mutex flags mutextype string:
Input(s):

mutex: A mutex object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of mutex.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of mutex.

46 Onyx Manual Chapter 2

Example(s):
onyx:0> outputsdict begin
onyx:0> mutex
onyx:1> <$w 30 $p ‘.’ $j $c> mutextype print ‘\n’ print flush
...........-mutex-............
onyx:0>

name flags nametype string:
Input(s):

name: A name object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of name.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of name.
Example(s):

onyx:0> outputsdict begin
onyx:0> $foo
onyx:1> <$w 30 $p ‘.’ $j $c> nametype print ‘\n’ print flush
.............$foo.............
onyx:0>

null flags nulltype string:
Input(s):

null: A null object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of null.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of null.
Example(s):

onyx:0> outputsdict begin
onyx:0> null
onyx:1> <$w 30 $p ‘.’ $j $c> nulltype print ‘\n’ print flush
.............null.............
onyx:0>

operator flags operatortype string:
Input(s):

operator: An operator object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of operator.

2.10. DICTIONARY REFERENCE Jason Evans 47

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of operator.

Example(s): The following example shows an operator printed out with two leading and trail-
ing dashes. If the interpreter cannot determine the name associated with an operator, as
will be the case for custom operators, the operator will be printed as -operator- .

onyx:0> outputsdict begin
onyx:0> ˜realtime
onyx:1> <$w 30 $p ‘.’ $j $c> operatortype print ‘\n’ print flush
.........--realtime--.........
onyx:0>

pmark flags pmarktype string:
Input(s):

pmark: A pmark object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of pmark.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of pmark.

Example(s):
onyx:0> outputsdict begin
onyx:0> { ˜x
Error $undefined
ostack: (-pmark- $x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:3> pop pop resume
onyx:1> <$w 30 $p ‘.’ $j $c> pmarktype print ‘\n’ print flush
...........-pmark-............
onyx:0>

real flags realtype string:
Input(s):

real: A real object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of real.

Errors(s):
stackunderflow.

48 Onyx Manual Chapter 2

typecheck.
Description: Create a formatted string representation of real.
Example(s):

onyx:0> outputsdict begin
onyx:0> 6.022e23 <$d 4> realtype print ‘\n’ print flush
602200000000000027262976.0000
onyx:0> 6.022e23 <$d 4 $e true> realtype print ‘\n’ print flush
6.0220e+23
onyx:0> 6.022e23 <$d 0 $e true> realtype print ‘\n’ print flush
6e+23
onyx:0> 6.022e23 <$d 4 $w 40 $p ‘0’> realtype print ‘\n’ print flush
00000000000602200000000000027262976.0000
onyx:0>

regex flags regextype string:
Input(s):

regex: A regex object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of regex.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of regex.
Example(s):

onyx:0> outputsdict begin
onyx:0> ‘’ regex
onyx:1> <$w 30 $p ‘.’ $j $c> regextype print ‘\n’ print flush
...........-regex-............
onyx:0>

regsub flags regsubtype string:
Input(s):

regsub: A regsub object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of regsub.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of regsub.
Example(s):

onyx:0> outputsdict begin
onyx:0> ‘’ ‘’ regsub
onyx:1> <$w 30 $p ‘.’ $j $c> regsubtype print ‘\n’ print flush
...........-regsub-...........
onyx:0>

2.10. DICTIONARY REFERENCE Jason Evans 49

stack flags stacktype string:
Input(s):

stack: A stack object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of stack.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of stack.

Example(s):
onyx:0> outputsdict begin
onyx:0> (1 (2 3) 4)
onyx:1> dup <$w 9 $p ‘_’ $r 0> stacktype print ‘\n’ print flush
__-stack-
onyx:1> <$w 9 $p ‘_’ $r 1> stacktype print ‘\n’ print flush
(1 -stack- 4)
onyx:0>

string flags stringtype string:
Input(s):

string: A string object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of string.

Errors(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of string.

Example(s):
onyx:0> outputsdict begin
onyx:0> ‘A string’
onyx:1> <$w 30 $p ‘.’ $j $c> stringtype print ‘\n’ print flush
...........A string...........
onyx:0>

thread flags threadtype string:
Input(s):

thread: A thread object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of thread.

Errors(s):
stackunderflow.
typecheck.

50 Onyx Manual Chapter 2

Description: Create a formatted string representation of thread.
Example(s):

onyx:0> outputsdict begin
onyx:0> () {} thread
onyx:1> <$w 30 $p ‘.’ $j $c> threadtype print ‘\n’ print flush
...........-thread-...........
onyx:0>

2.10.8 sprintsdict

The sprintsdict dictionary is primarily used to support sprints, but its contents may be of use to an
application that wishes to extend or modify syntactical printing.

There is an entry in sprintsdict for each Onyx type. If there is a syntactically valid representation for
an object and the recursion depth is greater than 0, the corresponding operator creates a string that
syntactically represents the object. Otherwise, a string with a non-syntictical representation of the
object is created, except for booleans, integers, names, nulls, reals, and strings, for which the results
are always syntactical. If the recursion depth is greater than 0, the operators will recursively convert
any contained objects.

The implementation of sprints is useful in illustrating a useful method of doing type-dependent oper-
ations:

$sprints {
1 idup type $sprintsdict load exch get eval

} def

Table 2.10: sprintsdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

array depth
arraytype

string

Create syntactical string from array.

boolean depth
booleantype

string

Create syntactical string from boolean.

condition depth
conditiontype

string

Create syntactical string from condition.

dict depth
dicttype

string

Create syntactical string from dict.

file depth
filetype

string

Create syntactical string from file.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 51

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

fino depth
finotype

string

Create syntactical string from fino.

hook depth
hooktype

string

Create syntactical string from hook.

integer depth
integertype

string

Create syntactical string from integer.

mark depth
marktype

string

Create syntactical string from mark.

mutex depth
mutextype

string

Create syntactical string from mutex.

name depth
nametype

string

Create syntactical string from name.

null depth
nulltype

string

Create syntactical string from null.

operator depth
operatortype

string

Create syntactical string from operator.

pmark depth
pmarktype

string

Create syntactical string from pmark.

real depth
realtype

string

Create syntactical string from real.

regex depth
regextype

string

Create syntactical string from regex.

regsub depth
regsubtype

string

Create syntactical string from regsub.

stack depth
stacktype

string

Create syntactical string from stack.

string depth
stringtype

string

Create syntactical string from string.

Continued on next page...

52 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

thread depth
threadtype

string

Create syntactical string from thread.

array depth arraytype string:
Input(s):

array: An array object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of array.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of array.
Example(s):

onyx:0> sprintsdict begin
onyx:0> [1 [2 3] 4]
onyx:1> dup 0 arraytype print ‘\n’ print flush
-array-
onyx:1> dup 1 arraytype print ‘\n’ print flush
[1 -array- 4]
onyx:1> dup 2 arraytype print ‘\n’ print flush
[1 [2 3] 4]
onyx:1>

boolean depth booleantype string:
Input(s):

boolean: A boolean object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of boolean.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of boolean.
Example(s):

onyx:0> sprintsdict begin
onyx:0> true
onyx:1> dup 0 booleantype print ‘\n’ print flush
true
onyx:1>

2.10. DICTIONARY REFERENCE Jason Evans 53

condition depth conditiontype string:
Input(s):

condition: A condition object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of condition.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of condition.

Example(s):
onyx:0> sprintsdict begin
onyx:0> condition
onyx:1> dup 0 conditiontype print ‘\n’ print flush
-condition-
onyx:1> dup 1 conditiontype print ‘\n’ print flush
-condition-
onyx:1>

dict depth dicttype string:
Input(s):

dict: A dict object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of dict.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of dict.
Example(s):

onyx:0> sprintsdict begin
onyx:0> <$a ‘a’ $subdict <$b ‘b’>>
onyx:1> dup 0 dicttype print ‘\n’ print flush
-dict-
onyx:1> dup 1 dicttype print ‘\n’ print flush
<$subdict -dict- $a ‘a’>
onyx:1> dup 2 dicttype print ‘\n’ print flush
<$subdict <$b ‘b’> $a ‘a’>
onyx:1>

file depth filetype string:
Input(s):

file: A file object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of file.

54 Onyx Manual Chapter 2

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of file.

Example(s):
onyx:0> sprintsdict begin
onyx:0> stdout
onyx:1> dup 0 filetype print ‘\n’ print flush
-file-
onyx:1> dup 1 filetype print ‘\n’ print flush
-file-
onyx:1>

fino depth finotype string:
Input(s):

fino: A fino object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of fino.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of fino.

Example(s):
onyx:0> sprintsdict begin
onyx:0> (
onyx:1> dup 0 finotype print ‘\n’ print flush
-fino-
onyx:1> dup 1 finotype print ‘\n’ print flush
-fino-
onyx:1>

hook depth hooktype string:
Input(s):

hook: A hook object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of hook.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of hook.

Example(s): The following example is a bit contrived, since there is no way to create a hook
object with a stock onyx interpreter. Therefore, imagine that an operator named taggedhook
exists that creates a hook with a tag that is the name “tagged”, and that an operator named
untaggedhook exists that creates an untagged hook.

2.10. DICTIONARY REFERENCE Jason Evans 55

onyx:0> sprintsdict begin
onyx:0> taggedhook
onyx:1> dup 0 hooktype print ‘\n’ print flush
=tagged=
onyx:1> 1 hooktype print ‘\n’ print flush
=tagged=
onyx:0> untaggedhook
onyx:1> dup 0 hooktype print ‘\n’ print flush
-hook-
onyx:1> 1 hooktype print ‘\n’ print flush
-hook-
onyx:0>

integer depth integertype string:
Input(s):

integer: An integer object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of integer.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of integer.
Example(s):

onyx:0> sprintsdict begin
onyx:0> 42
onyx:1> dup 0 integertype print ‘\n’ print flush
42
onyx:1> dup 1 integertype print ‘\n’ print flush
42
onyx:1>

mark depth marktype string:
Input(s):

mark: A mark object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of mark.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of mark.
Example(s):

onyx:0> sprintsdict begin
onyx:0> mark
onyx:1> dup 0 marktype print ‘\n’ print flush
-mark-

56 Onyx Manual Chapter 2

onyx:1> dup 1 marktype print ‘\n’ print flush
-mark-
onyx:1>

mutex depth mutextype string:
Input(s):

mutex: A mutex object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of mutex.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of mutex.
Example(s):

onyx:0> sprintsdict begin
onyx:0> mutex
onyx:1> dup 0 mutextype print ‘\n’ print flush
-mutex-
onyx:1> dup 1 mutextype print ‘\n’ print flush
-mutex-
onyx:1>

name depth nametype string:
Input(s):

name: A name object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of name.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of name.
Example(s):

onyx:0> sprintsdict begin
onyx:0> $foo
onyx:1> dup 0 nametype print ‘\n’ print flush
$foo
onyx:1> dup 1 nametype print ‘\n’ print flush
$foo
onyx:1>

null depth nulltype string:
Input(s):

null: A null object.
depth: Recursion depth.

Output(s):

2.10. DICTIONARY REFERENCE Jason Evans 57

string: Syntactical string representation of null.
Errors(s):

stackunderflow.
typecheck.

Description: Create a syntactical string representation of null.
Example(s):

onyx:0> sprintsdict begin
onyx:0> null
onyx:1> dup 0 nulltype print ‘\n’ print flush
-null-
onyx:1> dup 1 nulltype print ‘\n’ print flush
-null-
onyx:1>

operator depth operatortype string:
Input(s):

operator: An operator object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of operator.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of operator.
Example(s): The following example shows an operator printed out with two leading and trail-

ing dashes. If the interpreter cannot determine the name associated with an operator, as
will be the case for custom operators, the operator will be printed as -operator- .

onyx:0> sprintsdict begin
onyx:0> ˜realtime
onyx:1> dup 0 operatortype print ‘\n’ print flush
--realtime--
onyx:1> 1 operatortype print ‘\n’ print flush
--realtime--
onyx:0>

pmark depth pmarktype string:
Input(s):

pmark: A pmark object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of pmark.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of pmark.

58 Onyx Manual Chapter 2

Example(s):
onyx:0> sprintsdict begin
onyx:0> { ˜x
Error $undefined
ostack: (-pmark- $x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:3> pop pop resume
onyx:1> dup 0 pmarktype print ‘\n’ print flush
-pmark-
onyx:1> dup 1 pmarktype print ‘\n’ print flush
-pmark-
onyx:1>

regex depth regextype string:
Input(s):

regex: A regex object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of regex.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of regex.

Example(s):
onyx:0> sprintsdict begin
onyx:0> ‘’ regex
onyx:1> dup 0 regextype print ‘\n’ print flush
-regex-
onyx:1> dup 1 regextype print ‘\n’ print flush
-regex-
onyx:1>

regsub depth regsubtype string:
Input(s):

regsub: A regsub object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of regsub.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of regsub.

Example(s):
onyx:0> sprintsdict begin

2.10. DICTIONARY REFERENCE Jason Evans 59

onyx:0> ‘’ ‘’ regsub
onyx:1> dup 0 regsubtype print ‘\n’ print flush
-regsub-
onyx:1> dup 1 regsubtype print ‘\n’ print flush
-regsub-
onyx:1>

real depth realtype string:
Input(s):

real: A real object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of real.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of real.
Example(s):

onyx:0> sprintsdict begin
onyx:0> 42.0
onyx:1> dup 0 realtype print ‘\n’ print flush
4.200000e+01
onyx:1> dup 1 realtype print ‘\n’ print flush
4.200000e+01
onyx:1>

stack depth stacktype string:
Input(s):

stack: A stack object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of stack.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of stack.
Example(s):

onyx:0> sprintsdict begin
onyx:0> (1 (2 3) 4)
onyx:1> dup 0 stacktype print ‘\n’ print flush
-stack-
onyx:1> dup 1 stacktype print ‘\n’ print flush
(1 -stack- 4)
onyx:1> dup 2 stacktype print ‘\n’ print flush
(1 (2 3) 4)
onyx:1>

string depth stringtype string:

60 Onyx Manual Chapter 2

Input(s):
string: A string object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of string.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of string.
Example(s):

onyx:0> sprintsdict begin
onyx:0> ‘abcd’
onyx:1> dup 0 stringtype print ‘\n’ print flush
‘abcd’
onyx:1> dup 1 stringtype print ‘\n’ print flush
‘abcd’
onyx:1>

thread depth threadtype string:
Input(s):

thread: A thread object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of thread.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of thread.
Example(s):

onyx:0> sprintsdict begin
onyx:0> thread
onyx:1> dup 0 threadtype print ‘\n’ print flush
-thread-
onyx:1> dup 1 threadtype print ‘\n’ print flush
-thread-
onyx:1>

2.10.9 systemdict

The systemdict dictionary contains most of the operators that are of general use. Although there are
no mechanisms that prevent modification of systemdict, programs should not normally need to modify
systemdict, since globaldict provides a place for storing globally shared objects. All threads share the
same systemdict, which is implicitly locked.

2.10. DICTIONARY REFERENCE Jason Evans 61

Table 2.11: systemdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

Operand stack operators
–

mark
mark

Create a mark.

,,,obj
aup

obj ,,,

Rotate stack up one position.

obj ,,,
adn

,,,obj

Rotate stack down one position.

–
count

count

Get the number of objects on ostack.

mark . . .
counttomark

mark . . . count

Get the depth of the topmost mark on ostack.

obj
dup

obj dup

Duplicate an object.

obj ,,,
bdup

obj ,,,dup

Duplicate bottom object.

objects count
ndup

objects objects

Duplicate objects.

obj . . . index
idup

obj . . . dup

Duplicate object on ostack at index.

. . . obj ,,,index
ibdup

. . . obj ,,,dup

Duplicate object on ostack at index from bottom.

a b
tuck

b a b

Tuck duplicate of top object under second object.

a b
under

a a b

Duplicate second object.

a b
over

a b a

Duplicate second object.

a b
exch

b a

Exchange top two objects.

Continued on next page...

62 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

a b c
up

c a b

Roll top three objects up one.

a . . . b count
nup

b a . . .

Roll count objects up one.

a b c
dn

b c a

Roll top three objects down one.

a . . . b count
ndn

. . . b a

Roll count objects down one.

. . . amount
rot

. . .

Rotate stack up by amount.

region count amount
roll

rolled

Roll count objects up by amount.

obj
pop

–

Remove object.

obj ,,,
bpop

,,,

Remove bottom object.

objects count
npop

–

Remove count objects.

objects . . . count
nbpop

. . .

Remove count objects from bottom.

obj . . . index
ipop

. . .

Remove object at index.

. . . obj ,,,index
ibpop

. . . ,,,

Remove object at index from bottom.

a b
nip

b

Remove second object.

objects
clear

–

Pop all objects off ostack.

mark . . .
cleartomark

–

Remove objects from ostack through topmost mark.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 63

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
ostack

stack

Get a current ostack snapshot.

thread
threadostack

stack

Get a reference to thread’s ostack.

Execution, control, and execution stack operators
obj

eval
–

Evaluate object.

boolean obj
if

–

Conditionally evaluate object.

boolean a b
ifelse

–

Conditionally evaluate one of two objects.

init inc limit proc
for

–

Iterate with a control variable.

count proc
repeat

–

Iterate a set number of times.

cond proc
while

–

Loop while cond is true.

proc cond
until

–

Loop until cond is false.

proc
loop

–

Loop indefinitely.

array proc
foreach

–

Iterate on array elements.

dict proc
foreach

–

Iterate on dictionary key/value pairs.

stack proc
foreach

–

Iterate on stack elements.

string proc
foreach

–

Iterate on string elements.

–
exit

–

Terminate innermost looping context.

Continued on next page...

64 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

file/string
token

false

Unsuccessfully scan for a token.

file/string
token

rem obj true

Successfully scan for a token

obj
start

–

Evaluate object.

–
quit

–

Unwind to innermost start context.

obj
stopped

boolean

Evaluate object.

–
stop

–

Unwind to innermost stopped or start context.

name
throw

obj

Throw an error.

–
estack

stack

Get a current estack snapshot.

thread
threadestack

stack

Get a reference to thread’s estack.

–
countestack

count

Get current estack depth.

–
istack

stack

Get a current istack snapshot.

thread
threadistack

stack

Get a reference to thread’s istack.

status
die

–

Exit program.

path symbol
modload

–

Load a module.

file symbol
mrequire

–

Search for and load a module.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 65

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

file
require

–

Search for and evaluate a source file.

args
exec

–

Overlay a new program and execute it.

args
forkexec

pid

Fork and exec a new process.

pid
waitpid

status

Wait for a program to terminate.

args
system

status

Execute a program.

–
pid

pid

Get process ID.

–
ppid

pid

Get parent’s process ID.

–
uid

uid

Get the process’s user ID.

uid
setuid

boolean

Set the process’s user ID.

–
euid

uid

Get the process’s effective user ID.

uid
seteuid

boolean

Set the process’s effective user ID.

–
gid

gid

Get the process’s group ID.

gid
setgid

boolean

Set the process’s group ID.

–
egid

gid

Get the process’s effective group ID.

gid
setegid

boolean

Set the process’s effective group ID.

Continued on next page...

66 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
realtime

nsecs

Get the number of nanoseconds since the epoch.

nanoseconds
nsleep

–

Nanosleep.

Stack operators
–

(
fino

Begin a stack declaration.

fino objects
)

stack

Create a stack.

–
stack

stack

Create a stack.

stack obj
spush

–

Push object onto stack.

stack obj
sbpush

–

Push object onto bottom of stack.

stack
scount

count

Get the number of objects on a stack.

stack
scounttomark

count

Get the depth of the topmost mark on stack.

stack
sdup

–

Duplicate an object.

stack
sbdup

–

Duplicate bottom object.

stack count
sndup

–

Duplicate objects on stack.

stack index
sidup

–

Duplicate object on stack at index.

stack index
sibdup

–

Duplicate object on stack at index from bottom.

stack
stuck

–

Tuck duplicate of top object on stack under next object on stack.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 67

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

stack
sunder

–

Duplicate second object on stack.

stack
sover

–

Duplicate second object on stack.

stack
sexch

–

Exchange top objects on stack.

stack
sup

–

Roll top three objects on stack up one.

stack count
snup

–

Roll count objects on stack up one.

stack
saup

–

Roll objects on stack up one.

stack
sdn

–

Roll top three objects on stack down one.

stack count
sndn

–

Roll count objects on stack down one.

stack
sadn

–

Roll objects on stack down one.

stack amount
srot

–

Rotate objects on stack up by amount.

stack count amount
sroll

–

Roll objects on stack.

stack
spop

obj

Pop object off stack.

stack
sbpop

obj

Pop object off bottom of stack.

stack count
snpop

array

Pop count objects off stack.

stack count
snbpop

array

Pop count objects off bottom of stack.

Continued on next page...

68 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

stack index
sipop

obj

Remove object on stack at index.

stack index
sibpop

obj

Remove object on stack at index from bottom.

stack
snip

obj

Remove second object on stack.

stack
sclear

–

Remove all objects on stack.

stack
scleartomark

–

Remove objects from stack down through topmost mark.

(a) (b)
cat

(a b)

Catenate two stacks.

stacks count
ncat

stack

Catenate stacks.

srcstack dststack
copy

dststack

Copy stack contents.

Number (integer, real) and math operators
a b

add
r

Add a and b.

a
inc

r

Add 1 to a.

a b
sub

r

Subtract b from a.

a
dec

r

Subtract 1 from a.

a b
mul

r

Multiply a and b.

a b
div

r

Divide a by b.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 69

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

a b
idiv

r

Divide a by b (integers).

a b
mod

r

Mod a by b (integers and reals).

a b
exp

r

Raise a to the power of b.

x
exp

r

e (base of natural logarithm) raised to x.

a
sqrt

r

Square root.

a
ln

r

Natural log.

a
log

r

Base 10 log.

a
abs

r

Get the absolute value of a.

a
neg

r

Get the negative of a.

a
ceiling

r

Integer ceiling of a real.

a
floor

r

Integer floor of a real.

a
round

r

Real rounded to integer.

a
trunc

r

Integer from real with truncated fractional.

a
sin

r

Sine in radians.

a
sinh

r

Hyperbolic sine.

Continued on next page...

70 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

a
asin

r

Arcsine.

a
asinh

r

Hyperbolic arcsine.

a
cos

r

Cosine in radians.

a
cosh

r

Hyperbolic cosine.

a
acos

r

Arc cosine.

a
acosh

r

Hyperbolic arc cosine.

x
tan

r

Tangent of x in radians.

x
tanh

r

Hyperbolic tangent.

x
atan

r

Arctangent.

y x
atan2

r

Arctangent in radians of y
x .

x
atanh

r

Hyperbolic arctangent.

seed
srand

–

Seed pseudo-random number generator.

–
rand

integer

Get a pseudo-random number.

String operators
length

string
string

Create a string.

string
length

count

Get string length.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 71

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

string index
get

integer

Get string element.

string index integer
put

–

Set string element.

string index length
getinterval

substring

Get a string interval.

string index substring
putinterval

–

Copy substring into string.

‘a’ ‘b’
cat

‘ab’

Catenate two strings.

strings count
ncat

string

Catenate strings.

srcstring dststring
copy

dstsubstring

Copy string.

obj depth
sprints

string

Create syntactical string from object.

obj flags
outputs

string

Create formatted string from object.

string pattern
search

post pattern pre true

Successfully search for pattern.

string pattern
search

string false

Unsuccessfully earch for pattern.

Name operators
name

length
count

Get name length.

Array operators
–

argv
args

Get program arguments.

–
[

mark

Begin an array declaration.

Continued on next page...

72 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

mark objects
]

array

Construct an array.

length
array

array

Create an array.

array
length

count

Get array length.

array index
get

obj

Get array element.

array index obj
put

–

Set array element.

array index length
getinterval

subarray

Get an array interval.

array index subarray
putinterval

–

Copy subarray into array.

[a] [b]
cat

[a b]

Catenate two arrays.

arrays count
ncat

array

Catenate arrays.

srcarray dstarray
copy

dstsubarray

Copy array.

Dictionary and dictionary stack operators
–

gcdict
dict

Get gcdict.

–
userdict

dict

Get userdict.

–
globaldict

dict

Get globaldict.

–
systemdict

dict

Get systemdict.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 73

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
onyxdict

dict

Get onyxdict.

–
sprintsdict

dict

Get sprintsdict.

–
outputsdict

dict

Get outputsdict.

–
envdict

dict

Get envdict.

–
threadsdict

dict

Get threadsdict.

key val
setenv

–

Set environment variable.

key
unsetenv

–

Unset environment variable.

–
<

mark

Begin a dictionary declaration.

mark kvpairs
>

dict

Construct a dictionary.

–
dict

dict

Create a dictionary.

dict
begin

–

Pust dict onto dstack.

–
end

–

Pop a dictionary off dstack.

key val
def

–

Define key/value pair.

dict key
undef

–

Undefine key in dict.

key
load

val

Look up a key’s value.

Continued on next page...

74 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

dict key
known

boolean

Check for key in dict.

key
where

false

Unsuccessfully get topmost dstack dictionary that defines key.

key
where

dict true

Successfully get topmost dstack dictionary that defines key.

dict
length

count

Get number of dictionary key/value pairs.

dict key
get

value

Get dict value associate with key.

dict key value
put

–

Set dict key/value pair.

srcdict dstdict
copy

dstdict

Copy dictionary contents.

–
currentdict

dict

Get topmost dstack dictionary.

–
dstack

stack

Get dstack snapshot.

thread
threaddstack

stack

Get a reference to thread’s dstack.

–
countdstack

count

Get number of stacks on dstack.

File and filesystem operators
filename flags

open
file

Open a file.

filename flags mode
open

file

Open a file, creation mode specified.

–
pipe

rfile wfile

Create a pipe.

file
close

–

Close file.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 75

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

file
read

integer boolean

Read from file.

file string
read

substring boolean

Read from file.

file
readline

string boolean

Read a line from file.

<file dict . . . > timeout
poll

[file . . .]

Wait for file(s) to change status.

file
bytesavailable

count

Get number of buffered readable bytes.

file
iobuf

count

Get size of I/O buffer.

file count
setiobuf

–

Set size of I/O buffer.

file
nonblocking

boolean

Get non-blocking mode.

file boolean
setnonblocking

–

Set non-blocking mode.

file integer/string
write

false

Write to file.

file integer/string
write

integer/substring true

Write to file.

string
print

–

Print string to stdout.

obj depth
sprint

–

Syntactically print object to stdout.

obj flags
output

–

Formatted print to stdout.

–
pstack

–

Syntactically print ostack elements.

Continued on next page...

76 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

file
flushfile

–

Flush file buffer.

–
flush

–

Flush stdout buffer.

file length
truncate

–

Truncate file.

file offset
seek

–

Move file position pointer.

file
tell

offset

Get file position pointer offset.

path
mkdir

–

Create a directory.

path mode
mkdir

–

Create a directory, mode specified.

path
mkfifo

–

Create a named pipe.

path mode
mkfifo

–

Create a named pipe, mode specified.

old new
rename

–

Rename a file or directory.

file/filename mode
chmod

–

Change file permissions.

file/filename uid gid
chown

–

Change file owner and group.

filename linkname
link

–

Create a hard link.

filename linkname
symlink

–

Create a symbolic link.

filename
unlink

–

Unlink a file.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 77

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

path
rmdir

–

Remove an empty directory.

file/filename flag
test

boolean

Test a file.

file/filename
status

dict

Get file information.

linkname
readlink

string

Get symbolic link data.

path proc
dirforeach

–

Iterate on directory entries.

–
pwd

path

Get present working directory.

path
cd

–

Change present working directory.

path
chroot

–

Change root directory.

–
stdin

file

Get thread’s stdin.

–
stdout

file

Get thread’s stdout.

–
stderr

file

Get thread’s stderr.

–
gstdin

file

Get global stdin.

–
gstdout

file

Get global stdout.

–
gstderr

file

Get global stderr.

file
setstdin

–

Set thread’s stdin.

Continued on next page...

78 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

file
setstdout

–

Set thread’s stdout.

file
setstderr

–

Set thread’s stderr.

file
setgstdin

–

Set global stdin.

file
setgstdout

–

Set global stdout.

file
setgstderr

–

Set global stderr.

Socket and networking operators
family type proto

socket
sock

Create a socket.

family type
socket

sock

Create a socket.

sock addr port
bindsocket

–

Bind socket to address/port.

sock addr
bindsocket

–

Bind socket to address.

sock path
bindsocket

–

Bind socket to port.

sock backlog
listen

–

Listen for socket connections.

sock
listen

–

Listen for socket connections.

sock
accept

sock

Accept a socket connection.

sock addr port
connect

–

Connect a socket.

sock path
connect

–

Connect a socket.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 79

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

service
serviceport

port

Get port number for service name.

sock
sockname

dict

Get socket information.

sock level optname
sockopt

optval

Get socket option.

sock optname
sockopt

optval

Get socket option.

sock level optname optval
setsockopt

–

Set socket option.

sock optname optval
setsockopt

–

Set socket option.

sock
peername

dict

Get peer socket information.

sock mesg flags
send

nsend

Send a message.

sock mesg
send

count

Send a message.

sock string flags
recv

substring

Receive a message.

sock string
recv

substring

Receive a message.

family type proto
socketpair

sock sock

Create a socket pair.

family type
socketpair

sock sock

Create a socket pair.

Logical and bitwise operators
a b

lt
boolean

a less than b? (integer/real, string)

Continued on next page...

80 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

a b
le

boolean

a less than or equal to b? (integer/real, string)

a b
eq

boolean

a equal to b? (any type)

a b
ne

boolean

a not equal to b? (any type)

a b
ge

boolean

a greater than or equal to b? (integer/real, string)

a b
gt

boolean

a greater than b? (integer/real, string)

a b
and

r

Logical/bitwise and. (boolean/integer)

a b
or

r

Logical/bitwise or. (boolean/integer)

a b
xor

r

Logical/bitwise exclusive or. (boolean/integer)

a
not

r

Logical/bitwise not. (boolean/integer)

a shift
shift

integer

Bitwise shift.

–
false

false

Return true.

–
true

true

Return false.

Type, conversion, and attribute operators
obj

type
name

Get object type.

obj
echeck

boolean

Evaluatable?

obj
xcheck

boolean

Executable?

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 81

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

obj
cve

obj

Set evaluatable attribute.

obj
cvx

obj

Set executable attribute.

obj
cvlit

obj

Set literal attribute.

string
cvn

name

Convert string to name.

obj
cvs

string

Convert object to string.

integer radix
cvrs

string

Convert integer to radix string.

real precision
cvds

string

Convert real to decimal string.

real precision
cves

string

Convert real to exponential string.

hook
hooktag

tag

Get hook tag.

Threading and synchronization operators
stack entry

thread
thread

Create and run a thread.

–
self

thread

Get a thread object for the running thread.

thread
join

–

Wait for thread to exit.

thread
detach

–

Detach thread.

–
yield

–

Voluntarily yield the processor.

Continued on next page...

82 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
mutex

mutex

Create a mutex.

mutex proc
monitor

–

Evaluate an object under the protection of a mutex.

mutex
lock

–

Acquire mutex.

mutex
trylock

boolean

Try to acquire mutex.

mutex
unlock

–

Release mutex.

–
condition

condition

Create a condition variable.

condition mutex
wait

–

Wait on condition.

condition mutex timeout
timedwait

boolean

Wait on condition with timeout.

condition
signal

–

Signal a condition waiter.

condition
broadcast

–

Signal all condition waiters.

–
currentlocking

boolean

Get implicit locking mode.

boolean
setlocking

–

Set implicit locking mode.

obj
lcheck

boolean

Implicitly locked?

Regular expression operators
string flags

regex
regex

Create a regex object.

string
regex

regex

Create a regex object.

Continued on next page...

2.10. DICTIONARY REFERENCE Jason Evans 83

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

input pattern flags
match

boolean

Find pattern matches in input string.

input pattern
match

boolean

Find pattern matches in input string.

input regex
match

boolean

Find regex matches in input string.

input pattern flags limit
split

array

Split input into an array of substrings.

input pattern flags
split

array

Split input into an array of substrings.

input pattern limit
split

array

Split input into an array of substrings.

input pattern
split

array

Split input into an array of substrings.

input regex limit
split

array

Split input into an array of substrings.

input regex
split

array

Split input into an array of substrings.

integer
submatch

substring

Get capturing subpattern match.

input submatch
offset

offset

Get submatch offset from beginning of input.

pattern template flags
regsub

regsub

Create a regsub object.

pattern template
regsub

regsub

Create a regsub object.

input pattern template flags
subst

output count

Substitute template for pattern matches.

input pattern template
subst

output count

Substitute template for pattern matches.

Continued on next page...

84 Onyx Manual Chapter 2

Table 2.11: continued

Input(s)
Op/Proc/Var

Output(s)

Description

input regsub
subst

output count

Substitute.

Miscellaneous operators
–

product
string

Get the product string.

–
version

string

Get the version string.

proc
bind

proc

Bind names to operators.

–
null

null

Create a null object.

– (fino:
Input(s): None.

Output(s):
fino: A fino object.

Errors(s): None.

Description: Push a fino object onto ostack to denote the bottom of a stack that has not yet
been constructed.

Example(s):
onyx:0> (
onyx:1> pstack
-fino-
onyx:1>

fino objects) stack:
Input(s):

fino: A fino object, usually created by the) operator.
objects: 0 or more objects.

Output(s):
stack: A stack object.

Errors(s):
unmatchedfino.

Description: Create a stack object and move all objects from ostack down to the first fino object
to the new stack.

2.10. DICTIONARY REFERENCE Jason Evans 85

Example(s):
onyx:0> ()
onyx:1> 1 sprint
()
onyx:0> (1 2
onyx:3> pstack
2
1
-fino-
onyx:3>)
onyx:1> 1 sprint
(1 2)
onyx:0>

– < mark:
Input(s): None.
Output(s):

mark: A mark object.
Errors(s): None.
Description: Begin a dictionary declaration. See the ¿ operator documentation for more details

on dictionary construction.
Example(s):

onyx:0> < 1 sprint
-mark-
onyx:0>

mark kvpairs > dict:
Input(s):

mark: A mark object.
kvpairs: Zero or more pairs of non-mark objects, where the first is a key and the second is

an associated value.
Output(s):

dict: A dictionary that contains kvpairs.
Errors(s):

rangecheck.
unmatchedmark.

Description: Construct a dictionary that contains kvpairs.
Example(s):

onyx:0> <
onyx:1> $foo ‘foo’
onyx:3> $bar ‘bar’
onyx:5> $biz ‘biz’
onyx:7> $pop ˜pop
onyx:9> >
onyx:1> pstack
<$pop --pop-- $biz ‘biz’ $bar ‘bar’ $foo ‘foo’>
onyx:1>

– [mark:

86 Onyx Manual Chapter 2

Input(s): None.
Output(s):

mark: A mark object.
Errors(s): None.
Description: Begin an array declaration. See the] operator documentation for more details on

array construction.
Example(s):

onyx:0> [1 sprint
-mark-
onyx:0>

mark objects] array:
Input(s):

mark: A mark object.
objects: Zero or more non-mark objects.

Output(s):
array: An array that contains objects.

Errors(s):
unmatchedmark.

Description: Construct an array that contains all objects on ostack down to the first mark.
Example(s):

onyx:0> mark 1 2 3] 1 sprint
[1 2 3]

a abs r:
Input(s):

a: An integer or real.
Output(s):

r: Absolute value of a.
Errors(s):

stackunderflow.
typecheck.

Description: Return the absolute value of a.
Example(s):

onyx:0> 5 abs 1 sprint
5
onyx:0> -5 abs 1 sprint
5
onyx:0> 3.14 abs 1 sprint
3.140000e+00
onyx:0> -3.14 abs 1 sprint
3.140000e+00
onyx:0>

sock accept sock:
Input(s):

2.10. DICTIONARY REFERENCE Jason Evans 87

sock: A listening socket.

Output(s):
sock: A socket that is connected to a client.

Errors(s):
argcheck.
invalidfileaccess.
ioerror.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Accept a connection and create a socket that is connected to a client.

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup listen
onyx:1> dup accept
onyx:2> dup peername 1 sprint
<$family $AF_INET $address 2130706433 $port 33742>
onyx:2>

a acos r:
Input(s):

a: An integer or real.

Output(s):
r: Arc cosine of a in radians.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Return the arc cosine of a in radians.

Example(s):
onyx:0> 1 acos 1 sprint
0.000000e+00
onyx:0>

a acosh r:
Input(s):

a: An integer or real.

Output(s):
r: Hyperbolic arc cosine of a.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

88 Onyx Manual Chapter 2

Description: Return the hyperbolic arc cosine of a.
Example(s):

onyx:0> 10 acosh 1 sprint
2.993223e+00
onyx:0>

a b add r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: The sum of a and b.

Errors(s):
stackunderflow.
typecheck.

Description: Return the sum of a and b.
Example(s):

onyx:0> 2 2 add 1 sprint
4
onyx:0> -1 3 add 1 sprint
2
onyx:0> 2.0 3.1 add 1 sprint
5.100000e+00
onyx:0> -1.5 +3e1 add 1 sprint
2.850000e+01
onyx:0>

obj ,,, adn ,,,obj:
Input(s):

obj: An object.
,,,: Zero or more objects.

Output(s):
,,,: Zero or more objects.
obj: An object.

Errors(s):
stackunderflow.

Description: Rotate stack down one position.
Example(s):

onyx:0> 1 2 3 adn pstack
1
3
2
onyx:3>

a b and r:
Input(s):

a: An integer or boolean.

2.10. DICTIONARY REFERENCE Jason Evans 89

b: The same type as a.

Output(s):
r: If a and b are integers, their bitwise and, otherwise their logical and.

Errors(s):
stackunderflow.
typecheck.

Description: Return the bitwise and of two integers, or the logical and of two booleans.

Example(s):
onyx:0> false true and 1 sprint
false
onyx:0> true true and 1 sprint
true
onyx:0> 5 3 and 1 sprint
1
onyx:0>

– argv args:
Input(s): None.

Output(s):
args: An array of strings. The first string in args is the path of this program, and any

additional array elements are the arguments that were passed during invocation.

Errors(s): None.

Description: Get the argument vector that was used to invoke this program.

Example(s):
onyx:0> argv 1 sprint
[‘/usr/local/bin/onyx’]
onyx:0>

length array array:
Input(s):

length: Non-negative number of array elements.

Output(s):
array: An array of length elements.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create an array of length elements. The elements are initialized to null objects.

Example(s):
onyx:0> 3 array 1 sprint
[null null null]
onyx:0> 0 array 1 sprint
[]
onyx:0>

a asin r:

90 Onyx Manual Chapter 2

Input(s):
a: An integer or real.

Output(s):
r: Arc sine of a in radians.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Return the arc sine of a in radians.

Example(s):
onyx:0> -1 asin 1 sprint
-1.570796e+00
onyx:0>

a asinh r:
Input(s):

a: An integer or real.

Output(s):
r: Hyperbolic arc sine of a.

Errors(s):
stackunderflow.
typecheck.

Description: Return the hyperbolic arc sine of a.

Example(s):
onyx:0> 10 asinh 1 sprint
2.998223e+00
onyx:0>

x atan r:
Input(s):

x: An integer or real.

Output(s):
r: Arctangent of x in radians.

Errors(s):
stackunderflow.
typecheck.

Description: Return the arctangent of x in radians.

Example(s):
onyx:0> 1 atan 1 sprint
7.853982e-01
onyx:0>

y x atan2 r:
Input(s):

y: An integer or real.

2.10. DICTIONARY REFERENCE Jason Evans 91

x: An integer or real.
Output(s):

r: Arctangent of y
x in radians.

Errors(s):
stackunderflow.
typecheck.

Description: Return the arctangent of y
x in radians.

Example(s):
onyx:0> 1 1 atan2 1 sprint
7.853982e-01
onyx:0> 0 1 atan2 1 sprint
0.000000e+00
onyx:0> -1.0 0 atan2 1 sprint
-1.570796e+00
onyx:0>

x atanh r:
Input(s):

x: An integer or real.
Output(s):

r: Hyperbolic arctangent of x.
Errors(s):

stackunderflow.
typecheck.
rangecheck.

Description: Return the hyperbolic arctangent of x.
Example(s):

onyx:0> 0.5 atanh 1 sprint
5.493061e-01
onyx:0>

,,,obj aup obj ,,,:
Input(s):

,,,: Zero or more objects.
obj: An object.

Output(s):
obj: An object.
,,,: Zero or more objects.

Errors(s):
stackunderflow.

Description: Rotate stack up one position.
Example(s):

onyx:0> 1 2 3 aup pstack
2
1
3
onyx:3>

92 Onyx Manual Chapter 2

obj ,,, bdup obj ,,,dup:
Input(s):

obj: An object.
,,,: Zero or more objects.

Output(s):
obj: An object.
,,,: Zero or more objects.
dup: A duplicate of obj.

Errors(s):
stackunderflow.

Description: Create a duplicate of the bottom object on ostack and put it on top of ostack.

Example(s):
onyx:0> 1 2 3
onyx:3> bdup pstack
1
3
2
1
onyx:4>

dict begin –:
Input(s):

dict: A dictionary.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Push dict onto dstack, thereby adding its keys to the namespace.

Example(s):
onyx:0> <$foo ‘foo’> begin
onyx:0> foo 1 sprint
‘foo’
onyx:0>

proc bind proc:
Input(s):

proc: A procedure (array). proc will be bound even if it is literal, but contained literal
arrays will not be recursively bound.

Output(s):
proc: The same procedure as was passed in.

Errors(s):
stackunderflow.
typecheck.

Description: Recursively bind unbound procedures. Executable names within a procedure are
replaced with their values if defined in dstack, in any of the following cases:

2.10. DICTIONARY REFERENCE Jason Evans 93

• The value is a literal object.
• The value is an executable or evaluatable operator.
• The value is an executable or evaluatable hook.
• The value is an executable or evaluatable array.

Binding has a large positive impact on performance, since name lookups are thereafter
avoided. However, binding is not done by default because there are situations where it is
useful to leave procedures unbound:

• Debugging is easier, since the names associated with objects are still available.
• Behavior is more dynamic. It is possible to replace a definition on dstack and have it

immediately take effect on unbound procedures. Note however that care must be taken
when relying on this, since binding is recursive, and a lack of complete understanding
of what procedures reference each other can result in undesired bound procedures. For
this reason, it is generally best to make dynamic behavior explicit by using evaluatable
names.

• There are situations where a program needs to do some setup before binding a procedure,
and providing manual control over when binding happens allows more sophisticated use
of binding.

Example(s):
onyx:0> {pop sprint {pop sprint}}
onyx:1> dup 2 sprint
{pop sprint {pop sprint}}
onyx:1> bind
onyx:1> dup 2 sprint
{--pop-- _{sprints --print-- ‘\n’ --print-- --flush--}_ {--pop-- -array-}}
onyx:1>

sock addr port bindsocket –:

sock addr bindsocket –:

sock path bindsocket –:
Input(s):

sock: A socket.
addr: An IPv4 address or DNS hostname.
port: An IPv4 port number. If not specified, the OS chooses a port number.
path: A filesystem path for a Unix-domain socket.

Output(s): None.

Errors(s):
argcheck.
invalidfileaccess.
neterror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Bind an address/port to an IPv4 socket, or a filesystem path to a Unix-domain
socket.

94 Onyx Manual Chapter 2

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup sockname 1 sprint
<$family $AF_INET $address 2130706433 $port 7777>
onyx:1> close
onyx:0> $AF_LOCAL $SOCK_STREAM socket
onyx:1> dup ‘/tmp/socket’ bindsocket
onyx:1> dup sockname 1 sprint
<$family $AF_LOCAL $path ‘/tmp/socket’>
onyx:1>

obj ,,, bpop ,,,:
Input(s):

,,,: Zero or more objects.
obj: An object.

Output(s):
,,,: Zero or more objects.

Errors(s):
stackunderflow.

Description: Remove the bottom object from ostack and discard it.

Example(s):
onyx:0> 1 2
onyx:2> bpop pstack
2
onyx:1>

condition broadcast –:
Input(s):

condition: A condition object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Signal all threads that are waiting on condition. If there are no waiters, this
operator has no effect.

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch broadcast unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

file bytesavailable count:
Input(s):

file: A file object.

2.10. DICTIONARY REFERENCE Jason Evans 95

Output(s):
count: Number of buffered readable bytes.

Errors(s):
stackunderflow.
typecheck.

Description: Get the number of buffered readable bytes that can be read without the possibility
of blocking.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup ‘Goodbye\n’ write
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1> dup bytesavailable 1 sprint
8
onyx:1>

[a] [b] cat [a b]:

(a) (b) cat (a b):

‘a’ ‘b’ cat ‘ab’:
Input(s):

a: An array, stack, or string.
b: An array, stack, or string.

Output(s):
ab: The catenation of a and b.

Errors(s):
stackunderflow.
typecheck.

Description: Catenate two arrays, strings, or stacks.

Example(s):
onyx:0> [‘a’] [‘b’] cat
onyx:1> 1 sprint
[‘a’ ‘b’]
onyx:0> (‘a’) (‘b’) cat
onyx:1> 1 sprint
(‘a’ ‘b’)
onyx:0> ‘a’ ‘b’ cat
onyx:1> 1 sprint
‘ab’
onyx:0>

path cd –:
Input(s):

path: A string that represents a filesystem path.

96 Onyx Manual Chapter 2

Output(s): None.

Errors(s):
invalidaccess.
ioerror.
stackunderflow.
typecheck.

Description: Change the present working directory to path.

Example(s):
onyx:0> pwd 1 sprint
‘/usr/local’
onyx:0> ‘bin’ cd
onyx:0> pwd 1 sprint
‘/usr/local/bin’
onyx:0>

a ceiling r:
Input(s):

a: An integer or real.

Output(s):
r: Integer ceiling of a.

Errors(s):
stackunderflow.
typecheck.

Description: Return the integer ceiling of a.

Example(s):
onyx:0> -1.51 ceiling 1 sprint
-1
onyx:0> -1.49 ceiling 1 sprint
-1
onyx:0> 0 ceiling 1 sprint
0
onyx:0> 1.49 ceiling 1 sprint
2
onyx:0> 1.51 ceiling 1 sprint
2
onyx:0>

file/filename mode chmod –:
Input(s):

file: A file object.
filename: A string that represents a filename.
mode: An integer that represents a Unix file mode.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.

2.10. DICTIONARY REFERENCE Jason Evans 97

rangecheck.
stackunderflow.
typecheck.
unregistered.

Description:
Example(s):

onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ status $mode get 1 sprint
16877
onyx:0> ‘/tmp/tdir’ ‘r’ open
onyx:1> dup 8@555 chmod
onyx:1> ‘/tmp/tdir’ status $mode get 1 sprint
16749
onyx:1>

file/filename uid gid chown –:
Input(s):

file: A file object.
filename: A string that represents a filename.
uid: An integer that represents a user ID.
gid: An integer that represents a group ID.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Change the owner and group of a file.

Example(s):
onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ status
onyx:1> dup $uid get 1 sprint
1001
onyx:1> $gid get 1 sprint
0
onyx:0> ‘/tmp/tdir’ 1001 1001 chown
onyx:0> ‘/tmp/tdir’ status
onyx:1> dup $uid get 1 sprint
1001
onyx:1> $gid get 1 sprint
1001
onyx:0>

path chroot –:
Input(s):

98 Onyx Manual Chapter 2

path: A string that represents a filesystem path.
Output(s): None.
Errors(s):

invalidaccess.
ioerror.
stackunderflow.
typecheck.

Description: Change the root directory to path. This operator requires super-user priviledges.
Example(s):

onyx:0> pwd 1 sprint
‘/home/jasone/cw/devroot’
onyx:0> ‘/home/jasone’ chroot
onyx:0> pwd 1 sprint
‘/cw/devroot’
onyx:0>

objects clear –:
Input(s):

objects: All objects on ostack.
Output(s): None.
Errors(s): None.
Description: Pop all objects off of ostack.
Example(s):

onyx:0> 1 2 3 pstack
3
2
1
onyx:3> clear pstack
onyx:0>

mark . . . cleartomark –:
Input(s):

. . . : Zero or more objects.
mark: A mark object.

Output(s): None.
Errors(s):

unmatchedmark.
Description: Remove objects from ostack down to and including the topmost mark.
Example(s):

onyx:0> 3 mark 1 0 pstack
0
1
-mark-
3
onyx:4> cleartomark pstack
3
onyx:1>

2.10. DICTIONARY REFERENCE Jason Evans 99

file close –:
Input(s):

file: A file object.
Output(s): None.
Errors(s):

ioerror.
stackunderflow.
typecheck.

Description: Close a file.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> close
onyx:0>

– condition condition:
Input(s): None.
Output(s):

condition: A condition object.
Errors(s): None.
Description: Create a condition object.
Example(s):

onyx:0> condition 1 sprint
-condition-
onyx:0>

sock addr port connect –:

sock path connect –:
Input(s):

sock: A socket.
addr: An IPv4 address or DNS hostname.
port: An IPv4 port number. If not specified, the OS chooses a port number.
path: A filesystem path for a Unix-domain socket.

Output(s): None.
Errors(s):

argcheck.
invalidfileaccess.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Connect sock.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 connect
onyx:1>

100 Onyx Manual Chapter 2

srcarray dstarray copy dstsubarray:

srcdict dstdict copy dstdict:

srcstack dststack copy dststack:

srcstring dststring copy dstsubstring:
Input(s):

srcarray: An array object.
srcdict: A dict object.
srcstack: A stack object.
srcstring: A string object.
dstarray: An array object, at least as long as srcarray.
dstdict: A dict object.
dststack: A stack object.
dststring: A string object, at least as long as srcstring.

Output(s):
dstsubarray: A subarray of dstarray, with the same contents as srcarray.
dstdict: The same object as the input dstdict, but with the contents of srcdict inserted.
dststack: The same object as the input dststack, but with the contents of srcstack pushed.
dstsubstring: A substring of dststring, with the same contents as srcstring.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Copy from one object to another. Array and string copying are destructive; dictio-
nary and stack copying are not.

Example(s):
onyx:0> [‘a’] [‘b’ ‘c’] copy 1 sprint
[‘a’]
onyx:0> <$foo ‘foo’> <$bar ‘bar’> copy 1 sprint
<$bar ‘bar’ $foo ‘foo’>
onyx:1> (1 2) (3 4) copy 1 sprint
(3 4 1 2)
onyx:1> ‘a’ ‘bc’ copy 1 sprint
‘a’
onyx:1>

a cos r:
Input(s):

a: An integer or real.
Output(s):

r: Cosine of a in radians.
Errors(s):

stackunderflow.
typecheck.

Description: Return the cosine of a in radians.

2.10. DICTIONARY REFERENCE Jason Evans 101

Example(s):
onyx:0> 0 cos 1 sprint
1.000000e+00
onyx:0> 3.14 cos 1 sprint
-9.999987e-01
onyx:0> 3.1415927 cos 1 sprint
-1.000000e+00
onyx:0>

a cosh r:
Input(s):

a: An integer or real.
Output(s):

r: Hyperbolic cosine of a in radians.
Errors(s):

stackunderflow.
typecheck.

Description: Return the hyperbolic cosine of a in radians.
Example(s):

onyx:0> 3 cosh 1 sprint
1.006766e+01
onyx:0>

– count count:
Input(s): None.
Output(s):

count: The number of objects on ostack.
Errors(s): None.
Description: Get the number of objects on ostack.
Example(s):

onyx:0> 2 1 0 count pstack
3
0
1
2
onyx:4>

– countdstack count:
Input(s): None.
Output(s):

count: Number of dictionaries on dstack.
Errors(s): None.
Description: Get the number of dictionaries on dstack.
Example(s):

onyx:0> countdstack 1 sprint
4
onyx:0> dict begin

102 Onyx Manual Chapter 2

onyx:0> countdstack 1 sprint
5
onyx:0>

– countestack count:
Input(s): None.

Output(s):
count: The number of objects currently on the execution stack (recursion depth).

Errors(s): None.

Description: Get the current number of objects on the execution stack.

Example(s):
onyx:0> countestack 1 sprint
3
onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

mark . . . counttomark mark . . . count:
Input(s):

. . . : Zero or more objects.
mark: A mark object.

Output(s):
. . . : count objects.
mark: The same mark that was passed in.
count: The depth of mark on ostack.

Errors(s):
unmatchedmark.

Description: Get the depth of the topmost mark on ostack.

Example(s):
onyx:0> 4 mark 2 1 0 counttomark 1 sprint
3
onyx:5>

– currentdict dict:
Input(s): None.

Output(s):
dict: Topmost stack on dstack.

Errors(s): None.

Description: Get the topmost dictionary on dstack.

Example(s):
onyx:0> <$foo ‘foo’> begin
onyx:0> currentdict 1 sprint
<$foo ‘foo’>
onyx:0>

– currentlocking boolean:

2.10. DICTIONARY REFERENCE Jason Evans 103

Input(s): None.
Output(s):

boolean: If false, new objects are created with implicit locking disabled. Otherwise, new
objects are created with implicit locking enabled.

Errors(s): None.
Description: Get the current implicit locking mode. See Section 2.7.1 for implicit synchroniza-

tion details.
Example(s):

onyx:0> currentlocking 1 sprint
false
onyx:0> true setlocking
onyx:0> currentlocking 1 sprint
true
onyx:0>

real precision cvds string:
Input(s):

real: A real.
precision: Number of digits after the decimal point to show. If negative, do not show

trailing zeros.
Output(s):

string: A string representation of real in decimal form with precision digits of decimal
precision.

Errors(s):
stackunderflow.
typecheck.

Description: Convert real to a string representation in decimal notation, with precision digits
of decimal precision.

Example(s):
onyx:0> 42.3 0 cvds 1 sprint
‘42’
onyx:0> 42.3 1 cvds 1 sprint
‘42.3’
onyx:0> -42.3 4 cvds 1 sprint
‘-42.3000’
onyx:0> -43.3 -4 cvds 1 sprint
‘-42.3’
onyx:0>

obj cve obj:
Input(s):

obj: An object.
Output(s):

obj: The same object that was passed in, but with the evaluatable attribute set.
Errors(s):

stackunderflow.
Description: Set the evaluatable attribute for obj.

104 Onyx Manual Chapter 2

Example(s):
onyx:0> [1 2 3] cve 1 sprint
{1 2 3}
onyx:0>

real precision cves string:
Input(s):

real: A real.
precision: Number of digits after the decimal point to show.

Output(s):
string: A string representation of real in exponential form with precision digits of decimal

precision.
Errors(s):

stackunderflow.
typecheck.

Description: Convert real to a string representation in exponential notation, with precision
digits of decimal precision.

Example(s):
onyx:0> 42.3 0 cves 1 sprint
‘4e+01’
onyx:0> 42.3 1 cves 1 sprint
‘4.2e+01’
onyx:0> 42.3 2 cves 1 sprint
‘4.23e+01’
onyx:0> -42.3 5 cves 1 sprint
‘-4.23000e+01’
onyx:0>

obj cvlit obj:
Input(s):

obj: An object.
Output(s):

obj: The same object that was passed in, but with the literal attribute set.
Errors(s):

stackunderflow.
Description: Set the literal attribute for obj.
Example(s):

onyx:0> {1 2 3} cvlit 1 sprint
[1 2 3]
onyx:0>

string cvn name:
Input(s):

string: A string.
Output(s):

name: A literal name that corresponds to string.
Errors(s):

2.10. DICTIONARY REFERENCE Jason Evans 105

stackunderflow.
typecheck.

Description: Convert string to a literal name.
Example(s):

onyx:0> ‘foo’ cvn 1 sprint
$foo
onyx:0>

integer radix cvrs string:
Input(s):

integer: An integer.
radix: A numerical base, from 2 to 36, inclusive.

Output(s):
string: A string representation of integer in base radix.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Convert integer to a string representation in base radix.
Example(s):

onyx:0> 42 2 cvrs 1 sprint
‘101010’
onyx:0> 42 16 cvrs 1 sprint
‘2a’
onyx:0>

obj cvs string:
Input(s):

obj: An object.
Output(s):

string: A string representation of obj. The string depends on the type of obj:
boolean: ‘true’ or ‘false’ .
name: The string representation of the name.
integer: The integer in base 10.
operator: The string representation of the operator name or ‘-operator-’ .
real: The real in exponential notation.
string: A printable representation of obj. The result can be evaluated to produce the

original string.
Other types: ‘--nostringval--’ .

Errors(s):
stackunderflow.

Description: Convert obj to a string representation.
Example(s):

onyx:0> true cvs 1 sprint
‘true’
onyx:0> $foo cvs 1 sprint

106 Onyx Manual Chapter 2

‘foo’
onyx:0> 42 cvs 1 sprint
‘42’
onyx:0> ˜pop cvs 1 sprint
‘pop’
onyx:0> 42.0 cvs 1 sprint
‘4.200000e+01’
onyx:0> ‘foo\nbar\\biz\‘baz’ cvs 1 sprint
‘\‘foo\\nbar\\\\biz\\\‘baz\’’
onyx:0> mutex cvs 1 sprint
‘--nostringval--’
onyx:0>

obj cvx obj:
Input(s):

obj: An object.
Output(s):

obj: The same object that was passed in, but with the executable attribute set.
Errors(s):

stackunderflow.
Description: Set the executable attribute for obj.
Example(s):

onyx:0> [1 2 3] cvx 1 sprint
{1 2 3}
onyx:0>

a dec r:
Input(s):

a: An integer.
Output(s):

r: a− 1.
Errors(s):

stackunderflow.
typecheck.

Description: Subtract one from a.
Example(s):

onyx:0> 1 dec 1 sprint
0
onyx:0>

key val def –:
Input(s):

key: An object.
val: A value associated with key.

Output(s): None.
Errors(s):

stackunderflow.

2.10. DICTIONARY REFERENCE Jason Evans 107

Description: Define key with associated value val in the topmost dictionary on dstack. If key is
already defined in that dictionary, the old definition is replaced.

Example(s):
onyx:0> $foo ‘foo’ def
onyx:0> foo 1 sprint
‘foo’
onyx:0> $foo ‘FOO’ def
onyx:0> foo 1 sprint
‘FOO’
onyx:0>

thread detach –:
Input(s):

thread: A thread object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Detach thread so that its resources will be automatically reclaimed after it exits.
A thread may only be detached or joined once; any attempt to do so more than once results
in undefined behavior (likely crash).

Example(s):
onyx:0> (1 2) {add 1 sprint self detach} thread
3
onyx:1>

– dict dict:
Input(s): None.

Output(s):
dict: An empty dictionary.

Errors(s): None.

Description: Create an empty dictionary.

Example(s):
onyx:0> dict 1 sprint
<>
onyx:0>

status die –:
Input(s):

status: A integer from 0 to 255 that is used as the program exit code.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Exit the program with exit code status.

108 Onyx Manual Chapter 2

Example(s):
onyx:0> 1 die

path proc dirforeach –:

Input(s):
path: A string that represents a filesystem path.
proc: An object to be executed.

Output(s): None.

Errors(s):
invalidaccess.
ioerror.
stackunderflow.
typecheck.

Description: For each entry in the directory represented by path except for “.” and “..”, push
a string that represents the entry onto ostack and execute proc. This operator supports the
exit operator.

Example(s):
onyx:0> pwd {1 sprint} dirforeach
‘CVS’
‘.cvsignore’
‘Cookfile’
‘Cookfile.inc’
‘latex’
‘Cookfile.inc.in’
onyx:0> pwd {‘Cookfile.inc’ search

{pop ‘Yes: ’ print 1 sprint pop exit}
{‘Not: ’ print 1 sprint} ifelse

} dirforeach
Not: ‘CVS’
Not: ‘.cvsignore’
Not: ‘Cookfile’
Yes: ‘Cookfile.inc’
onyx:0>

a b div r:

Input(s):
a: An integer or real.
b: A non-zero integer or real.

Output(s):
r: The quotient of a divided by b.

Errors(s):
stackunderflow.
typecheck.
undefinedresult.

Description: Return the quotient of a divided by b.

2.10. DICTIONARY REFERENCE Jason Evans 109

Example(s):
onyx:0> 4 2 div 1 sprint
2.000000e+00
onyx:0> 5 2.0 div 1 sprint
2.500000e+00
onyx:0> 5.0 0 div
Error $undefinedresult
ostack: (5.000000e+00 0)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --div--
1: -file-
2: --start--
onyx:3>

a b c dn b c a:
Input(s):

a: An object.
b: An object.
c: An object.

Output(s):
b: An object.
c: An object.
a: An object.

Errors(s):
stackunderflow.

Description: Rotate the top three objects on ostack down one position.
Example(s):

onyx:0> ‘a’ ‘b’ ‘c’ ‘d’ dn pstack
‘b’
‘d’
‘c’
‘a’
onyx:4>

– dstack stack:
Input(s): None.
Output(s):

stack: A snapshot of dstack.
Errors(s): None.
Description: Get a snapshot of dstack.
Example(s):

onyx:0> dstack 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:0>

obj dup obj dup:
Input(s):

110 Onyx Manual Chapter 2

obj: An object.
Output(s):

obj: The same object that was passed in.
dup: A duplicate of obj.

Errors(s):
stackunderflow.

Description: Create a duplicate of the top object on ostack. For composite objects, the new
object is a reference to the same composite object.

Example(s):
onyx:0> 1 dup pstack
1
1
onyx:2>

obj echeck boolean:
Input(s):

obj: An object.
Output(s):

boolean: True if obj has the evaluatable attribute, false otherwise.
Errors(s):

stackunderflow.
Description: Check obj for evaluatable attribute.
Example(s):

onyx:0> {1 2 3} cve
onyx:1> dup 1 sprint
{1 2 3}
onyx:1> echeck 1 sprint
true
onyx:0> {1 2 3} echeck 1 sprint
false
onyx:0> [1 2 3] echeck 1 sprint
false
onyx:0>

– egid gid:
Input(s): None.
Output(s):

gid: Process’s effective group ID.
Errors(s): None.
Description: Get the process’s effective group ID.
Example(s):

onyx:0> egid 1 sprint
1001
onyx:0>

– end –:
Input(s): None.

2.10. DICTIONARY REFERENCE Jason Evans 111

Output(s): None.

Errors(s):
stackunderflow.

Description: Pop the topmost dictionary off dstack, thereby removing its contents from the
namespace.

Example(s):
onyx:0> <$foo ‘foo’> begin
onyx:0> foo 1 sprint
‘foo’
onyx:0> end
onyx:0> foo 1 sprint
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: foo
1: -file-
2: --start--
onyx:1>

– envdict dict:
Input(s): None.

Output(s):
dict: A dictionary.

Errors(s): None.

Description: Get envdict. See Section 2.10.2 for details on envdict.

Example(s):
onyx:0> envdict 0 sprint
-dict-
onyx:0>

a b eq boolean:
Input(s):

a: An object.
b: An object.

Output(s):
boolean: True if a is equal to b, false otherwise.

Errors(s):
stackunderflow.

Description: Compare two objects for equality. Equality has the following meaning, depending
on the types of a and b:

array, condition, dict, file, hook, mutex, stack, thread: a and b are equal iff they refer
to the same memory.

operator: a and b are equal iff they refer to the same function.
name, string: a and b are equal iff they are lexically equivalent. A name can be equal to a

string.

112 Onyx Manual Chapter 2

boolean: a and b are equal iff they are the same value.
integer, real: a and b are equal iff they are the same value.

Example(s):
onyx:0> mutex mutex eq 1 sprint
false
onyx:0> mutex dup eq 1 sprint
true
onyx:0> $foo ‘foo’ eq 1 sprint
true
onyx:0> true true eq 1 sprint
true
onyx:0> true false eq 1 sprint
false
onyx:0> 1 1 eq 1 sprint
true
onyx:0> 1 2 eq 1 sprint
false
onyx:0> 1.0 1 eq 1 sprint
true
onyx:0> 1.0 1.1 eq 1 sprint
false
onyx:0>

– estack stack:
Input(s): None.
Output(s):

stack: A current snapshot (copy) of the execution stack.
Errors(s): None.
Description: Get a current snapshot of the execution stack.
Example(s):

onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

– euid uid:
Input(s): None.
Output(s):

uid: Process’s effective user ID.
Errors(s): None.
Description: Get the process’s effective user ID.
Example(s):

onyx:0> euid 1 sprint
1001
onyx:0>

obj eval –:
Input(s):

obj: An object.

2.10. DICTIONARY REFERENCE Jason Evans 113

Output(s): None.
Errors(s):

stackunderflow.
Description: Evaluate object. See Section 2.1 for details on object evaluation.
Example(s):

onyx:0> ‘‘hi’ 1 sprint’ cvx eval
‘hi’
onyx:0>

a b exch b a:
Input(s):

a: An object.
b: An object.

Output(s):
b: The same object that was passed in.
a: The same object that was passed in.

Errors(s):
stackunderflow.

Description: Exchange the top two objects on ostack.
Example(s):

onyx:0> 1 2 pstack
2
1
onyx:2> exch pstack
1
2
onyx:2>

args exec –:
Input(s):

args: An array of strings. The first string in args is the path of the program to invoke, and
any additional array elements are passed as command line arguments to the invoked
program.

Output(s): None (this operator does not return).
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Overlay a new program and execute it. The current contents of envdict are used
to construct the new program’s environment.

Example(s):
onyx:0> ‘Old program’
onyx:1> [‘/usr/local/bin/onyx’] exec
Canonware Onyx, version 1.0.0.
onyx:0>

– exit –:

114 Onyx Manual Chapter 2

Input(s): None.
Output(s): None.
Errors(s): None.
Description: Exit the innermost enclosing looping context immediately. This operator can be

called within the looping context of for, repeat, while, until, loop, foreach, and dirfore-
ach.

Example(s):
onyx:0> {‘hi’ 1 sprint exit ‘bye’ 1 sprint} loop
‘hi’
onyx:0>

b exp r:
Input(s):

a: An integer or real.
Output(s):

r: e raised to the b power.
Errors(s):

stackunderflow.
typecheck.

Description: Return e (the base of natural logarithm) raised to the b power.
Example(s):

onyx:0> 3 exp 1 sprint
2.008554e+01
onyx:0>

– false false:
Input(s): None.
Output(s):

false: The boolean value false.
Errors(s): None.
Description: Return false.
Example(s):

onyx:0> false 1 sprint
false
onyx:0>

a floor r:
Input(s):

a: An integer or real.
Output(s):

r: Integer floor of a.
Errors(s):

stackunderflow.
typecheck.

Description: Return the integer floor of a.

2.10. DICTIONARY REFERENCE Jason Evans 115

Example(s):
onyx:0> -1.51 floor 1 sprint
-2
onyx:0> -1.49 floor 1 sprint
-2
onyx:0> 0 floor 1 sprint
0
onyx:0> 1.49 floor 1 sprint
1
onyx:0> 1.51 floor 1 sprint
1
onyx:0>

– flush –:
Input(s): None.

Output(s): None.

Errors(s):
ioerror.

Description: Flush any buffered data associated with stdout.

Example(s):
onyx:0> ‘Hi\n’ print
onyx:0> flush
Hi
onyx:0>

file flushfile –:
Input(s):

file: A file object.

Output(s): None.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Flush any buffered data associated with file.

Example(s):
onyx:0> ‘Hi\n’ print
onyx:0> stdout flushfile
Hi
onyx:0>

init inc limit proc for –:
Input(s):

init: Initial value of control variable.
inc: Amount to increment control variable by at the end of each iteration.
limit: Inclusive upper bound for control variable if less than or equal to init, otherwise

inclusive lower bound for control variable.
proc: An object.

116 Onyx Manual Chapter 2

Output(s): At the beginning of each iteration, the current value of the control variable is pushed
onto ostack.

Errors(s):
stackunderflow.
typecheck.

Description: Iteratively evaluate proc, pushing a control variable onto ostack at the beginning
of each iteration, until the control variable has exceeded limit. This operator supports the
exit operator.

Example(s):
onyx:0> 0 1 3 {1 sprint} for
0
1
2
3
onyx:0> 0 -1 -3 {1 sprint} for
0
-1
-2
-3
onyx:0> 0 2 7 {1 sprint} for
0
2
4
6
onyx:0> 0 1 1000 {dup 1 sprint 3 eq {exit} if} for
0
1
2
3
onyx:0>

array proc foreach –:

dict proc foreach –:

stack proc foreach –:

string proc foreach –:
Input(s):

array: An array object.
dict: A dict object.
stack: A stack object.
string: A string object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: For each entry in the first input argument (array, dict, stack, or string), push the
entry onto ostack and execute proc. This operator supports the exit operator.

2.10. DICTIONARY REFERENCE Jason Evans 117

Example(s):
onyx:0> [1 2] {1 sprint} foreach
1
2
onyx:0> <$foo ‘foo’ $bar ‘bar’> {pstack clear} foreach
‘bar’
$bar
‘foo’
$foo
onyx:0> (1 2) {pstack clear} foreach
2
1
onyx:0> ‘ab’ {pstack clear} foreach
97
98
onyx:0>

args forkexec pid:
Input(s):
args: An array of strings. The first string in args is the path of the program to invoke, and any

additional array elements are passed as command line arguments to the invoked program.

Output(s):
pid: Process identifier for the new process, or 0 if the child process.

Errors(s):
limitcheck.
rangecheck.
stackunderflow.
typecheck.

Description: Fork and exec a new process. The current contents of envdict are used to construct
the new program’s environment.

Example(s):
onyx:0> [‘/bin/date’] forkexec dup 1 sprint waitpid 1 sprint
6516
Sat Jul 13 20:47:54 PDT 2002
0
onyx:0>

– gcdict dict:
Input(s): None.

Output(s):
dict: A dictionary.

Errors(s): None.

Description: Get gcdict. See Section 2.10.4 for details on gcdict.

Example(s):
onyx:0> gcdict 0 sprint
-dict-
onyx:0>

118 Onyx Manual Chapter 2

a b ge boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is greater than or equal to b, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.
Example(s):

onyx:0> 1 2 ge 1 sprint
false
onyx:0> 1 1 ge 1 sprint
true
onyx:0> 2 1 ge 1 sprint
true
onyx:0> 1 1.1 ge 1 sprint
false
onyx:0> 1.1 1.1 ge 1 sprint
true
onyx:0> 1.1 1 ge 1 sprint
true
onyx:0> ‘a’ ‘b’ ge 1 sprint
false
onyx:0> ‘a’ ‘a’ ge 1 sprint
true
onyx:0> ‘b’ ‘a’ ge 1 sprint
true
onyx:0>

array index get obj:

dict key get value:

string index get integer:
Input(s):

array: An array object.
dict: A dict object.
string: A string object.
index: Offset of array element or string element.
key: A key in dict.

Output(s):
obj: The object in array at offset index.
value: The value in dict corresponding to key.
integer: The ascii value of the character in string at offset index.

Errors(s):
rangecheck.

2.10. DICTIONARY REFERENCE Jason Evans 119

stackunderflow.
typecheck.
undefined.

Description: Get an element of array, a value in dict, or an element of string.

Example(s):
onyx:0> [‘a’ ‘b’ ‘c’] 1 get 1 sprint
‘b’
onyx:0> <$foo ‘foo’ $bar ‘bar’> $bar get 1 sprint
‘bar’
onyx:0> ‘abc’ 1 get 1 sprint
98
onyx:0>

array index length getinterval subarray:

string index length getinterval substring:
Input(s):

array: An array object.
string: A string object.
index: The offset into array or string to get the interval from.
length: The length of the interval in array or string to get.

Output(s):
subarray: A subarray of array at offset index and of length length.
substring: A substring of string at offset index and of length length.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Get an interval of array or string.

Example(s):
onyx:0> [0 1 2 3] 1 2 getinterval 1 sprint
[1 2]
onyx:0> ‘abcd’ 1 2 getinterval 1 sprint
‘bc’
onyx:0>

– gid gid:
Input(s): None.

Output(s):
gid: Process’s group ID.

Errors(s): None.

Description: Get the process’s group ID.

Example(s):
onyx:0> gid 1 sprint
1001
onyx:0>

120 Onyx Manual Chapter 2

– globaldict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Errors(s): None.
Description: Get globaldict. See Section 2.10.5 for details on globaldict.
Example(s):

onyx:0> globaldict 1 sprint
<>
onyx:0>

– gstderr file:
Input(s): None.
Output(s):

file: A file object corresponding to the global stderr.
Errors(s): None.
Description: Get the global stderr that is inherited by new threads. See Section 2.4 for stan-

dard I/O details.
Example(s):

onyx:0> gstderr pstack
-file-
onyx:1>

– gstdin file:
Input(s): None.
Output(s):

file: A file object corresponding to the global stdin.
Errors(s): None.
Description: Get the global stdin that is inherited by new threads. See Section 2.4 for standard

I/O details.
Example(s):

onyx:0> gstdin pstack
-file-
onyx:1>

– gstdout file:
Input(s): None.
Output(s):

file: A file object corresponding to the global stdout.
Errors(s): None.
Description: Get the global stdout that is inherited by new threads. See Section 2.4 for stan-

dard I/O details.
Example(s):

onyx:0> gstdout pstack
-file-
onyx:1>

2.10. DICTIONARY REFERENCE Jason Evans 121

a b gt boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is greater than b, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.
Example(s):

onyx:0> 1 1 gt 1 sprint
false
onyx:0> 2 1 gt 1 sprint
true
onyx:0> 1.1 1.1 gt 1 sprint
false
onyx:0> 1.1 1 gt 1 sprint
true
onyx:0> ‘a’ ‘a’ gt 1 sprint
false
onyx:0> ‘b’ ‘a’ gt 1 sprint
true
onyx:0>

hook hooktag tag:
Input(s):

hook: A hook object.
Output(s):

tag: The tag associated with hook.
Errors(s):

stackunderflow.
typecheck.

Description: Get the tag associated with hook.
Example(s):

. . . obj ,,,index ibdup . . . obj ,,,dup:
Input(s):

. . . : index objects.
obj: An object.
,,,: Zero or more objects.
index: Offset from bottom of ostack, counting from 0.

Output(s):
. . . : index objects.
obj: An object.
,,,: Zero or more objects.

122 Onyx Manual Chapter 2

dup: Duplicate of obj.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on ostack that is at offset index from the bottom
of ostack.

Example(s):
onyx:4> 2 ibdup pstack
2
3
2
1
0
onyx:5>

. . . obj ,,,index ibpop . . . ,,,:
Input(s):

. . . : index objects.
obj: An object.
,,,: Zero or more objects.
index: Offset from bottom of ostack, counting from 0.

Output(s):
. . . : index objects.
,,,: Zero or more objects.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the object from ostack that is at offset index from the bottom of ostack.
Example(s):

onyx:0> 0 1 2 3
onyx:4> 2 ibpop pstack
3
1
0
onyx:3>

a b idiv r:
Input(s):

a: An integer.
b: A non-zero integer.

Output(s):
r: The integer quotient of a divided by b.

Errors(s):
stackunderflow.

2.10. DICTIONARY REFERENCE Jason Evans 123

typecheck.
undefinedresult.

Description: Return the integer quotient of a divided by b.

Example(s):
onyx:0> 4 2 idiv 1 sprint
2
onyx:0> 5 2 idiv 1 sprint
2
onyx:0> 5 0 idiv
Error $undefinedresult
ostack: (5 0)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --idiv--
1: -file-
2: --start--
onyx:3>

obj . . . index idup obj . . . dup:
Input(s):

obj: An object.
index: Offset from top of ostack, counting from 0, not counting index), of the object to

duplicate on ostack.

Output(s):
obj: The same object that was passed in.
dup: A duplicate of obj.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on ostack at index.

Example(s):
onyx:0> 3 2 1 0 2 idup pstack
2
0
1
2
3
onyx:5>

boolean obj if –:
Input(s):

boolean: A boolean.
obj: An object.

Output(s): None.

Errors(s):
stackunderflow.

124 Onyx Manual Chapter 2

typecheck.
Description: Evaluate obj if boolean is true.
Example(s):

onyx:0> true {‘yes’ 1 sprint} if
‘yes’
onyx:0> false {‘yes’ 1 sprint} if
onyx:0>

boolean a b ifelse –:
Input(s):

boolean: A boolean.
a: An object.
b: An object.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Evaluate a if boolean is true, evaluate b otherwise. See Section 2.1 for details on
object evaluation.

Example(s):
onyx:0> true {‘yes’}{‘no’} ifelse 1 sprint
‘yes’
onyx:0> false {‘yes’}{‘no’} ifelse 1 sprint
‘no’
onyx:0>

a inc r:
Input(s):

a: An integer.
Output(s):

r: a + 1.
Errors(s):

stackunderflow.
typecheck.

Description: Add one to a.
Example(s):

onyx:0> 1 inc 1 sprint
2
onyx:0>

file iobuf count:
Input(s):

file: A file object.
Output(s):

count: The size in bytes of the I/O buffer associated with file.
Errors(s):

2.10. DICTIONARY REFERENCE Jason Evans 125

stackunderflow.
typecheck.

Description: Get the size of the I/O buffer associated with file.

Example(s):
onyx:0> stdout iobuf 1 sprint
512
onyx:0> stderr iobuf 1 sprint
0
onyx:0>

obj . . . index ipop . . . :
Input(s):

obj: An object.
index: Offset from top of ostack, counting from 0, not counting index), of the object to

remove from ostack.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Remove the obj at index from ostack.

Example(s):
onyx:0> 2 1 0
onyx:3> 1 ipop pstack
0
2
onyx:2>

– istack stack:
Input(s): None.

Output(s):
stack: A current snapshot (copy) of the index stack.

Errors(s): None.

Description: Get a current snapshot of the index stack.

Example(s):
onyx:0> istack 1 sprint
(0 0 0)
onyx:0>

thread join –:
Input(s):

thread: A thread object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

126 Onyx Manual Chapter 2

Description: Wait for thread to exit. A thread may only be detached or joined once; any attempt
to do so more than once results in undefined behavior (likely crash).

Example(s):
onyx:0> (1 2) {add 1 sprint} thread join ‘Done\n’ print flush
3
Done
onyx:0>

dict key known boolean:
Input(s):

dict: A dictionary.
key: A key to look for in dict.

Output(s):
boolean: True if key is defined in dict, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Check whether key is defined in dict.
Example(s):

onyx:1> <$foo ‘foo’> $foo known 1 sprint
true
onyx:1> <$foo ‘foo’> $bar known 1 sprint
false
onyx:1>

obj lcheck boolean:
Input(s):

obj: An array, dict, file, or string.
Output(s):

boolean: True if obj is implicitly locked, false otherwise.
Errors(s):

stackunderflow.
typecheck.

Description: Check if obj is implicitly locked.
Example(s):

onyx:0> false setlocking
onyx:0> [1 2 3] lcheck 1 sprint
false
onyx:0> true setlocking
onyx:0> [1 2 3] lcheck 1 sprint
true
onyx:0>

a b le boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

2.10. DICTIONARY REFERENCE Jason Evans 127

Output(s):
boolean: True if a is less than or equal to b, false otherwise.

Errors(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.

Example(s):
onyx:0> 1 2 le 1 sprint
true
onyx:0> 1 1 le 1 sprint
true
onyx:0> 2 1 le 1 sprint
false
onyx:0> 1 1.1 le 1 sprint
true
onyx:0> 1.1 1.1 le 1 sprint
true
onyx:0> 1.1 1 le 1 sprint
false
onyx:0> ‘a’ ‘b’ le 1 sprint
true
onyx:0> ‘a’ ‘a’ le 1 sprint
true
onyx:0> ‘b’ ‘a’ le 1 sprint
false
onyx:0>

array length count:

dict length count:

name length count:

string length count:
Input(s):

array: An array object.
dict: A dict object.
name: A name object.
string: A string object.

Output(s):
count: Number of elements in array, number of entries in dict, number of characters in

name, or number of characters in string.

Errors(s):
stackunderflow.
typecheck.

Description: Get the umber of elements in array, number of entries in dict, number of charac-
ters in name, or number of characters in string.

128 Onyx Manual Chapter 2

Example(s):
onyx:0> [1 2 3] length 1 sprint
3
onyx:0> <$foo ‘foo’ $bar ‘bar’> length 1 sprint
2
onyx:0> $foo length 1 sprint
3
onyx:0> ‘foo’ length 1 sprint
3
onyx:0>

filename linkname link –:
Input(s):

filename: A string that represents a filename.
linkname: A string that represents a filename.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Create a hard link from linkname to filename.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ ‘/tmp/bar’ link
onyx:0> ‘/tmp/bar’ ‘r’ open
onyx:1> readline
onyx:2> pstack
false
‘Hello’
onyx:2>

sock backlog listen –:
Input(s):

sock: A socket.
backlog: Maximum backlog of connections to listen for. If not specified, the maximum

backlog is used.

Output(s): None.

Errors(s):
invalidfileaccess.
neterror.
stackunderflow.

2.10. DICTIONARY REFERENCE Jason Evans 129

typecheck.
unregistered.

Description: Listen for connections on a socket.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup listen
onyx:1>

a ln r:
Input(s):

a: An integer or real.
Output(s):

r: Natural logarithm of a.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the natural logarithm of a.
Example(s):

onyx:0> 5 ln 1 sprint
1.609438e+00
onyx:0> 8.5 ln 1 sprint
2.140066e+00
onyx:0>

key load val:
Input(s):

key: A key to look up in dstack.
Output(s):

val: The value associated with the topmost definition of key in dstack.
Errors(s):

stackunderflow.
undefined.

Description: Get the topmost definition of key in dstack.
Example(s):

onyx:1> <$foo ‘foo’> begin
onyx:1> <$foo ‘FOO’> begin
onyx:1> $foo load 1 sprint
‘FOO’
onyx:1>

mutex lock –:
Input(s):

mutex: A mutex object.
Output(s): None.

130 Onyx Manual Chapter 2

Errors(s):
stackunderflow.
typecheck.

Description: Acquire mutex, waiting if necessary. Attempting to acquire mutex recursively will
result in undefined behavior (likely deadlock or crash).

Example(s):
onyx:0> mutex dup lock unlock
onyx:0>

a log r:
Input(s):

a: An integer or real.
Output(s):

r: Base 10 logarithm of a.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the base 10 logarithm of a.
Example(s):

onyx:0> 5 log 1 sprint
6.989700e-01
onyx:0> 8.5 log 1 sprint
9.294189e-01
onyx:0>

proc loop –:
Input(s):

proc: An object to evaluate.
Output(s): None.
Errors(s):

stackunderflow.
Description: Repeatedly evaluate proc indefinitely. This operator supports the exit operator.
Example(s):

onyx:0> 0 {1 add dup 1 sprint dup 3 eq {pop exit} if} loop
1
2
3
onyx:0>

a b lt boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is less than b, false otherwise.

2.10. DICTIONARY REFERENCE Jason Evans 131

Errors(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.
Example(s):

onyx:0> 1 2 lt 1 sprint
true
onyx:0> 1 1 lt 1 sprint
false
onyx:0> 1 1.1 lt 1 sprint
true
onyx:0> 1.1 1.1 lt 1 sprint
false
onyx:0> 1.1 1 lt 1 sprint
false
onyx:0> ‘a’ ‘b’ lt 1 sprint
true
onyx:0> ‘a’ ‘a’ lt 1 sprint
false
onyx:0>

– mark mark:
Input(s): None.
Output(s):

mark: A mark object.
Errors(s): None.
Description: Push a mark onto ostack.
Example(s):

onyx:0> mark pstack
-mark-
onyx:1>

input pattern flags match boolean:

input pattern match boolean:

input regex match boolean:
Input(s):

input: An input string to find matches in.
pattern: A string that specifies a regular expression. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$c: Continue where previous match ended. Don’t update the offset to start the next
match from unless this match is successful. Defaults to false.

$g: Continue where previous match ended. If the match is unsuccessful, update the
offset to start the next match from to the beginning of input. Defaults to false.

$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.

132 Onyx Manual Chapter 2

regex: A regex object.
Output(s):

boolean:
TRUE: Match successful.
FALSE: No match found.

Errors(s):
regexerror.
stackunderflow.
typecheck.

Description: Look in input for a match to the regular expression specified by regex/pattern/flags.
Example(s):

onyx:0> ‘input’ ‘I’ <$i true> match {0 submatch 1 sprint} if
‘i’
onyx:0> ‘input’ ‘I’ <$i true> regex match {0 submatch 1 sprint} if
‘i’
onyx:0> ‘input’ ‘I’ match {0 submatch 1 sprint} if
onyx:0>

path mkdir –:

path mode mkdir –:
Input(s):

path: A string object that represents a directory path.
mode: An integer that represents a Unix file mode.

Output(s): None.
Errors(s):

invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Create a directory.
Example(s):

onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ {1 sprint} dirforeach
‘.’
‘..’
onyx:0>

path mkfifo –:

path mode mkfifo –:
Input(s):

path: A string object that represents a directory path.
mode: An integer that represents a Unix file mode.

Output(s): None.

2.10. DICTIONARY REFERENCE Jason Evans 133

Errors(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Create a named pipe.

Example(s):
onyx:0> ‘/tmp/fifo’ mkfifo
onyx:0>

a b mod r:
Input(s):

a: An integer or real.
b: A non-zero integer or real.

Output(s):
r: The modulus of a and b.

Errors(s):
stackunderflow.
typecheck.
undefinedresult.

Description: Return the modulus of a and b. Note that a and b can be any combination of
integers and reals.

Example(s):
onyx:0> 4 2 mod 1 sprint
0
onyx:0> 5 2 mod 1 sprint
1
onyx:0> 5 0 mod
Error $undefinedresult
ostack: (5 0)
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --mod--
1: -file-
2: --start--
onyx:3>

path symbol modload –:
Input(s):

path: A string that represents a module filename.
symbol: A string that represents the symbol name of a module initialization function to be

executed.

Output(s): None.

Errors(s):

134 Onyx Manual Chapter 2

invalidfileaccess.
stackunderflow.
typecheck.
undefined.

Description: Dynamically load a module, create a hook object that encapsulates the handle
returned by dlopen(3) (hook data pointer) and the module initialization function (hook eval-
uation function), and evaluate the hook.
All objects that refer to code and/or data that are part of the module must directly and/or
indirectly maintain a reference to the hook that is evaluated by this operator, since failing to
do so would allow the garbage collector to unload the module, which could result in dangling
pointers to unmapped memory regions.
Loadable modules present a problem for the garbage collector during the sweep phase. All
objects that refer to memory that is dynamically mapped as part of the module must be
destroyed before the module is unloaded. Destruction ordering constraints show up in other
situations as well, but in the case of loadable modules, there is no reasonable solution except
to explicitly order the destruction of objects. Therefore, by default, the hook that is evaluated
by modload is destroyed during the second sweep pass. It is possible for a module to override
what sweep pass the hook is destroyed on, in cases where there are additional ordering
constraints for the objects created by a module. This isn’t important from the Onyx language
perspective, but is important to understand when implementing modules.

Example(s):
onyx:0> ‘/usr/local/share/onyx/nxmod/mdprompt.nxm’ ‘modprompt_init’
onyx:2> modload
onyx:0>

mutex proc monitor –:
Input(s):

mutex: A mutex.
proc: Any object.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Execute proc while holding mutex.
Example(s):

onyx:0> mutex {‘hello\n’ print} monitor flush
hello
onyx:0>

file symbol mrequire –:
Input(s):

file: A string that represents a module filename.
symbol: A string that represents the symbol name of a module initialization function to be

executed.
Output(s): None.
Errors(s):

invalidfileaccess.

2.10. DICTIONARY REFERENCE Jason Evans 135

stackunderflow.
typecheck.
undefined.
undefinedfilename.

Description: Search for and load a module. The module is searched for by catenating a prefix,
a “/”, and file to form a file path. Prefixes are tried in the following order:
1. The ordered elements of the mpath pre array, which is defined in onyxdict.
2. If defined, the ordered elements of the ONYX MPATH environment variable, which is a

colon-separated list.
3. The ordered elements of the mpath post array, which is defined in onyxdict.

Example(s):
onyx:0> ‘modgtk.nxm’ ‘modgtk_init’ mrequire
onyx:0>

a b mul r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: The product of a and b.

Errors(s):
stackunderflow.
typecheck.

Description: Return the product of a and b.
Example(s):

onyx:0> 3 17 mul 1 sprint
51
onyx:0> -5 -6 mul 1 sprint
30
onyx:0> 3.5 4.0 mul 1 sprint
1.400000e+01
onyx:0> -1.5 3 mul 1 sprint
-4.500000e+00
onyx:0>

– mutex mutex:
Input(s): None.
Output(s):

mutex: A mutex object.
Errors(s): None.
Description: Create a mutex.
Example(s):

onyx:0> mutex 1 sprint
-mutex-
onyx:0>

objects . . . count nbpop . . . :

136 Onyx Manual Chapter 2

Input(s):
objects: Zero or more objects.
count: Number of objects to pop.

Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Remove the bottom count objects from ostack and discard them.
Example(s):

onyx:0> ‘a’ ‘b’ ‘c’ 2 nbpop pstack
‘c’
onyx:1>

arrays count ncat array:

stacks count ncat stack:

strings count ncat string:
Input(s):

arrays: count arrays.
stacks: count stacks.
strings: count strings.
count: Number of arrays, stacks, or strings to catenate.

Output(s):
obj: The catenation of arrays, stacks, or strings.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Catenate count arrays, stacks, or strings.
Example(s):

onyx:0> [‘a’] [‘b’] [‘c’] 3 ncat 1 sprint
[‘a’ ‘b’ ‘c’]
onyx:0> (‘a’) (‘b’) (‘c’) 3 ncat 1 sprint
(‘a’ ‘b’ ‘c’)
onyx:0> ‘a’ ‘b’ ‘c’ 3 ncat 1 sprint
‘abc’
onyx:0>

a . . . b count ndn . . . b a:
Input(s):

a: An object.
. . . : count− 2 objects.
b: An object.
count: Number of objects to rotate downward.

Output(s):

2.10. DICTIONARY REFERENCE Jason Evans 137

. . . : count− 2 objects.
b: An object.
a: An object.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Rotate count objects on ostack down one position.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ ‘d’ ‘e’ 4 ndn pstack
‘b’
‘e’
‘d’
‘c’
‘a’
onyx:5>

objects count ndup objects objects:
Input(s):

objects: Zero or more objects.
count: The number of objects do duplicate.

Output(s):
objects: The same objects that were passed in.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create duplicates of the top count objects on ostack. For composite objects, the
new object is a reference to the same composite object.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ 2 ndup pstack
‘c’
‘b’
‘c’
‘b’
‘a’
onyx:5>

a b ne boolean:
Input(s):

a: An object.
b: An object.

Output(s):
boolean: True if a is not equal to b, false otherwise.

Errors(s):
stackunderflow.

138 Onyx Manual Chapter 2

Description: Compare two objects for inequality. Inequality has the following meaning, de-
pending on the types of a and b:

array, condition, dict, file, hook, mutex, stack, thread: a and b are not equal unless
they refer to the same memory.

operator: a and b are not equal unless they refer to the same function.
name, string: a and b are not equal iff they are lexically equivalent. A name can be equal

to a string.
boolean: a and b are not equal unless they are the same value.
integer, real: a and b are not equal unless they are the same value.

Example(s):
onyx:0> mutex mutex ne 1 sprint
true
onyx:0> mutex dup ne 1 sprint
false
onyx:0> $foo ‘foo’ ne 1 sprint
false
onyx:0> $foo $bar ne 1 sprint
true
onyx:0> true false ne 1 sprint
true
onyx:0> true true ne 1 sprint
false
onyx:0> 1 1 ne 1 sprint
false
onyx:0> 1 2 ne 1 sprint
true
onyx:0> 1.0 1 ne 1 sprint
false
onyx:0> 1.0 1.1 ne 1 sprint
true
onyx:0>

a neg r:
Input(s):

a: An integer.

Output(s):
r: The negative of a.

Errors(s):
stackunderflow.
typecheck.

Description: Return the negative of a.

Example(s):
onyx:0> 0 neg 1 sprint
0
onyx:0> 5 neg 1 sprint
-5
onyx:0> -5 neg 1 sprint
5

2.10. DICTIONARY REFERENCE Jason Evans 139

onyx:0> 3.14 neg 1 sprint
-3.140000e+00
onyx:0> -3.14 neg 1 sprint
3.140000e+00
onyx:0>

a b nip b:
Input(s):

a: An object.
b: An object.

Output(s):
b: An object.

Errors(s):
stackunderflow.

Description: Remove the second to top object from ostack.
Example(s):

onyx:0> ‘a’ ‘b’ ‘c’
onyx:3> nip pstack
‘c’
‘a’
onyx:2>

file nonblocking boolean:
Input(s):

file: A file object.
Output(s):

boolean: Nonb-blocking mode for file.
Errors(s):

stackunderflow.
typecheck.

Description: Get non-blocking mode for file.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup nonblocking 1 sprint
false
onyx:1> dup true setnonblocking
onyx:1> dup nonblocking 1 sprint
true
onyx:1>

a not r:
Input(s):

a: An integer or boolean.
Output(s):

r: If a is an integer, the bitwise negation of a, otherwise the logical negation of a.
Errors(s):

stackunderflow.

140 Onyx Manual Chapter 2

typecheck.
Description: Return the bitwise negation of an integer, or the logical negation of a boolean.

Example(s):
onyx:0> true not 1 sprint
false
onyx:0> false not 1 sprint
true
onyx:0> 1 not 1 sprint
-2
onyx:0>

objects count npop –:
Input(s):

objects: Zero or more objects.
count: Number of objects to pop.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the top count objects from ostack and discard them.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ 2 npop pstack
‘a’
onyx:1>

nanoseconds nsleep –:
Input(s):

nanoseconds: Minimum number of nanoseconds to sleep. Must be greater than 0.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Sleep for at least nanoseconds nanonseconds.

Example(s):
onyx:0> 1000 nsleep
onyx:0>

– null null:
Input(s): None.

Output(s):
null: A null object.

Errors(s): None.

Description: Create a null object.

2.10. DICTIONARY REFERENCE Jason Evans 141

Example(s):
onyx:0> null pstack
null
onyx:1>

a . . . b count nup b a . . . :
Input(s):

a: An object.
. . . : count− 2 objects.
b: An object.
count: Number of objects to rotate upward.

Output(s):
b: An object.
a: An object.
. . . : count− 2 objects.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Rotate count objects on ostack up one position.
Example(s):

onyx:0> ‘a’ ‘b’ ‘c’ ‘d’ ‘e’ 4 nup pstack
‘d’
‘c’
‘b’
‘e’
‘a’
onyx:5>

input submatch offset offset:
Input(s):

input: A string.
submatch: A substring of input.

Output(s):
offset: The integer offset of submatch, relative to the beginning of input.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Get the offset of submatch, relative to the beginning of input. submatch must be
a substring of input.

Example(s):
onyx:0> ‘input’ dup ‘n(p)u’ match {1 submatch offset 1 sprint} if
2
onyx:0>

– onyxdict dict:

142 Onyx Manual Chapter 2

Input(s): None.

Output(s):
dict: A dictionary.

Errors(s): None.

Description: Get onyxdict. See Section 2.10.6 for details on onyxdict.

Example(s):
onyx:0> onyxdict 1 sprint
<$rpath_pre -array- $rpath_post -array- $mpath_pre -array- $mpath_post -array->
onyx:0>

filename flags open file:

filename flags mode open file:
Input(s):

filename: A string that represents a filename.
flags: A string that represents a file mode:

‘r’: Read only.
‘r+’: Read/write, starting at offset 0.
‘w’: Write only. Create file if necessary. Truncate file if non-zero length.
‘w+’: Read/write, starting at offset 0. Create file if necessary.
‘a’: Write only, starting at end of file.
‘a+’: Read/write, starting at end of file.

mode: Mode to use when creating a new file (defaults to 0777). Note that the process’s
umask also affects creation mode.

Output(s):
file: A file object.

Errors(s):
invalidfileaccess.
ioerror.
limitcheck.
rangecheck.
stackunderflow.
typecheck.

Description: Open a file.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open pstack
-file-
onyx:1>

a b or r:
Input(s):

a: An integer or boolean.
b: The same type as a.

Output(s):
r: If a and b are integers, their bitwise or, otherwise their logical or.

2.10. DICTIONARY REFERENCE Jason Evans 143

Errors(s):
stackunderflow.
typecheck.

Description: Return the bitwise or of two integers, or the logical or of two booleans.
Example(s):

onyx:0> false false or 1 sprint
false
onyx:0> true false or 1 sprint
true
onyx:0> 5 3 or 1 sprint
7
onyx:0>

– ostack stack:
Input(s): None.
Output(s):

stack: A current snapshot (copy) of ostack.
Errors(s): None.
Description: Get a current snapshot of ostack.
Example(s):

onyx:0> 1 2 3 ostack pstack
(1 2 3)
3
2
1
onyx:4>

obj depth output –:
Input(s):

obj: An object to print syntactically.
depth: Maximum recursion depth.

Output(s): None.
Errors(s):

ioerror.
stackunderflow.
typecheck.

Description: Syntactically print obj. See Section 2.10.7 for format specifier details.
Example(s):

onyx:0> [1 [2 3] 4] <$w 20 $p ‘_’ $j $c $r 1> output ‘\n’ print flush
___[1 -array- 4]____
onyx:0> [1 [2 3] 4] <$w 20 $p ‘_’ $j $c $r 2> output ‘\n’ print flush
____[1 [2 3] 4]_____
onyx:0> 4242 <$s $+> output ‘\n’ print flush
+4242
onyx:0> ‘0x’ print 4242 <$b 16> output ‘\n’ print flush
0x1092
onyx:0> ‘0x’ 4242 <$b 16> outputs cat <$w 10 $p ‘.’>

144 Onyx Manual Chapter 2

onyx:2> output ‘\n’ print flush
....0x1092
onyx:0> ‘0x’ print 4242 <$w 8 $p ‘0’ $b 16> output ‘\n’ print flush
0x00001092
onyx:0>

obj flags outputs string:
Input(s):

obj: An object to print syntactically.
depth: Formatting flags. See Section 2.10.7 for details on the supported flags.

Output(s):
string: A formatted string representation of obj. See Section 2.10.7 for format specifier

details.
Errors(s):

stackunderflow.
typecheck.

Description: Create a formatted string representation of obj.
Example(s):

onyx:0> [1 [2 3] 4] <$w 20 $p ‘_’ $j $c $r 1> outputs print ‘\n’ print flush
___[1 -array- 4]____
onyx:0> [1 [2 3] 4] <$w 20 $p ‘_’ $j $c $r 2> outputs print ‘\n’ print flush
____[1 [2 3] 4]_____
onyx:0> 4242 <$s $+> outputs print ‘\n’ print flush
+4242
onyx:0> ‘0x’ print 4242 <$b 16> outputs print ‘\n’ print flush
0x1092
onyx:0> ‘0x’ 4242 <$b 16> outputs cat <$w 10 $p ‘.’> outputs
onyx:1> print ‘\n’ print flush
....0x1092
onyx:0> ‘0x’ print 4242 <$w 8 $p ‘0’ $b 16> outputs print ‘\n’ print flush
0x00001092
onyx:0>

– outputsdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Errors(s): None.
Description: Get outputsdict. See Section 2.10.7 for details on outputsdict.
Example(s):

onyx:0> outputsdict 0 sprint
-dict-
onyx:0>

a b over a b a:
Input(s):

a: An object.
b: An object.

2.10. DICTIONARY REFERENCE Jason Evans 145

Output(s):
a: An object.
b: An object.

Errors(s):
stackunderflow.

Description: Create a duplicate of the second object on ostack and push it onto ostack.
Example(s):

onyx:0> 0 1 2 over pstack
1
2
1
0
onyx:4>

sock peername dict:
Input(s):

sock: A socket.
Output(s):

dict: A dictionary of information about the peer end of sock. Depending on the socket
family, the following entries may exist:
family: Socket family.
address: IPv4 address.
port: IPv4 port.
path: Unix-domain socket path.

Errors(s):
argcheck.
ioerror.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Get information about the peer end of sock.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup listen
onyx:1> dup accept
onyx:2> dup peername 1 sprint
<$family $AF_INET $address 2130706433 $port 33746>
onyx:2>

– pid pid:
Input(s): None.
Output(s):

pid: Process identifier.
Errors(s): None.

146 Onyx Manual Chapter 2

Description: Get the process ID of the running process.

Example(s):
onyx:0> pid 1 sprint
80624
onyx:0>

– pipe rfile wfile:
Input(s): None.

Output(s):
rfile: A readable file object. Data read from rfile were previously written to wfile.
wfile: A writeable file object. Data written to wfile can subsequently be read from rfile.

Errors(s):
ioerror.
unregistered.

Description: Create a pipe.

Example(s):
onyx:0> pipe
onyx:2> $wfile exch def
onyx:1> $rfile exch def
onyx:0> wfile ‘foo\n’ write
onyx:0> wfile flushfile
onyx:0> rfile readline pop 1 sprint
‘foo’
onyx:0>

<file flags . . . > timeout poll [file . . .]:
Input(s):

<. . . >: A dictionary of file/flags key/value pairs.
file: A file object.
flags: A dictionary that contains keys corresponding to file status attributes to poll.

The following keys are heeded:
$POLLIN: Normal or priority data are available for reading.
$POLLRDNORM: Normal data are available for reading.
$POLLRDBAND: Priority data are available for reading.
$POLLPRI: High-priority data are available for reading.
$POLLOUT: Normal data can be written.
$POLLWRNORM: Normal data can be written.
$POLLWRBAND: Priority data can be written.
The values associated with the keys are disregarded, but are set appropriately before
poll returns (true/false).

timeout: Timeout, in milliseconds (maximum 231 − 1). -1 is treated specially to mean infi-
nite timeout.

Output(s):
[. . .]: An array containing a reference to each file in <. . . > for which a non-zero number of

status attributes is set to true. A zero-length array indicates that the poll timed out.
file: A reference to a file object passed in that has one or more attributes set to true.

2.10. DICTIONARY REFERENCE Jason Evans 147

Although <. . . > is not returned, its contents are modified.

flags: The dictionary passed in. For recognized key that is defined, the associated value is
set to true or false, depending on the status of file. In addition, the following keys may
defined (if not already defined) with a value of true in the case of errors:
$POLLERR: An error has occurred.
$POLLHUP: Hangup has occurred.
$POLLNVAL: file is not an open file.

Errors(s):
stackunderflow.
rangecheck.
typecheck.

Description: Wait for any of the flags associated with a file in <. . . > to be true.
Example(s):

onyx:0> <stdout <$POLLOUT null> stderr <$POLLWRNORM null>> dup 0 poll
onyx:2> 2 sprint 2 sprint
[-file- -file-]
<-file- <$POLLWRNORM true> -file- <$POLLOUT true>>
onyx:0>

obj pop –:
Input(s):

obj: An object.
Output(s): None.
Errors(s):

stackunderflow.
Description: Remove the top object from ostack and discard it.
Example(s):

onyx:0> 1 2
onyx:2> pstack
2
1
onyx:2> pop
onyx:1> pstack
1
onyx:1>

a b pow r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: a to the b power.

Errors(s):
stackunderflow.
typecheck.

148 Onyx Manual Chapter 2

Description: Return a to the b power. If a negative exponent is specified, the result will always
be a real, even if both arguments are integers.

Example(s):
onyx:0> 5 0 pow 1 sprint
1
onyx:0> 5 1 pow 1 sprint
5
onyx:0> 5 2 pow 1 sprint
25
onyx:0> -5 3 pow 1 sprint
-125
onyx:0> 5 -3 pow 1 sprint
8.000000e-03
onyx:0> 2.1 3.5 pow 1 sprint
1.342046e+01
onyx:0> 100 .01 pow 1 sprint
1.000000e+02
onyx:0>

– ppid pid:
Input(s): None.

Output(s):
pid: Process identifier.

Errors(s): None.

Description: Get the process ID of the running process’s parent.

Example(s):
onyx:0> ppid 1 sprint
352
onyx:0>

string print –:
Input(s):

string: A string object.

Output(s): None.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Print string to stdout.

Example(s):
onyx:0> ‘Hi\n’ print flush
Hi
onyx:0>

– product string:
Input(s): None.

Output(s):

2.10. DICTIONARY REFERENCE Jason Evans 149

string: A string that contains the product name, normally ‘Canonware Onyx’.

Errors(s): None.

Description: Get the product string. The string returned is a reference to the original product
string.

Example(s):
onyx:0> product pstack
‘Canonware Onyx’
onyx:1>

– pstack –:
Input(s): None.

Output(s): None.

Errors(s):
ioerror.

Description: Syntactically print the elements of ostack, one per line.

Example(s):
onyx:0> ‘a’ 1 mark $foo [1 2 3] (4 5 6)
onyx:6> pstack
(4 5 6)
[1 2 3]
$foo
-mark-
1
‘a’
onyx:6>

array index obj put –:

dict key value put –:

string index integer put –:
Input(s):

array: An array object.
dict: A dict object.
string: A string object.
index: Offset in array or string to put obj or integer, respectively.
key: An object to use as a key in dict.
obj: An object to insert into array at offset index.
value: An object to associate with key in dict.
integer: The ascii value of a character to insert into string at offset index.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Insert into array, dict, or string.

150 Onyx Manual Chapter 2

Example(s):
onyx:0> 3 array dup 1 ‘a’ put 1 sprint
[null ‘a’ null]
onyx:0> dict dup $foo ‘foo’ put 1 sprint
<$foo ‘foo’>
onyx:0> 3 string dup 1 97 put 1 sprint
‘\x00a\x00’
onyx:0>

array index subarray putinterval –:

string index substring putinterval –:
Input(s):

array: An array object.
string: A string object.
index: Offset into array or string to put subarray or substring, respectively.
subarray: An array object to put into array at offset index. When inserted subarray must

not extend past the end of array.
substring: A string object to put into string at offset index. When inserted substring must

not extend past the end of string.
Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Replace a portion of array or string.
Example(s):

onyx:0> 4 array dup 1 [‘a’ ‘b’] putinterval 1 sprint
[null ‘a’ ‘b’ null]
onyx:0> 4 string dup 1 ‘ab’ putinterval 1 sprint
‘\x00ab\x00’
onyx:0>

– pwd path:
Input(s): None.
Output(s):

path: A string that represents the present working directory.
Errors(s):

invalidaccess.
Description: Push a string onto ostack that represents the present working directory.
Example(s):

onyx:0> pwd
onyx:1> pstack
‘/usr/local/bin’
onyx:1>

– quit –:
Input(s): None.

2.10. DICTIONARY REFERENCE Jason Evans 151

Output(s): None.
Errors(s): None.
Description: Unwind the execution stack to the innermost start context. Under normal cir-

cumstances, there is always at least one such context.
Example(s):

onyx:0> stdin cvx start
onyx:0> estack 1 sprint
(--start-- -file- --start-- -file- --estack--)
onyx:0> quit
onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

– rand integer:
Input(s): None.
Output(s):

integer: A pseudo-random non-negative integer, with 63 bits of psuedo-randomness.
Errors(s): None.
Description: Return a pseudo-random integer.
Example(s):

onyx:0> 0 srand
onyx:0> rand 1 sprint
9018578418316157091
onyx:0> rand 1 sprint
8979240987855095636
onyx:0>

file read integer boolean:

file string read substring boolean:
Input(s):

file: A file object.
string: A string object.

Output(s):
integer: An integer that represents the ascii value of a character that was read from file.
substring: A substring of string that contains data read from file.
boolean: If true, end of file reached during read.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Read from file.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> dup 0 seek

152 Onyx Manual Chapter 2

onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hello\n’

file readline string boolean:
Input(s):

file: A file object.

Output(s):
string: A string that contains a line of text from file.
boolean: If true, end of file reached during read.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Read a line of text from file. Lines are separated by “\n” or “\r\n”, which is
removed. The last line in a file may not have a newline at the end.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup ‘Goodbye\n’ write
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1> dup readline 1 sprint 1 sprint
false
‘Goodbye’
onyx:1> dup readline 1 sprint 1 sprint
true
‘’
onyx:1>

linkname readlink string:
Input(s):

linkname: A string that represents the path of a symbolic link.

Output(s):
string: A string that represents the link data associated with linkname.

Errors(s):
invalidaccess.
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Get the data for the symbolic link at linkname.

2.10. DICTIONARY REFERENCE Jason Evans 153

Example(s):
onyx:0> ‘bar’ ‘foo’ symlink
onyx:0> ‘foo’ readlink 1 sprint
‘bar’
onyx:0>

– realtime nsecs:
Input(s): None.
Output(s):

nsecs: Number of nanoseconds since the epoch (midnight on 1 January 1970).
Errors(s): None.
Description: Get the number of nanoseconds since the epoch.
Example(s):

onyx:0> realtime 1 sprint
993539837806479000
onyx:0>

sock string flags recv substring:

sock string recv substring:
Input(s):

sock: A socket.
string: A string to use as a buffer for the message being received.
flags: An array of flag names. The following flags are supported:

$MSG OOB
$MSG PEEK
$MSG WAITALL

Output(s):
substring: A substring of string that contains message data.

Errors(s):
argcheck.
neterror.
stackunderflow.
typecheck.
unregistered.

Description:
Example(s):

onyx:0> $AF_INET $SOCK_DGRAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup true setnonblocking
onyx:1> dup 10 string recv
onyx:2> 1 sprint
‘hello’
onyx:1>

string flags regex regex:

string regex regex:

154 Onyx Manual Chapter 2

Input(s):
string: A string that specifies a regular expression. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$c: Continue where previous match ended. Don’t update the offset to start the next
match from unless this match is successful. Defaults to false.

$g: Continue where previous match ended. If the match is unsuccessful, update the
offset to start the next match from to the beginning of input. Defaults to false.

$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.

Output(s):
regex: A regex object.

Errors(s):
regexerror.
stackunderflow.
typecheck.

Description: Create a regex object, according to string and flags.

Example(s):
onyx:0> ‘pattern’ regex 1 sprint
-regex-
onyx:0> ‘pattern’ <$g true> regex 1 sprint
-regex-
onyx:0>

pattern template flags regsub regsub:

pattern template regsub regsub:
Input(s):

pattern: A string that specifies a regular expression. See Section 2.9 for syntax.
template: A string that specifies a substitution template. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$g: Substitute all matches, if true, rather than just the first match. Defaults to false.
$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.

Output(s):
regsub: A regsub object.

Errors(s):
regexerror.
stackunderflow.
typecheck.

Description: Create a regsub object, according to pattern, template, and flags.

2.10. DICTIONARY REFERENCE Jason Evans 155

Example(s):
onyx:0> ‘([a-z]+)’ ‘<\1>’ <$g true> regsub
onyx:1> 1 sprint
-regsub-
onyx:0>

old new rename –:
Input(s):

old: A string object that represents a file path.
new: A string object that represents a file path.

Output(s): None.
Errors(s):

invalidfileaccess.
ioerror.
limitcheck.
stackunderflow.
typecheck.
undefinedfilename.

Description: Rename a file or directory from old to new.
Example(s):

onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ ‘/tmp/ndir’ rename
onyx:0> ‘/tmp/ndir’ {1 sprint} dirforeach
‘.’
‘..’
onyx:0>

count proc repeat –:
Input(s):

count: Number of times to evaluate proc (non-negative).
proc: An object to evaluate.

Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Evaluate proc count times. This operator supports the exit operator.
Example(s):

onyx:0> 3 {‘hi’ 1 sprint} repeat
‘hi’
‘hi’
‘hi’
onyx:0>

file require –:
Input(s):

file: A string that represents a module filename.

156 Onyx Manual Chapter 2

Output(s): None.

Errors(s):
invalidfileaccess.
stackunderflow.
typecheck.
undefined.
undefinedfilename.

Description: Search for and evaluate an Onyx source file. The file is searched for by catenating
a prefix, a “/”, and file to form a file path. Prefixes are tried in the following order:

1. The ordered elements of the rpath pre array, which is defined in onyxdict.
2. If defined, the ordered elements of the ONYX RPATH environment variable, which is a

colon-separated list.
3. The ordered elements of the rpath post array, which is defined in onyxdict.

Example(s):
onyx:0> ‘modgtk/modgtk_defs.nx’ require
onyx:0>

path rmdir –:
Input(s):

path: A string object that represents a directory path.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
unregistered.

Description: Remove an empty directory.

Example(s):
onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ rmdir
onyx:0>

region count amount roll rolled:
Input(s):

region: 0 or more objects to be rolled.
count: Number of objects in region.
amount: Amount by which to roll. If positive, roll upward. If negative, roll downward.

Output(s):
rolled: Rolled version of region.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

2.10. DICTIONARY REFERENCE Jason Evans 157

Description: Roll the top count objects on ostack (not counting count and amount) by amount
positions. A positive amount indicates an upward roll, whereas a negative amount indicates
a downward roll.

Example(s):
onyx:0> 3 2 1 0
onyx:4> pstack
0
1
2
3
onyx:4> 3 1 roll
onyx:4> pstack
1
2
0
3
onyx:4> 3 -2 roll
onyx:4> pstack
2
0
1
3
onyx:4> 4 0 roll
onyx:4> pstack
2
0
1
3
onyx:4>

a round r:
Input(s):

a: An integer or real.

Output(s):
r: Integer round of a.

Errors(s):
stackunderflow.
typecheck.

Description: Round a to the nearest integer and return the result.

Example(s):
onyx:0> -1.51 round 1 sprint
-2
onyx:0> -1.49 round 1 sprint
-1
onyx:0> 0 round 1 sprint
0
onyx:0> 1.49 round 1 sprint
1
onyx:0> 1.51 round 1 sprint

158 Onyx Manual Chapter 2

2
onyx:0>

. . . amount rot . . . :
Input(s):

. . . : One or more objects.
amount: Number of positions to rotate the stack upward. A negative value causes down-

ward rotation.
Output(s):

. . . : One or more objects.
Errors(s):

stackunderflow.
typecheck.

Description: Rotate the stack contents up amount positions.
Example(s):

onyx:0> 1 2 3 4 5 2 rot pstack clear
3
2
1
5
4
onyx:0> 1 2 3 4 5 -2 rot pstack clear
2
1
5
4
3
onyx:0>

stack sadn –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Rotate the contents of stack down one position.
Example(s):

onyx:0> (1 2 3 4) dup sadn 1 sprint
(2 3 4 1)
onyx:0>

stack saup –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

2.10. DICTIONARY REFERENCE Jason Evans 159

stackunderflow.
typecheck.

Description: Rotate the contents of stack up one position.

Example(s):
onyx:0> (1 2 3 4) dup saup 1 sprint
(4 1 2 3)
onyx:0>

stack sbdup –:
Input(s):

stack: A stack object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Duplicate the bottom object on stack and push it onto stack.

Example(s):
onyx:0> (2 1 0) dup sbdup pstack
(2 1 0 2)
onyx:1>

stack sbpop obj:
Input(s):

stack: A stack object.

Output(s):
obj: An object.

Errors(s):
stackunderflow.
typecheck.

Description: Pop obj off the bottom of stack.

Example(s):
onyx:0> (1 2 3) dup sbpop pstack
1
(2 3)
onyx:2>

stack obj sbpush –:
Input(s):

stack: A stack object.
obj: An object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Push obj onto the bottom of stack.

160 Onyx Manual Chapter 2

Example(s):
onyx:0> (0) dup 1 sbpush
onyx:1> pstack
(1 0)
onyx:1>

stack sclear –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Remove all objects on stack.
Example(s):

onyx:0> (1 2 3 4) dup sclear pstack
()
onyx:1>

stack scleartomark –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.
unmatchedmark.

Description: Remove objects from stack down to and including the topmost mark.
Example(s):

onyx:0> (3 mark 1 0) dup scleartomark pstack
(3)
onyx:1>

stack scount count:
Input(s):

stack: A stack object.
Output(s):

count: The number of objects on stack.
Errors(s):

stackunderflow.
typecheck.

Description: Get the number of objects on stack.
Example(s):

onyx:0> (1 2) scount 1 sprint
2
onyx:0>

2.10. DICTIONARY REFERENCE Jason Evans 161

stack scounttomark count:
Input(s):

stack: A stack object.
Output(s):

count: The depth of the topmost mark on stack.
Errors(s):

stackunderflow.
typecheck.
unmatchedmark.

Description: Get the depth of the topmost mark on stack.
Example(s):

onyx:0> (3 mark 1 0) scounttomark 1 sprint
2
onyx:0>

stack sdn –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Rotate the top three objects on stack down one position.
Example(s):

onyx:0> (3 2 1 0) dup sdn pstack
(3 1 0 2)
onyx:1>

stack sdup –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Duplicate the top object on stack and push it onto stack.
Example(s):

onyx:0> (1) dup sdup 1 sprint
(1 1)
onyx:0>

string pattern search post pattern pre true:

string pattern search string false:
Input(s):

string: A string object.

162 Onyx Manual Chapter 2

pattern: A string that represents a substring to search for in string.
Output(s):

post: The substring of string that follows the match.
pattern: The substring of string that matches the input pattern.
pre: The substring of string that precedes the match.
true: Success.
string: The same object as the input string.
false: Failure.

Errors(s):
stackunderflow.
typecheck.

Description: Search for the first instance of pattern in string, and if found, return substrings
that partition string into pre, pattern, and post.

Example(s):
onyx:0> ‘abcabc’ ‘ab’ search pstack clear
true
‘’
‘ab’
‘cabc’
onyx:0> ‘abcabc’ ‘ca’ search pstack clear
true
‘ab’
‘ca’
‘bc’
onyx:0> ‘abcabc’ ‘cb’ search pstack clear
false
‘abcabc’
onyx:0>

file offset seek –:
Input(s):

file: A file object.
offset: Offset in bytes from the beginning of file to move the file position pointer to.

Output(s): None.
Errors(s):

ioerror.
stackunderflow.
typecheck.

Description: Move the file position pointer for file to offset.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup 0 seek
onyx:1> readline pstack
false
‘Hello’
onyx:2>

2.10. DICTIONARY REFERENCE Jason Evans 163

– self thread:
Input(s): None.
Output(s):

thread: A thread object that corresponds to the running thread.
Errors(s): None.
Description: Get a thread object for the running thread.
Example(s):

onyx:0> self 1 sprint
-thread-
onyx:0>

sock mesg flags send nsend:

sock mesg send nsend:
Input(s):

sock: A socket.
mesg: A message string.
flags: An array of flag names. The following flags are supported:

$MSG OOB
$MSG PEEK
$MSG WAITALL

Output(s):
nsend: Number of bytes of mesg actually sent.

Errors(s):
argcheck.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Send a message.
Example(s):

onyx:0> $AF_INET $SOCK_DGRAM socket
onyx:1> dup ‘localhost’ 7777 connect
onyx:1> dup ‘hello’ send
onyx:2> 1 sprint
5
onyx:1>

service serviceport port:
Input(s):

service: A string that represents a network service name.
Output(s):

port: The port number corresponding to service, or 0 if the service is unknown.
Errors(s):

stackunderflow.
typecheck.

164 Onyx Manual Chapter 2

Description:
Example(s):

onyx:0> ‘ftp’ serviceport 1 sprint
21
onyx:0>

gid setegid boolean:
Input(s):

gid: A group ID.

Output(s):
boolean: If false, success, otherwise failure.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s effective group ID to gid.

Example(s):
onyx:0> 1001 setegid 1 sprint
false
onyx:0> 0 setegid 1 sprint
true
onyx:0>

key val setenv –:
Input(s):

key: A name object.
val: A value to associate with key.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Set an environment variable named key and associate val with it. If val is not a
string, it is converted to a string using the cvs operator before the environment variable is
set. A corresponding entry is also created in the envdict dictionary.

Example(s):
onyx:0> $foo ‘foo’ setenv
onyx:0> envdict $foo known 1 sprint
true
onyx:0> envdict $foo get 1 sprint
‘foo’
onyx:0> $foo unsetenv
onyx:0> envdict $foo known 1 sprint
false
onyx:0>

uid seteuid boolean:
Input(s):

2.10. DICTIONARY REFERENCE Jason Evans 165

uid: A user ID.
Output(s):

boolean: If false, success, otherwise failure.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s effective user ID to uid.
Example(s):

onyx:0> 1001 seteuid 1 sprint
false
onyx:0> 0 seteuid 1 sprint
true
onyx:0>

gid setgid boolean:
Input(s):

gid: A group ID.
Output(s):

boolean: If false, success, otherwise failure.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s group ID to gid.
Example(s):

onyx:0> 1001 setgid 1 sprint
false
onyx:0> 0 setgid 1 sprint
true
onyx:0>

file setgstderr –:
Input(s):

file: A file to set the global stderr to.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the global stderr to file. See Section 2.4 for standard I/O details.
Example(s):

onyx:0> ‘/tmp/stderr’ ‘w’ open dup 0 setiobuf setgstderr
onyx:0> () {stderr ‘Some text\n’ write} thread join
onyx:0> ‘/tmp/stderr’ ‘r’ open readline pop 1 sprint
‘Some text’
onyx:0>

166 Onyx Manual Chapter 2

file setgstdin –:
Input(s):

file: A file to set the global stdin to.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the global stdin to file. See Section 2.4 for standard I/O details.
Example(s): Under normal interactive operation, stdin is pushed onto estack during inter-

preter initialization and evaluated until EOF is reached. Therefore, changing stdin has no
effect on the file descriptor already on estack. The following example recursively evaluates
stdin after redefining it.

lawine:˜> cat /tmp/stdin
1 2 3 pstack
lawine:˜> onyx
Canonware Onyx, version 3.1.0.
onyx:0> ‘/tmp/stdin’ ‘r’ open cvx setgstdin
onyx:0> () {stdin eval} thread join
3
2
1
onyx:0>

file setgstdout –:
Input(s):

file: A file to set the global stdout to.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the global stdout to file. See Section 2.4 for standard I/O details.
Example(s): In the following example, the prompt continues to be printed, even though stdout

has been redefined, because the prompt module was initialized to print to file descriptor 1.
This demonstrates the only known exception in the stock Onyx interpreter where redefining
stdout will not redirect output.

onyx:0> ‘/tmp/stdout’ ‘w’ open dup 0 setiobuf setgstdout
onyx:0> () {‘Some text\n’ print} thread join
onyx:0> ‘/tmp/stdout’ ‘r’ open readline pop 1 sprint
‘Some text’
onyx:0>

file count setiobuf –:
Input(s):

file: A file object.

2.10. DICTIONARY REFERENCE Jason Evans 167

count: The size in bytes to set the I/O buffer associated with file to.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the size of the I/O buffer associated with file.
Example(s):

onyx:0> stdout iobuf 1 sprint
512
onyx:0> stdout 0 setiobuf
onyx:0> stdout iobuf 1 sprint
0
onyx:0>

boolean setlocking –:
Input(s):

boolean: A boolean to set the implicit locking mode to.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the current implicit locking mode. See Section 2.7.1 for implicit synchroniza-
tion details.

Example(s):
onyx:0> currentlocking 1 sprint
false
onyx:0> true setlocking
onyx:0> currentlocking 1 sprint
true
onyx:0>

file boolean setnonblocking –:
Input(s):

file: A file object.
boolean: Non-blocking mode to set file to.

Output(s): None.
Errors(s):

ioerror.
stackunderflow.
typecheck.

Description: Set non-blocking mode for file to boolean.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup nonblocking 1 sprint
false
onyx:1> dup true setnonblocking

168 Onyx Manual Chapter 2

onyx:1> dup nonblocking 1 sprint
true
onyx:1>

sock level optname optval setsockopt –:

sock optname optval setsockopt –:
Input(s):

sock: A socket.
level: Level at which to set the socket option. If not specified, $SOL SOCKET is used.
optname: Name of option to set the value of. The following option names are supported:

$SO DEBUG
$SO REUSEADDR
$SO REUSEPORT
$SO KEEPALIVE
$SO DONTROUTE
$SO BROADCAST
$SO OOBINLINE
$SO SNDBUF
$SO RCVBUF
$SO SNDLOWAT
$SO RCVLOWAT
$SO TYPE
$SO ERROR: optval is an integer.
$SO LINGER: optval is a dictionary, and the following entries are defined:

$on: Boolean.
$time: Linger time in seconds.

$SO SNDTIMEO
$SO RCVTIMEO: optval is an integer, in nanoseconds.

optval: Value to associate with optname.
Output(s): None.
Errors(s):

argcheck.
stackunderflow.
typecheck.
unregistered.

Description: Set a socket option.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup $SO_OOBINLINE sockopt 1 sprint
0
onyx:1> dup $SO_OOBINLINE 1 setsockopt
onyx:1> dup $SO_OOBINLINE sockopt 1 sprint
1
onyx:1>

file setstderr –:

2.10. DICTIONARY REFERENCE Jason Evans 169

Input(s):
file: A file to set the calling thread’s stderr to.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the thread’s stderr to file. See Section 2.4 for standard I/O details.
Example(s):

onyx:0> ‘/tmp/stderr’ ‘w’ open dup 0 setiobuf setstderr
onyx:0> stderr ‘Some text\n’ write
onyx:0> ‘/tmp/stderr’ ‘r’ open readline pop 1 sprint
‘Some text’
onyx:0>

file setstdin –:
Input(s):

file: A file to set the calling thread’s stdin to.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the thread’s stdin to file. See Section 2.4 for standard I/O details.
Example(s): Under normal interactive operation, stdin is pushed onto estack during inter-

preter initialization and evaluated until EOF is reached. Therefore, changing stdin has no
effect on the file descriptor already on estack. The following example recursively evaluates
stdin after redefining it.

lawine:˜> cat /tmp/stdin
1 2 3 pstack
lawine:˜> onyx
Canonware Onyx, version 3.1.0.
onyx:0> ‘/tmp/stdin’ ‘r’ open cvx setstdin
onyx:0> stdin eval
3
2
1
onyx:3>

file setstdout –:
Input(s):

file: A file to set the calling thread’s stdout to.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Set the thread’s stdout to file. See Section 2.4 for standard I/O details.

170 Onyx Manual Chapter 2

Example(s): In the following example, the prompt continues to be printed, even though stdout
has been redefined, because the prompt module was initialized to print to file descriptor 1.
This demonstrates the only known exception in the stock Onyx interpreter where redefining
stdout will not redirect output.

onyx:0> ‘/tmp/stdout’ ‘w’ open dup 0 setiobuf setstdout
onyx:0> ‘Some text\n’ print
onyx:0> gstdout setstdout
onyx:0> ‘/tmp/stdout’ ‘r’ open readline pop 1 sprint
‘Some text’
onyx:0>

uid setuid boolean:
Input(s):

uid: A user ID.
Output(s):

boolean: If false, success, otherwise failure.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s user ID to uid.
Example(s):

onyx:0> 1001 setuid 1 sprint
false
onyx:0> 0 setuid 1 sprint
true
onyx:0>

stack sexch –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Exchange the top two objects on stack.
Example(s):

onyx:0> (1 2 3) dup sexch pstack
(1 3 2)
onyx:1>

– shift –:
Input(s):

a: An integer.
shift: An integer that represents a bitwise shift amount. Negative means right shift, and

positive means left shift.

2.10. DICTIONARY REFERENCE Jason Evans 171

Output(s):
r: a shifted by shift bits.

Errors(s):
stackunderflow.
typecheck.

Description: Shift an integer bitwise.

Example(s):
onyx:0> 4 1 shift 1 sprint
8
onyx:0> 4 -1 shift 1 sprint
2
onyx:0>

stack index sibdup –:
Input(s):

stack: A stack object.
index: Offset from bottom of stack, counting from 0, of the object to duplicate.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on stack that is at offset index from the bottom of
stack and push it onto stack.

Example(s):
onyx:0> (3 2 1 0) dup 2 sibdup pstack
(3 2 1 0 1)
onyx:1>

stack index sibpop obj:
Input(s):

stack: A stack object.
index: Offset from bottom of stack, counting from 0, of the object to remove from stack.

Output(s):
obj: An object removed from stack.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the obj from stack that is at offset index from the bottom of stack.

Example(s):
onyx:0> (0 1 2 3) dup 2 sibpop pstack
2
(0 1 3)
onyx:2>

172 Onyx Manual Chapter 2

stack index sidup –:
Input(s):

stack: A stack object.
index: Depth (count starts at 0) of the object to duplicate in stack.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on stack at depth index and push it onto stack.

Example(s):
onyx:0> (3 2 1 0) dup 2 sidup
onyx:1> 1 sprint
(3 2 1 0 2)
onyx:0>

condition signal –:
Input(s):

condition: A condition object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Signal a thread that is waiting on condition. If there are no waiters, this operator
has no effect.

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

a sin r:
Input(s):

a: An integer or real.

Output(s):
r: Sine of a in radians.

Errors(s):
stackunderflow.
typecheck.

Description: Return the sine of a in radians.

Example(s):
onyx:0> 0 sin 1 sprint
0.000000e+00

2.10. DICTIONARY REFERENCE Jason Evans 173

onyx:0> 1.570796 sin 1 sprint
1.000000e+00
onyx:0> 0.7853982 sin 1 sprint
7.071068e-01
onyx:0>

a sinh r:
Input(s):

a: An integer or real.
Output(s):

r: Hyperbolic sine of a.
Errors(s):

stackunderflow.
typecheck.

Description: Return the hyperbolic sine of a.
Example(s):

onyx:0> 3 sinh 1 sprint
1.001787e+01
onyx:0>

stack index sipop obj:
Input(s):

stack: A stack object.
index: Offset from top of stack, counting from 0, of the object to remove from stack.

Output(s):
obj: An object removed from stack.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the obj at index from stack.
Example(s):

onyx:0> (3 2 1 0) dup 2 sipop pstack
2
(3 1 0)
onyx:2>

stack count snbpop array:
Input(s):

stack: A stack object.
count: Number of objects to pop off the bottom of stack.

Output(s):
array: An array of objects popped off the bottom of stack, with the same object ordering as

when on stack.
Errors(s):

rangecheck.

174 Onyx Manual Chapter 2

stackunderflow.
typecheck.

Description: Pop count objects off the bottom of stack and put them into an array.

Example(s):
onyx:0> (1 2 3 4) dup 2 snbpop pstack
[1 2]
(3 4)
onyx:2>

stack count sndn –:
Input(s):

stack: A stack object.
count: Number of objects on stack to rotate down one position.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Rotate count objects on stack down one position.

Example(s):
onyx:0> (5 4 3 2 1 0) dup 4 sndn pstack
(5 4 2 1 0 3)
onyx:1>

stack count sndup –:
Input(s):

stack: A stack object.
count: Number of objects on stack to duplicate.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create duplicates of the top count objects on stack.

Example(s):
onyx:0> (3 2 1 0) dup 2 sndup pstack
(3 2 1 0 1 0)
onyx:1>

stack snip obj:
Input(s):

stack: A stack object.

Output(s):
obj: The object that was the second to top object on stack.

Errors(s):
stackunderflow.

2.10. DICTIONARY REFERENCE Jason Evans 175

typecheck.
Description: Remove the second to top object from stack.
Example(s):

onyx:0> (2 1 0) dup snip pstack
1
(2 0)
onyx:2>

stack count snpop array:
Input(s):

stack: A stack object.
count: Number of objects to pop off of stack.

Output(s):
array: An array of objects popped off of stack, with the same object ordering as when on

stack.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Pop count objects off of stack and put them into an array.
Example(s):

onyx:0> (1 2 3 4) dup 2 snpop pstack
[3 4]
(1 2)
onyx:2>

stack count snup –:
Input(s):

stack: A stack object.
count: Number of objects on stack to rotate up one position.

Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Rotate count objects on stack up one position.
Example(s):

onyx:0> (5 4 3 2 1 0) dup 4 snup pstack
(5 4 0 3 2 1)
onyx:1>

family type proto socket sock:

family type socket sock:
Input(s):

family: The name of a socket address family, either $AF INET or $AF LOCAL.
type: The name of a socket type, either $SOCK STREAM or $SOCK DGRAM.

176 Onyx Manual Chapter 2

proto: The name of a socket protocol. This argument is not useful, given the current lim-
ited choice of address families.

Output(s):
sock: A socket.

Errors(s):
argcheck.
invalidaccess.
stackunderflow.
typecheck.
unregistered.

Description: Create a socket.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> $AF_LOCAL $SOCK_DGRAM socket
onyx:2>

family type proto socketpair sock sock:

family type socketpair sock sock:
Input(s):

family: The name of a socket address family, either $AF INET or $AF LOCAL.
type: The name of a socket type, either $SOCK STREAM or $SOCK DGRAM.
proto: The name of a socket protocol. This argument is not useful, given the current lim-

ited choice of address families.
Output(s):

sock: A connected socket. There are no functional differences between the two sockets that
are returned.

Errors(s):
argcheck.
invalidaccess.
stackunderflow.
typecheck.
unregistered.

Description: Create a pair of sockets that are connected to each other.
Example(s):

onyx:0> $AF_LOCAL $SOCK_STREAM socketpair
onyx:2> pstack
-file-
-file-
onyx:2>

sock sockname dict:
Input(s):

sock: A socket.
Output(s):

dict: A dictionary of information about sock. Depending on the socket family, the following
entries may exist:

2.10. DICTIONARY REFERENCE Jason Evans 177

family: Socket family.
address: IPv4 address.
port: IPv4 port.
path: Unix-domain socket path.

Errors(s):
argcheck.
ioerror.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Get information about sock.

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ bindsocket
onyx:1> dup sockname 1 sprint
<$family $AF_INET $address 2130706433 $port 33745>
onyx:1> close
onyx:0> $AF_LOCAL $SOCK_STREAM socket
onyx:1> dup ‘/tmp/socket’ bindsocket
onyx:1> dup sockname 1 sprint
<$family $AF_LOCAL $path ‘/tmp/socket’>
onyx:1>

sock level optname sockopt optval:

sock optname sockopt optval:
Input(s):

sock: A socket.
level: Level at which to get the socket option. If not specified, $SOL SOCKET is used.
optname: Name of option to get the value of. The following option names are supported:

$SO DEBUG
$SO REUSEADDR
$SO REUSEPORT
$SO KEEPALIVE
$SO DONTROUTE
$SO BROADCAST
$SO OOBINLINE
$SO SNDBUF
$SO RCVBUF
$SO SNDLOWAT
$SO RCVLOWAT
$SO TYPE
$SO ERROR: optval is an integer.
$SO LINGER: optval is a dictionary, and the following entries are defined:

$on: Boolean.

178 Onyx Manual Chapter 2

$time: Linger time in seconds.
$SO SNDTIMEO
$SO RCVTIMEO: optval is an integer, in nanoseconds.

Output(s):
optval: Value associated with optname.

Errors(s):
argcheck.
stackunderflow.
typecheck.
unregistered.

Description: Get a socket option.

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup $SO_SNDBUF sockopt 1 sprint
16384
onyx:1>

stack sover –:
Input(s):

stack: A stack object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Create a duplicate of the second object on stack and push it onto stack.

Example(s):
onyx:0> (2 1 0) dup sover pstack
(2 1 0 1)
onyx:1>

input pattern flags limit split array:

input pattern flags split array:

input pattern limit split array:

input pattern split array:

input regex limit split array:

input regex split array:
Input(s):

input: An input string to find matches in.
pattern: A string that specifies a regular expression. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.

2.10. DICTIONARY REFERENCE Jason Evans 179

$s: Treat input as a single line, so that the dot metacharacter matches any character,
including a newline. Defaults to false.

regex: A regex object.
limit: Split input into no more than limit substrings. 0 is treated as infinity. Defaults to 0.

Output(s):
array: An array of substrings containing the text between pattern matches.

Errors(s):
rangecheck.
regexerror.
stackunderflow.
typecheck.

Description: Create an array of substrings from input that are separated by portions of input
that match a regular expression.
If there are capturing subpatterns in the regular expression, also create substrings for those
capturing subpatterns and insert them into the substring array.
As a special case, if the regular expression matches the empty string, split a single character.
This avoids an infinite loop.

Example(s):
onyx:0> ‘a:b:c’ ‘:’ split 1 sprint
[‘a’ ‘b’ ‘c’]
onyx:0> ‘a:b:c’ ‘:’ 2 split 1 sprint
[‘a’ ‘b:c’]
onyx:0> ‘a:b:c’ ‘(:)’ split 1 sprint
[‘a’ ‘:’ ‘b’ ‘:’ ‘c’]
onyx:0> ‘a:b:c’ ‘’ split 1 sprint
[‘a’ ‘:’ ‘b’ ‘:’ ‘c’]
onyx:0>

stack spop obj:
Input(s):

stack: A stack object.
Output(s):

obj: The object that was popped off of stack.
Errors(s):

stackunderflow.
typecheck.

Description: Pop an object off of stack and push it onto ostack.
Example(s):

onyx:0> (1 2) dup spop
onyx:2> pstack
2
(1)
onyx:2>

obj depth sprint –:
Input(s):

obj: An object to print syntactically.

180 Onyx Manual Chapter 2

depth: Maximum recursion depth.
Output(s): None.
Errors(s):

ioerror.
stackunderflow.
typecheck.

Description: Syntactically print obj. See Section 2.10.8 for printing details.
Example(s):

onyx:0> [1 [2 3] 4]
onyx:1> dup 0 sprint
-array-
onyx:1> dup 1 sprint
[1 -array- 4]
onyx:1> dup 2 sprint
[1 [2 3] 4]
onyx:1>

obj depth sprints string:
Input(s):

obj: An object to print syntactically.
depth: Maximum recursion depth.

Output(s):
string: A syntactical string representation of obj. See Section 2.10.8 for printing details.

Errors(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of obj.
Example(s):

onyx:0> [1 [2 3] 4]
onyx:1> dup 0 sprints print ‘\n’ print flush
-array-
onyx:1> dup 1 sprints print ‘\n’ print flush
[1 -array- 4]
onyx:1> dup 2 sprints print ‘\n’ print flush
[1 [2 3] 4]
onyx:1>

– sprintsdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Errors(s): None.
Description: Get sprintsdict. See Section 2.10.8 for details on sprintsdict.
Example(s):

onyx:0> sprintsdict 0 sprint
-dict-
onyx:0>

2.10. DICTIONARY REFERENCE Jason Evans 181

stack obj spush –:
Input(s):

stack: A stack object.
obj: An object.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Push obj onto stack.
Example(s):

onyx:0> (0) dup 1 spush
onyx:1> pstack
(0 1)
onyx:1>

a sqrt r:
Input(s):

a: A non-negative integer or real.
Output(s):

r: Square root of a.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the square root of a.
Example(s):

onyx:0> 4 sqrt 1 sprint
2.000000e+00
onyx:0> 2.0 sqrt 1 sprint
1.414214e+00
onyx:0>

seed srand –:
Input(s):

seed: A non-negative integer.
Output(s): None.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Seed the pseudo-random number generator with seed.
Example(s):

onyx:0> 5 srand
onyx:0>

stack count amount sroll –:

182 Onyx Manual Chapter 2

Input(s):
stack: A stack object.
count: Number of objects to roll in stack.
amount: Amount by which to roll. If positive, roll upward. If negative, roll downward.

Output(s): None.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Roll the top count objects on stack by amount positions. A positive amount indi-
cates an upward roll, whereas a negative amount indicates a downward roll.

Example(s):
onyx:0> (3 2 1 0)
onyx:1> dup 3 1 sroll pstack
(3 0 2 1)
onyx:1> dup 3 -2 sroll pstack
(3 1 0 2)
onyx:1> dup 4 0 sroll pstack
(3 1 0 2)
onyx:1>

stack amount srot –:
Input(s):

stack: One or more objects.
amount: Number of positions to rotate stack upward. A negative value causes downward

rotation.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Rotate stack up count positions.

Example(s):
onyx:0> (1 2 3 4 5) dup 2 srot 1 sprint
(4 5 1 2 3)
onyx:0> (1 2 3 4 5) dup -2 srot 1 sprint
(3 4 5 1 2)
onyx:0>

– stack stack:
Input(s): None.

Output(s):
stack: An empty stack object.

Errors(s): None.

Description: Create a new stack object and push it onto ostack.

2.10. DICTIONARY REFERENCE Jason Evans 183

Example(s):
onyx:0> stack
onyx:1> pstack
()

obj start –:
Input(s):

obj: An object.

Output(s): None.

Errors(s):
stackunderflow.

Description: Evaluate obj. This operator provides a context that silently terminates execution
stack unwinding due to the exit, quit, and stop operators.

Example(s):
onyx:0> stdin cvx start
onyx:0> quit
onyx:0>

file/filename status dict:
Input(s):

file: A file object.
filename: A string that represents a filename.

Output(s):
dict: A dictionary that contains the following entries:

dev: Inode’s device.
ino: Inode’s number.
mode: Inode permissions.
nlink: Number of hard links.
uid: User ID of the file owner.
gid: Group ID of the file owner.
rdev: Device type.
size: File size in bytes.
atime: Time of last access, in nanoseconds since the epoch.
mtime: Time of last modification, in nanoseconds since the epoch.
ctime: Time of last file status change, in nanoseconds since the epoch.
blksize: Optimal block size for I/O.
blocks: Number of blocks allocated.

Errors(s):
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
unregistered.

Description: Get status information about a file.

184 Onyx Manual Chapter 2

Example(s):
onyx:0> ‘/tmp’ status 1 sprint
<$dev 134405 $ino 2 $mode 17407 $nlink 5 $uid 0 $gid 0 $rdev 952 $size 3584
$atime 994883041000000000 $mtime 994883041000000000 $ctime 994883041000000000
$blksize 0 $blocks 8>
onyx:0>

– stderr file:
Input(s): None.

Output(s):
file: A file object corresponding to the calling thread’s stderr.

Errors(s): None.

Description: Get the thread’s stderr. See Section 2.4 for standard I/O details.

Example(s):
onyx:0> stderr pstack
-file-
onyx:1>

– stdin file:
Input(s): None.

Output(s):
file: A file object corresponding to the calling thread’s stdin.

Errors(s): None.

Description: Get the thread’s stdin. See Section 2.4 for standard I/O details.

Example(s):
onyx:0> stdin pstack
-file-
onyx:1>

– stdout file:
Input(s): None.

Output(s):
file: A file object corresponding to the calling thread’s stdout.

Errors(s): None.

Description: Get the thread’s stdout. See Section 2.4 for standard I/O details.

Example(s):
onyx:0> stdout pstack
-file-
onyx:1>

– stop –:
Input(s): None.

Output(s): None.

Errors(s): None.

Description: Unwind the execution stack to the innermost stopped or start context.

2.10. DICTIONARY REFERENCE Jason Evans 185

Example(s):
onyx:0> {stop} stopped 1 sprint
true
onyx:0>

obj stopped boolean:
Input(s):

obj: An object to evaluate.
Output(s):

boolean: True if stop operator was executed, false otherwise.
Errors(s):

invalidexit.
stackunderflow.

Description: Evaluate obj. This operator provides a context that terminates execution stack
unwinding due to the stop. It will also terminate execution stack unwinding due to the exit
operator, but will throw an invalidexit error, then do the equivalent of calling quit.

Example(s):
onyx:0> {stop} stopped 1 sprint
true
onyx:0> {} stopped 1 sprint
false
onyx:0>

length string string:
Input(s):

length: Non-negative number of bytes.
Output(s):

string: A string of length bytes.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Create a string of length bytes. The bytes are initialized to 0.
Example(s):

onyx:0> 3 string 1 sprint
‘\x00\x00\x00’
onyx:0>
onyx:0> 0 string 1 sprint
‘’
onyx:0>

stack stuck –:
Input(s):

stack: A stack object.
Output(s): None.
Errors(s):

stackunderflow.

186 Onyx Manual Chapter 2

typecheck.
Description: Tuck duplicate of top object on stack under second object on stack.
Example(s):

onyx:0> (2 1 0) dup stuck pstack
(2 0 1 0)
onyx:1>

a b sub r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: The value of b subtracted from a.

Errors(s):
stackunderflow.
typecheck.

Description: Subtract b from a and return the result.
Example(s):

onyx:0> 5 3 sub 1 sprint
2
onyx:0> -3 4 sub 1 sprint
-7
onyx:0> 5.1 1.1 sub 1 sprint
4.000000e+00
onyx:0> 5 1.0 sub 1 sprint
4.000000e+00
onyx:0> -3.0 4.1 sub 1 sprint
-7.100000e+00
onyx:0>

integer submatch substring:
Input(s):

integer:
0: Get substring of text that matched the regular expression.
>0: Get substring of text that matched the specified capturing subpattern.

Output(s):
substring: A substring of the string that was most recently matched by the match, split,

or subst operators.
Errors(s):

stackunderflow.
typecheck.

Description: Get a substring of the input string that was most recently matched against.
Example(s):

onyx:0> ‘input’ ‘n(p)u’ match {0 submatch 1 sprint 1 submatch 1 sprint} if
‘npu’
‘p’
onyx:0>

2.10. DICTIONARY REFERENCE Jason Evans 187

input pattern template flags subst output count:

input pattern template subst output count:

input regsub subst output count:
Input(s):

input: An input string.
pattern: A string that specifies a regular expression. See Section 2.9 for syntax.
template: A string that specifies a substitution template. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$g: Substitute all matches, if true, rather than just the first match. Defaults to false.
$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.
regsub: A regsub object.

Output(s):
output: A string that is created by substituting substrings within input that match a reg-

ular expression.
count: Number of substitutions made. If 0 substitutions were made, then output is a du-

plicate of input, rather than a copy.

Errors(s):
regexerror.
stackunderflow.
typecheck.

Description: Create a string by substituting according to a template for each substring within
input that matches a regular expression.

Example(s):
onyx:0> ‘Input String’ ‘([a-r])’ ‘[\1]’ <$g true> subst pstack
6
‘I[n][p]ut St[r][i][n][g]’
onyx:2>

stack sunder –:
Input(s):

stack: A stack object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Create a duplicate of the second object on stack and put it under the top object on
stack.

Example(s):
onyx:0> (2 1 0) dup sunder pstack
(2 1 1 0)
onyx:1>

188 Onyx Manual Chapter 2

stack sup –:
Input(s):

stack: A stack object.

Output(s): None.

Errors(s):
stackunderflow.
typecheck.

Description: Rotate the top three objects on stack up one position.

Example(s):
onyx:0> (3 2 1 0) dup sup pstack
(3 0 2 1)
onyx:1>

filename linkname symlink –:
Input(s):

filename: A string that represents a filename.
linkname: A string that represents a filename.

Output(s): None.

Errors(s):
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Create a symbolic link from linkname to filename.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ ‘/tmp/bar’ symlink
onyx:0> ‘/tmp/bar’ ‘r’ open
onyx:1> readline
onyx:2> pstack
false
‘Hello’
onyx:2>

args system status:
Input(s):

args: An array of strings. The first string in args is the path of the program to invoke, and
any additional array elements are passed as command line arguments to the invoked
program.

Output(s):

2.10. DICTIONARY REFERENCE Jason Evans 189

status: Exit code of terminated process. A negative value indicates that the process was
terminated by a signal (use the neg operator to get the signal number), and a non-
negative value is the exit code of a program that terminated normally.

Errors(s):
rangecheck.
stackunderflow.
typecheck.

Description: Execute a program as a child process and wait for it to terminate.
Example(s):

onyx:0> [‘/usr/bin/which’ ‘onyx’] system
/usr/local/bin/onyx
onyx:1> 1 sprint
0
onyx:0>

– systemdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Errors(s): None.
Description: Get systemdict. See Section 2.10.9 for details on systemdict.
Example(s):

onyx:0> systemdict 0 sprint
-dict-
onyx:0>

a sinh r:
Input(s):

a: An integer or real.
Output(s):

r: Tangent of a in radians.
Errors(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the tangent of a in radians.
Example(s):

onyx:0> 0.785 tan 1 sprint
9.992040e-01
onyx:0>

a tanh r:
Input(s):

a: An integer or real.
Output(s):

r: Hyperbolic tangent of a.

190 Onyx Manual Chapter 2

Errors(s):
stackunderflow.
typecheck.

Description: Return the hyperbolic tangent of a.
Example(s):

onyx:0> 3 tanh 1 sprint
9.950548e-01
onyx:0>

file tell offset:
Input(s):

fil: A file object.
Output(s):

offset: Offset of the file position pointer for file.
Errors(s):

ioerror.
stackunderflow.
typecheck.

Description: Get the file position pointer offset for file.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup tell 1 sprint
0
onyx:1> dup ‘Hello\n’ write
onyx:1> dup tell 1 sprint
6
onyx:1>

file/filename flag test boolean:
Input(s):

file: A file object.
filename: A string that represents a filename.
flag: A single-character string that represents the test to do on file or filename:

‘b’: Block special device?
‘c’: Character special device?
‘d’: Directory?
‘e’: Exists?
‘f’: Regular file?
‘g’: Setgid?
‘k’: Sticky?
‘p’: Named pipe?
‘r’: Readable?
‘s’: Size greater than 0?
‘t’: tty?
‘u’: Setuid?
‘w’: Write bit set?

2.10. DICTIONARY REFERENCE Jason Evans 191

‘x’: Executable bit set?
‘L’: Symbolic link?
‘O’: Owner matches effective uid?
‘G’: Group matches effective gid?
‘S’: Socket?

Output(s):
boolean: If true, the test evaluated to true; false otherwise.

Errors(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Test a file for an attribute.
Example(s):

onyx:0> ‘/blah’ ‘e’ test 1 sprint
false
onyx:0> ‘/tmp’ ‘e’ test 1 sprint
true
onyx:0>

stack entry thread thread:
Input(s):

stack: A stack that contains the contents for the new thread’s ostack.
entry: An initial object to execute in the new thread.

Output(s):
thread: A thread object that corresponds to the new thread.

Errors(s):
stackunderflow.
typecheck.

Description: Create and run a new thread.
Example(s):

onyx:0> (1 2) {add 1 sprint} thread join ‘Done\n’ print flush
3
Done
onyx:0>

thread threaddstack stack:
Input(s):

thread: A thread object.
Output(s):

stack: The dictionary stack belonging to thread.
Errors(s):

stackunderflow.

192 Onyx Manual Chapter 2

typecheck.
Description: Get a reference to the dictionary stack belonging to thread.

Example(s):
onyx:0> self threaddstack 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:0>

thread threadestack stack:
Input(s):

thread: A thread object.

Output(s):
stack: The execution stack belonging to thread.

Errors(s):
stackunderflow.
typecheck.

Description: Get a reference to the execution stack belonging to thread.

Example(s):
onyx:0> self threadestack 1 sprint
(-file- -array- --eval-- --ifelse-- -array- --for-- -array-)
onyx:0>

thread threadistack stack:
Input(s):

thread: A thread object.

Output(s):
stack: The index stack belonging to thread.

Errors(s):
stackunderflow.
typecheck.

Description: Get a reference to the index stack belonging to thread.

Example(s):
onyx:0> self threadistack 1 sprint
(0 0 0 0 7 0 3)
onyx:0>

thread threadostack stack:
Input(s):

thread: A thread object.

Output(s):
stack: The operand stack belonging to thread.

Errors(s):
stackunderflow.
typecheck.

Description: Get a reference to the operand stack belonging to thread.

2.10. DICTIONARY REFERENCE Jason Evans 193

Example(s):
onyx:0> self threadostack 1 sprint
(-stack- -stack- -stack- -stack-)
onyx:0>

– threadsdict dict:
Input(s): None.

Output(s):
dict: A dictionary. Each key is a thread reference. By default, each value is null, but this

need not be so, and the value can be redefined for debugging purposes.

Errors(s): None.

Description: Get a dictionary containing references to all threads.

Example(s):
onyx:0> threadsdict 1 sprint
<-thread- null>
onyx:0>

name throw obj:
Input(s):

name: The name of an error.

Output(s):
obj: The object that was being executed when the error was thrown.

Errors(s):
stackunderflow.
typecheck.
undefined.

Description: Throw an error, using the following steps:

1. Set newerror in the currenterror dictionary to true.
2. Set errorname in the currenterror dictionary to name.
3. Set ostack, dstack, estack, and istack in the currenterror dictionary to be current stack

snapshots.
4. Push the object that was being executed before throw was called onto ostack.
5. If there is an error handler in the errordict dictionary that corresponds to name, evaluate

it. Otherwise, evaluate errordict’s handleerror and stop operators.

Example(s):
onyx:0> $unregistered throw
Error $unregistered
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:1> pstack
-file-
onyx:1>

condition mutex timeout timedwait boolean:

194 Onyx Manual Chapter 2

Input(s):
condition: A condition object.
mutex: A mutex object that this thread currently owns.
timeout: Minimum number of nanoseconds to wait for condition.

Output(s):
boolean: If false, success, otherwise timeout.

Errors(s):
stackunderflow.
typecheck.

Description: Wait on condition for at least timeout nanoseconds. mutex is atomically released
when the current thread blocks, then acquired again before the current thread runs again.
Using a mutex that the current thread does not own will result in undefined behavior (likely
crash).

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> 1000000000 timedwait 1 sprint unlock join
false
onyx:0> mutex condition 1 idup dup lock 1000000000 timedwait 1 sprint unlock
true
onyx:0>

file/string token false:

file/string token file/substring obj true:
Input(s):

file: A file that is used as onyx source code to scan a token from.
string: A string that is used as onyx source code to scan a token from.

Output(s):
file: The same file object that was passed in.
substring: The remainder of string after scanning a token.
obj: An object that was constructed by scanning a token.
false/true: If true, a token was successfully scanned, false otherwise.

Errors(s):
stackunderflow.
syntaxerror.
typecheck.
undefined.

Description: Scan a token from a file or string, using onyx syntax rules. If a token is followed
by whitespace, one character of whitespace is consumed when the token is scanned.

Example(s):
onyx:0> ‘1 2’ token pstack clear
true
1
‘2’

2.10. DICTIONARY REFERENCE Jason Evans 195

onyx:0> ‘foo’ token pstack clear
true
foo
‘’
onyx:0> ‘foo ’ token pstack clear
true
foo
‘’
onyx:0> ‘foo ’ token pstack clear
true
foo
‘ ’
onyx:0> ‘foo$bar’ token pstack clear
true
foo
‘$bar’
onyx:0> ‘foo{}’ token pstack clear
true
foo
‘{}’
onyx:0> ‘ ’ token pstack clear
false
onyx:0>

a trunc r:
Input(s):

a: An integer or real.

Output(s):
r: Integer created from a by discarding the fractional portion.

Errors(s):
stackunderflow.
typecheck.

Description: Discard the fractional portion of a to create an integer, and return the result.

Example(s):
onyx:0> -1.51 trunc 1 sprint
-1
onyx:0> -1.49 trunc 1 sprint
-1
onyx:0> 0 trunc 1 sprint
0
onyx:0> 1.49 trunc 1 sprint
1
onyx:0> 1.51 trunc 1 sprint
1
onyx:0>

file length truncate –:
Input(s):

file: A file object.

196 Onyx Manual Chapter 2

length: New length for file.

Output(s): None.

Errors(s):
ioerror.
rangecheck.
stackunderflow.
typecheck.

Description: Set the length of file to length. If this causes the file to grow, the appended bytes
will have the value zero.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> dup 0 seek
onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hello\n’
onyx:1> dup 3 truncate
onyx:1> dup 0 seek
onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hel’
onyx:1>

– true true:
Input(s): None.

Output(s):
true: The boolean value true.

Errors(s): None.

Description: Return true.

Example(s):
onyx:0> true 1 sprint
true
onyx:0>

mutex trylock boolean:
Input(s):

mutex: A mutex object.

Output(s):
boolean: If false, mutex was successfully acquired. Otherwise the mutex acquisition failed.

Errors(s):
stackunderflow.
typecheck.

Description: Try to acquire mutex, but return a failure immediately if mutex cannot be ac-
quired, rather than blocking.

2.10. DICTIONARY REFERENCE Jason Evans 197

Example(s):
onyx:0> mutex dup
onyx:2> trylock 1 sprint
false
onyx:1> trylock 1 sprint
true
onyx:0>

a b tuck b a b:
Input(s):

a: An object.
b: An object.

Output(s):
:

Errors(s):
stackunderflow.
typecheck.

Description: Create a duplicate of the top object on ostack and put it under the second object
on ostack.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’
oonyx:3> tuck pstack
‘c’
‘b’
‘c’
‘a’
onyx:4>

obj type name:
Input(s):

obj: An object.

Output(s):
name: An executable name that corresponds to the type of obj:

array: arraytype.
boolean: booleantype.
condition: conditiontype.
dict: dicttype.
file: filetype.
fino: finotype.
hook: hooktype.
integer: integertype.
mark: marktype.
mutex: mutextype.
name: nametype.
null: nulltype.
operator: operatortype.

198 Onyx Manual Chapter 2

pmark: pmarktype.
stack: stacktype.
string: stringtype.
thread: threadtype.

Errors(s):
stackunderflow.

Description: Get a name that represent the type of obj.
Example(s):

onyx:0> true type 1 sprint
booleantype
onyx:0>

– uid uid:
Input(s): None.
Output(s):

uid: Process’s user ID.
Errors(s): None.
Description: Get the process’s user ID.
Example(s):

onyx:0> uid 1 sprint
1001
onyx:0>

nmask umask omask:
Input(s):

nmask: Value to set umask to.
Output(s):

omask: Old umask.
Errors(s):

stackunderflow.
typecheck.

Description: Set the process’s umask to nmask and return the old umask.
Example(s):

onyx:0> 8@777 umask <$b 8 $w 3 $p ‘0’> output ‘\n’ print flush
022
onyx:0>

dict key undef –:
Input(s):

dict: A dictionary.
val: A key in dict to undefine.

Output(s): None
Errors(s):

stackunderflow.
typecheck.

2.10. DICTIONARY REFERENCE Jason Evans 199

Description: If key is defined in dict, undefine it.
Example(s):

onyx:0> $foo ‘foo’ def
onyx:0> currentdict $foo undef
onyx:0> currentdict $foo undef
onyx:0>

a b under a a b:
Input(s):

a: An object.
b: An object.

Output(s):
a: An object.
b: An object.

Errors(s):
stackunderflow.

Description: Create a duplicate of the second object on ostack and put it under the top object
on ostack.

Example(s):
onyx:0> 0 1 2 under pstack
2
1
1
0
onyx:4>

filename unlink –:
Input(s):

filename: A string that represents a filename.
Output(s): None.
Errors(s):

invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Unlink filename.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ unlink
onyx:0> ‘/tmp/foo’ ‘r’ open
Error $invalidfileaccess
ostack: (‘/tmp/foo’ ‘r’)

200 Onyx Manual Chapter 2

dstack: (-dict- -dict- -dict- -dict-)
estack/istack trace (0..2):
0: --open--
1: -file-
2: --start--
onyx:3>

mutex unlock –:
Input(s):

mutex: A mutex object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Unlock mutex. Unlocking a mutex that the running thread does not own will
result in undefined behavior (likely crash).

Example(s):
onyx:0> mutex dup lock unlock
onyx:0>

key unsetenv –:
Input(s):

key: A name object.
Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Unset key in the environment and in the envdict dictionary, if key is defined.
Example(s):

onyx:0> $foo ‘foo’ setenv
onyx:0> envdict $foo known 1 sprint
true
onyx:0> envdict $foo get 1 sprint
‘foo’
onyx:0> $foo unsetenv
onyx:0> envdict $foo known 1 sprint
false
onyx:0>

proc cond until –:
Input(s):

proc: An object to be repeatedly evaluated.
cond: An object that, when evaluated, places a boolean on ostack.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

2.10. DICTIONARY REFERENCE Jason Evans 201

Description: Repeatedly evaluate proc and cond, terminating the first time that cond places
false on ostack. This operator supports the exit operator.

Example(s):
onyx:0> 0 {inc dup 1 sprint}{dup 3 lt} until pop
1
2
3
onyx:0> 0 {inc dup 1 sprint exit}{dup 3 lt} until pop
1
onyx:0>

a b c up c a b:
Input(s):

a: An object.
b: An object.
c: An object.

Output(s):
c: An object.
a: An object.
b: An object.

Errors(s):
stackunderflow.

Description: Rotate the top three objects on ostack up one position.
Example(s):

onyx:0> ‘a’ ‘b’ ‘c’ ‘d’ up pstack
‘c’
‘b’
‘d’
‘a’
onyx:4>

– userdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Errors(s): None.
Description: Get userdict. See Section 2.10.12 for details on userdict.
Example(s):

onyx:0> userdict 1 sprint
<>
onyx:0>

– version string:
Input(s): None.
Output(s):

string: A string that contains the version name.
Errors(s): None.

202 Onyx Manual Chapter 2

Description: Get the version string. The string returned is a reference to the original version
string.

Example(s):
onyx:0> version pstack
‘1.0.0’
onyx:1>

condition mutex wait –:
Input(s):

condition: A condition object.
mutex: A mutex object that this thread currently owns.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Wait on condition. mutex is atomically released when the current thread blocks,
then acquired again before the current thread runs again. Using a mutex that the current
thread does not own will result in undefined behavior (likely crash).

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

pid waitpid status:
Input(s):

pid: Process identifier.
Output(s):

status: Exit code of terminated process. A negative value indicates that the process was
terminated by a signal (use the neg operator to get the signal number), and a non-
negative value is the exit code of a program that terminated normally.

Errors(s):
stackunderflow.
typecheck.

Description: Wait for the process with process ID pid to exit.
Example(s):

onyx:0> [‘/bin/date’] forkexec dup 1 sprint waitpid 1 sprint
6516
Sat Jul 13 20:47:54 PDT 2002
0
onyx:0>

key where false:

key where dict true:
Input(s):

2.10. DICTIONARY REFERENCE Jason Evans 203

key: A key to search for in dstack.
Output(s):

dict: The topmost dictionary in dstack that contains a definition for key.
false/true: If false, no definition of key was found in dstack. Otherwise dict is the topmost

dictionary in dstack that contains a definition for key.
Errors(s):

stackunderflow.
Description: Get the topmost dictionary in dstack that defines key.
Example(s):

onyx:0> $foo where pstack clear
false
onyx:0> $threaddict where pstack clear
true
<$threaddict -dict- $userdict -dict- $currenterror -dict- $errordict -dict-
$resume --stop-->
onyx:0>

cond proc while –:
Input(s):

cond: An object that, when evaluated, places a boolean on ostack.
proc: An object to be repeatedly evaluated.

Output(s): None.
Errors(s):

stackunderflow.
typecheck.

Description: Repeatedly evaluate cond and proc, terminating the first time that cond places
false on ostack. This operator supports the exit operator.

Example(s):
onyx:0> 0 {dup 3 lt}{inc dup 1 sprint} while pop
1
2
3
onyx:0> 0 {dup 3 lt}{inc dup 1 sprint exit} while pop
1
onyx:0>

file integer/string write false:

file integer/string write integer/substring true:
Input(s):

file: A file object.
integer: An integer that represents an ascii character value.
string: A string object.

Output(s):
false: Successful complete write.
integer: The integer that was passed in.
substring: The substring of string that was not written.

204 Onyx Manual Chapter 2

true: Successful partial write.

Errors(s):
ioerror.
stackunderflow.
typecheck.

Description: Write integer or string to file. Partial writes can only happen for non-blocking
files.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write pop
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1>

obj xcheck boolean:
Input(s):

obj: An object.

Output(s):
boolean: True if obj has the executable or evaluatable attribute, false otherwise.

Errors(s):
stackunderflow.

Description: Check obj for executable or evaluatable attribute.

Example(s):
onyx:0> {1 2 3} xcheck 1 sprint
true
onyx:0> [1 2 3] xcheck 1 sprint
false
onyx:0>

a b xor r:
Input(s):

a: An integer or boolean.
b: The same type as a.

Output(s):
r: If a and b are integers, their bitwise exclusive or, otherwise their logical exclusive or.

Errors(s):
stackunderflow.
typecheck.

Description: Return the bitwise exclusive or of two integers, or the logical exclusive or of two
booleans.

Example(s):
onyx:0> true false xor 1 sprint
true
onyx:0> true true xor 1 sprint

2.10. DICTIONARY REFERENCE Jason Evans 205

false
onyx:0> 5 3 xor 1 sprint
6
onyx:0>

– yield –:
Input(s): None.
Output(s): None.
Errors(s): None.
Description: Vuluntarily yield the processor, so that another thread or process may be run.
Example(s):

onyx:0> 0 100000 {1 add yield} repeat 1 sprint
100000
onyx:0>

2.10.10 threaddict

Each thread has its own threaddict, which is not shared with any other threads. threaddict is meant
to be used for thread-specific definitions that would otherwise go in systemdict.

Table 2.12: threaddict summary

Input(s)
Op/Proc/Var

Output(s)

Description

–
threaddict

dict

Get threaddict.

–
userdict

dict

Get userdict.

–
currenterror

dict

Get currenterror.

–
errordict

dict

Get errordict.

– currenterror dict:
Input(s): None.
Output(s):

dict: The currenterror dictionary. See Section 2.10.1 for details on currenterror.
Errors(s): None.
Description: Get currenterror.
Example(s):

onyx:0> currenterror 0 sprint

206 Onyx Manual Chapter 2

-dict-
onyx:0>

– errordict dict:

Input(s): None.

Output(s):
dict: The errordict dictionary. See Section 2.10.3 for details on errordict.

Errors(s): None.

Description: Get errordict.

Example(s):
onyx:0> errordict 0 sprint
-dict-
onyx:0>

– threaddict dict:

Input(s): None.

Output(s):
dict: The threaddict dictionary.

Errors(s): None.

Description: Get threaddict.

Example(s):
onyx:0> threaddict 0 sprint
-dict-
onyx:0>

– userdict dict:

Input(s): None.

Output(s):
dict: The userdict dictionary. See Section 2.10.12 for details on userdict.

Errors(s): None.

Description: Get userdict.

Example(s):
onyx:0> userdict 1 sprint
<>
onyx:0>

2.10.11 threadsdict

There is one entry in threadsdict for each thread. The key is the thread, and the value is null by
default. The value can be safely changed, which can be useful when debugging. However, the key
must not be changed, or garbage collection will trigger a horrible death, since the root set will not be
complete.

2.10. DICTIONARY REFERENCE Jason Evans 207

2.10.12 userdict

Each thread has its own userdict, which is not shared with any other threads. userdict is meant to be
used for general storage of definitions that do not need to be shared among threads. userdict starts out
empty when a thread is created.

Chapter 3

The onyx program

onyx is a stand-alone Onyx interpreter, with an integrated command line editor. The Onyx language is
documented in a separate chapter, so this chapter documents only the differences from the main Onyx
language documentation.

3.1 Usage

onyx -h

onyx -V

onyx -e <expr>

onyx <file> [<args>]

3.1.1 Options

-e <expr>: Execute <expr> as Onyx code.

-h: Display usage information and exit.

-V: Display the version number and exit.

3.2 Environment variables

ONYX EDITOR: By default, the command line editor uses emacs key bindings. Use this variable to
explicitly set the key bindings to either “emacs” or “vi”.

3.3 Language differences

If onyx is being run interactively:

209

210 Onyx Manual Chapter 3

• The name “stop” is redefined in the initial thread’s errordict to recursively execute the stdin file
in a stopped context in order to keep the interpreter from exiting on error. It is possible (though
generally unlikely, since the user must type a very long line of code) for buffering of stdin to cause
strange things to occur; any additional program execution after an error is a result of this.

• The name “resume” is defined in the initial thread’s threaddict as an alias to the stop operator.
Thus, when an error occurs, when the user is ready to continue running after addressing any
issues the error caused, resume can be called as a more intuitive name for resuming.

• The name “promptstring” is defined in systemdict; it takes no arguments and returns a string.
The return string is used as the interactive prompt.

If onyx is being run non-interactively:

• The name “stop” in errordict is redefined to call the die operator with an argument of 1.

Chapter 4

The libonyx library

The libonyx library implements an embeddable Onyx interpreter. libonyx is designed to allow multiple
interpreter instances in the same program, though since Onyx is a multi-threaded language, in most
cases it makes more sense to use a single interpreter instance with multiple threads.

The Onyx language is described elsewhere in this manual, so this chapter documents the C API with
as little information about the Onyx language as possible.

A minimal program that runs the Onyx interpreter interactively looks like:

#include <libonyx/libonyx.h>

int
main(int argc, char **argv, char **envp)
{

cw_nx_t nx;
cw_nxo_t thread, *nxo;

/* Initialize libonyx and the Onyx interpreter. */
libonyx_init();
nx_new(&nx, NULL, argc, argv, envp);

/* Create a thread. */
nxo_thread_new(&thread, &nx);

/* Set up stdin for evaluation. */
nxo = nxo_stack_push(nxo_thread_ostack_get(&thread));
nxo_dup(nxo, nxo_thread_stdin_get(&thread));
nxo_attr_set(nxo, NXOA_EXECUTABLE);

/* Start the thread. */
nxo_thread_start(&thread);

/* Clean up. */
nx_delete(&nx);
libonyx_shutdown();

211

212 Onyx Manual Chapter 4

return 0;
}

In most cases, an application will need to implement additional Onyx operators (and make them acces-
sible from within the Onyx interpreter) in order to make the application accessible/controllable from
the Onyx interpreter. If the application user interface is to be interaction with the Onyx interpreter,
then little else needs to be done.

4.1 Compilation

Use the following compiler command line to compile applications with libonyx.

cc ‘onyx_config --cppflags‘ <file> ‘onyx_config --ldflags --libs‘

4.2 Types

libonyx is careful to use the following data types rather than the built-in types (other than when using
system library functions and string pointers (char *)) to allow easy porting and explicit knowledge of
variable sizes:

cw bool t: Boolean, either FALSE or TRUE.

cw sint8 t: Signed 8 bit variable.

cw uint8 t: Unsigned 8 bit variable.

cw sint16 t: Signed 16 bit variable.

cw uint16 t: Unsigned 16 bit variable.

cw sint32 t: Signed 32 bit variable.

cw uint32 t: Unsigned 32 bit variable.

cw sint64 t: Signed 64 bit variable.

cw uint64 t: Unsigned 64 bit variable.

cw fp64 t: 64 bit IEEE floating point variable.

4.3 Global variables

libonyx defines the following global variables, which can be used by the application:

cw g mem: mem instance, default memory allocator.

4.4. THREADS Jason Evans 213

4.4 Threads

libonyx encapsulates each interpreter instance in an nx object. An nx object supports running multiple
concurrent threads. Each thread context is encapsulated by an nxo thread object.

In general, each process thread should execute in its own nxo thread object context, though the only
explicit restriction placed on nxo thread object operations is that only one thread can be executing in an
nxo thread object context at a time. In other words, the nxo thread class does not synchronize access to
its internals, since there is normally no reason for multiple threads to execute in the same nxo thread
object context.

4.5 Garbage collection

Since there can be arbitrary threads executing in the interpreter concurrently, there are two ways
to implement safe garbage collection: concurrent or atomic. libonyx uses atomic garbage collection,
which means that the thread doing garbage collection suspends all other threads that are created via
thd new(..., TRUE) during the mark phase. In order for this to work, the garbage collector must not
do any locking while the other threads are suspended, or else there is a high probability of eventual
deadlock. libonyx itself meets these criteria, as must any C extensions to the interpreter that are
executed by the garbage collector during the mark phase (reference iteration).

4.6 Exceptions

libonyx reserves xep exception numbers 0 to 127 and defines the following exceptions:

CW ONYXX OOM: Memory allocation error.

CW ONYXX EXIT: Internal use, for the exit operator.

CW ONYXX STOP: Internal use, for the stop operator.

CW ONYXX QUIT: Internal use, for the quit operator.

4.7 Integration issues

4.7.1 Thread creation

libonyx’s garbage collector uses the thd class to suspend and resume all other threads during the mark
phase of atomic collection. For this to work, all threads that have any contact with libonyx must be
created as suspendible threads using the thd class.

This can cause integration headaches for existing threaded applications, but there is no other portable
way to suspend and resume threads. The only alternative is to assure that only one thread is executing
in the interpreter and to disable timeout-based (asynchronous) collection.

214 Onyx Manual Chapter 4

4.7.2 Restarted interrupted system calls

As mentioned above, libonyx uses thread suspension and resumption to implement garbage collection.
This has the side-effect of making restarted interrupted system calls a real possibility. However, the
operating system will return with a partial result if the system call was partially complete when it
was interrupted. In practice, what this means is that short reads and writes are possible where they
otherwise wouldn’t happen, so the application should not make any assumptions about interruptible
system calls always completing with a full result. See the thd class documentation for more details.

4.7.3 Signals

Depending on how libonyx is built, SIGUSR1 and SIGUSR2 may be reserved by the thd class for
thread suspension and resumption. Additionally, the SIGPIPE signal is ignored by default, since
socket operations can cause SIGPIPE signals, for which the library has no use.

4.8 Guidelines for writing extensions

When embedding libonyx in an application, it is usually desireable to add some operators so that the
interpreter can interact with the rest of the application. The libonyx source code contains hundreds
of operators that can be used as examples when writing new operators. However, there are some very
important rules that operators must follow, some of which may not be obvious when reading the code.

• Manually managed (malloc()/free()) memory should not be allocated unless the code is very care-
ful. If a function recurses into the interpreter (this includes calls to functions such as nxo thread nerror()),
there is the very real possibility that control will never return to the operator due to an exception.
Code must either catch all exceptions and clean up allocations, or not recurse into the interpreter.

• Composite objects should never be allocated on the C stack. The garbage collector has no knowl-
edge of such objects, so if the only reference to an object is on the C stack, the object may be
collected, which will lead to unpredictable program behavior. Instead of allocating objects on the
C stack, use tstack, available via nxo thread tstack get(), which is a per-thread stack that the
garbage collector scans.

• For an object to be safe from garbage collection, there must always be at least one reference to it
inside the interpreter. So, if C code obtains a pointer to a composite object, then destroys the last
known internal Onyx reference (pops it off a stack, redefines it in a dict, replaces an element of
an array, etc.), the pointer is no longer safe to use. The libonyx API is structured such that it is
invalid to do such a thing, for this reason.

• tstack must be cleaned up before returning from a function. This constraint is placed on the
code in order to avoid leaking space on tstack. In debug versions of libonyx, this is enforced by
assertions. The one exception to this rule has to do with xep exceptions, in which case the catchers
of the exceptions are responsible for cleaning up tstack. Therefore, it is not necessary to catch
exceptions merely to avoid tstack leakage.

Since Onyx type checking is dynamic, it is the responsibility of the operators to assure objects are
the correct type before calling any of the type-specific nxo *() functions. Failure to do so will result in
unpredictable behavior and likely crashes.

4.9. API Jason Evans 215

4.9 API
void libonyx init(void):

Input(s): None.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Initialize various global variables. In particular, initialize cw g mem.

void libonyx shutdown(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Clean up the global variables that are initialized by libonyx init().

void * cw opaque alloc t(void *a arg, size t a size, const char *a filename, cw uint32 t a line num):

Input(s):
a arg: Opaque pointer.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Allocate a size of space and return a pointer to it.

void * cw opaque realloc t(void *a arg, void *a ptr, size t a size, const char *a filename,
cw uint32 t a line num):

Input(s):
a arg: Opaque pointer.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Reallocate a size of space and return a pointer to it.

void cw opaque dealloc t(void *a mem, void *a ptr, size t a size, const char *a filename,
cw uint32 t a line num):

216 Onyx Manual Chapter 4

Input(s):
a arg: Opaque pointer.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s): None.
Description: Deallocate the memory pointed to by a ptr.

void * cw opaque alloc(cw opaque alloc t *a func, void *a arg, size t a size):

Input(s):
a func: Opaque allocator function pointer.
a arg: Opaque pointer.
a size: Size of memory range to allocate.

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Allocate a size of space and return a pointer to it.

void * cw opaque realloc(cw opaque realloc t *a func, void *a arg, void *a ptr, size t a size):

Input(s):
a func: Opaque allocator function pointer.
a arg: Opaque pointer.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Reallocate a size of space and return a pointer to it.

void cw opaque dealloc(cw opaque dealloc t *a func, void *a mem, void *a ptr, size t a size):

Input(s):
a func: Opaque allocator function pointer.
a arg: Opaque pointer.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.

Output(s): None.
Exception(s): None.
Description: Deallocate the memory pointed to by a ptr.

void cw onyx code(cw nxo t *a thread, const char *a code):

4.9. API Jason Evans 217

Input(s):
a thread: Pointer to a thread nxo.
a code: A ”-delimited string constant.

Output(s): None.
Exception(s): Depends on actions of a code.
Description: Convenience macro for static embedded Onyx code.

void cw assert(expression):

Input(s):
expression: C expression that evaluates to zero or non-zero.

Output(s): Possible error printed to stderr.
Exception(s): None.
Description: If the expression evaluates to zero, print an error message to stderr and abort().

Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw not reached(void):

Input(s): None.
Output(s): Error printed to stderr.
Exception(s): None.
Description: Abort with an error message.

Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw check ptr(a pointer):

Input(s):
a pointer: A pointer.

Output(s): Possible error printed to stderr.
Exception(s): None.
Description: If a pointer is NULL, print an error message to stderr and abort().

Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw error(const char *a str):

Input(s):
a str: Pointer to a NULL-terminated character array.

Output(s): Contents of a str, followed by a carriage return, printed to stderr.
Exception(s): None.
Description: Print the contents of a str, followed by a carriage return, to stderr.

cw uint64 t cw ntohq(cw uint64 t a val):

Input(s):
a val: 64 bit integer.

Output(s):
retval: 64 bit integer.

Exception(s): None.

218 Onyx Manual Chapter 4

Description: Convert a val from network byte order to host byte order and return the result.

cw uint64 t cw htonq(cw uint64 t a val):

Input(s):
a val: 64 bit integer.

Output(s):
retval: 64 bit integer.

Exception(s): None.
Description: Convert a val from host byte order to network byte order and return the result.

cw uint32 t cw offsetof(<type> a type, <field name> a field):

Input(s):
a type: C structure type name.
a field: Name of a field within a type.

Output(s):
retval: Offset of a field into a type.

Exception(s): None.
Description: Calculate the offset of a field into a type and return the result.

4.10 Classes

4.10.1 ch

The ch class implements chained hashing. It uses a simple bucket chaining hash table implementation.
Table size is set at creation time, and cannot be changed, so performance will suffer if a ch object is
over-filled. The main cw ch t data structure and the table are contiguously allocated, which means
that care must be taken when manually pre-allocating space for the structure. Each item that is
inserted into the ch object is encapsulated by a chi object, for which space can optionally be passed in
as a parameter to ch insert(). If no space for the chi object is passed in, an opaque allocator function is
used internally for allocation.

Multiple entries with the same key are allowed and are stored in LIFO order.

Calling ch remove iterate() and ch get iterate() are guaranteed to operate on the oldest item in the hash
table, which means that the hash code has an integrated FIFO queue.

The ch class is meant to be small and simple without compromising performance. Note that it is not
well suited for situations where the number of items can vary wildly; the dch class is designed for such
situations.

API

cw uint32 t CW CH TABLE2SIZEOF(cw uint32 t a table size):

Input(s):
a table size: Number of slots in the hash table.

4.10. CLASSES Jason Evans 219

Output(s):
retval: Size of a ch object with a table size slots.

Exception(s): None.
Description: Calculate the size of a ch object with a table size slots.

ch new(cw ch t *a ch, cw opaque alloc t *a alloc, cw opaque dealloc t *a dealloc, void *a arg,
cw uint32 t a table size, cw ch hash t *a hash, cw ch key comp t *a key comp):

Input(s):
a ch: Pointer to space for a ch with a table size slots, or NULL. Use the

CW CH TABLE2SIZEOF() macro to calculate the total space needed for a given table
size.

a alloc: Pointer to an allocation function to use internally.
a dealloc: Pointer to a deallocation function to use internally.
a arg: Opaque pointer to pass to a alloc() and a dealloc().
a table size: Number of slots in the hash table.
a hash: Pointer to a hashing function.
a key comp: Pointer to a key comparison function.

Output(s):
retval: Pointer to a ch.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void ch delete(cw ch t *a ch):

Input(s):
a ch: Pointer to a ch.

Output(s): None.
Exception(s): None.
Description: Destructor.

cw uint32 t ch count(cw ch t *a ch):

Input(s):
a ch: Pointer to a ch.

Output(s):
retval: Number of items in a ch.

Exception(s): None.
Description: Return the number of items in a ch.

void ch insert(cw ch t *a ch, const void *a key, const void *a data, cw chi t *a chi):

Input(s):
a ch: Pointer to a ch.
a key: Pointer to a key.
a data: Pointer to data associated with a key.
a chi: Pointer to space for a chi, or NULL.

220 Onyx Manual Chapter 4

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Insert a data into a ch, using key a key. Use a chi for the internal chi container

if non-NULL.

cw bool t ch remove(cw ch t *a ch, const void *a search key, void **r key, void **r data,
cw chi t **r chi):

Input(s):
a ch: Pointer to a ch.
a search key: Pointer to the key to search with.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: Item with key a search key not found.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
*r chi: If (r chi != NULL) and (retval == FALSE), pointer to space for a chi, or NULL.

Otherwise, undefined.
Exception(s): None.
Description: Remove the item from a ch that was most recently inserted with key

a search key. If successful, set *r key and *r data to point to the key, data, and externally
allocated chi, respectively.

cw bool t ch search(cw ch t *a ch, const void *a key, void **r data):

Input(s):
a ch: Pointer to a ch.
a key: Pointer to a key.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: Item with key a key not found in a ch.

*r data: If (r data != NULL) and (retval == FALSE), pointer to data.
Exception(s): None.
Description: Search for the most recently inserted item with key a key. If found, *r data to

point to the associated data.

cw bool t ch get iterate(cw ch t *a ch, void **r key, void **r data):

Input(s):
a ch: Pointer to a ch.

4.10. CLASSES Jason Evans 221

r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: a ch is empty.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
Exception(s): None.
Description: Set *r key and *r data to point to the oldest item in a ch. Promote the item so

that it is the newest item in a ch.

cw bool t ch remove iterate(cw ch t *a ch, void **r key, void **r data, cw chi t **r chi):

Input(s):
a ch: Pointer to a ch.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: a ch is empty.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
*r chi: If (r chi != NULL) and (retval == FALSE), pointer to a chi, or NULL. Otherwise,

undefined.
Exception(s): None.
Description: Set *r key and *r data to point to the oldest item in a ch, set *r chi to point to

the item’s container, if externally allocated, and remove the item from a ch.

cw uint32 t ch string hash(const void *a key):

Input(s):
a key: Pointer to a key.

Output(s):
retval: Hash result.

Exception(s): None.
Description: NULL-terminated string hashing function.

cw uint32 t ch direct hash(const void *a key):

Input(s):
a key: Pointer to a key.

Output(s):

222 Onyx Manual Chapter 4

retval: Hash result.
Exception(s): None.
Description: Direct (pointer) hashing function.

cw bool t ch string key comp(const void *a k1, const void *a k2):

Input(s):
a k1: Pointer to a key.
a k2: Pointer to a key.

Output(s):
retval:

FALSE: Not equal.
TRUE: Equal.

Exception(s): None.
Description: Test two keys (NULL-terminated strings) for equality.

cw bool t ch direct key comp(const void *a k1, const void *a k2):

Input(s):
a k1: Pointer to a key.
a k2: Pointer to a key.

Output(s):
retval:

FALSE: Not equal.
TRUE: Equal.

Exception(s): None.
Description: Test two keys (pointers) for equality.

4.10.2 cnd

The cnd class implements condition variables, which can be used in conjunction with the mtx class to
wait for a condition to occur.

API

void cnd new(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to space for a cnd.

Output(s): None.
Exception(s): None.
Description: Constructor.

void cnd delete(cw cnd t *a cnd):

Input(s):

4.10. CLASSES Jason Evans 223

a cnd: Pointer to a cnd.
Output(s): None.
Exception(s): None.
Description: Destructor.

void cnd signal(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to a cnd.

Output(s): None.
Exception(s): None.
Description: Signal one thread waiting on a cnd, if there are any waiters.

void cnd broadcast(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to a cnd.

Output(s): None.
Exception(s): None.
Description: Signal all threads waiting on a cnd.

cw bool t cnd timedwait(cw cnd t *a cnd, cw mtx t *a mtx, const struct timespec *a timeout):

Input(s):
a cnd: Pointer to a cnd.
a mtx: Pointer to a mtx.
a timeout: Timeout, specified as an absolute time interval.

Output(s):
retval:

FALSE: Success.
TRUE: Timeout.

Exception(s): None.
Description: Wait for a cnd for at least a time.

void cnd wait(cw cnd t *a cnd, cw mtx t *a mtx):

Input(s):
a cnd: Pointer to a cnd.
a mtx: Pointer to a mtx.

Output(s): None.
Exception(s): None.
Description: Wait for a cnd.

4.10.3 dch

The dch class implements dynamic chained hashing. The dch class is a wrapper around the ch class
that enforces fullness/emptiness constraints and rebuilds the hash table when necessary. Other than
this added functionality, the dch class behaves almost exactly like the ch class. See the ch class docu-
mentation for additional information.

224 Onyx Manual Chapter 4

API

dch new(cw dch t *a dch, cw opaque alloc t *a alloc, cw opaque dealloc t *a dealloc, void
*a arg, cw uint32 t a base table, cw uint32 t a base grow, cw uint32 t a base shrink, cw ch hash t
*a hash, cw ch key comp t *a key comp):

Input(s):
a dch: Pointer to space for a dch, or NULL.
a alloc: Pointer to an allocation function to use internally.
a dealloc: Pointer to a deallocation function to use internally.
a arg: Opaque pointer to pass to a alloc() and a dealloc().
a base table: Number of slots in the initial hash table.
a base grow: Maximum number of items to allow in a dch before doubling the hash table

size. The same proportions (in relation to a base table) are used to decide when to
double the table additional times.

a base shrink: Minimum proportional (with respect to a base table) emptiness to allow
in the hash table before cutting the hash table size in half.

a hash: Pointer to a hashing function.
a key comp: Pointer to a key comparison function.

Output(s):
retval: Pointer to a dch.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void dch delete(cw dch t *a dch):

Input(s):
a dch: Pointer to a dch.

Output(s): None.

Exception(s): None.

Description: Destructor.

cw uint32 t dch count(cw dch t *a dch):

Input(s):
a dch: Pointer to a dch.

Output(s):
retval: Number of items in a dch.

Exception(s): None.

Description: Return the number of items in a dch.

void dch insert(cw dch t *a dch, const void *a key, const void *a data, cw chi t *a chi):

Input(s):
a dch: Pointer to a dch.
a key: Pointer to a key.
a data: Pointer to data associated with a key.

4.10. CLASSES Jason Evans 225

a chi: Pointer to space for a chi, or NULL.
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Insert a data into a dch, using key a key. Use a chi for the internal chi

container if non-NULL.

cw bool t dch remove(cw dch t *a dch, const void *a search key, void **r key, void **r data,
cw chi t **r chi):

Input(s):
a dch: Pointer to a dch.
a search key: Pointer to the key to search with.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: Item with key a search key not found.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
*r chi: If (r chi != NULL) and (retval == FALSE), pointer to space for a chi, or NULL.

Otherwise, undefined.
Exception(s): None.
Description: Remove the item from a dch that was most recently inserted with key

a search key. If successful, set *r key and *r data to point to the key, data, and externally
allocated chi, respectively.

cw bool t dch search(cw dch t *a dch, const void *a key, void **r data):

Input(s):
a dch: Pointer to a dch.
a key: Pointer to a key.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: Item with key a key not found in a dch.

*r data: If (r data != NULL) and (retval == FALSE), pointer to data.
Exception(s): None.
Description: Search for the most recently inserted item with key a key. If found, *r data to

point to the associated data.

cw bool t dch get iterate(cw dch t *a dch, void **r key, void **r data):

Input(s):

226 Onyx Manual Chapter 4

a dch: Pointer to a dch.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: a dch is empty.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
Exception(s): None.
Description: Set *r key and *r data to point to the oldest item in a dch. Promote the item so

that it is the newest item in a dch.

cw bool t dch remove iterate(cw dch t *a dch, void **r key, void **r data, cw chi t **r chi):

Input(s):
a dch: Pointer to a dch.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

FALSE: Success.
TRUE: a dch is empty.

*r key: If (r key != NULL) and (retval == FALSE), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == FALSE), pointer to data. Otherwise,

undefined.
*r chi: If (r chi != NULL) and (retval == FALSE), pointer to a chi, or NULL. Otherwise,

undefined.
Exception(s): None.
Description: Set *r key and *r data to point to the oldest item in a dch, set *r chi to point to

the item’s container, if externally allocated, and remove the item from a dch.

4.10.4 mb

The mb class implements memory barriers. A memory barrier is a low level construct that is some-
times useful for guaranteeing the order in which memory operations take place, even when multiple
microprocessors are involved. In most cases, mutexes are the best choice for synchronizing data ac-
cess, but sometimes it is convenient (and critical to performance) to use memory barriers where weaker
access constraints are adequate.

API

void mb write(void):

4.10. CLASSES Jason Evans 227

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Create a write barrier, so that any memory writes done before the memory
barrier are guaranteed to be visible by the time any memory writes after the memory
barrier become visible.

4.10.5 mem

The mem class implements a memory allocation (malloc) wrapper. For the debug version of libonyx,
extra information is hashed for each memory allocation that allows tracking of the following:

• File/line number of allocation.

• Double allocation/deallocation of the same address.

• Memory leaks (memory left allocated at mem destruction time).

If any memory leaks are detected, diagnostic output is printed to stderr.

Also, the debug version of libonyx sets all newly allocated bytes to 0xa5 , and all deallocated bytes to
0x5a (except in the case of mem calloc()). This tends to cause things to break sooner when uninitialized
or deallocated memory is referenced.

In general, the mem class doesn’t need to be used directly. Instead, there are several preprocessor
macros that can be used: cw malloc(), cw calloc(), cw realloc(), and cw free().

API

cw mem t * mem new(cw mem t *a mem, cw mem t *a internal):

Input(s):
a mem: Pointer to space for a mem, or NULL.
a internal: Pointer to a mem to use for internal memory allocation, or NULL.

Output(s):
retval: Pointer to a mem.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void mem delete(cw mem t *a mem):

Input(s):
a mem: Pointer to a mem.

Output(s): None.

Exception(s): None.

228 Onyx Manual Chapter 4

Description: Destructor.

void * mem malloc e(cw mem t *a mem, size t a size, const char *a filename, cw uint32 t
a line num):
void * mem malloc(cw mem t *a mem, size t a size):
void * cw malloc(size t a size):

Input(s):
a mem: Pointer to a mem.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: malloc() wrapper.

void * mem calloc e(cw mem t *a mem, size t a number, size t a size, const char *a filename,
cw uint32 t a line num):
void * mem calloc(cw mem t *a mem, size t a number, size t a size):
void * cw calloc(size t a number, size t a size):

Input(s):
a mem: Pointer to a mem.
a number: Number of elements to allocate.
a size: Size of each element to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a zeroed memory range.

Exception(s):
CW ONYXX OOM.

Description: calloc() wrapper.

void * mem realloc e(cw mem t *a mem, void *a ptr, size t a size, size t a old size, const char
*a filename, cw uint32 t a line num):
void * mem realloc(cw mem t *a mem, void *a ptr, size t a size):
void * cw realloc(void *a ptr, size t a size):

Input(s):
a mem: Pointer to a mem.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a old size: Size of memory range previously pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):

4.10. CLASSES Jason Evans 229

retval: Pointer to a memory range.
Exception(s):

CW ONYXX OOM.
Description: realloc() wrapper.

void mem free e(cw mem t *a mem, void *a ptr, size t a size, const char *a filename, cw uint32 t
a line num):
void mem free(cw mem t *a mem, void *a ptr, size t a size):
void cw free(void *a ptr):

Input(s):
a mem: Pointer to a mem.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s): None.
Description: free() wrapper.

4.10.6 mq

The mq class implements a simple unidirectional message queue. In addition to putting and getting
messages, there are methods that control the ability to get or put. This provides a simple out of band
state transition capability.

API

void mq new(cw mq t *a mq, cw mem t *a mem, cw uint32 t a msg size):

Input(s):
a mq: Pointer to space for a mq.
a mem: Pointer to the allocator to use internally.
a msg size: Size (in bytes) of messages used for all subsequent calls to mq *get() and

mq put().
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void mq delete(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s): None.
Exception(s): None.

230 Onyx Manual Chapter 4

Description: Destructor.

cw bool t mq tryget(cw mq t *a mq, ...):

Input(s):
a mq: Pointer to a mq.
...: Pointer to space to store a message.

Output(s):
retval:

FALSE: Success.
TRUE: No messages in the queue, or get is in the stop state.

*...: If retval is FALSE, a message. Otherwise, undefined.
Exception(s): None.
Description: Try to get a message, but return TRUE if none are available.

cw bool t mq timedget(cw mq t *a mq, const struct timespec *a timeout, ...):

Input(s):
a mq: Pointer to a mq.
a timeout: Timeout, specified as an absolute time interval.
...: Pointer to space to store a message.

Output(s):
retval:

FALSE: Success.
TRUE: No messages in the queue, or get is in the stop state.

*...: If retval is FALSE, a message. Otherwise, undefined.
Exception(s): None.
Description: Get a message. If none are available, block until a message is available, or until

timeout.

cw bol t mq get(cw mq t *a mq, ...):

Input(s):
a mq: Pointer to a mq.
...: Pointer to space to store a message.

Output(s):
retval:

FALSE: Success.
TRUE: Get is in the stop state.

*...: If retval is FALSE, a message. Otherwise, undefined.
Exception(s): None.
Description: Get a message. If none are available, block until a message is available.

cw bool t mq put(cw mq t *a mq, ...):

Input(s):
a mq: Pointer to a mq.
...: A message.

4.10. CLASSES Jason Evans 231

Output(s):
retval:

FALSE: Success.
TRUE: Failure due to put being in the stop state.

Exception(s):
CW ONYXX OOM.

Description: Put a message in a mq.

cw bool t mq get start(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

FALSE: Success.
TRUE: Error (already in start state).

Exception(s): None.

Description: Change the get operation to the start state (mq get() will not return TRUE).

cw bool t mq get stop(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

FALSE: Success.
TRUE: Error (already in stop state).

Exception(s): None.

Description: Change the get operation to the stop state (mq get() will return TRUE).

cw bool t mq put start(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

FALSE: Success.
TRUE: Error (already in start state).

Exception(s): None.

Description: Change the put operation to the start state (mq put() will not return TRUE).

cw bool t mq put stop(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

232 Onyx Manual Chapter 4

FALSE: Success.
TRUE: Error (already in stop state).

Exception(s): None.

Description: Change the put operation to the stop state (mq put() will return TRUE).

4.10.7 mtx

The mtx class implements typical mutual exclusion locks. Only one thread can hold a lock at a time,
and attempting to attain the lock while already owning it has undefined results.

API

void mtx new(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to space for a mtx.

Output(s): None.

Exception(s): None.

Description: Constructor.

void mtx delete(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Destructor.

void mtx lock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Lock a mtx.

cw bool t mtx trylock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s):
retval:

FALSE: Success.
TRUE: Failure.

Exception(s): None.

4.10. CLASSES Jason Evans 233

Description: Try to lock a mtx, but return immediately instead of blocking if a mtx is already
locked.

void mtx unlock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Unlock a mtx.

4.10.8 nx

The nx class encapsulates an Onyx interpreter instance. It contains a number of interpreter-global
objects, as well as the garbage collector. Reclamation of all objects associated with an nx instance is
managed by a garbage collector, so when an nx is destroyed, all associated objects are deallocated.

API

cw nx t * nx new(cw nx t *a nx, cw op t *a thread init, int a argc, char **a argv, char **a envp):

Input(s):
a nx: Pointer to space for an nx, or NULL.
a thread init: Pointer to an initialization function to be called during thread

initialization, or NULL.
a argc: Number of command line arguments.
a argv: Pointer to an array of command line argument strings.
a envp: Pointer to an array of environment variable strings.

Output(s):
retval: Pointer to an nx.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nx delete(cw nx t *a nx):

Input(s): Pointer to an nx.

Output(s): None.

Exception(s): None.

Description: Destructor.

cw nxa t * nx nxa get(cw nx t *a nx):

Input(s): Pointer to an nx.

Output(s):
retval: Pointer to an nxa.

234 Onyx Manual Chapter 4

Exception(s): None.
Description: Return a pointer to the garbage collector.

cw nxo t * nx systemdict get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to systemdict .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to systemdict .

cw nxo t * nx globaldict get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to globaldict .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to globaldict .

cw nxo t * nx envdict get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to envdict .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to envdict .

cw nxo t * nx stdin get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to stdin .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stdin .

void nx stdin set(cw nx t *a nx, cw nxo t *a stdin):

Input(s):
a nx: Pointer to an nx.
a stdin: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nx’s stdin to a stdin.

cw nxo t * nx stdout get(cw nx t *a nx):

4.10. CLASSES Jason Evans 235

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to stdout .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stdout .

void nx stdout set(cw nx t *a nx, cw nxo t *a stdout):

Input(s):
a nx: Pointer to an nx.
a stdout: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nx’s stdout to a stdout.

cw nxo t * nx stderr get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to stderr .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stderr .

void nx stderr set(cw nx t *a nx, cw nxo t *a stderr):

Input(s):
a nx: Pointer to an nx.
a stderr: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nx’s stderr to a stderr.

4.10.9 nxa

The nxa class implements garbage collection. The garbage collector runs a separate thread that is
controlled via an asynchronous message queue.

API

void * nxa malloc e(cw nxa t *a nxa, size t a size, const char *a filename, cw uint32 t a line num):
void * nxa malloc(cw nxa t *a nxa, size t a size):

Input(s):
a nxa: Pointer to a nxa.

236 Onyx Manual Chapter 4

a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: malloc() wrapper.

void * nxa realloc e(cw nxa t *a nxa, void *a ptr, size t a size, size t a old size, const char
*a filename, cw uint32 t a line num):
void * nxa realloc(cw nxa t *a nxa, void *a ptr, size t a size, size t a old size):

Input(s):
a nxa: Pointer to a nxa.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a old size: Size of memory range previously pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: realloc() wrapper.

void * nxa free e(cw nxa t *a nxa, void *a ptr, size t a size, const char *a filename, cw uint32 t
a line num):
void * nxa free(cw nxa t *a nxa, void *a ptr, size t a size):

Input(s):
a nxa: Pointer to a nxa.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s): None.
Description: free() wrapper.

void nxa collect(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s): None.
Exception(s):

CW ONYXX OOM.

4.10. CLASSES Jason Evans 237

Description: Force an asynchronous garbage collection.

void nxa dump(cw nxa t *a nxa, cw nxo t *a thread):

Input(s):
a nxa: Pointer to a nxa.
a thread: Pointer to a thread nxo.

Output(s): Output printed to stdout .
Exception(s):

CW ONYXX OOM.
Description: Print the internal state of gcdict to stdout .

cw bool t nxa active get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval:

FALSE: Garbage collector deactivated.
TRUE: Garbage collector active.

Exception(s): None.
Description: Return whether the garbage collector is active (runnable).

void nxa active set(cw nxa t *a nxa, cw bool t a active):

Input(s):
a nxa: Pointer to a nxa.
a active:

FALSE: Deactivate garbage collector.
TRUE: Activate garbage collector.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Send a message to the garbage collector to activate or deactivate. The

asynchronous nature of the message means that it is possible for the garbage collector to
run after this function returns, even if a deactivation message has been sent.

cw nxoi t nxa period get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval: Current inactivity period in seconds that the garbage collector waits before doing

a collection.
Exception(s): None.
Description: Return the current inactivity period in seconds that the garbage collector waits

before doing a collection.

void nxa period set(cw nxa t *a nxa, cw nxoi t a period):

238 Onyx Manual Chapter 4

Input(s):
a nxa: Pointer to a nxa.
a period: Inactivity period in seconds that the garbage collector should wait before doing

a collection. If 0, the garbage collector will never run due to inactivity.
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Set the inactivity period in seconds that the garbage collector should wait before

doing a collection.

cw nxoi t nxa threshold get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval: Number of bytes of memory allocated since the last garbage collection that will

trigger the garbage collector to run.
Exception(s): None.
Description: Return the number of bytes of memory allocated since the last garbage collection

that will trigger the garbage collector to run.

void nxa threshold set(cw nxa t *a nxa, cw nxoi t a threshold):

Input(s):
a nxa: Pointer to a nxa.
a threshold: The number of bytes of memory allocated since the last garbage collection

that will trigger the garbage collector to run.
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Set the number of bytes of memory allocated since the last garbage collection

that will trigger the garbage collector to run.

void nxa stats get(cw nxa t *a nxa, cw nxoi t *r collections, cw nxoi t *r count, cw nxoi t
*r ccount, cw nxoi t *r cmark, cw nxoi t *r csweep, cw nxoi t *r mcount, cw nxoi t *r mmark,
cw nxoi t *r msweep, cw nxoi t *r scount, cw nxoi t *r smark, cw nxoi t *r ssweep):

Input(s):
a nxa: Pointer to a nxa.
r collections: Pointer to an integer.
r count: Pointer to an integer.
r ccount: Pointer to an integer.
r cmark: Pointer to an integer.
r csweep: Pointer to an integer.
r mcount: Pointer to an integer.
r mmark: Pointer to an integer.
r msweep: Pointer to an integer.
r scount: Pointer to an integer.

4.10. CLASSES Jason Evans 239

r smark: Pointer to an integer.
r ssweep: Pointer to an integer.

Output(s):
*r collections: Number of times the garbage collector has run.
*r count: Current number of bytes of memory allocated.
*r ccount: Number of bytes of memory allocated as of the end of the most recent garbage

collection.
*r cmark: Number of microseconds spent in the mark phase of the most recent garbage

collection.
*r csweep: Number of microseconts spent in the sweep phase of the most recent garbage

collection.
*r mcount: Largest number of bytes of memory ever allocated at any point in time.
*r mmark: Largest number of microseconds ever spent in the mark phase of a garbage

collection.
*r msweep: Largest number of microseconts spent in the sweep phase of a garbage

collection.
*r scount: Total number of bytes of memory ever allocated.
*r smark: Total number of microseconds spent in the mark phase of all garbage

collections.
*r ssweep: Total number of microseconts spent in the sweep phase of all garbage

collections.
Exception(s): None.
Description: Return garbage collector statistics.

cw nx t * nxa nx get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval: Pointer to a nx.

Exception(s): None.
Description: Return a pointer to the nx associated with a nxa.

cw nxo t * nxa gcdict get(cw nxa t *a nxa):

Input(s):
a nxa: Pointer to a nxa.

Output(s):
retval: Pointer to a dict nxo.

Exception(s): None.
Description: Return a pointer to the dict nxo corresponding to gcdict .

4.10.10 nxn

The nxn class provides access to a table of string constants. The main reason for this class’s existence
is that multiple C files often use identical string constants, and this saves memory by allowing all to
refer to a single string.

240 Onyx Manual Chapter 4

API

const cw uint8 t * nxn str(cw nxn t a nxn):

Input(s):
a nxn: A number that corresponds to an entry in the string table.

Output(s):
retval: Pointer to a string constant.

Exception(s): None.

Description: Return a pointer to the string constant associated with a nxn.

cw uint32 t nxn len(cw nxn t a nxn):

Input(s):
a nxn: A number that corresponds to an entry in the string table.

Output(s):
retval: String length of a string constant.

Exception(s): None.

Description: Return the string length of the string constant associated with a nxn.

4.10.11 nxo

The nxo class is the basis for the Onyx type system. nxo objects can be any of the following types, as
determined by the cw nxot t type:

NXOT NO: nxo no

NXOT ARRAY: nxo array

NXOT BOOLEAN: nxo boolean

NXOT CONDITION: nxo condition

NXOT DICT: nxo dict

NXOT FILE: nxo file

NXOT FINO: nxo fino

NXOT HOOK: nxo hook

NXOT INTEGER: nxo integer

NXOT MARK: nxo mark

NXOT MUTEX: nxo mutex

NXOT NAME: nxo name

NXOT NULL: nxo null

NXOT OPERATOR: nxo operator

4.10. CLASSES Jason Evans 241

NXOT PMARK: nxo pmark

NXOT REAL: nxo real

NXOT STACK: nxo stack

NXOT STRING: nxo string

NXOT THREAD: nxo thread

Due to limitations of the C programming language, it is the responsibility of the application to do
type checking to assure that an incompatible nxo object is not passed to a type-specific function. For
example, passing a file nxo to nxo string get() is prohibited, and will result in undefined behaviour
(including crashes).

Composite objects contain a reference to an nxoe object. For the most part, the application does not
need to be aware of this. The only exception is when writing extensions with the hook type. Hook
objects need to be able to iterate over the objects they reference internally, and return nxoe references
to the garbage collector.

The following functions are applicable to all types of nxo objects.

API

cw sint32 t nxo compare(const cw nxo t *a a, const cw nxo t *a b):

Input(s):
a a: Pointer to an nxo.
a b: Pointer to an nxo.

Output(s):
retval:

-1: For types which it is meaningful (integer, string), a a is less than a b.
0: a a and a b are equal.
1: For types which it is meaningful (integer, string), a a is greater than a b.
2: Incompatible types, or not the same composite object.

Exception(s): None.
Description: Compare a a and a b.

void nxo dup(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to an nxo.
a from: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Duplicate a from to a to. This does not do a copy of composite objects; rather it

creates a new reference to the value of a composite object.

cw nxot t nxo type get(const cw nxo t *a nxo):

Input(s):

242 Onyx Manual Chapter 4

a nxo: Pointer to an nxo.
Output(s):

retval:
NXOT NO: nxo no
NXOT ARRAY: nxo array
NXOT BOOLEAN: nxo boolean
NXOT CONDITION: nxo condition
NXOT DICT: nxo dict
NXOT FILE: nxo file
NXOT FINO: nxo fino
NXOT HOOK: nxo hook
NXOT INTEGER: nxo integer
NXOT MARK: nxo mark
NXOT MUTEX: nxo mutex
NXOT NAME: nxo name
NXOT NULL: nxo null
NXOT OPERATOR: nxo operator
NXOT PMARK: nxo pmark
NXOT REAL: nxo real
NXOT STACK: nxo stack
NXOT STRING: nxo string
NXOT THREAD: nxo thread

Exception(s): None.
Description: Return the type of a nxo.

cw nxoe t * nxo nxoe get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s):
retval: Pointer to the nxoe associated with a nxo, or NULL if a nxo is not composite.

Exception(s): None.
Description: Return a pointer to the nxoe associated with a nxo.

cw bool t nxo lcheck():

Input(s):
a nxo: Pointer to an array, dict, file, stack, or string nxo.

Output(s):
retval:

FALSE: a nxo is not implicitly locked.
TRUE: a nxo is implicitly locked.

Exception(s): None.
Description: For array, dict, file, stack, or string nxos, return whether a nxo is implicitly

locked.

cw nxoa t nxo attr get(const cw nxo t *a nxo):

4.10. CLASSES Jason Evans 243

Input(s):
a nxo: Pointer to an nxo.

Output(s):
retval:

NXOA LITERAL: a nxo is literal.
NXOA EXECUTABLE: a nxo is executable.

Exception(s): None.
Description: Return the attribute for a nxo.

void nxo attr set(cw nxo t *a nxo, cw nxoa t a attr):

Input(s):
a nxo: Pointer to an nxo.
a attr: Value of attribute to set for a nxo.

Output(s): None.
Exception(s): None.
Description: Set the attribute for a nxo to a attr.

4.10.12 nxo array

The nxo array class is a subclass of the nxo class.

API

void nxo array new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking, cw uint32 t a len):

Input(s):
a nxo: Pointer to an array nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.
a len: Number of array elements.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo array subarray new(cw nxo t *a nxo, cw nxo t *a array, cw nx t *a nx, cw uint32 t
a offset, cw uint32 t a len):

Input(s):
a nxo: Pointer to an array nxo.
a array: Pointer to an array nxo to create a subarray of.
a nx: Pointer to an nx.
a offset: Offset into a array.
a len: Number of array elements.

244 Onyx Manual Chapter 4

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Subarray constructor.

void nxo array copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to an array nxo.
a from: Pointer to an array nxo.

Output(s): None.

Exception(s): None.

Description: Copy the contents of a from to a to. The length of a to must be at least that of
a from.

cw uint32 t nxo array len get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an array nxo.

Output(s):
retval: Number of elements in a nxo.

Exception(s): None.

Description: Return the number of elements in a nxo.

void nxo array el get(const cw nxo t *a nxo, cw nxoi t a offset, cw nxo t *r el):

Input(s):
a nxo: Pointer to an array nxo.
a offset: Offset of element to get.
r el: Pointer to space to dup an object to.

Output(s):
*r el: A dup of the element of a nxo at offset a offset.

Exception(s): None.

Description: Get a dup of the element of a nxo at offset a offset.

void nxo array el set(cw nxo t *a nxo, cw nxo t *a el, cw nxoi t a offset):

Input(s):
a nxo: Pointer to an array nxo.
a el: Pointer to an nxo.
a offset: Offset of element in a nxo to replace with a el.

Output(s): None.

Exception(s): None.

Description: Dup a el into the element of a nxo at offset a offset.

4.10. CLASSES Jason Evans 245

4.10.13 nxo boolean

The nxo boolean class is a subclass of the nxo class.

API

void nxo boolean new(cw nxo t *a nxo, cw bool t a val):

Input(s):
a nxo: Pointer to a boolean nxo.
a val: Initial value.

Output(s): None.

Exception(s): None.

Description: Constructor.

cw bool t nxo boolean get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a boolean nxo.

Output(s):
retval: Value of a nxo.

Exception(s): None.

Description: Return the value of a nxo.

void nxo boolean set(cw nxo t *a nxo, cw bool t a val):

Input(s):
a nxo: Pointer to a boolean nxo.
a val: Value to set a nxo to.

Output(s): None.

Exception(s): None.

Description: Set the value of a nxo to a val.

4.10.14 nxo condition

The nxo condition class is a subclass of the nxo class.

API

void nxo condition new(cw nxo t *a nxo, cw nx t *a nx):

Input(s):
a nxo: Pointer to a condition nxo.
a nx: Pointer to an nx.

Output(s): None.

246 Onyx Manual Chapter 4

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo condition signal(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a condition nxo.

Output(s): None.
Exception(s): None.
Description: Signal one thread waiting on a nxo, if there are any waiters.

void nxo condition broadcast(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a condition nxo.

Output(s): None.
Exception(s): None.
Description: Signal all threads waiting on a nxo.

void nxo condition wait(cw nxo t *a nxo, cw nxo t *a mutex):

Input(s):
a nxo: Pointer to a condition nxo.
a mutex: Pointer to a mutex nxo.

Output(s): None.
Exception(s): None.
Description: Wait for a nxo.

cw bool t nxo condition timedwait(cw nxo t *a nxo, cw nxo t *a mutex, const struct time-
spec *a timeout):

Input(s):
a nxo: Pointer to a condition nxo.
a mutex: Pointer to a mutex nxo.
a timeout: Timeout, specified as an absolute time interval.

Output(s):
retval:

FALSE: Success.
TRUE: Timeout.

Exception(s): None.
Description: Wait for a nxo for at least a timeout.

4.10.15 nxo dict

The nxo dict class is a subclass of the nxo class.

4.10. CLASSES Jason Evans 247

API

void nxo dict new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking, cw uint32 t a dict size):

Input(s):
a nxo: Pointer to a dict nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.
a dict size: Initial number of slots. Dictionaries dynamically grow and shrink as needed,

but if the maximum size of a nxo is known, it should be specified here to save space.
Output(s): None
Exception(s):

CW ONYXX OOM.
Description: Constructor.

nxo dict copy(cw nxo t *a to, cw nxo t *a from, cw nx t *a nx):

Input(s):
a to: Pointer to a dict nxo.
a from: Pointer to a dict nxo.
a nx: Pointer to an nx.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Do a deep copy (actual contents are copied) of a from to a to.

void nxo dict def(cw nxo t *a nxo, cw nx t *a nx, cw nxo t *a key, cw nxo t *a val):

Input(s):
a nxo: Pointer to a dict nxo.
a nx: Pointer to an nx.
a key: Pointer to an nxo.
a val: Pointer to an nxo.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Define a key with value a val in a nxo.

void nxo dict undef(cw nxo t *a nxo, cw nx t *a nx, cw nxo t *a key):

Input(s):
a nxo: Pointer to a dict nxo.
a nx: Pointer to an nx.
a key: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Undefine a key in a nxo, if defined.

cw bool t nxo dict lookup(const cw nxo t *a nxo, const cw nxo t *a key, cw nxo t *r nxo):

248 Onyx Manual Chapter 4

Input(s):
a nxo: Pointer to a dict nxo.
a key: Pointer to an nxo.
r nxo: Pointer to an nxo.

Output(s):
retval:

FALSE: Success.
TRUE: a key not found.

r nxo: If retval is FALSE, value associated with a key in a nxo, otherwise unmodified.
Exception(s): None.
Description: Find a key in a nxo and dup its associated value to r nxo.

cw uint32 t nxo dict count(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a dict nxo.

Output(s):
retval: The number of key/value pairs in a nxo.

Exception(s): None.
Description: Return the number of key/value pairs in a nxo.

void nxo dict iterate(cw nxo t *a nxo, cw nxo t *r nxo):

Input(s):
a nxo: Pointer to a dict nxo.
r nxo: Pointer to an nxo.

Output(s):
FALSE: Success.
TRUE: a nxo is empty.

r nxo: If retval is FALSE, A key in a nxo, otherwise unmodified.
Exception(s): None.
Description: Iteratively get a key in a nxo. Each successive call to this function will get the

next key, and wrap back around to the first key when all keys have been returned.

4.10.16 nxo file

The nxo file class is a subclass of the nxo class.

API

cw sint32 t cw nxo file read t(void *a arg, cw nxo t *a file, cw uint32 t a len, cw uint8 t *r str):

Input(s):
a arg: Opaque data pointer.
a file: Pointer to a file nxo.

4.10. CLASSES Jason Evans 249

a len: Length of r str.
r str: Pointer to space to put read data.

Output(s):
retval:

-1: Read error.
>= 0: Number of bytes stored in r str.

r str: If retval is non-negative, retval bytes of read data, otherwise undefined.

Exception(s): Application specific.

Description: Read up to a len bytes of data from a file and store the result in r str.

cw bool t cw nxo file write t(void *a arg, cw nxo t *a file, const cw uint8 t *a str, cw uint32 t
a len):

Input(s):
a arg: Opaque data pointer.
a file: Pointer to a file nxo.
a str: Pointer to data to write.
a len: Length of a str.

Output(s):
retval:

FALSE: Success.
TRUE: Write error.

Exception(s): Application specific.

Description: Write a len bytes of data from a str to a file.

cw nxoe t * cw nxo file ref iter t(void *a arg, cw bool t a reset):

Input(s):
a arg: Opaque data pointer.
a reset:

FALSE: At least one iteration has already occurred.
TRUE: First iteration.

Output(s):
retval:

non-NULL: Pointer to an nxoe.
NULL: No more references.

Exception(s): None.

Description: Reference iterator function typedef.

void cw nxo file delete t(void *a arg, cw nx t *a nx):

Input(s):
a arg: Opaque data pointer.
a nx: Pointer to an nx.

Output(s): None.

Exception(s): None.

250 Onyx Manual Chapter 4

Description: Destructor function typedef.

void nxo file new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking):

Input(s):
a nxo: Pointer to a file nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo file fd wrap(cw nxo t *a nxo, cw uint32 t a fd):

Input(s):
a nxo: Pointer to a file nxo.
a fd: File descriptor number.

Output(s): None.

Exception(s): None.

Description: Wrap file descriptor a fd so that operations on a nxo will be backed by the file
descriptor.

void nxo file synthetic(cw nxo t *a nxo, cw nxo file read t *a read, cw nxo file write t *a write,
cw nxo file ref iter t *a ref iter, cw nxo file delet t *a delete, void *a arg):

Input(s):
a nxo: Pointer to a file nxo.
a read: Pointer to a read function.
a write: Pointer to a write function.
a ref iter: Pointer to a reference iterator function.
a delete: Pointer to a destructor function.
a arg: Opaque pointer to be passed to the read and write functions.

Output(s): None.

Exception(s): None.

Description: Set up a nxo to call the specified read and write functions to satisfy file
operations.

cw nxn t nxo file open(cw nxo t *a nxo, const cw uint8 t *a filename, cw uint32 t a nlen,
const cw uint8 t *a flags, cw uint32 t a flen):

Input(s):
a nxo: Pointer to a file nxo.
a filename: Pointer to a string (not required to be ’\0’ terminated) that represents a

filename.
a nlen: Length in bytes of a filename.
a flags: Pointer to a string (not required to be ’\0’ terminated) that represents a file mode:

4.10. CLASSES Jason Evans 251

“r”: Read only.
“r+”: Read/write, starting at offset 0.
“w”: Write only. Create file if necessary. Truncate file if non-zero length.
“w+”: Read/write, starting at offset 0. Create file if necessary.
“a”: Write only, starting at end of file.
“a+”: Read/write, starting at end of file.

a flen: Length in bytes of a flags.

Output(s):
retval:

NXN ZERO.
NXN ioerror.
NXN invalidfileaccess.
NXN limitcheck.

Exception(s): None.

Description: Open a file.

cw nxn t nxo file close(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.

Description: Close a file.

cw sint32 t nxo file fd get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

-1: Invalid or synthetic file.
>= 0: File descriptor number.

Exception(s): None.

Description: Return the file descriptor associated with a nxo.

cw bool t nxo file nonblocking get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

FALSE: Blocking file.
TRUE: Non-blocking file.

252 Onyx Manual Chapter 4

Exception(s): None.
Description: Return the non-blocking mode for a nxo.

cw bool t nxo file nonblocking set(cw nxo t *a nxo, cw bool t a nonblocking):

Input(s):
a nxo: Pointer to a file nxo.
a nonblocking: Non-blocking mode to set nxo to.

Output(s):
retval:

FALSE: Success.
TRUE: I/O error or non-POSIX file.

Exception(s): None.
Description: Set the non-blocking mode for a nxo to a nonblocking.

cw sint32 t nxo file read(cw nxo t *a nxo, cw uint32 t a len, cw uint8 t *r str):

Input(s):
a nxo: Pointer to a file nxo.
a len: Length in bytes of r str.
r str: Pointer to a string to store read data into.

Output(s):
retval:

-1: NXN ioerror.
>= 0: Number of bytes of data read into r str.

r str: If retval is non-negative, retval bytes of read data.
Exception(s): None.
Description: Read data.

cw nxn t nxo file readline(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking, cw nxo t *r string,
cw bool t *r eof):

Input(s):
a nxo: Pointer to a file nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.
r string: Pointer to an nxo.
r eof: Pointer to a cw bool t.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

r string: If retval is NXN ZERO, a string object, otherwise unmodified.
*r eof:

FALSE: End of file not reached.
TRUE: End of file reached.

4.10. CLASSES Jason Evans 253

Exception(s):
CW ONYXX OOM.

Description: Read a line, terminated by “\r”, “\r\n”, or EOF.

cw nxn t nxo file write(cw nxo t *a nxo, const cw uint8 t *a str, cw uint32 t a len, cw uint32 t
*r count):

Input(s):
a nxo: Pointer to a file nxo.
a str: Pointer to data to write.
a len: Length of a str.
r count: Pointer to a location to store the number of bytes written, or NULL.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

*r count: If r count is non-NULL, and retval is NXN ZERO, number of bytes written,
otherwise undefined.

Exception(s): None.

Description: Write the a len bytes of data pointed to a str. If the file is in non-blocking mode,
it is possible for *r count to be as small as 0 for a successful write.

cw nxn t nxo file truncate(cw nxo t *a nxo, off t a length):

Input(s):
a nxo: Pointer to a file nxo.
a length: Length to set file to.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.

Description: Truncate or extend the file associated with a nxo so that it is a length bytes long.

cw nxoi t nxo file position get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

-1: NXN ioerror.
>= 0: Current file position.

Exception(s): None.

Description: Get the current file position.

cw nxn t nxo file position set(cw nxo t *a nxo, cw nxoi t a position):

254 Onyx Manual Chapter 4

Input(s):
a nxo: Pointer to a file nxo.
a position: File position.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Move the current file position to a position.

cw uint32 t nxo file buffer size get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval: Size in bytes of the internal data buffer.

Exception(s): None.
Description: Return the size of the internal data buffer.

void nxo file buffer size set(cw nxo t *a nxo, cw uint32 t a size):

Input(s):
a nxo: Pointer to a file nxo.
a size: Size in bytes of internal buffer to use.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Use an internal buffer of a size bytes.

cw nxoi t nxo file buffer count(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval: Current number of buffered bytes available for reading.

Exception(s): None.
Description: Return the current number of buffered bytes available for reading.

cw nxn t nxo file buffer flush(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Flush any buffered write data to disk, and discard any buffered read data.

4.10. CLASSES Jason Evans 255

4.10.17 nxo fino

The nxo fino class is a subclass of the nxo class.

API

void nxo fino new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Constructor.

4.10.18 nxo hook

The nxo hook class is a subclass of the nxo class.

API

void cw nxo hook eval t(void *a data, cw nxo t *a thread):

Input(s):
a data: Opaque data pointer.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): Hook-dependent.
Description: Evaluation function typedef.

cw nxoe t * cw nxo hook ref iter t(void *a data, cw bool t a reset):

Input(s):
a data: Opaque data pointer.
a reset:

FALSE: At least one iteration has already occurred.
TRUE: First iteration.

Output(s):
retval:

non-NULL: Pointer to an nxoe.
NULL: No more references.

Exception(s): None.
Description: Reference iterator function typedef.

cw bool t cw nxo hook delete t(void *a data, cw nx t *a nx, cw uint32 t a iter):

Input(s):

256 Onyx Manual Chapter 4

a data: Opaque data pointer.
a nx: Pointer to an nx.
a iter: Garbage collector sweep iteration count (starts at 0). This value can be used to

impose ordering of dependent object deletions.
Output(s):

retval:
FALSE: Success.
TRUE: Defer deletion until a later garbage collector sweep iteration.

Exception(s): None.
Description: Destructor function typedef.

void nxo hook new(cw nxo t *a nxo, cw nx t *a nx, void *a data, cw nxo hook eval t *a eval f,
cw nxo hook ref iter t *a ref iter f, cw nxo hook delete t *a delete f):

Input(s):
a nxo: Pointer to a hook nxo.
a nx: Pointer to an nx.
a data: Opaque data pointer to be passed to a eval f, a ref iter f, and a delete f.
a eval f: Pointer to an evaluation function.
a ref iter f: Pointer to a reference iterator function.
a delete f: Pointer to a destructor function.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

cw nxo t * nxo hook tag get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a hook nxo.

Output(s):
retval: Pointer to the tag object associated with a nxo.

Exception(s): None.
Description: Return a pointer to the tag object associated with a nxo. This object pointer can

safely be used for modifying the tag object.

void * nxo hook data get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a hook nxo.

Output(s):
retval: Opaque data pointer.

Exception(s): None.
Description: Return the opaque data pointer associated with a nxo.

void nxo hook data set(cw nxo t *a nxo, void *a data):

Input(s):

4.10. CLASSES Jason Evans 257

a nxo: Pointer to a hook nxo.
a data: Opaque data pointer.

Output(s): None.
Exception(s): None.
Description: Set the opaque data pointer associated with a nxo.

void nxo hook eval(cw nxo t *a nxo, cw nxo t *a thread):

Input(s):
a nxo: Pointer to a hook nxo.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): Hook-specific.
Description: Evaluate the a nxo. If there is no evaluation function associated with a nxo, it is

pushed onto ostack.

4.10.19 nxo integer

The nxo integer class is a subclass of the nxo class.

API

void nxo integer new(cw nxo t *a nxo, cw nxoi t a val):

Input(s):
a nxo: Pointer to an integer nxo.
a val: Initial value.

Output(s): None.
Exception(s): None.
Description: Constructor.

cw nxoi t nxo integer get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an integer nxo.

Output(s):
retval: Value of a nxo.

Exception(s): None.
Description: Return the value of a nxo.

void nxo integer set(cw nxo t *a nxo, cw nxoi t a val):

Input(s):
a nxo: Pointer to an integer nxo.
a val: Integer value.

Output(s): None.
Exception(s): None.
Description: Set the value of a nxo to a val.

258 Onyx Manual Chapter 4

4.10.20 nxo mark

The nxo mark class is a subclass of the nxo class.

API

void nxo mark new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Constructor.

4.10.21 nxo mutex

The nxo mutex class is a subclass of the nxo class.

API

void nxo mutex new(cw nxo t *a nxo, cw nx t *a nx):

Input(s):
a nxo: Pointer to a mutex nxo.
a nx: Pointer to an nx.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo mutex lock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s): None.

Exception(s): None.

Description: Lock a nxo.

cw bool t nxo mutex trylock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s):
retval:

FALSE: Success.

4.10. CLASSES Jason Evans 259

TRUE: Failure.
Exception(s): None.
Description: Try to lock a nxo, but return immediately with an error if unable to do so.

void nxo mutex unlock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s): None.
Exception(s): None.
Description: Unlock a nxo.

4.10.22 nxo name

The nxo name class is a subclass of the nxo class.

API

void nxo name new(cw nxo t *a nxo, cw nx t *a nx, const cw uint8 t *a str, cw uint32 t a len,
cw bool t a is static):

Input(s):
a nxo: Pointer to a name nxo.
a nx: Pointer to an nx.
a str: Pointer to a character string (not required to be ’\0’ terminated).
a len: Length in bytes of a str.
a is static:

FALSE: a str may be modified or deallocated during the lifetime of the program.
TRUE: a str will not be modified for the lifetime of the program.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

const cw uint8 t * nxo name str get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a name nxo.

Output(s):
retval: Pointer to a string that represents a nxo.

Exception(s): None.
Description: Return a pointer to a string that represents a nxo.

cw uint32 t nxo name len get(const cw nxo t *a nxo):

Input(s):

260 Onyx Manual Chapter 4

a nxo: Pointer to a name nxo.

Output(s):
retval: Length in bytes of the name associated with a nxo.

Exception(s): None.

Description: Return the length in bytes of the name associated with a nxo.

4.10.23 nxo no

The nxo no class is a subclass of the nxo class.

API

void nxo no new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Constructor.

4.10.24 nxo null

The nxo null class is a subclass of the nxo class.

API

void nxo null new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Constructor.

4.10.25 nxo operator

The nxo operator class is a subclass of the nxo class.

4.10. CLASSES Jason Evans 261

API

void nxo operator new(cw nxo t *a nxo, cw op t *a op, cw nxn t a nxn):

Input(s):
a nxo: Pointer to an operator nxo.
a op: Pointer to an operator function.
a nxn: NXN ZERO, or an nxn.

Output(s): None.
Exception(s): None.
Description: Constructor.

cw op t * nxo operator f(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an operator nxo.

Output(s):
retval: Pointer to an operator function.

Exception(s): None.
Description: Return the operator function associated with a nxo.

4.10.26 nxo pmark

The nxo pmark class is a subclass of the nxo class.

API

void nxo pmark new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Constructor.

4.10.27 nxo real

The nxo real class is a subclass of the nxo class.

API

void nxo real new(cw nxo t *a nxo, cw nxor t a val):

Input(s):
a nxo: Pointer to a real nxo.

262 Onyx Manual Chapter 4

a val: Initial value.

Output(s): None.

Exception(s): None.

Description: Constructor.

cw nxor t nxo real get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a real nxo.

Output(s):
retval: Value of a nxo.

Exception(s): None.

Description: Return the value of a nxo.

void nxo real set(cw nxo t *a nxo, cw nxor t a val):

Input(s):
a nxo: Pointer to a real nxo.
a val: Real value.

Output(s): None.

Exception(s): None.

Description: Set the value of a nxo to a val.

4.10.28 nxo regex

The nxo regex class is a subclass of the nxo class.

API

cw nxn t nxo regex new(cw nxo t *a nxo, cw nx t *a nx, const cw uint8 t *a pattern, cw uint32 t
a len, cw bool t a cont, cw bool t a global, cw bool t a insensitive, cw bool t a multiline,
cw bool t a singleline):

Input(s):
a nxo: Pointer to a regex nxo.
a nx: Pointer to an nx.
a pattern: Pointer to a string that specifies a regular expression.
a len: Length of a pattern.
a cont: Continue where last successful match ended if TRUE.
a global: Continue where last match ended if TRUE.
a insensitive: Match with case insensitivity if TRUE.
a multiline: Treat input as a multi-line string if TRUE.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.

Output(s):

4.10. CLASSES Jason Evans 263

retval:
NXN ZERO: Success.
NXN regexerror: Regular expression error.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo regex match(cw nxo t *a nxo, cw nxo t *a thread, cw nxo t *a input, cw bool t *r match):

Input(s):
a nxo: Pointer to a regex nxo.
a thread: Pointer to a thread nxo.
a input: Pointer to a string nxo.
r match: Pointer to a cw bool t.

Output(s):
*r match:

TRUE: Match successful.
FALSE: No match found.

Exception(s):
CW ONYXX OOM.

Description: Look in a input for a match to the regex pointed to by a nxo. As a side effect, set
the thread’s match cache, which can be queried via nxo regex submatch().

cw nxn t nxo regex nonew match(cw nxo t *a thread, const cw uint8 t *a pattern, cw uint32 t
a len, cw bool t a cont, cw bool t a global, cw bool t a insensitive, cw bool t a multiline,
cw bool t a singleline, cw nxo t *a input, cw bool t *r match):

Input(s):
a thread: Pointer to a thread nxo.
a pattern: Pointer to a string that specifies a regular expression.
a len: Length of a pattern.
a cont: Continue where last successful match ended if TRUE.
a global: Continue where last match ended if TRUE.
a insensitive: Match with case insensitivity if TRUE.
a multiline: Treat input as a multi-line string if TRUE.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.
a input: Pointer to a string nxo.
r match: Pointer to a cw bool t.

Output(s):
retval:

NXN ZERO: Success.
NXN regexerror: Regular expression error.

*r match:
TRUE: Match successful.
FALSE: No match found.

264 Onyx Manual Chapter 4

Exception(s):
CW ONYXX OOM.

Description: Look in a input for a match to the regular expression specified by a pattern,
a len, a cont, a global, a insensitive, a multiline, and a singleline. As a side effect, set the
thread’s match cache, which can be queried via nxo regex submatch().
This function combines nxo regex new() and nxo regex match() in such a way that no Onyx
regex object is created, thus providing a more efficient way of doing a one-off match.

void nxo regex split(cw nxo t *a nxo, cw nxo t *a thread, cw uint32 t a limit, cw nxo t *a input,
cw nxo t *r array):

Input(s):
a nxo: Pointer to a regex nxo.
a thread: Pointer to a thread nxo.
a limit: Maximum number of substrings to split a input into. 0 is treated as infinity.
a input: Pointer to a string nxo.
r array: Pointer to an nxo to dup an array of substrings to.

Output(s):
*r array: An array of substrings.

Exception(s):
CW ONYXX OOM.

Description: Use the regex pointed to by a nxo to find matches in a input and create an array
of substrings that contain the data between those matches.
If there are capturing subpatterns in the regular expression, also create substrings for
those capturing subpatterns and insert them into the substring array.
As a special case, if the regular expression matches the empty string, split a single
character. This avoids an infinite loop.
As a side effect, set the thread’s match cache, which can be queried via
nxo regex submatch(). Keep in mind that this function can match multiple times in a single
invocation, so only the last match is available in this way.

cw nxn t nxo regex nonew split(cw nxo t *a thread, const cw uint8 t *a pattern, cw uint32 t
a len, cw bool t a insensitive, cw bool t a multiline, cw bool t a singleline, cw uint32 t a limit,
cw nxo t *a input, cw nxo t *r array):

Input(s):
a thread: Pointer to a thread nxo.
a pattern: Pointer to a string that specifies a regular expression.
a len: Length of a pattern.
a insensitive: Match with case insensitivity if TRUE.
a multiline: Treat input as a multi-line string if TRUE.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.
a limit: Maximum number of substrings to split a input into. 0 is treated as infinity.
a input: Pointer to a string nxo.
r array: Pointer to an nxo to dup an array of substrings to.

Output(s):
retval:

4.10. CLASSES Jason Evans 265

NXN ZERO: Success.
NXN regexerror: Regular expression error.

*r array: An array of substrings.

Exception(s):
CW ONYXX OOM.

Description: Use the regex specified by a pattern, a len, a insensitive, a multiline, and
a singleline to find matches in a input and create an array of substrings that contain the
data between those matches.
If there are capturing subpatterns in the regular expression, also create substrings for
those capturing subpatterns and insert them into the substring array.
As a special case, if the regular expression matches the empty string, split a single
character. This avoids an infinite loop.
As a side effect, set the thread’s match cache, which can be queried via
nxo regex submatch(). Keep in mind that this function can match multiple times in a single
invocation, so only the last match is available in this way.
This function combines nxo regex nex() and nxo regex split() in such a way that no Onyx
regex object is created, thus providing a more efficient way of doing a one-off split.

void nxo regex submatch(cw nxo t *a thread, cw uint32 t a capture, cw nxo t *r match):

Input(s):
a thread: Pointer to a thread nxo.
a capture: Index of captured subpattern to create a substring for:

0: Get substring of input text that matched the regular expression.
>0: Get substring of input text that matched the specified capturing subpattern.

r match: Pointer to an nxo to dup a substring reference to.

Output(s):
*r match: An nxo:

null: Subpattern not matched.
string: A substring of text that corresponds to the captured subpattern specified by

a capture.

Exception(s):
CW ONYXX OOM.

Description: Create a substring using the calling thread’s match cache that corresponds to
capturing subpattern a capture.
Each thread has a match cache that is used by various regex and regsub functions. That
cache stores a reference to the string that was most recently matched against, as well as
offsets and lengths of the match and capturing subpatterns. Since creating substrings puts
pressure on the garbage collector, substring creation is done lazily (i.e. when this function
is called). Normally, a program has little need to ask for the same substring twice, so the
created substrings are not cached. That means that if this function is called twice in
succession with the same arguments, two different (but equivalent) substrings will be
returned.

266 Onyx Manual Chapter 4

4.10.29 nxo regsub

The nxo regsub class is a subclass of the nxo class.

API

cw nxn t nxo regsub new(cw nxo t *a nxo, cw nx t *a nx, const cw uint8 t *a pattern, cw uint32 t
a plen, cw bool t a global, cw bool t a insensitive, cw bool t a multiline, cw bool t a singleline,
const cw uint8 t *a template, cw uint32 t a tlen):

Input(s):
a nxo: Pointer to a regsub nxo.
a nx: Pointer to an nx.
a pattern: Pointer to a string that specifies a regular expression.
a plen: Length of a pattern.
a global: Substitute as many times as possible if TRUE.
a insensitive: Match with case insensitivity if TRUE.
a multiline: Treat input as a multi-line string if TRUE.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.
a template: Pointer to a string that specifies a substitution template.
a tlen: Length of a template.

Output(s):
retval:

NXN ZERO: Success.
NXN regexerror: Regular expression error.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo regsub subst(cw nxo t *a nxo, cw nxo t *a thread, cw nxo t *a input, cw nxo t *r output,
cw uint32 t *r count):

Input(s):
a nxo: Pointer to a regsub nxo.
a thread: Pointer to a thread nxo.
a input: Pointer to a string nxo.
r output: Pointer to an nxo to dup a string reference to.
r count: Pointer to a cw uint32 t.

Output(s):
*r output: A string that was created by substituting regular expression matches

according to a substitution template.
*r count: Number of substitutions made. If 0 substitutions were made, *r output is a

duplicate of a input, rather than a copy.

Exception(s):
CW ONYXX OOM.

4.10. CLASSES Jason Evans 267

Description: Create a string by substituting according to a template for each substring within
input that matches a regular expression.
As a side effect, set the thread’s match cache, which can be queried via
nxo regex submatch().

cw nxn t nxo regsub nonew subst(cw nxo t *a thread, const cw uint8 t *a pattern, cw uint32 t
a plen, cw bool t a global, cw bool t a insensitive, cw bool t a multiline, cw bool t a singleline,
const cw uint8 t *a template, cw uint32 t a tlen, cw nxo t *a input, cw nxo t *r output, cw uint32 t
*r count):

Input(s):
a thread: Pointer to a thread nxo.
a pattern: Pointer to a string that specifies a regular expression.
a plen: Length of a pattern.
a global: Substitute as many times as possible if TRUE.
a insensitive: Match with case insensitivity if TRUE.
a multiline: Treat input as a multi-line string if TRUE.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.
a template: Pointer to a string that specifies a substitution template.
a tlen: Length of a template.
a input: Pointer to a string nxo.
r output: Pointer to an nxo to dup a string reference to.
r count: Pointer to a cw uint32 t.

Output(s):
retval:

NXN ZERO: Success.
NXN regexerror: Regular expression error.

*r output: A string that was created by substituting regular expression matches
(specified by a pattern) according to a template.

*r count: Number of substitutions made. If 0 substitutions were made, *r output is a
duplicate of a input, rather than a copy.

Exception(s):
CW ONYXX OOM.

Description: Create a string by substituting according to a template for each substring within
input that matches a regular expression.
As a side effect, set the thread’s match cache, which can be queried via
nxo regex submatch().
This function combines nxo regsub new() and nxo regsub subst() in such a way that no
Onyx regsub object is created, thus providing a more efficient way of doing a one-off subst.

4.10.30 nxo stack

The nxo stack class is a subclass of the nxo class.

268 Onyx Manual Chapter 4

API

void nxo stack new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking):

Input(s):
a nxo: Pointer to a stack nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo stack copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to a stack nxo.
a from: Pointer to a stack nxo.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Copy the objects in a from onto a to.

cw uint32 t nxo stack count(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval: Number of objects on a nxo.

Exception(s): None.

Description: Return the number of objects on a nxo.

cw nxo t * nxo stack push(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval: Pointer to a no nxo that has been pushed onto a nxo.

Exception(s):
CW ONYXX OOM.

Description: Push a no nxo onto a nxo and return a pointer to it.

cw nxo t * nxo stack bpush(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval: Pointer to a no nxo that has been pushed onto the bottom of a nxo.

4.10. CLASSES Jason Evans 269

Exception(s):
CW ONYXX OOM.

Description: Push a no nxo onto the bottom of a nxo and return a pointer to it.

cw nxo t * nxo stack under push(cw nxo t *a nxo, cw nxo t *a object):

Input(s):
a nxo: Pointer to a stack nxo.
a object: Pointer to an nxo on a nxo.

Output(s):
retval: Pointer to a no nxo that has been pushed under a object on a nxo.

Exception(s):
CW ONYXX OOM.

Description: Push a no nxo under a object on a nxo.

cw bool t nxo stack pop(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.

Description: Pop an object off of a nxo.

cw bool t nxo stack bpop(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.

Description: Pop an object off the bottom of a nxo.

cw bool t nxo stack npop(cw nxo t *a nxo, cw uint32 t a count):

Input(s):
a nxo: Pointer to a stack nxo.
a count: Number of objects to pop off of a nxo.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.

270 Onyx Manual Chapter 4

Description: Pop a count objects off of a nxo.

cw bool t nxo stack nbpop(cw nxo t *a nxo, cw uint32 t a count):

Input(s):
a nxo: Pointer to a stack nxo.
a count: Number of objects to pop off the bottom of a nxo.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.

Description: Pop a count objects off the bottom of a nxo.

void nxo stack remove(cw nxo t *a nxo, cw nxo t *a object):

Input(s):
a nxo: Pointer to a stack nxo.
a object: Pointer to an object on a nxo.

Output(s): None.

Exception(s): None. Remove a object from a nxo.

Description:

cw nxo t * nxo stack get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

non-NULL: Pointer to the top nxo on a nxo.
NULL: Stack underflow.

Exception(s): None.

Description: Return a pointer to the top nxo on a nxo.

cw nxo t * nxo stack bget(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

non-NULL: Pointer to the bottom nxo on a nxo.
NULL: Stack underflow.

Exception(s): None.

Description: Return a pointer to the bottom nxo on a nxo.

cw nxo t * nxo stack nget(const cw nxo t *a nxo, cw uint32 t a index):

Input(s):

4.10. CLASSES Jason Evans 271

a nxo: Pointer to a stack nxo.
a index: Index of object in a nxo to return a pointer to.

Output(s):
retval:

non-NULL: Pointer to the nxo on a nxo at index a index.
NULL: Stack underflow.

Exception(s): None.

Description: Return a pointer to the nxo on a nxo at index a index.

cw nxo t * nxo stack nbget(const cw nxo t *a nxo, cw uint32 t a index):

Input(s):
a nxo: Pointer to a stack nxo.
a index: Index, counting from the bottom, of object in a nxo to return a pointer to.

Output(s):
retval:

non-NULL: Pointer to the nxo on a nxo at index a index, counting from the bottom.
NULL: Stack underflow.

Exception(s): None.

Description: Return a pointer to the nxo on a nxo at index a index, counting from the bottom.

cw nxo t * nxo stack down get(const cw nxo t *a nxo, cw nxo t *a object):

Input(s):
a nxo: Pointer to a stack nxo.
a object: Pointer to an object on a nxo, or NULL for the top object on a nxo.

Output(s):
retval:

non-NULL: Pointer to the nxo on a nxo under a object.
NULL: Stack underflow.

Exception(s): None. Return a pointer to the nxo on a nxo under a object.

Description:

cw nxo t * nxo stack up get(const cw nxo t *a nxo, cw nxo t *a object):

Input(s):
a nxo: Pointer to a stack nxo.
a object: Pointer to an object on a nxo, or NULL for the bottom object on a nxo.

Output(s):
retval:

non-NULL: Pointer to the nxo on a nxo over a object.
NULL: Stack underflow.

Exception(s): None. Return a pointer to the nxo on a nxo over a object.

Description:

cw bool t nxo stack exch(cw nxo t *a nxo):

272 Onyx Manual Chapter 4

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.

Description: Exchange the top two objects on a nxo.

void nxo stack rot(cw nxo t *a nxo, cw sint32 t a amount):

Input(s):
a nxo: Pointer to a stack nxo.
a amount: Amount to rotate upward. A negative value rotates downward.

Output(s): None.

Exception(s): None.

Description: Rotate a nxo up by a amount.

cw bool t nxo stack roll(cw nxo t *a nxo, cw uint32 t a count, cw sint32 t a amount):

Input(s):
a nxo: Pointer to a stack nxo.
a count: Number of objects in roll region.
a amount: Amount to roll upward. A negative value rolls downward.

Output(s):
retval:

FALSE: Success.
TRUE: Stack underflow.

Exception(s): None.

Description: Roll the top a count objects on a nxo up by a amount.

4.10.31 nxo string

The nxo string class is a subclass of the nxo class. Strings are not ‘\0’-terminated, mainly since sub-
strings are references to other strings, and the termination character wouldn’t be consistently useful.
nxo string cstring() is useful for creating ‘\0’-terminated copies of strings for situations where other C
functions expect terminated strings.

API

void nxo string new(cw nxo t *a nxo, cw nx t *a nx, cw bool t a locking, cw uint32 t a len):

Input(s):
a nxo: Pointer to a string nxo.
a nx: Pointer to an nx.

4.10. CLASSES Jason Evans 273

a locking: Implicit locking mode.
a len: Length in bytes of string to create.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo string substring new(cw nxo t *a nxo, cw nxo t *a string, cw nx t *a nx, cw uint32 t
a offset, cw uint32 t a len):

Input(s):
a nxo: Pointer to a string nxo.
a string: Pointer to a string nxo to create a substring of.
a nx: Pointer to an nx.
a offset: Offset into a string.
a len: Length in bytes of substring to create.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Substring constructor.

void nxo string copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to a string nxo.
a from: Pointer to a string nxo.

Output(s): None.
Exception(s): None.
Description: Copy the contents of a from to a to. The length of a to must be at least that of

a from.

void nxo string cstring(cw nxo t *a to, cw nxo t *a from, cw nxo t *a thread):

Input(s):
a to: Pointer to an nxo.
a from: Pointer to a string or name nxo.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Create a copy of a from, but append a ‘\0’ character to make it usable in calls to

typical C functions that expect a terminated string.

cw uint32 t nxo string len get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s):

274 Onyx Manual Chapter 4

retval: Length of a nxo.
Exception(s): None.
Description: Return the length of a nxo.

void nxo string el get(const cw nxo t *a nxo, cw nxoi t a offset, cw uint8 t *r el):

Input(s):
a nxo: Pointer to a string nxo.
a offset: Offset of character to get.
r el: Pointer to space to copy a character to.

Output(s):
*r el: A copy of the character of a nxo at offset a offset.

Exception(s): None.
Description: Get a copy of the character of a nxo at offset a offset.

void nxo string el set(cw nxo t *a nxo, cw uint8 t a el, cw nxoi t a offset):

Input(s):
a nxo: Pointer to a string nxo.
a el: A character.
a offset: Offset of character in a nxo to replace with a el.

Output(s): None.
Exception(s): None.
Description: Copy a el into the element of a nxo at offset a offset.

void nxo string lock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s): None.
Exception(s): None.
Description: If implicit locking is activated for a nxo, lock it.

void nxo string unlock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s): None.
Exception(s): None.
Description: If implicit locking is activated for a nxo, unlock it.

cw uint8 t * nxo string get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s):
retval: Pointer to the string internal to a nxo.

Exception(s): None.

4.10. CLASSES Jason Evans 275

Description: Return a pointer to the string internal to a nxo.

void nxo string set(cw nxo t *a nxo, cw uint32 t a offset, const cw uint8 t *a str, cw uint32 t
a len):

Input(s):
a nxo: Pointer to a string nxo.
a offset: Offset into a nxo to replace.
a str: String to replace a range of a nxo with.
a len: Length in bytes of a str.

Output(s): None.
Exception(s): None.
Description: Replace a len bytes of a nxo at offset a offset with a str.

4.10.32 nxo thread

The nxo thread class is a subclass of the nxo class.

The threadp class is a helper class that contains scanner position information. The threadp state is
used when recording syntax errors.

API

void nxo threadp new(cw nxo threadp t *a threadp):

Input(s):
a threadp: Pointer to space for a threadp.

Output(s): None.
Exception(s): None.
Description: Constructor.

void nxo threadp delete(cw nxo threadp t *a threadp, cw nxo t *a thread):

Input(s):
a threadp: Pointer to a threadp.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Destructor.

void nxo threadp position get(const cw nxo threadp t *a threadp, cw uint32 t *r line, cw uint32 t
*r column):

Input(s):
a threadp: Pointer to space for a threadp.
r line: Pointer to a location to store a line number.
r column: Pointer to a location to store a column number.

276 Onyx Manual Chapter 4

Output(s):
*r line: Line number.
*r column: Column number.

Exception(s): None.
Description: Retrieve the line number and column number.

void nxo threadp position set(cw nxo threadp t *a threadp, cw uint32 t a line, cw uint32 t
a column):

Input(s):
a threadp: Pointer to space for a threadp.
a line: Line number.
a column: Column number.

Output(s): None.
Exception(s): None.
Description: Set the line number and column number.

void nxo thread new(cw nxo t *a nxo, cw nx t *a nx):

Input(s):
a nxo: Pointer to a thread nxo.
a nx: Pointer to an nx.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo thread start(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): Application dependent.
Description: Start a thread running by calling the start operator such that the top object on

ostack will be executed.

void nxo thread exit(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Terminate the thread. This has the same effect as a detached thread exiting.

Calling this function may is necessary (depending on the application) to allow the thread to
be garbage collected, much the same way as the detach and join operators do.

void nxo thread thread(cw nxo t *a nxo):

Input(s):

4.10. CLASSES Jason Evans 277

a nxo: Pointer to a thread nxo.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Create a new thread. The new thread calls nxo thread start().

void nxo thread detach(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.

Exception(s): None.

Description: Detach a nxo so that when it exits it can be garbage collected.

void nxo thread join(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.

Exception(s): None.

Description: Wait for a nxo to exit.

cw nxo threadts t nxo thread state(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: The current scanner state of a nxo.

THREADTS START: Start state.
THREADTS COMMENT: ’%’ seen, but no line break yet.
THREADTS INTEGER: Scanning an integer.
THREADTS INTEGER RADIX: Scanning a radix integer.
THREADTS REAL FRAC: Scanning the fractional portion of a real.
THREADTS REAL EXP: Scanning the exponent porttion of a real.
THREADTS STRING: Scanning a string.
THREADTS STRING NEWLINE CONT: ’\r’ seen in a string.
THREADTS STRING PROT CONT: ’\\’ seen in a string.
THREADTS STRING CRLF CONT: ’\’ ’\r’ seen in a string.
THREADTS STRING CTRL CONT: ’\’ ’c’ seen in a string.
THREADTS STRING HEX CONT: ’\’ ’x’ seen in a string.
THREADTS STRING HEX FINISH: First hex digit of a “\xDD” string escape

sequence seen.
THREADTS NAME START: ’!’, ’$’, or ’∼’ seen.
THREADTS NAME: Scanning a name.

Exception(s): None.

278 Onyx Manual Chapter 4

Description: Return the current scanner state. In general this is only useful when
implementing an interactive environment for which the prompt behaves differently
depending on what state the scanner is in. For example the interactive onyx shell needs
only to know whether the scanner is in the start state.

cw bool t nxo thread deferred(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval:

FALSE: Execution is not deferred.
TRUE: Execution is deferred.

Exception(s): None.
Description: Return whether the scanner is currently in deferred execution mode. See

Section 2.2 for information on deferred execution. In general this is only useful when
implementing an interactive environment for which the prompt behaves differently
depending on what state the scanner is in.

void nxo thread reset(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Reset the scanner to the start state, and turn deferral off. This is a dangerous

feature that should be used with great care. nxo no objects should never be visible from
inside the interpreter, so the caller must assure that any nxo no objects are removed before
further processing is done in the context of a nxo.

void nxo thread loop(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): Application specific.
Description: Execute the top object on estack. The caller is responsible for placing the object

on estack, but it is removed before this function returns.

void nxo thread interpret(cw nxo t *a nxo, cw nxo threadp t *a threadp, const cw uint8 t
*a str, cw uint32 t a len):

Input(s):
a nxo: Pointer to a thread nxo.
a threadp: A threadp.
a str: Pointer to a string to interpret.
a len: Length in bytes of a str.

Output(s): None.
Exception(s): Application specific.

4.10. CLASSES Jason Evans 279

Description: Interpret the string pointed to by a str.

void nxo thread flush(cw nxo t *a nxo, cw nxo threadp t *a threadp):

Input(s):
a nxo: Pointer to a thread nxo.
a threadp: A threadp.

Output(s): None.
Exception(s): Application specific.
Description: Do the equivalent of interpreting a carriage return in order to force acceptance

of the previous token if no whitespace has yet followed.

void nxo thread nerror(cw nxo t *a nxo, cw nxn t a nxn):

Input(s):
a nxo: Pointer to a thread nxo.
a nxn: An nxn corresponding to the name of an error.

Output(s): None.
Exception(s): Application dependent.
Description: Throw an error.

void nxo thread serror(cw nxo t *a nxo, const cw uint8 t a str, cw uint32 t a len):

Input(s):
a nxo: Pointer to a thread nxo.
a str: Pointer to a string that represents the name of an error.
a len: The length of a str.

Output(s): None.
Exception(s): Application dependent.
Description: Throw an error.

cw bool t nxo thread dstack search(cw nxo t *a nxo, cw nxo t *a key, cw nxo t *r value):

Input(s):
a nxo: Pointer to a thread nxo.
a key: Pointer to an nxo.
r value: Pointer to an nxo.

Output(s):
retval:

FALSE: Success.
TRUE: a key not found on dstack.

r value: Top value in dstack associated with a key.
Exception(s): None.
Description: Search dstack for the topmost definition of a key and dup its value to r value.

cw bool t nxo thread currentlocking(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

280 Onyx Manual Chapter 4

Output(s):
retval:

FALSE: Implicit locking deactivated for new objects.
TRUE: Implicit locking activated for new objects.

Exception(s): None.
Description: Return whether implicit locking is activated for new objects.

void nxo thread setlocking(cw nxo t *a nxo, cw bool t a locking):

Input(s):
a nxo: Pointer to a thread nxo.
a locking:

FALSE: Do not implicitly lock new objects.
TRUE: Implicitly lock new objects.

Output(s): None.
Exception(s): None.
Description: Activate or deactivate implicit locking for new objects.

cw nx t * nxo thread nx get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nx.

Exception(s): None.
Description: Return the nx associated with a nxo.

cw nxo t * nxo thread userdict get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the userdict associated with a nxo.

cw nxo t * nxo thread errordict get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the errordict associated with a nxo.

cw nxo t * nxo thread currenterror get(cw nxo t *a nxo):

Input(s):

4.10. CLASSES Jason Evans 281

a nxo: Pointer to a thread nxo.
Output(s):

retval: Pointer to an nxo that can safely be used without risk of being garbage collected.
Exception(s): None.
Description: Return a pointer to the currenterror associated with a nxo.

cw nxo t * nxo thread ostack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the ostack associated with a nxo.

cw nxo t * nxo thread dstack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the dstack associated with a nxo.

cw nxo t * nxo thread estack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the estack associated with a nxo.

cw nxo t * nxo thread istack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the istack associated with a nxo.

cw nxo t * nxo thread tstack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

282 Onyx Manual Chapter 4

Exception(s): None.
Description: Return a pointer to the tstack associated with a nxo.

cw nxo t * nxo thread stdin get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the stdin associated with a nxo.

void nxo thread stdin set(cw nxo t *a nxo, cw nxo t *a stdin):

Input(s):
a nxo: Pointer to a thread nxo.
a stdin: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nxo’s stdin to a stdin.

cw nxo t * nxo thread stdout get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the stdout associated with a nxo.

void nxo thread stdout set(cw nxo t *a nxo, cw nxo t *a stdout):

Input(s):
a nxo: Pointer to a thread nxo.
a stdout: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nxo’s stdout to a stdout.

cw nxo t * nxo thread stderr get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the stderr associated with a nxo.

void nxo thread stderr set(cw nxo t *a nxo, cw nxo t *a stderr):

4.10. CLASSES Jason Evans 283

Input(s):
a nxo: Pointer to a thread nxo.
a stderr: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nxo’s stderr to a stderr.

4.10.33 ql

The ql macros implement operations on a list. The type of the list elements and which field of the ele-
ments to use are determined by arguments that are passed into the macros. The macros are optimized
for speed and code size, which means that there is minimal error checking built in. As a result, care
must be taken to assure that these macros are used as intended, or strange things can happen.

Internally, the list is represented as a ring, so with some care, the ql and qr interfaces can be used in
conjunction with each other.

Since a ql is actually a ring, it is possible to have multiple ql heads that share the same ring. This
works just fine, with the caveat that operations on one ql can have side-effects on another.

API

ql head(<ql type> a type):

Input(s):
a type: Data type for the ql elements.

Output(s): A data structure that can be used as a ql head.
Exception(s): None.
Description: Generate code for a ql head data structure.

ql head initializer(<ql type> *a head):

Input(s):
a head: Pointer to a ql head.

Output(s): None.
Exception(s): None.
Description: Statically initialize a ql head.

ql elm(<ql type> a type):

Input(s):
a type: Data type for the ql elements.

Output(s): A data structure that can be used as a ql element.
Exception(s): None.
Description: Generate code for a ql element data structure.

void ql new(<ql head> *a head):

284 Onyx Manual Chapter 4

Input(s):
a head: Pointer to a ql head.

Output(s): None.
Exception(s): None.
Description: Constructor.

void ql elm new(<ql type> *a elm, <field name> a field):

Input(s):
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Constructor.

<ql type> * ql first(<ql head> *a head):

Input(s):
a head: Pointer to a ql head.

Output(s):
retval:

non-NULL: Pointer to the first element in a head.
NULL: a head is empty.

Exception(s): None.
Description: Return a pointer to the first element in the ql.

<ql type> * ql last(<ql head> *a head, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a field: Field within the ql elements to use.

Output(s):
retval:

non-NULL: Pointer to the last element in a head.
NULL: a head is empty.

Exception(s): None.
Description: Return a pointer to the last element in the ql.

<ql type> * ql next(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s):
retval:

non-NULL: Pointer to the element after a elm.

4.10. CLASSES Jason Evans 285

NULL: a elm is the last element in a head.

Exception(s): None.

Description: Return a pointer to the element in a head after a elm.

<ql type> * ql prev(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s):
retval:

non-NULL: Pointer to the element before a elm.
NULL: a elm is the first element in a head.

Exception(s): None.

Description: Return a pointer to the element in a head before a elm.

void ql before insert(<ql head> *a head, <ql type> *a qlelm, <ql type> *a elm, <field name>
a field):

Input(s):
a head: Pointer to a ql head.
a qlelm: Pointer to an element within a head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Insert a elm into a head before a qlelm.

void ql after insert(<ql type> *a qlelm, <ql type> *a elm, <field name> a field):

Input(s):
a qlelm: Pointer to an element within a head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Insert a elm into a head after a qlelm.

void ql head insert(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

286 Onyx Manual Chapter 4

Description: Insert a elm at the head of a head.

void ql tail insert(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Insert a elm at the tail of a head.

void ql remove(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Remove a elm from a head.

void ql head remove(<ql head> *a head, <ql type> a type, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a type: Data type for the ql elements.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Remove the head element of a head.

void ql tail remove(<ql head> *a head, <ql type> a type, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a type: Data type for the ql elements.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Remove the tail element of a head.

ql foreach(<ql type> *a var, <ql type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a head: Pointer to a ql head.
a field: Field within the ql elements to use.

4.10. CLASSES Jason Evans 287

Output(s): None.

Exception(s): None.

Description: Iterate through the ql, storing a pointer to each element in a var along the way.

ql reverse foreach(<ql type> *a var, <ql type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a head: Pointer to a ql head.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Iterate through the ql in the reverse direction, storing a pointer to each element
in a var along the way.

4.10.34 qr

The qr macros implement operations on a ring. The type of the ring elements and which field of
the elements to use are determined by arguments that are passed into the macros. The macros are
optimized for speed and code size, which means that there is minimal error checking built in. As a
result, care must be taken to assure that these are used as intended, or strange things can happen.

API

qr(<qr type> a type):

Input(s):
a type: Data type for the qr.

Output(s): A data structure that can be used for a qr.

Exception(s): None.

Description: Generate code for a qr data structure.

void qr new(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Constructor.

<qr type> * qr next(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

288 Onyx Manual Chapter 4

Output(s):
retval: Pointer to the next element in the qr.

Exception(s): None.

Description: Return a pointer to the next element in the qr.

<qr type> * qr prev(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s):
retval: Pointer to the previous element in the qr.

Exception(s): None.

Description: Return a pointer to the previous element in the qr.

void qr before insert(<qr type> *a qrelm, <qr type> *a qr, <field name> a field):

Input(s):
a qrelm: Pointer to an element in a qr.
a qr: Pointer to an element that is the only element in its ring.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Insert a qr before a qrelm.

void qr after insert(<qr type> *a qrelm, <qr type> *a qr, <field name> a field):

Input(s):
a qrelm: Pointer to an element in a qr.
a qr: Pointer to an element that is the only element in its ring.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Insert a qr after a qrelm.

void qr meld(<qr type> *a qr a, <qr type> *a qr b, <qr type> a type, <field name> a field):

Input(s):
a qr a: Pointer to a qr.
a qr b: Pointer to a qr.
a type: Data type for the qr elements.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Meld a qr a and a qr b into one ring.

void qr split(<qr type> *a qr a, <qr type> *a qr b, <qr type> a type, <field name> a field):

4.10. CLASSES Jason Evans 289

Input(s):
a qr a: Pointer to a qr.
a qr b: Pointer to a qr.
a type: Data type for the qr elements.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Split a ring at a qr a and a qr b.

void qr remove(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Remove a qr from the ring.

qr foreach(<qr type> *a var, <qr type> *a qr, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Iterate through the qr, storing a pointer to each element in a var along the way.

qr reverse foreach(<qr type> *a var, <qr type> *a qr, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Iterate through the qr in the reverse direction, storing a pointer to each element

in a var along the way.

4.10.35 qs

The qs macros implement operations on a stack. The type of the stack elements and which field of
the elements to use are determined by arguments that are passed into the macros. The macros are
optimized for speed and code size, which means that there is minimal error checking built in. As a
result, care must be taken to assure that these macros are used as intended, or strange things can
happen.

290 Onyx Manual Chapter 4

API

qs head(<qs type> a type):

Input(s):
a type: Data type for the qs.

Output(s): A data structure that can be used as a qs head.
Exception(s): None.
Description: Generate code for a qs head data structure.

qs head initializer(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s): None.
Exception(s): None.
Description: Statically initialize a qs head.

qs elm(<qs elm type> a type):

Input(s):
a type: Data type for the qs elements.

Output(s): A data structure that can be used as a qs element.
Exception(s): None.
Description: Generate code for a qs element data structure.

void qs new(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s): None.
Exception(s): None.
Description: Constructor.

void qs elm new(<qs elm type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a qs element.
a field: Field within the qs elements to use.

Output(s): None.
Exception(s): None.
Description: Constructor.

<qs type> * qs top(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s):
retval: Pointer to the top element in the qs.

4.10. CLASSES Jason Evans 291

Exception(s): None.

Description: Return a pointer to the top element in the qs.

<qs type> * qs down(<qs elm type> *a elm, <field name> a field):

Input(s):
a elm: Pointer to a qs element.
a field: Field within the qs elements to use.

Output(s):
retval:

non-NULL: Pointer to the next element in the qs.
NULL: a elm is the bottom element in the qs.

Exception(s): None.

Description: Return a pointer to the next element in the qs below a elm.

void qs push(<qs type> *a head, <qs elm type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a qs head.
a elm: Pointer to an element.
a field: Field within the qs elements to use.

Output(s): None.

Exception(s): None.

Description: Push a elm onto the qs.

void qs under push(<qs elm type> *a qselm, <qs elm type> *a elm, <field name> a field):

Input(s):
a qselm: Pointer to a qs element.
a elm: Pointer to an element.
a field: Field within the qs elements to use.

Output(s): None.

Exception(s): None.

Description: Push a elm under a qselm.

void qs pop(<qs type> *a head, <field name> a field):

Input(s):
a head: Pointer to a qs head.
a field: Field within the qs elements to use.

Output(s): None.

Exception(s): None.

Description: Pop an element off of a head.

qs foreach(<qs elm type> *a var, <qs type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.

292 Onyx Manual Chapter 4

a head: Pointer to a qs head.
a field: Field within the qs elements to use.

Output(s): None.
Exception(s): None.
Description: Iterate down the qs, storing a pointer to each element in a var along the way.

4.10.36 thd

The thd class implements a wrapper around the system POSIX threads library or GNU pth library.
In most regards, this is a thin wrapper around the normal threading functionality, but some extra in-
formation is kept in order to allow implmentation of thread suspension/resumption, “critical sections”,
and “single sections”.

The suspendibility of each thread is determined by the arguments passed to thd new(). The ini-
tial thread is always suspendible. Other threads that are created via some mechanism other than
thd new() are not suspendible.

Depending on how libonyx is built, the additional functionality is implemented with the aid of the
SIGUSR1 and SIGUSR2 signals. As a result, system calls may be interrupted by signals. The system
calls will be automatically restarted if they have made no progress at the time of interruption, but
will return a partial result otherwise. Therefore, if any of the additional functionality is utilized, the
application must be careful to handle partial system call results. At least the following system calls
can be interrupted: read(), write(), sendto(), recvfrom(), sendmsg(), recvmsg(), ioctl(), and wait(). See
the system documentation for additional information.

API

cw thd t * thd new(void *(*a start func)(void *), void *a arg, cw bool t a suspendible):

Input(s):
a start func: Pointer to a start function.
a arg: Argument passed to a start func().
a suspendible:

FALSE: Not suspendible.
TRUE: Suspendible.

Output(s):
retval: Pointer to a thd.

Exception(s):
CW ONYXX OOM.

Description: Constructor (creates a new thread).

void thd delete(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.
Exception(s): None.

4.10. CLASSES Jason Evans 293

Description: Destructor.

void * thd join(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s):
retval: Return value from thread entry function.

Exception(s): None.
Description: Join (wait for) the thread associated with a thd.

cw thd t * thd self(void):

Input(s): None.
Output(s):

retval: Pointer to the calling thread’s thd structure.
Exception(s): None.
Description: Return a pointer to the thd structure that corresponds to the calling thread.

void thd yield(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Give up the rest of the calling thread’s time slice.

int thd sigmask(int a how, const sigset t *a set, sigset t *r oset):

Input(s):
a how:

SIG BLOCK: Block signals in a set.
SIG UNBLOCK: Unblock signals in a set.
SIG SETMASK: Set signal mask to a set.

a set: Pointer to a signal set.
r oset:

non-NULL: Pointer space to store the old signal mask.
NULL: Ignored.

Output(s):
retval: Always zero, unless the arguments are invalid.
*r oset: Old signal set.

Exception(s): None.
Description: Set the calling thread’s signal mask.

void thd crit enter(void):

Input(s): None.
Output(s): None.
Exception(s): None.

294 Onyx Manual Chapter 4

Description: Enter a critical region where the calling thread may not be suspended by
thd suspend(), thd trysuspend(), or thd single enter().

void thd crit leave(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Leave a critical section; the calling thread may once again be suspended.

void thd single enter(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Enter a critical region where all other suspendible threads must be suspended.

void thd single leave(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Leave a critical section where all other threads must be suspended. All threads

that were suspended in thd single enter() are resumed.

void thd suspend(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.
Exception(s): None.
Description: Suspend a thd.

cw bool t thd trysuspend(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s):
retval:

FALSE: Success.
TRUE: Failure.

Exception(s): None.
Description: Try to suspend a thd, but fail if it is in a critical section.

void thd resume(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.
Exception(s): None.
Description: Resume (make runnable) a thd.

4.10. CLASSES Jason Evans 295

4.10.37 tsd

The tsd class implements thread-specific data. A tsd instance can be created, then any number of
threads can use that same instance to store and retrieve a thread-specific pointer to data.

API

void tsd new(cw tsd t *a tsd, void (*a func)(void *)):

Input(s):
a tsd: Pointer to space for a tsd.
a func: Pointer to a cleanup function, or NULL.

Output(s): None.

Exception(s): None.

Description: Constructor.

void tsd delete(cw tsd t *a tsd):

Input(s):
a tsd: Pointer to a tsd.

Output(s): None.

Exception(s): None.

Description: Destructor.

void * tsd get(cw tsd t *a tsd):

Input(s):
a tsd: Pointer to a tsd.

Output(s):
retval: Pointer to thread-specific data.

Exception(s): None.

Description: Get thread-specific data pointer.

void tsd set(cw tsd t *a tsd, void *a val):

Input(s):
a tsd: Pointer to a tsd.
a val: Pointer to thread-specific data.

Output(s): None.

Exception(s): None.

Description: Set thread-specific data pointer.

296 Onyx Manual Chapter 4

4.10.38 xep

The xep class implements exception handling, with support for xep try and xep catch() blocks. Minimal
use must include at least:

xep_begin();
xep_try
{

/* Code that might throw an exception. */
}
xep_end();

A more complete skeleton looks like:

xep_begin();
xep_try
{

/* Code that might throw an exception. */
}
xep_catch(SOME_EXCEPTION)
{

/* Handle exception... */
xep_handled();

}
xep_catch(ANOTHER_EXCEPTION)
xep_mcatch(YET_ANOTHER)
{

/* React to exception, but propagate... */
}
xep_acatch
{

/* Handle all exceptions not explicitly handled above... */
xep_handled();

}
xep_end();

Note that there is some serious cpp macro magic behind the xep interface, and as such, if usage deviates
significantly from the above templates, compiler errors may result.

Exception values are of type cw xepv t. CW ONYXX MIN to CW ONYXX MAX are reserved by li-
bonyx, and other ranges may be reserved by other libraries. See their documentation for details.

An exception is not implicitly handled if an exception handler is executed for that exception. Instead,
xep handled() must be manually called to avoid propagating the exception up the handler chain.

It is not legal to return from a function within an exception handling code block, nor is it legal to jump
out of an exception handling block; doing so will corrupt the exception handler chain.

API

void xep begin(void):

4.10. CLASSES Jason Evans 297

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Begin an exception handling code block.

void xep end(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: End an exception handling block.

xep try . . . :

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Begin a block of code that is to be executed, with the possibility that an

exception might be thrown.

xep catch(cw xepv t a xepv) . . . :

Input(s):
a xepv: Exception number.

Output(s): None.
Exception(s): None.
Description: Begin a block of code that catches an exception. The exception is not considered

handled unless xep handled() is called.

xep mcatch(cw xepv t a xepv) . . . :

Input(s):
a xepv: Exception number.

Output(s): None.
Exception(s): None.
Description: Begin a block of code that catches an exception. Must immediately follow a

xep catch() call. This interface is used for the case where more than one exception type is to
be handled by the same code block. The exception is not considered handled unless
xep handled() is called.

xep acatch . . . :

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Begin a block of code that catches all exceptions not explicitly caught by

xep catch() and xep mcatch() blocks. There may only be one xep acatch block within a
try/catch block. The exception is not considered handled unless xep handled() is called.

cw xepv t xep value(void):

298 Onyx Manual Chapter 4

Input(s): None.
Output(s):

retval: Value of the current exception being handled.
Exception(s): None.
Description: Return the value of the current exception being handled.

void xep throw e(cw xepv t a xepv, const char *a filename, cw uint32 t a line num):
void xep throw(cw xepv t a xepv):

Input(s):
a xepv: Exception number to throw.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s):

a xepv.
Description: Throw an exception.

void xep retry(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Implicitly handle the current exception and retry the xep try code block.

void xep handled(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Mark the current exception as handled.

4.11 Dictionaries

4.11.1 gcdict

The gcdict functions implement the operators contained in gcdict. Only the C API is documented
here; see Section 2.10.4 for operator semantics.

API

void gcdict active(cw nxo t *a thread):
void gcdict collect(cw nxo t *a thread):
void gcdict period(cw nxo t *a thread):
void gcdict setactive(cw nxo t *a thread):

4.11. DICTIONARIES Jason Evans 299

void gcdict setperiod(cw nxo t *a thread):
void gcdict setthreshold(cw nxo t *a thread):
void gcdict stats(cw nxo t *a thread):
void gcdict threshold(cw nxo t *a thread):

Input(s):
a thread: Pointer to a thread.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: C interfaces to Onyx operators that control garbage collection.

4.11.2 systemdict

The systemdict functions implement the operators contained in systemdict. Only the C API is docu-
mented here; see Section 2.10.9 for operator semantics.

API

void systemdict abs(cw nxo t *a thread):
void systemdict accept(cw nxo t *a thread):
void systemdict acos(cw nxo t *a thread):
void systemdict acosh(cw nxo t *a thread):
void systemdict add(cw nxo t *a thread):
void systemdict adn(cw nxo t *a thread):
void systemdict and(cw nxo t *a thread):
void systemdict array(cw nxo t *a thread):
void systemdict asin(cw nxo t *a thread):
void systemdict asinh(cw nxo t *a thread):
void systemdict atan(cw nxo t *a thread):
void systemdict atan2(cw nxo t *a thread):
void systemdict atanh(cw nxo t *a thread):
void systemdict aup(cw nxo t *a thread):
void systemdict bdup(cw nxo t *a thread):
void systemdict begin(cw nxo t *a thread):
void systemdict bind(cw nxo t *a thread):
void systemdict bindsocket(cw nxo t *a thread):
void systemdict bpop(cw nxo t *a thread):
void systemdict broadcast(cw nxo t *a thread):
void systemdict bytesavailable(cw nxo t *a thread):
void systemdict cat(cw nxo t *a thread):
void systemdict cd(cw nxo t *a thread):
void systemdict ceiling(cw nxo t *a thread):
void systemdict chmod(cw nxo t *a thread):
void systemdict chown(cw nxo t *a thread):
void systemdict chroot(cw nxo t *a thread):
void systemdict clear(cw nxo t *a thread):
void systemdict cleartomark(cw nxo t *a thread):

300 Onyx Manual Chapter 4

void systemdict close(cw nxo t *a thread):
void systemdict condition(cw nxo t *a thread):
void systemdict connect(cw nxo t *a thread):
void systemdict copy(cw nxo t *a thread):
void systemdict cos(cw nxo t *a thread):
void systemdict cosh(cw nxo t *a thread):
void systemdict count(cw nxo t *a thread):
void systemdict countdstack(cw nxo t *a thread):
void systemdict countestack(cw nxo t *a thread):
void systemdict counttomark(cw nxo t *a thread):
void systemdict currentdict(cw nxo t *a thread):
void systemdict currentlocking(cw nxo t *a thread):
void systemdict cvds(cw nxo t *a thread):
void systemdict cve(cw nxo t *a thread):
void systemdict cves(cw nxo t *a thread):
void systemdict cvlit(cw nxo t *a thread):
void systemdict cvn(cw nxo t *a thread):
void systemdict cvrs(cw nxo t *a thread):
void systemdict cvs(cw nxo t *a thread):
void systemdict cvx(cw nxo t *a thread):
void systemdict dec(cw nxo t *a thread):
void systemdict def(cw nxo t *a thread):
void systemdict detach(cw nxo t *a thread):
void systemdict dict(cw nxo t *a thread):
void systemdict die(cw nxo t *a thread):
void systemdict dirforeach(cw nxo t *a thread):
void systemdict div(cw nxo t *a thread):
void systemdict dn(cw nxo t *a thread):
void systemdict dstack(cw nxo t *a thread):
void systemdict dup(cw nxo t *a thread):
void systemdict echeck(cw nxo t *a thread):
void systemdict egid(cw nxo t *a thread):
void systemdict end(cw nxo t *a thread):
void systemdict eq(cw nxo t *a thread):
void systemdict estack(cw nxo t *a thread):
void systemdict euid(cw nxo t *a thread):
void systemdict eval(cw nxo t *a thread):
void systemdict exch(cw nxo t *a thread):
void systemdict exec(cw nxo t *a thread):
void systemdict exit(cw nxo t *a thread):
void systemdict exp(cw nxo t *a thread):
void systemdict floor(cw nxo t *a thread):
void systemdict flush(cw nxo t *a thread):
void systemdict flushfile(cw nxo t *a thread):
void systemdict for(cw nxo t *a thread):
void systemdict foreach(cw nxo t *a thread):
void systemdict forkexec(cw nxo t *a thread):
void systemdict ge(cw nxo t *a thread):
void systemdict get(cw nxo t *a thread):
void systemdict getinterval(cw nxo t *a thread):
void systemdict gid(cw nxo t *a thread):

4.11. DICTIONARIES Jason Evans 301

void systemdict gstderr(cw nxo t *a thread):
void systemdict gstdin(cw nxo t *a thread):
void systemdict gstdout(cw nxo t *a thread):
void systemdict gt(cw nxo t *a thread):
void systemdict hooktag(cw nxo t *a thread):
void systemdict ibdup(cw nxo t *a thread):
void systemdict ibpop(cw nxo t *a thread):
void systemdict idiv(cw nxo t *a thread):
void systemdict idup(cw nxo t *a thread):
void systemdict if(cw nxo t *a thread):
void systemdict ifelse(cw nxo t *a thread):
void systemdict inc(cw nxo t *a thread):
void systemdict iobuf(cw nxo t *a thread):
void systemdict ipop(cw nxo t *a thread):
void systemdict istack(cw nxo t *a thread):
void systemdict join(cw nxo t *a thread):
void systemdict known(cw nxo t *a thread):
void systemdict lcheck(cw nxo t *a thread):
void systemdict le(cw nxo t *a thread):
void systemdict length(cw nxo t *a thread):
void systemdict link(cw nxo t *a thread):
void systemdict listen(cw nxo t *a thread):
void systemdict ln(cw nxo t *a thread):
void systemdict load(cw nxo t *a thread):
void systemdict lock(cw nxo t *a thread):
void systemdict log(cw nxo t *a thread):
void systemdict loop(cw nxo t *a thread):
void systemdict lt(cw nxo t *a thread):
void systemdict match(cw nxo t *a thread):
void systemdict mkdir(cw nxo t *a thread):
void systemdict mkfifo(cw nxo t *a thread):
void systemdict mod(cw nxo t *a thread):
void systemdict modload(cw nxo t *a thread):
void systemdict monitor(cw nxo t *a thread):
void systemdict mul(cw nxo t *a thread):
void systemdict mutex(cw nxo t *a thread):
void systemdict nbpop(cw nxo t *a thread):
void systemdict ncat(cw nxo t *a thread):
void systemdict ndn(cw nxo t *a thread):
void systemdict ndup(cw nxo t *a thread):
void systemdict ne(cw nxo t *a thread):
void systemdict neg(cw nxo t *a thread):
void systemdict nip(cw nxo t *a thread):
void systemdict nonblocking(cw nxo t *a thread):
void systemdict not(cw nxo t *a thread):
void systemdict npop(cw nxo t *a thread):
void systemdict nsleep(cw nxo t *a thread):
void systemdict nup(cw nxo t *a thread):
void systemdict offset(cw nxo t *a thread):
void systemdict open(cw nxo t *a thread):
void systemdict or(cw nxo t *a thread):

302 Onyx Manual Chapter 4

void systemdict ostack(cw nxo t *a thread):
void systemdict over(cw nxo t *a thread):
void systemdict peername(cw nxo t *a thread):
void systemdict pid(cw nxo t *a thread):
void systemdict pipe(cw nxo t *a thread):
void systemdict poll(cw nxo t *a thread):
void systemdict pop(cw nxo t *a thread):
void systemdict pow(cw nxo t *a thread):
void systemdict ppid(cw nxo t *a thread):
void systemdict print(cw nxo t *a thread):
void systemdict put(cw nxo t *a thread):
void systemdict putinterval(cw nxo t *a thread):
void systemdict pwd(cw nxo t *a thread):
void systemdict quit(cw nxo t *a thread):
void systemdict rand(cw nxo t *a thread):
void systemdict read(cw nxo t *a thread):
void systemdict readline(cw nxo t *a thread):
void systemdict readlink(cw nxo t *a thread):
void systemdict realtime(cw nxo t *a thread):
void systemdict recv(cw nxo t *a thread):
void systemdict regex(cw nxo t *a thread):
void systemdict regsub(cw nxo t *a thread):
void systemdict rename(cw nxo t *a thread):
void systemdict repeat(cw nxo t *a thread):
void systemdict rmdir(cw nxo t *a thread):
void systemdict roll(cw nxo t *a thread):
void systemdict rot(cw nxo t *a thread):
void systemdict round(cw nxo t *a thread):
void systemdict sadn(cw nxo t *a thread):
void systemdict saup(cw nxo t *a thread):
void systemdict sbdup(cw nxo t *a thread):
void systemdict sbpop(cw nxo t *a thread):
void systemdict sbpush(cw nxo t *a thread):
void systemdict sclear(cw nxo t *a thread):
void systemdict scleartomark(cw nxo t *a thread):
void systemdict scount(cw nxo t *a thread):
void systemdict scounttomark(cw nxo t *a thread):
void systemdict sdn(cw nxo t *a thread):
void systemdict sdup(cw nxo t *a thread):
void systemdict seek(cw nxo t *a thread):
void systemdict self(cw nxo t *a thread):
void systemdict send(cw nxo t *a thread):
void systemdict serviceport(cw nxo t *a thread):
void systemdict setegid(cw nxo t *a thread):
void systemdict setenv(cw nxo t *a thread):
void systemdict seteuid(cw nxo t *a thread):
void systemdict setgid(cw nxo t *a thread):
void systemdict setgstderr(cw nxo t *a thread):
void systemdict setgstdin(cw nxo t *a thread):
void systemdict setgstdout(cw nxo t *a thread):
void systemdict setiobuf(cw nxo t *a thread):

4.11. DICTIONARIES Jason Evans 303

void systemdict setlocking(cw nxo t *a thread):
void systemdict setnonblocking(cw nxo t *a thread):
void systemdict setsockopt(cw nxo t *a thread):
void systemdict setstderr(cw nxo t *a thread):
void systemdict setstdin(cw nxo t *a thread):
void systemdict setstdout(cw nxo t *a thread):
void systemdict setuid(cw nxo t *a thread):
void systemdict sexch(cw nxo t *a thread):
void systemdict shift(cw nxo t *a thread):
void systemdict sibdup(cw nxo t *a thread):
void systemdict sibpop(cw nxo t *a thread):
void systemdict sidup(cw nxo t *a thread):
void systemdict signal(cw nxo t *a thread):
void systemdict sin(cw nxo t *a thread):
void systemdict sinh(cw nxo t *a thread):
void systemdict sipop(cw nxo t *a thread):
void systemdict snbpop(cw nxo t *a thread):
void systemdict sndn(cw nxo t *a thread):
void systemdict sndup(cw nxo t *a thread):
void systemdict snip(cw nxo t *a thread):
void systemdict snpop(cw nxo t *a thread):
void systemdict snup(cw nxo t *a thread):
void systemdict socket(cw nxo t *a thread):
void systemdict socketpair(cw nxo t *a thread):
void systemdict sockname(cw nxo t *a thread):
void systemdict sockopt(cw nxo t *a thread):
void systemdict sover(cw nxo t *a thread):
void systemdict split(cw nxo t *a thread):
void systemdict spop(cw nxo t *a thread):
void systemdict spush(cw nxo t *a thread):
void systemdict sqrt(cw nxo t *a thread):
void systemdict srand(cw nxo t *a thread):
void systemdict sroll(cw nxo t *a thread):
void systemdict srot(cw nxo t *a thread):
void systemdict stack(cw nxo t *a thread):
void systemdict start(cw nxo t *a thread):
void systemdict status(cw nxo t *a thread):
void systemdict stderr(cw nxo t *a thread):
void systemdict stdin(cw nxo t *a thread):
void systemdict stdout(cw nxo t *a thread):
void systemdict stop(cw nxo t *a thread):
void systemdict stopped(cw nxo t *a thread):
void systemdict string(cw nxo t *a thread):
void systemdict stuck(cw nxo t *a thread):
void systemdict sub(cw nxo t *a thread):
void systemdict submatch(cw nxo t *a thread):
void systemdict subst(cw nxo t *a thread):
void systemdict sunder(cw nxo t *a thread):
void systemdict sup(cw nxo t *a thread):
void systemdict sym lp(cw nxo t *a thread) (“(”):
void systemdict sym rp(cw nxo t *a thread) (“)”):

304 Onyx Manual Chapter 4

void systemdict sym gt(cw nxo t *a thread) (“>”):
void systemdict sym rb(cw nxo t *a thread) (“]”):
void systemdict symlink(cw nxo t *a thread):
void systemdict tan(cw nxo t *a thread):
void systemdict tanh(cw nxo t *a thread):
void systemdict tell(cw nxo t *a thread):
void systemdict test(cw nxo t *a thread):
void systemdict thread(cw nxo t *a thread):
void systemdict threadsdict(cw nxo t *a thread):
void systemdict threaddstack(cw nxo t *a thread):
void systemdict threadestack(cw nxo t *a thread):
void systemdict threadistack(cw nxo t *a thread):
void systemdict threadostack(cw nxo t *a thread):
void systemdict timedwait(cw nxo t *a thread):
void systemdict token(cw nxo t *a thread):
void systemdict trunc(cw nxo t *a thread):
void systemdict truncate(cw nxo t *a thread):
void systemdict trylock(cw nxo t *a thread):
void systemdict tuck(cw nxo t *a thread):
void systemdict type(cw nxo t *a thread):
void systemdict uid(cw nxo t *a thread):
void systemdict umask(cw nxo t *a thread):
void systemdict undef(cw nxo t *a thread):
void systemdict under(cw nxo t *a thread):
void systemdict unlink(cw nxo t *a thread):
void systemdict unlock(cw nxo t *a thread):
void systemdict unsetenv(cw nxo t *a thread):
void systemdict until(cw nxo t *a thread):
void systemdict up(cw nxo t *a thread):
void systemdict wait(cw nxo t *a thread):
void systemdict waitpid(cw nxo t *a thread):
void systemdict where(cw nxo t *a thread):
void systemdict while(cw nxo t *a thread):
void systemdict write(cw nxo t *a thread):
void systemdict xcheck(cw nxo t *a thread):
void systemdict xor(cw nxo t *a thread):
void systemdict yield(cw nxo t *a thread):

Input(s):
a thread: Pointer to a thread.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: C interfaces to onyx operators.

Index

(, 84
), 84
<, 85
>, 85
[, 85
], 86

abs, 86
accept, 86
acos, 87
acosh, 87
active, 35
add, 88
adn, 88
and, 88
argcheck, 24
argv, 89
array, 89
arraytype, 42, 52
asin, 89
asinh, 90
atan, 90
atan2, 90
atanh, 91
aup, 91

bdup, 91
begin, 92
bind, 92
bindsocket, 93
booleantype, 42, 52
bpop, 94
broadcast, 94
bytesavailable, 94

cat, 95
cd, 95
ceiling, 96
ch, 218
ch count(), 219
ch delete(), 219
ch direct hash(), 221
ch direct key comp(), 222

ch get iterate(), 220
ch insert(), 219
ch new(), 219
ch remove(), 220
ch remove iterate(), 221
ch search(), 220
ch string hash(), 221
ch string key comp(), 222
chmod, 96
chown, 97
chroot, 97
clear, 98
cleartomark, 98
close, 98
cnd, 222
cnd broadcast(), 223
cnd delete(), 222
cnd new(), 222
cnd signal(), 223
cnd timedwait(), 223
cnd wait(), 223
collect, 35
column, 28
condition, 99
conditiontype, 42, 52
connect, 99
copy, 99
cos, 100
cosh, 101
count, 101
countdstack, 101
countestack, 102
counttomark, 102
currentdict, 102
currenterror, 28, 205
currentlocking, 102
cvds, 103
cve, 103
cves, 104
cvlit, 104
cvn, 104
cvrs, 105

305

306 Onyx Manual INDEX

cvs, 105
cvx, 106
cw assert(), 217
cw calloc(), 228
CW CH TABLE2SIZEOF(), 218
cw check ptr(), 217
cw error(), 217
cw free(), 229
cw htonq(), 218
cw malloc(), 228
cw not reached(), 217
cw ntohq(), 217
cw nxo file delete t(), 249
cw nxo file read t(), 248
cw nxo file ref iter t(), 249
cw nxo file write t(), 249
cw nxo hook delete t(), 255
cw nxo hook eval t(), 255
cw nxo hook ref iter t(), 255
cw offsetof(), 218
cw onyx code(), 216
cw opaque alloc(), 216
cw opaque alloc t(), 215
cw opaque dealloc(), 216
cw opaque dealloc t(), 215
cw opaque realloc(), 216
cw opaque realloc t(), 215
cw realloc(), 228

dch, 223
dch count(), 224
dch delete(), 224
dch get iterate(), 225
dch insert(), 224
dch new(), 224
dch remove(), 225
dch remove iterate(), 226
dch search(), 225
dec, 106
def, 106
detach, 107
dict, 107
dicttype, 43, 53
die, 107
dirforeach, 108
div, 108
dn, 109
dstack, 29, 109
dup, 109

echeck, 110
egid, 110

end, 110
envdict, 32, 111
eq, 111
errordict, 32, 206
errorname, 29
estack, 30, 112
estackoverflow, 24
euid, 112
eval, 112
exch, 113
exec, 113
exit, 113
exp, 114

false, 114
filetype, 43, 53
finotype, 44, 54
floor, 114
flush, 115
flushfile, 115
for, 115
foreach, 116
forkexec, 117

gcdict, 298
gcdict, 34, 117
gcdict active(), 298
gcdict collect(), 298
gcdict period(), 298
gcdict setactive(), 298
gcdict setperiod(), 298
gcdict setthreshold(), 299
gcdict stats(), 299
gcdict threshold(), 299
ge, 117
get, 118
getinterval, 119
gid, 119
globaldict, 38, 119
gstderr, 120
gstdin, 120
gstdout, 120
gt, 120

handleerror, 33
hooktag, 121
hooktype, 44, 54

ibdup, 121
ibpop, 122
idiv, 122
idup, 123

INDEX Jason Evans 307

if, 123
ifelse, 124
inc, 124
integertype, 44, 55
invalidaccess, 24
invalidexit, 24
invalidfileaccess, 24
iobuf, 124
ioerror, 24
ipop, 125
istack, 30, 125

join, 125

known, 126

lcheck, 126
le, 126
length, 127
libonyx init(), 215
libonyx shutdown(), 215
limitcheck, 24
line, 31
link, 128
listen, 128
ln, 129
load, 129
lock, 129
log, 130
loop, 130
lt, 130

mark, 131
marktype, 45, 55
match, 131
mb, 226
mb write(), 226
mem, 227
mem calloc(), 228
mem calloc e(), 228
mem delete(), 227
mem free(), 229
mem free e(), 229
mem malloc(), 228
mem malloc e(), 228
mem new(), 227
mem realloc(), 228
mem realloc e(), 228
mkdir, 132
mkfifo, 132
mod, 133
modload, 133

monitor, 134
mpath post, 38
mpath pre, 39
mq, 229
mq delete(), 229
mq get(), 230
mq get start(), 231
mq get stop(), 231
mq new(), 229
mq put(), 230
mq put start(), 231
mq put stop(), 231
mq timedget(), 230
mq tryget(), 230
mrequire, 134
mtx, 232
mtx delete(), 232
mtx lock(), 232
mtx new(), 232
mtx trylock(), 232
mtx unlock(), 233
mul, 135
mutex, 135
mutextype, 45, 56

nametype, 46, 56
nbpop, 135
ncat, 136
ndn, 136
ndup, 137
ne, 137
neg, 138
neterror, 24
newerror, 30
nip, 139
nonblocking, 139
not, 139
npop, 140
nsleep, 140
null, 140
nulltype, 46, 56
nup, 141
nx, 233
nx delete(), 233
nx envdict get(), 234
nx globaldict get(), 234
nx new(), 233
nx nxa get(), 233
nx stderr get(), 235
nx stderr set(), 235
nx stdin get(), 234

308 Onyx Manual INDEX

nx stdin set(), 234
nx stdout get(), 234
nx stdout set(), 235
nx systemdict get(), 234
nxa, 235
nxa active get(), 237
nxa active set(), 237
nxa collect(), 236
nxa dump(), 237
nxa free(), 236
nxa free e(), 236
nxa gcdict get(), 239
nxa malloc(), 235
nxa malloc e(), 235
nxa nx get(), 239
nxa period get(), 237
nxa period set(), 237
nxa malloc(), 236
nxa realloc e(), 236
nxa stats get(), 238
nxa threshold get(), 238
nxa threshold set(), 238
nxn, 239
nxn len(), 240
nxn str(), 240
nxo, 240
nxo array, 243
nxo array copy(), 244
nxo array el get(), 244
nxo array el set(), 244
nxo array len get(), 244
nxo array new(), 243
nxo array subarray new(), 243
nxo attr get(), 242
nxo attr set(), 243
nxo boolean, 245
nxo boolean get(), 245
nxo boolean new(), 245
nxo boolean set(), 245
nxo compare(), 241
nxo condition, 245
nxo condition broadcast(), 246
nxo condition new(), 245
nxo condition signal(), 246
nxo condition timedwait(), 246
nxo condition wait(), 246
nxo dict, 246
nxo dict copy(), 247
nxo dict count(), 248
nxo dict def(), 247
nxo dict iterate(), 248

nxo dict lookup(), 247
nxo dict new(), 247
nxo dict undef(), 247
nxo dup(), 241
nxo file, 248
nxo file buffer count(), 254
nxo file buffer flush(), 254
nxo file buffer size get(), 254
nxo file buffer size set(), 254
nxo file close(), 251
nxo file fd get(), 251
nxo file fd wrap(), 250
nxo file new(), 250
nxo file nonblocking get(), 251
nxo file nonblocking set(), 252
nxo file open(), 250
nxo file position get(), 253
nxo file position set(), 253
nxo file read(), 252
nxo file readline(), 252
nxo file synthetic(), 250
nxo file truncate(), 253
nxo file write(), 253
nxo fino, 255
nxo fino new(), 255
nxo hook, 255
nxo hook data get(), 256
nxo hook data set(), 256
nxo hook eval(), 257
nxo hook new(), 256
nxo hook tag get(), 256
nxo integer, 257
nxo integer get(), 257
nxo integer new(), 257
nxo integer set(), 257
nxo lcheck(), 242
nxo mark, 258
nxo mark new(), 258
nxo mutex, 258
nxo mutex lock(), 258
nxo mutex new(), 258
nxo mutex trylock(), 258
nxo mutex unlock(), 259
nxo name, 259
nxo name len get(), 259
nxo name new(), 259
nxo name str get(), 259
nxo no, 260
nxo no new(), 260
nxo null, 260
nxo null new(), 260

INDEX Jason Evans 309

nxo nxoe get(), 242
nxo operator, 260
nxo operator f(), 261
nxo operator new(), 261
nxo pmark, 261
nxo pmark new(), 261
nxo real, 261
nxo real get(), 262
nxo real new(), 261
nxo real set(), 262
nxo regex, 262
nxo regex match(), 263
nxo regex new(), 262
nxo regex nonew match(), 263
nxo regex nonew split(), 264
nxo regex split(), 264
nxo regex submatch(), 265
nxo regsub, 266
nxo regsub new(), 266
nxo regsub nonew subst(), 267
nxo regsub subst(), 266
nxo stack, 267
nxo stack bget(), 270
nxo stack bpop(), 269
nxo stack bpush(), 268
nxo stack copy(), 268
nxo stack count(), 268
nxo stack down get(), 271
nxo stack exch(), 271
nxo stack get(), 270
nxo stack nbget(), 271
nxo stack nbpop(), 270
nxo stack new(), 268
nxo stack nget(), 270
nxo stack npop(), 269
nxo stack pop(), 269
nxo stack push(), 268
nxo stack remove(), 270
nxo stack roll(), 272
nxo stack rot(), 272
nxo stack under push(), 269
nxo stack up get(), 271
nxo string, 272
nxo string copy(), 273
nxo string cstring(), 273
nxo string el get(), 274
nxo string el set(), 274
nxo string get(), 274
nxo string len get(), 273
nxo string lock(), 274
nxo string new(), 272

nxo string set(), 275
nxo string substring new(), 273
nxo string unlock(), 274
nxo thread, 275
nxo thread currenterror get(), 280
nxo thread currentlocking(), 279
nxo thread deferred(), 278
nxo thread detach(), 277
nxo thread dstack get(), 281
nxo thread dstack search(), 279
nxo thread errordict get(), 280
nxo thread estack get(), 281
nxo thread exit(), 276
nxo thread flush(), 279
nxo thread interpret(), 278
nxo thread istack get(), 281
nxo thread join(), 277
nxo thread loop(), 278
nxo thread nerror(), 279
nxo thread new(), 276
nxo thread nx get(), 280
nxo thread ostack get(), 281
nxo thread reset(), 278
nxo thread serror(), 279
nxo thread setlocking(), 280
nxo thread start(), 276
nxo thread state(), 277
nxo thread stderr get(), 282
nxo thread stderr set(), 282
nxo thread stdin get(), 282
nxo thread stdin set(), 282
nxo thread stdout get(), 282
nxo thread stdout set(), 282
nxo thread thread(), 276
nxo thread tstack get(), 281
nxo thread userdict get(), 280
nxo threadp delete(), 275
nxo threadp new(), 275
nxo threadp position get(), 275
nxo threadp position set(), 276
nxo type get(), 241

offset, 141
onyxdict, 38, 141
open, 142
operatortype, 46, 57
or, 142
ostack, 32, 143
output, 143
outputs, 144
outputsdict, 39, 144

310 Onyx Manual INDEX

over, 144

peername, 145
period, 35
pid, 145
pipe, 146
pmarktype, 47, 57
poll, 146
pop, 147
pow, 147
ppid, 148
print, 148
product, 148
promptstring, 210
pstack, 149
put, 149
putinterval, 150
pwd, 150

ql, 283
ql after insert(), 285
ql before insert(), 285
ql elm(), 283
ql elm new(), 284
ql first(), 284
ql foreach(), 286
ql head(), 283
ql head initializer(), 283
ql head insert(), 285
ql head remove(), 286
ql last(), 284
ql new(), 283
ql next(), 284
ql prev(), 285
ql remove(), 286
ql reverse foreach(), 287
ql tail insert(), 286
ql tail remove(), 286
qr, 287
qr(), 287
qr after insert(), 288
qr before insert(), 288
qr foreach(), 289
qr meld(), 288
qr new(), 287
qr next(), 287
qr prev(), 288
qr remove(), 289
qr reverse foreach(), 289
qr split(), 288
qs, 289
qs down(), 291

qs elm(), 290
qs elm new(), 290
qs foreach(), 291
qs head(), 290
qs head initializer(), 290
qs new(), 290
qs pop(), 291
qs push(), 291
qs top(), 290
qs under push(), 291
quit, 150

rand, 151
rangecheck, 24
read, 151
readline, 152
readlink, 152
realtime, 153
realtype, 47, 59
recv, 153
regex, 153
regexerror, 24
regextype, 48, 58
regsub, 154
regsubtype, 48, 58
rename, 155
repeat, 155
require, 155
resume, 210
rmdir, 156
roll, 156
rot, 158
round, 157
rpath post, 39
rpath pre, 39

sadn, 158
saup, 158
sbdup, 159
sbpop, 159
sbpush, 159
sclear, 160
scleartomark, 160
scount, 160
scounttomark, 160
sdn, 161
sdup, 161
search, 161
seek, 162
self, 162
send, 163
serviceport, 163

INDEX Jason Evans 311

setactive, 36
setegid, 164
setenv, 164
seteuid, 164
setgid, 165
setgstderr, 165
setgstdin, 165
setgstdout, 166
setiobuf, 166
setlocking, 167
setnonblocking, 167
setperiod, 36
setsockopt, 168
setstderr, 168
setstdin, 169
setstdout, 169
setthreshold, 36
setuid, 170
sexch, 170
shift, 170
sibdup, 171
sibpop, 171
sidup, 171
signal, 172
sin, 172
sinh, 173
sipop, 173
snbpop, 173
sndn, 174
sndup, 174
snip, 174
snpop, 175
snup, 175
socket, 175
socketpair, 176
sockname, 176
sockopt, 177
sover, 178
split, 178
spop, 179
sprint, 179
sprints, 180
sprintsdict, 50, 180
spush, 180
sqrt, 181
srand, 181
sroll, 181
srot, 182
stack, 182
stacktype, 48, 59
stackunderflow, 24

start, 183
stats, 37
status, 183
stderr, 184
stdin, 184
stdout, 184
stop, 34, 184, 209, 210
stopped, 185
string, 185
stringtype, 49, 59
stuck, 185
sub, 186
submatch, 186
subst, 186
sunder, 187
sup, 187
symlink, 188
syntaxerror, 24
system, 188
systemdict, 299
systemdict, 60, 189
systemdict abs(), 299
systemdict accept(), 299
systemdict acos(), 299
systemdict acosh(), 299
systemdict add(), 299
systemdict adn(), 299
systemdict and(), 299
systemdict array(), 299
systemdict asin(), 299
systemdict asinh(), 299
systemdict atan(), 299
systemdict atan2(), 299
systemdict atanh(), 299
systemdict aup(), 299
systemdict bdup(), 299
systemdict begin(), 299
systemdict bind(), 299
systemdict bindsocket(), 299
systemdict bpop(), 299
systemdict broadcast(), 299
systemdict bytesavailable(), 299
systemdict cat(), 299
systemdict cd(), 299
systemdict ceiling(), 299
systemdict chmod(), 299
systemdict chown(), 299
systemdict chroot(), 299
systemdict clear(), 299
systemdict cleartomark(), 299
systemdict close(), 299

312 Onyx Manual INDEX

systemdict condition(), 300
systemdict connect(), 300
systemdict copy(), 300
systemdict cos(), 300
systemdict cosh(), 300
systemdict count(), 300
systemdict countdstack(), 300
systemdict countestack(), 300
systemdict counttomark(), 300
systemdict currentdict(), 300
systemdict currentlocking(), 300
systemdict cvds(), 300
systemdict cve(), 300
systemdict cves(), 300
systemdict cvlit(), 300
systemdict cvn(), 300
systemdict cvrs(), 300
systemdict cvs(), 300
systemdict cvx(), 300
systemdict dec(), 300
systemdict def(), 300
systemdict detach(), 300
systemdict dict(), 300
systemdict die(), 300
systemdict dirforeach(), 300
systemdict div(), 300
systemdict dn(), 300
systemdict dstack(), 300
systemdict dup(), 300
systemdict echeck(), 300
systemdict egid(), 300
systemdict end(), 300
systemdict eq(), 300
systemdict estack(), 300
systemdict euid(), 300
systemdict eval(), 300
systemdict exch(), 300
systemdict exec(), 300
systemdict exit(), 300
systemdict exp(), 300
systemdict floor(), 300
systemdict flush(), 300
systemdict flushfile(), 300
systemdict for(), 300
systemdict foreach(), 300
systemdict forkexec(), 300
systemdict ge(), 300
systemdict get(), 300
systemdict getinterval(), 300
systemdict gid(), 300
systemdict gstderr(), 300

systemdict gstdin(), 301
systemdict gstdout(), 301
systemdict gt(), 301
systemdict hooktag(), 301
systemdict ibdup(), 301
systemdict ibpop(), 301
systemdict idiv(), 301
systemdict idup(), 301
systemdict if(), 301
systemdict ifelse(), 301
systemdict inc(), 301
systemdict iobuf(), 301
systemdict ipop(), 301
systemdict istack(), 301
systemdict join(), 301
systemdict known(), 301
systemdict lcheck(), 301
systemdict le(), 301
systemdict length(), 301
systemdict link(), 301
systemdict listen(), 301
systemdict ln(), 301
systemdict load(), 301
systemdict lock(), 301
systemdict log(), 301
systemdict loop(), 301
systemdict lt(), 301
systemdict match(), 301
systemdict mkdir(), 301
systemdict mkfifo(), 301
systemdict mod(), 301
systemdict modload(), 301
systemdict monitor(), 301
systemdict mul(), 301
systemdict mutex(), 301
systemdict nbpop(), 301
systemdict ncat(), 301
systemdict ndn(), 301
systemdict ndup(), 301
systemdict ne(), 301
systemdict neg(), 301
systemdict nip(), 301
systemdict nonblocking(), 301
systemdict not(), 301
systemdict npop(), 301
systemdict nsleep(), 301
systemdict nup(), 301
systemdict offset(), 301
systemdict open(), 301
systemdict or(), 301
systemdict ostack(), 301

INDEX Jason Evans 313

systemdict over(), 302
systemdict peername(), 302
systemdict pid(), 302
systemdict pipe(), 302
systemdict poll(), 302
systemdict pop(), 302
systemdict pow(), 302
systemdict ppid(), 302
systemdict print(), 302
systemdict put(), 302
systemdict putinterval(), 302
systemdict pwd(), 302
systemdict quit(), 302
systemdict rand(), 302
systemdict read(), 302
systemdict readline(), 302
systemdict readlink(), 302
systemdict realtime(), 302
systemdict recv(), 302
systemdict regex(), 302
systemdict regsub(), 302
systemdict rename(), 302
systemdict repeat(), 302
systemdict rmdir(), 302
systemdict roll(), 302
systemdict rot(), 302
systemdict round(), 302
systemdict sadn(), 302
systemdict saup(), 302
systemdict sbdup(), 302
systemdict sbpop(), 302
systemdict sbpush(), 302
systemdict sclear(), 302
systemdict scleartomark(), 302
systemdict scount(), 302
systemdict scounttomark(), 302
systemdict sdn(), 302
systemdict sdup(), 302
systemdict seek(), 302
systemdict self(), 302
systemdict send(), 302
systemdict serviceport(), 302
systemdict setegid(), 302
systemdict setenv(), 302
systemdict seteuid(), 302
systemdict setgid(), 302
systemdict setgstderr(), 302
systemdict setgstdin(), 302
systemdict setgstdout(), 302
systemdict setiobuf(), 302
systemdict setlocking(), 302

systemdict setnonblocking(), 303
systemdict setsockopt(), 303
systemdict setstderr(), 303
systemdict setstdin(), 303
systemdict setstdout(), 303
systemdict setuid(), 303
systemdict sexch(), 303
systemdict shift(), 303
systemdict sibdup(), 303
systemdict sibpop(), 303
systemdict sidup(), 303
systemdict signal(), 303
systemdict sin(), 303
systemdict sinh(), 303
systemdict sipop(), 303
systemdict snbpop(), 303
systemdict sndn(), 303
systemdict sndup(), 303
systemdict snip(), 303
systemdict snpop(), 303
systemdict snup(), 303
systemdict socket(), 303
systemdict socketpair(), 303
systemdict sockname(), 303
systemdict sockopt(), 303
systemdict sover(), 303
systemdict split(), 303
systemdict spop(), 303
systemdict spush(), 303
systemdict sqrt(), 303
systemdict srand(), 303
systemdict sroll(), 303
systemdict srot(), 303
systemdict stack(), 303
systemdict start(), 303
systemdict status(), 303
systemdict stderr(), 303
systemdict stdin(), 303
systemdict stdout(), 303
systemdict stop(), 303
systemdict stopped(), 303
systemdict string(), 303
systemdict stuck(), 303
systemdict sub(), 303
systemdict submatch(), 303
systemdict subst(), 303
systemdict sunder(), 303
systemdict sup(), 303
systemdict sym gt(), 303
systemdict sym lp(), 303
systemdict sym rb(), 304

314 Onyx Manual INDEX

systemdict sym rp(), 303
systemdict symlink(), 304
systemdict tan(), 304
systemdict tanh(), 304
systemdict tell(), 304
systemdict test(), 304
systemdict thread(), 304
systemdict threaddstack(), 304
systemdict threadestack(), 304
systemdict threadistack(), 304
systemdict threadostack(), 304
systemdict threadsdict(), 304
systemdict timedwait(), 304
systemdict token(), 304
systemdict trunc(), 304
systemdict truncate(), 304
systemdict trylock(), 304
systemdict tuck(), 304
systemdict type(), 304
systemdict uid(), 304
systemdict umask(), 304
systemdict undef(), 304
systemdict under(), 304
systemdict unlink(), 304
systemdict unlock(), 304
systemdict unsetenv(), 304
systemdict until(), 304
systemdict up(), 304
systemdict wait(), 304
systemdict waitpid(), 304
systemdict where(), 304
systemdict while(), 304
systemdict write(), 304
systemdict xcheck(), 304
systemdict xor(), 304
systemdict yield(), 304

tan, 189
tanh, 189
tell, 190
test, 190
thd, 292
thd crit enter(), 293
thd crit leave(), 294
thd delete(), 292
thd join(), 293
thd new(), 292
thd resume(), 294
thd self(), 293
thd sigmask(), 293
thd single enter(), 294

thd single leave(), 294
thd suspend(), 294
thd trysuspend(), 294
thd yield(), 293
thread, 191
threaddict, 205, 206
threaddstack, 191
threadestack, 192
threadistack, 192
threadostack, 192
threadsdict, 193, 206
threadtype, 49, 60
threshold, 37
throw, 193
timedwait, 193
token, 194
true, 196
trunc, 195
truncate, 195
trylock, 196
tsd, 295
tsd delete(), 295
tsd get(), 295
tsd new(), 295
tsd set(), 295
tuck, 197
type, 197
typecheck, 24

uid, 198
umask, 198
undef, 198
undefined, 24
undefinedfilename, 24
undefinedresult, 24
under, 199
unlink, 199
unlock, 200
unmatchedfino, 24
unmatchedmark, 24
unregistered, 24
unsetenv, 200
until, 200
up, 201
userdict, 201, 206, 207

version, 201

wait, 202
waitpid, 202
where, 202
while, 203

INDEX Jason Evans 315

write, 203

xcheck, 204
xep, 296
xep acatch, 297
xep begin(), 296
xep catch(), 297
xep end(), 297
xep handled(), 298
xep mcatch(), 297
xep retry(), 298
xep throw(), 298
xep throw e(), 298
xep try, 297
xep value(), 297
xor, 204

yield, 205

	Onyx Language Tutorial
	Syntax
	Data types
	Execution
	Memory management
	Stacks
	Using stacks as queues
	Using the operand stack as two stacks
	Efficiency issues

	Dictionaries
	Efficiency issues

	Regular expressions
	Matching
	Splitting
	Substituting

	Code organization
	Procedures
	Modules

	Error handling
	Introspection
	Threads
	Implicit synchronization
	General threading concerns

	Optimization
	Debugging

	Onyx Language Reference
	Objects
	Syntax
	Stacks
	Standard I/O
	Interpreter recursion
	Error handling
	Threads
	Implicit synchronization
	Explicit synchronization

	Memory management
	Regular expressions
	Dictionary reference
	currenterror
	envdict
	errordict
	gcdict
	globaldict
	onyxdict
	outputsdict
	sprintsdict
	systemdict
	threaddict
	threadsdict
	userdict

	The onyx program
	Usage
	Options

	Environment variables
	Language differences

	The libonyx library
	Compilation
	Types
	Global variables
	Threads
	Garbage collection
	Exceptions
	Integration issues
	Thread creation
	Restarted interrupted system calls
	Signals

	Guidelines for writing extensions
	API
	Classes
	ch
	cnd
	dch
	mb
	mem
	mq
	mtx
	nx
	nxa
	nxn
	nxo
	nxo_array
	nxo_boolean
	nxo_condition
	nxo_dict
	nxo_file
	nxo_fino
	nxo_hook
	nxo_integer
	nxo_mark
	nxo_mutex
	nxo_name
	nxo_no
	nxo_null
	nxo_operator
	nxo_pmark
	nxo_real
	nxo_regex
	nxo_regsub
	nxo_stack
	nxo_string
	nxo_thread
	ql
	qr
	qs
	thd
	tsd
	xep

	Dictionaries
	gcdict
	systemdict

	Index

