Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 1.9.2
Document version 1.9
January 2004

Michaél Van Canneyt

Contents

| The Pascal language 13
1 Pascal Tokens 14
1.1 Symbols. e 14
1.2 CommENtS e 14
1.3 Reservedwords e e 15
Turbo Pascalreservedwords. 15
Delphireservedwords. e 16

Free Pascalreservedwords. 16
Modifiers e e e 16

1.4 Identifiers. 16
1.5 Numbers e 17
1.6 Labels. e 18
1.7 Characterstrings. e e 18
2 Constants 19
2.1 Ordinaryconstants. 19
22 Typedconstants e e e 20
2.3 Resourcestrings. o 21
3 Types 22
3.1 Basetypes 22
Ordinaltypes 23
INtegers. 23
Booleantypes 24
Enumerationtypes. 25
Subrangetypes 26

Realtypes. 26

3.2 Charactertypes e 27
Char. . . . 27
SHINGS. . . 27
Shortstrings. 27

CONTENTS

ANSISIIINGS 28
WIdeStrings. o 29
ConstantStrings e 29
PChar - Nullterminated strings. i 30

3.3 Structured TYPES. 31
AITayS . . . 31
StatiCarrays o o e e e e e e e e 32

Dynamic arrays i e e e e e 33
Recordtypes o o 35
Settypes 38
Filetypes o e 39

3.4 POINEIS. o e 39
3.5 Forwardtypedeclarations. 41
3.6 Proceduraltypes. 42
3.7 Varianttypes e e 43
Definition e 43
Variants in assignments and expressions 44
Variantsand interfaces. e 45
Objects 46
4.1 Declaration. 46
4.2 Fields A7
4.3 Constructors and destructors. Lo 48
4.4 Methods. e 49
4.5 Methodinvocation. 49
Staticmethods. 50

Virtual methods. 50
Abstractmethods L 51

4.6 Visibility 52
Classes 53
5.1 Classdefinitions. e 53
5.2 Classinstantiation. 55
5.3 Methods. 55
invocation L 55
Virtual methods. 55
Messagemethods 56

5.4 Properties. e e 57
Interfaces 61
6.1 Definition e 61

CONTENTS

6.2 Identification: AGUID. 62
6.3 Interfacesand COM. e 62
7 Expressions 64
7.1 EXPression SyNtax. v v v v v v i e 65
7.2 Functioncalls. e 66
7.3 Setconstructors 67
7.4 Valuetypecasts. 68
75 The@operator e e 69
7.6 Operators. o e e e e 69
Arithmeticoperators e 69
Logical operators. e 70
Booleanoperators 71
String operators. e e 71
Setoperators. e e 71
Relational operators 71

8 Statements 73
8.1 Simplestatements. 73
ASSIGNMENES o 73
Procedure statements. 74
Gotostatements 75

8.2 Structured statements. L 75
Compound statements. 76
TheCase statement 76
Thelf..then..else Statement 77
TheFor..to/downto..do Statement. oL 78
TheRepeat..until statement. 79
TheWhile.do statement. 80
TheWith statement 80
Exception Statements 82

8.3 Assemblerstatements. 82
9 Using functions and procedures 84
9.1 Proceduredeclaration. 84
9.2 Functiondeclaration. 85
9.3 Parameterlists. 85
Value parameters. 86
Variable parameters 86
Outparameters. o o e e e e 87
Constant parameters. e e e e e e 87

CONTENTS

Openarray parameters o e 88
Array of CONSt. L 88

9.4 Functionoverloading 90
9.5 Forward defined functions. 91
9.6 Externalfunctions 92
9.7 Assemblerfunctions. 93
9.8 Modifiers 93
alias 94
cdecl. 94
EXPOIT . . o e 95
INNe . . . e 95
INTErTUPL o 95
pascal 95
popstack. 95
public e 96
FEOISEr e e e 96
SAVEIEQISterS e e e 96
safecall e 96
stdeall 96

9.9 Unsupported Turbo Pascal modifiers 97
10 Operator overloading 98
10.1 Introduction. L 98
10.2 Operatordeclarations. e 98
10.3 ASSIgNMENt OPEeratorS. v v v i i e e e e e e 99
10.4 Arithmeticoperators. o e e e e 101
10.5 Comparisionoperatar. e e e 102
11 Programs, units, blocks 104
111 Programs. v e e e e e e e e e 104
112 Units. . . o 105
11.3 Blocks. e 106
11.4 SCOPE. . . o o e e e 107
Blockscope. e 107
Record scope. o e 108
Class SCOpe. 108
UNitSCOPE. o o e e e e 108
11.5 Libraries. o e 109
12 Exceptions 110
12.1 Theraise statement. e 110

CONTENTS

12.2 Thetry..exceptstatement 111
12.3 The try..finally statement. 112
12.4 Exception handlingnesting. 113
12.5 Exceptionclasses o 113
13 Using assembler 114
13.1 Assembler statements. 114
13.2 Assembler procedures and functions Lo 114
Il Reference : The System unit 115
14 The system unit 116
14.1 Types, Constantsand Variables 116
TYPES . . o e 116
Constants. e 119
Variables 122

14.2 Functionlistby category. e 123
Filehandling 123
Memory management 124
Mathematical routines. 125
Stringhandling 125
Operating System functions. L oL o 126
Miscellaneous functions. 126

14.3 Functionsand Procedures 127
ADS L e 127
Addr . . . e 127
Append . .. 128
ArCtan 128
ASSErt . . . e 129
ASSIgN . . . e 129
Assigned 130
BinStr e 130
Blockread 131
Blockwrite. 131
Break e 132
Chdir . . 132

Chr e 133
Close e 133
CompareByte. 134
CompareChar. e 135

CONTENTS

CompareDWord e 136
CompareWord e 137
Concat. e 138
Continue. e 139
CopY. . o 139
COS . . e 140
CSEeg. . . e e 140
Dec . . . e 141
Delete e 141
DISPOSE 142
DSeg . . . e e e 143
BOf. . 143
EBoln e 144
Erase 144
Exclude 145
EXIt . . 146
EXD . o e 147
Filepos. . . . o o 148
Filesize 148
FillByte e 149
Fillchar e 150
FillDWord e 150
Fillword 151
Flush . . . o 151
Frac e 152
Freemem e 152
Getdir 153
Getmem. e 153
GetMemoryManager. 154
Halt . . . e 154
HexStr. . . . 154
Hi 155
High . . o 155
INC . . . 156
Include e 157
IndexByte e 157
IndexChar. e 158
IndexDWord. e 159
IndexWord e 160
INsert e 160

CONTENTS

IsMemoryManagerSet. 161
INt . . e e e 161
Oresult 161
Length. e 163
I 163
0 164
Longdmp . . . L e 164
LOW . o 164
Lowercase. e e e e 165
Mark. . . o e e 165
Maxavail e 166
Memavail e 166
MKAIr . . e 167
Move . . . 167
MoveCharO e 168
NEW . . e 168
Odd 168
OCtStr e e 169
OfS. o o 169
Ord . . 170
Paramcount. 170
Paramstr. e 171
Pi 171
POS. . e 172
Power e 172
Pred e 172
PEr . 173
Random. 173
Randomize 174
Read. e 174
ReadIn. 175
Real2Double 175
Release e 176
Rename. e 176
Reset 177
Rewrite e 177
Rmdir e 178
Round. e 179
RUNEITror. 179
Seek. . e 179

CONTENTS

SeekEoOf. e 180
SeekEoIN e 181
SEg . . e e 181
SetMemoryManager. e e e 182
SetImp 182
Setlength. 182
SetString e 183
SetTextBuf 183
s 184
SizeOf. . . . e 185
SPUr . e e e 185
SO, v v 185
SOrt . . 186
SSeQ. . . 186
S 187
StringOfChar e 187
SUCC. . . o e 188
SWAP . . e 188
TrUNC . . . e 188
Truncate. e e 189
UPCASE . . . o o e e e 189
Val . . e 190
WItE . . . 191
WriteLn e 191
15 The OBJPAS unit 193
150 TYPES . o o v e e 193
15.2 Functionsand Procedures 193
AssignFile. . . . o 193
CloseFile 194
Freemem e 194
Getmem. e 195
GetResourceStringCurrentValue o 195
GetResourceStringDefaultValue 196
GetResourceStringHash. 196
GetResourceStringName 197
Hash. e 197
Paramstr. 198
ReAllocMem e 198
ResetResourceTables. 199

CONTENTS

ResourceStringCount 199
ResourceStringTableCount. 199
SetResSoUrCeStNNgS v v e e e 200
SetResourceStringValue. L 200

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1

9.1

Predefined integertypes 23
Predefined integertypes e 24
Booleantypes 24
Supported Realtypes 27
PChar pointer arithmetic 31
Set Manipulationoperators. 39
Precedenceofoperatars 64
Binary arithmeticoperators. 70
Unary arithmeticoperators o e 70
Logical operators. e 70
Booleanoperators. 71
Setoperators. e e e e 72
Relational operators. e 72
Allowed C constructsinFreePascal. 74
Unsupported modifiers 97

10

LIST OF TABLES

About this guide

This document describes all constants, types, variables, functions and procedures as they are de-
clared in the system unit. Furthermore, it describes all pascal constructs supported by Free Pascal,
and lists all supported data types. It does not, however, give a detailed explanation of the pascal lan-

guage. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal implementation.

Notations

Throughout this document, we will refer to functions, types and variablestypnwriter font.
Functions and procedures have their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.
Description What does the procedure exactly do ?
Errors What errors can occur.

See Also Cross references to other related functions/commands.
The cross-references come in two flavours:

e References to other functions in this manual. In the printed copy, a number will appear after
this reference. It refers to the page where this function is explained. In the on-line help pages,
this is a hyperlink, which can be clicked to jump to the declaration.

e References to Unix manual pages. (For linux and unix related things only) they are printed in
typewriter font, and the number after it is the Unix manual section.

Syntax diagrams

All elements of the pascal language are explained in syntax diagrams. Syntax diagrams are like flow
charts. Reading a syntax diagram means getting from the left side to the right side, following the

arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this

means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to each
other, then the diagram is ended.

Syntactical elements are written like this

=»— syntactical elements are like this >
Keywords which must be typed exactly as in the diagram:

»— keywords are like this — >

When something can be repeated, there is an arrow around it:

»—f this can be repeated { «

When there are different possibilities, they are listed in columns:
»—r First possibility -
Second possibility J

Note, that one of the possibilities can be empty:

11

LIST OF TABLES

% First possibility
Second possibility —

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

12

Part |

The Pascal language

13

Chapter 1

Pascal Tokens

In this chapter we describe all the pascal reserved words, as well as the various ways to denote strings,
numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special ASCIlI symbols in a Pascal source file.

[[
Recognised symbols

-— letter A.Z -
ez

w— digit— 0...9 —

»— hex digit —- 0...9 —
EA...Fﬂ
a..f—

The following characters have a special meaning:
+-*/=<>[].,():"@{}$#

and the following character pairs too:

<= >= = 4= = *= /= (* %) (L)

When used in a range specifier, the character pairis equivalent to the left square bracKet

Likewise, the character paiy is equivalent to the right square bracketWhen used for comment

delimiters, the character pdir is equivalent to the left brade and the character paiy is equiva-
lent to the right bracg. These character pairs retain their normal meaning in string expressions.

1.2 Comments

Free Pascal supports the use of nested comments. The following constructs are valid comments:

14

CHAPTER 1. PASCAL TOKENS

(* This is an old style comment *)
{ This is a Turbo Pascal comment }
/I This is a Delphi comment. All is ignored till the end of the line.

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }

(* comment 1 // Comment 2 *)
/I comment 1 (* comment 2 *)
/I comment 1 { comment 2 }

The last two commentsiustbe on one line. The following two will give errors:

/I Valid comment { No longer valid comment !!

}

and

/I Valid comment (* No longer valid comment !!

")

The compiler will react with a ’invalid character’ error when it encounters such constructs, regardless
of the-So switch.

1.3 Reserved words

Reserved words are part of the Pascal language, and cannot be redefined. They will be denoted as
this throughout the syntax diagrams. Reserved words can be typed regardless of case, i.e. Pascal is
case insensitive. We make a distinction between Turbo Pascal and Delphi reserved words, since with
the-So switch, only the Turbo Pascal reserved words are recognised, and the Delphi ones can be
redefined. By default, Free Pascal recognises the Delphi reserved words.

Turbo Pascal reserved words

The following keywords exist in Turbo Pascal mode

absolute else nil shl
and end not shr
array file object string
asm for of then
begin function on to
break goto operator type
case if or unit
const implementation packed until
constructor in procedure uses
continue inherited program var
destructor inline record while
div interface repeat with
do label self xor
downto mod set

15

Remark:

CHAPTER 1. PASCAL TOKENS

Delphi reserved words

The Delphi (Il) reserved words are the same as the pascal ones, plus the following ones:

as finalization library threadvar
class finally on try
except initialization property

exports is raise

Free Pascal reserved words

On top of the Turbo Pascal and Delphi reserved words, Free Pascal also considers the following as
reserved words:

dispose false true
exit new
Modifiers

The following is a list of all modifiers. Contrary to Delphi, Free Pascal doesn't allow the programmer
to redefine these modifiers.

absolute external pascal register
abstract far popstack saveregisters
alias forward private stdcall
assembler index protected virtual

cdecl name public write

default near published

export override read

Predefined types such Bgte , Boolean and constants such asaxint arenotreserved words.
They are identifiers, declared in the system unit. This means that these types can be redefined in other
units. The programmer is, however, not encouraged to do this, as it will cause a lot of confusion.

1.4 Identifiers

Identifiers denote constants, types, variables, procedures and functions, units, and programs. All
names of things that are defined are identifiers. An identifier consists of 255 significant characters
(letters, digits and the underscore character), from which the first must be an alphanumeric character,
or an underscore | The following diagram gives the basic syntax for identifiers.

[
Identifiers

digit —

-— identifier — letter —
1_—‘ Ttter

16

CHAPTER 1. PASCAL TOKENS

1.5 Numbers

Numbers are by default denoted in decimal notation. Real (or decimal) numbers are written using
engineering or scientific notation (e @.314E1).

For integer type constants, Free Pascal supports 4 formats:
1. Normal, decimal format (base 10). This is the standard format.

2. Hexadecimal format (base 16), in the same way as Turbo Pascal does. To specify a constant
value in hexadecimal format, prepend it with a dollar sigh (Thus, the hexadecim&FF
equals 255 decimal. Note that case is insignificant when using hexadecimal constants.

3. As of version 1.0.7, Octal format (base 8) is also supported. To specify a constant in octal
format, prepend it with a ampersand (&). For instance 15 is specified in octal notagdiyas

4. Binary notation (base 2). A binary number can be specified by preceding it with a percent sign
(%9. Thus,255 can be specified in binary notation®#41111111.

The following diagrams show the syntax for numbers.

[
Numbers

»— hex digit sequence ‘{ hex digit -
»— octal digit sequence ff octal digit —

»— bin digit sequence 1- >
0

»— digit sequence w >

»— unsigned integer — digit sequence —
{ $ — hex digit sequence ﬁ
% — bin digit sequence —

~—sion

»— unsigned real — digit sequence

L . —digit sequence J L scale factor J

»— scale factor T E m digit sequence >
e—' Lsign

»— unsigned number —— unsigned real — >
Tunsigned integerJ

»— signed number ﬁ unsigned number >
sign —

Remark: It is to note that all decimal constants which do no fit within the -2147483648..2147483647 range,
are silently and automatically parsed as real-type constants.

17

CHAPTER 1. PASCAL TOKENS

1.6 Labels

Labels can be digit sequences or identifiers.

[
Label

»— label — digit sequence -)
L |dent|f|er

Remark: Note thattheSg switch must be specified before labels can be used. By default, Free Pascal doesn’t
supportiabel andgoto statements.

1.7 Character strings

A character string (or string for short) is a sequence of zero or more characters from the ASCII
character set, enclosed by single quotes, and on 1 line of the program source. A character set with
nothing between the quotes () is an empty string.

[
Character strings

»— character string quoted string J -
[control string
»— quoted string -’ fT string character T T - >

=— string character T Any character except’ or CR l >

»— control string T # — unsigned integer l >

18

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both normal and typed constants.

2.1 Ordinary constants

Ordinary constants declarations are not different from the Turbo Pascal or Delphi implementation.

[|
Constant declaration

»— constant declaration T identifier — = — expression — ; — >

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operatorssuchas -, *, /, not, and, or, div, mod, ord, chr, sizeof, pi,

int, trunc, round, frac, odd can be used, however. For more information on expres-
sions, see chaptét, page64. Only constants of the following types can be declar@ddinal

types , Real types , Char, andString . The following are all valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a= 2 { Ordinal (Integer) type constant. }
c =4, { Character type constant. }
s = 'This is a constant string’; {String type constant.}
s = chr(32)

Is = SizeOf(Longint);

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := 'some other string’;

Prior to version 1.9, Free Pascal did not correctly support 64-bit constants. As of version 1.9, 64-bits
constants can be specified.

19

Remark:

CHAPTER 2. CONSTANTS

2.2 Typed constants

Typed constants serve to provide a program with initialised variables. Contrary to ordinary constants,
they may be assigned to at run-time. The difference with normal variables is that their value is
initialised when the program starts, whereas normal variables must be initialised explicitly.

[[
Typed constant declaration

»— typed constant declaration ‘f identifier — : — type — = — typed constant — ; T—N

»— typed constant constant >
address constant —
array constant
record constant
procedural constant —

Given the declaration:

Const
S : String = 'This is a typed constant string’;

The following is a valid assignment:
S := 'Result : '+Func;
WhereFunc is a function that returns @tring . Typed constants are often used to initialize arrays
and records. For arrays, the initial elements must be specified, surrounded by round brackets, and

separated by commas. The number of elements must be exactly the same as the number of elements
in the declaration of the type. As an example:

Const
tt : array [1..3] of string[20] = (ikke’, 'gij’, ’hij’);
ti : array [1..3] of Longint = (1,2,3);

For constant records, each element of the record should be specified, in theddm Value
separated by commas, and surrounded by round brackets. As an example:

Type
Point = record
X,Y : Real
end;
Const

Origin : Point = (X:0.0; Y:0.0);

The order of the fields in a constant record needs to be the same as in the type declaration, otherwise
a compile-time error will occur.

It should be stressed that typed constants are initialized at program start. This is also true for
local typed constants. Local typed constants are also initialized at program start. If their value was
changed during previous invocations of the function, they will retain their changed value, i.e. they
are not initialized each time the function is invoked.

20

CHAPTER 2. CONSTANTS

2.3 Resource strings

A special kind of constant declaration part is fResourestring part. This part is like &onst
section, but it only allows to declare constant of type string. This partis only availableiretphi
or objfpc mode.

The following is an example of a resourcestring definition:
Resourcestring

FileMenu = '&File...’;
EditMenu = '&Edit...’;

All string constants defined in the resourcestring section are stored in special tables, allowing to
manipulate the values of the strings at runtime with some special mechanisms.

Semantically, the strings are like constants; Values can not be assigned to them, except through the
special mechanisms in the objpas unit. However, they can be used in assignments or expressions
as normal constants. The main use of the resourcestring section is to provide an easy means of
internationalization.

More on the subject of resourcestrings can be found ifPtlhgrammers guidand in the chapter on
theobjpas later in this manual.

21

file:../prog/prog.html

Chapter 3

Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some
extra types from Delphi. The programmer can declare his own types, which is in essence defining an
identifier that can be used to denote this custom type when declaring variables further in the source
code.

[
Type declaration

»— type declaration - identifier — = — type — ; — <

There are 7 major type classes :

[
Types

»— type — simple type - >
string type —
structured type
pointer type —

procedural type —
type identifier

The last classtype identifier, is just a means to give another name to a type. This presents a way
to make types platform independent, by only using these types, and then defining these types for
each platform individually. The programmer that uses these units doesn’t have to worry about type
size and so on. It also allows to use shortcut names for fully qualified type names. e.g. define
system.longint asOlongint and then redefinlngint

3.1 Basetypes

The base or simple types of Free Pascal are the Delphi types. We will discuss each separate.

[[
Simple types

22

CHAPTER 3. TYPES

=»— simple type — ordinal type »—
1 real type J

»— real type - real type identifier — >

Ordinal types

With the exception oint64 , qword and Real types, all base types are ordinal types. Ordinal types
have the following characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to start counting them
one bye one, in a specified order. This property allows the operation of functibms @$56),
Ord (170), Dec (141) on ordinal types to be defined.

2. Ordinal values have a smallest possible value. Trying to applf?tad (172 function on the
smallest possible value will generate a range check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apphstiee (188) function on the
largest possible value will generate a range check error if range checking is enabled.

Integers

A list of pre-defined integer types is presented in taBl&)(The integer types, and their ranges and

Table 3.1: Predefined integer types

Name
Integer
Shortint
Smallint
Longint
Longword
Int64
Byte
Word
Cardinal
QWord
Boolean
ByteBool
LongBool
Char

sizes, that are predefined in Free Pascal are listed in talfle (t is to note that thegword and
int64 types are not true ordinals, so some pascal constructs will not work with these two integer

types.

Theinteger type maps to the smallint type in the default Free Pascal mode. It maps to either a
longint or int64 in either Delphi or ObjFPC mode. Tbardinal type is currently always mapped

to the longword type. The definition of tlwardinal andinteger types may change from one
architecture to another and from one compiler mode to another. They usually have the same size as
the underlying target architecture.

23

CHAPTER 3. TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0..255 1
Shortint -128 .. 127 1
Smallint -32768 .. 32767 2
Word 0.. 65535 2
Integer either smallint, longint or int64 size 2,4 0r8
Cardinal either word, longword or qword size2,40r8
Longint -2147483648 .. 2147483647 4
Longword 0..4294967295 4
Int64 -9223372036854775808 .. 9223372036854775807 8
QWord 0..18446744073709551615 8

Free Pascal does automatic type conversion in expressions where different kinds of integer types are
used.

Boolean types

Free Pascal supports tBeolean type, with its two pre-defined possible valubesie andFalse .

It also supports th8yteBool , WordBool andLongBool types. These are the only two values
that can be assigned toBoolean type. Of course, any expression that resolves bmalean
value, can also be assigned to a boolean type. AssuBinge of typeBoolean , the following

Table 3.3: Boolean types

Name Size Ord(True)
Boolean 1 1

ByteBool 1 Any nonzero value
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value

are valid assignments:

B := True;
B := False;
B = 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

Remark: In Free Pascal, boolean expressions are always evaluated in such a way that when the result is known,
the rest of the expression will no longer be evaluated (Called short-cut evaluation). In the following
example, the functioRunc will never be called, which may have strange side-effects.

B
A

False;
B and Func;

HereFunc is a function which returns Boolean type.

24

CHAPTER 3. TYPES

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free
Pascal allows also a C-style extension of the enumeration type, where a value is assigned to a partic-
ular element of the enumeration list.

[
Enumerated types

»— enumerated type — (— identifier list) >
[assigned enum list J

»— identifier list — identifier —
T dentier

»— assigned enum list fT identifier — := — expression — >

(see chapter, page64 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

The C style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40,fortyone);

As a result, the ordinal number ébrty is 40, and not3, as it would be when the= 40’

wasn't present. The ordinal value fifrtyone is then 41, and no#, as it would be when the
assignment wasn'’t present. After an assignment in an enumerated definition the compiler adds 1 to
the assigned value to assign to the next enumerated value. When specifying such an enumeration
type, it is important to keep in mind that the enumerated elements should be kept in ascending order.
The following will produce a compiler error:

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

Itis necessary to kedprty andthirty in the correct order. When using enumeration types it is
important to keep the following points in mind:

1. ThePred andSucc functions cannot be used on this kind of enumeration types. Trying to
do this anyhow will result in a compiler error.

2. Enumeration types stored using a default size. This behaviour can be changed {$PARKENUM
n} compiler directive, which tells the compiler the minimal number of bytes to be used for
enumeration types. For instance

25

CHAPTER 3. TYPES

Type
{$PACKENUM 4}

LargeEnum = (BigOne, BigTwo, BigThree);
{$PACKENUM 1}

SmallEnum = (one, two, three);
Var S : SmallEnum,;

L : LargeEnum;

begin

WriteLn ('Small enum : ’,SizeOf(S));

WriteLn ('Large enum : ’,SizeOf(L));
end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in tHerogrammers guidén the compiler directives section.

Subrange types

A subrange type is a range of values from an ordinal typeh{tsttype). To define a subrange type,
one must specify it's limiting values: the highest and lowest value of the type.

[
Subrange types

»— subrange type — constant — .. — constant ~—

Some of the predefinddteger types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767;
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

Subrange types of enumeration types can also be defined:

Type
Days = (monday,tuesday,wednesday,thursday,friday,
saturday,sunday);
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

Real types

Free Pascal uses the math coprocessor (or emulation) for all its floating-point calculations. The Real
native type is processor dependant, but it is either Single or Double. Only the IEEE floating point
types are supported, and these depend on the target processor and emulation options. The true Turbo
Pascal compatible types are listed in taldel. The Comptype is, in effect, a 64-bit integer and

is not available on all target platforms. To get more information on the supported types for each
platform, refer to thé>rogrammers guide

26

file:../prog/prog.html
file:../prog/prog.html

CHAPTER 3. TYPES

Table 3.4: Supported Real types

Type Range Significant digits Size
Real platform dependant ?2?7? 4o0r8
Single 1.5E-45 .. 3.4E38 7-8 4
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4951 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8

3.2 Character types

Char

Free Pascal supports the typbar. A Char is exactly 1 byte in size, and contains one character.

A character constant can be specified by enclosing the character in single quotes, as follows : 'a’ or
'Al are both character constants. A character can also be specified by its ASCII value, by preceding
the ASCII value with the number symbol (#). For example specifyi6§ would be the same as

'A’ . Also, the caret charactef) can be used in combination with a letter to specify a character
with ASCII value less than 27. Thyss equals#7 (G is the seventh letter in the alphabet.) When

the single quote character must be represented, it should be typed two times successiv8ly, thus
represents the single quote character.

Strings

Free Pascal supports tBé&ring type as itis defined in Turbo Pascal (A sequence of characters with
a specified length) and it supports ansistrings as in Delphi. To declare a variable as a string, use the
following type specification:

[
ShortString

»— string type — string — >
L [— unsigned integer —] J

The meaning of a string declaration statement is interpreted differently depending {Hhe
switch. The above declaration can declare an ansistrng or a short string.

Whatever the actual type, ansistrings and short strings can be used interchangeably. The compiler
always takes care of the necessary type conversions. Note, however, that the result of an expression
that contains ansistrings and short strings will always be an ansistring.

Short strings

A string declaration declares a short string in the following cases:

1. If the switch is off:{$H-} , the string declaration will always be a short string declaration.

2. If the switch is on{$H+} , and there is a length specifier, the declaration is a short string
declaration.

The predefined typ8hortString is defined as a string of length 255:

27

CHAPTER 3. TYPES

ShortString = String[255];

If the size of the string is not specified55 is taken as a default. The length of the string can be
obtained with the_ength (163) standard runtime routine. For example in

{$H-}

Type
NameString = String[10];
StreetString = String;

NameString can contain a maximum of 10 characters. WidteeetString can contain up to
255 characters.

Ansistrings

Ansistrings are strings that have no length limit. They are reference counted and null terminated.
Internally, an ansistring is treated as a pointer. This is all handled transparantly, i.e. they can be
manipulated as a normal short string. Ansistrings can be defined using the predef&igtting

type.

If the {$H} switch is on, then a string definition using the regB&iing keyword and that doesn’t
contain a length specifier, will be regarded as an ansistring as well. If a length specifier is present, a
short string will be used, regardless of §$¢1} setting.

If the string is empty (), then the internal pointer representation of the string pointiilis. If the
string is not empty, then the pointer points to a structure in heap memory.

The internal representation as a pointer, and the automatic null-termination make it possible to type-
cast an ansistring to a pchar. If the string is empty (so the pointer is nil) then the compiler makes sure
that the typecasted pchar will point to a null byte.

Assigning one ansistring to another doesn’t involve moving the actual string. A statement
S2:=81,
results in the reference count®2 being decreased by one, The referece coudtlak increased by

one, and finally§1 (as a pointer) is copied 182. This is a significant speed-up in the code.

If the reference count reaches zero, then the memory occupied by the string is deallocated automati-
cally, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just memory for a pointer,
not more. This pointer is guaranteed to be nil, meaning that the string is initially empty. This is true
for local and global ansistrings or anstrings that are part of a structure (arrays, records or objects).

This does introduce an overhead. For instance, declaring

Var
A : Array[1..100000] of string;

Will copy 100,000 timesnil into A. WhenA goes out of scope, then the reference count of the
100,000 strings will be decreased by 1 for each of these strings. All this happens invisibly for the
programmer, but when considering performance issues, this is important.

Memory will be allocated only when the string is assigned a value. If the string goes out of scope,
then its reference count is automatically decreased by 1. If the reference count reaches zero, the
memory reserved for the string is released.

If a value is assigned to a character of a string that has a reference count greater than 1, such as in the
following statements:

28

CHAPTER 3. TYPES

S:=T; { reference count for S and T is now 2 }
Slll=@;

then a copy of the string is created before the assignment. This is knavepg®n-writesemantics.
TheLength (163 function must be used to get the length of an ansistring.

To set the length of an ansistring, tBetLength (182 function must be used. Constant ansistrings
have a reference count of -1 and are treated specially.

Ansistrings are converted to short strings by the compiler if needed, this means that the use of an-
sistrings and short strings can be mixed without problems.

Ansistrings can be typecastedR€har or Pointer types:

Var P : Pointer;
PC : PChar;
S : AnsiString;

begin
S :='This is an ansistring’;
PC:=Pchar(S);
P :=Pointer(S);

There is a difference between the two typecasts. When an empty ansistring is typecasted to a pointer,
the pointer wil beNil . If an empty ansistring is typecasted t&’€har, then the result will be a
pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to consider the result
of such a typecast as read-only, i.e. suitable for passing to a procedure that needs a constant pchar
argument.

It is therefore NOT advisable to typecast one of the following:

1. expressions.

2. strings that have reference count larger than 0. (call uniquestring to ensure a string has refer-
ence count 1)

WideStrings

Widestrings (used to represent unicode character strings) are implemented in much the same way
as ansistrings: reference counted, null-terminated arrays, only they are implemented as arrays of
WideChars instead of regulaChars . A WideChar is a two-byte character (an element of

a DBCS: Double Byte Character Set). Mostly the same rules applWWideStrings as for
AnsiStrings . The compiler transparantly converts WideStrings to AnsiStrings and vice versa.

Similarly to the typecast of an Ansistring té*€har null-terminated array of characters, a WideString
can be converted toRWideChar null-terminated array of characters. Note that BWideChar
array is terminated by 2 null bytes instead of 1, so a typecast to a pchar is not automatic.

The compiler itself provides no support for any conversion from Unicode to ansistrings or vice versa;
2 procedural variables are present in the system unit which can be set to handle the conversion. For
more information, see the system units reference.

Constant strings

To specify a constant string, it must be enclosed in single-quotes, jugtt@@ratype, only now more
than one character is allowed. Given tl&ds of typeString , the following are valid assignments:

29

CHAPTER 3. TYPES

'This is a string.’;

'One’+’, Two'+', Three’;

'This isn”t difficult !’;

'This is a weird character : '#145 !’

nununnm

As can be seen, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be specified by their ASCII value. The example shows also that two
strings can be added. The resulting string is just the concatenation of the first with the second string,
without spaces in between them. Strings can not be substracted, however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{$H} switch.

PChar - Null terminated strings

Free Pascal supports the Delphi implementation oPtGlar type.PChar is defined as a pointer to
aChar type, but allows additional operations. TRE€har type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i.e. a variable of ty@har is a pointer that points

to an array of typ&har , which is ended by a null-charactéf(). Free Pascal supports initializing

of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;

var p : PChar;

begin
P := 'This is a null-terminated string.’;
WriteLn (P);

end.

Results in the same as

program two;
const P : PChar = 'This is a null-terminated string.’
begin
WriteLn (P);
end.

These examples also show that it is possible to wihe contentf the string to a file of type
Text . Thestringsunit contains procedures and functions that manipulat®@lear type as in the
standard C library. Since it is equivalent to a pointer to a @par variable, it is also possible to do
the following:

Program three;
Var S . String[30];
P : PChar;
begin
S = 'This is a null-terminated string.’#0;
P = @S[1];
WriteLn (P);
end.

This will have the same result as the previous two examples. Null-terminated strings cannot be added
as normal Pascal strings. If tWRChar strings mustt be concatenated; the functions from the unit
stringsmust be used.

30

file:../strings/strings.html
file:../strings/strings.html

CHAPTER 3. TYPES

However, it is possible to do some pointer arithmetic. The operat@ad- can be used to do
operations of?Char pointers. In table3.5), P andQare of typePChar, andl! is of typeLongint

Table 3.5:PChar pointer arithmetic

Operation Result

P+ 1 Adds| to the address pointed to By

| + P Addsl to the address pointed to By

P -1 Substract$ from the address pointed to Iy
P-Q Returns, as an integer, the distance between 2 addresses

(or the number of characters betwdeandQ

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured types can be
nested to unlimited levels.

[
Structured Types

»— structured type —

array type — >
—— record type
—— object type ——
class type —
I class reference type —
—— interface type ——
set type —
file type

Unlike Delphi, Free Pascal does not support the keyviRacked for all structured types, as can be
seen in the syntax diagram. It will be mentioned when a type supporgatied keyword. In the
following, each of the possible structured types is discussed.

Arrays

Free Pascal supports arrays as in Turbo Pascal, multi-dimensional arrays and packed arrays are also
supported, as well as the dynamic arrays of Delphi:

[
Array types

of —type ———
]

»— array type ﬁ array — L
packed — [fT ordinal type fT]

31

CHAPTER 3. TYPES

Static arrays

When the range of the array is included in the array definition, it is called a static array. Trying to
access an element with an index that is outside the declared range will generate a run-time error (if
range checking is on). The following is an example of a valid array declaration:

Type
RealArray = Array [1..100] of Real;

Valid indexes for accessing an element of the array are between 1 and 100, where the borders 1 and
100 are included. As in Turbo Pascal, if the array component type is in itself an array, it is possible
to combine the two arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[1..100] of Array[1..3] of Real;

is equivalent to the following declaration:

Type
APoints = array[1..100,1..3] of Real;

The functiondHigh (155 andLow (164) return the high and low bounds of the leftmost index type
of the array. In the above case, this would be 100 and 1.

When static array-type variables are assigned to each other, the contents of the whole array is copied.
This is also true for multi-dimensional arrays:

program testarrayl;

Type

TA = Array[0..9,0..9] of Integer;
var

AB : TA;

[,J : Integer;
begin

For 1:=0 to 9 do
For J:=0 to 9 do

AllLJ]:=1*;
For I:=0 to 9 do
begin

For J:;=0 to 9 do
Write(A[l,J]:2,");

Writeln;
end;

B:=A;

Writeln;

For I:=0 to 9 do
For J:;=0 to 9 do

A[9-1,9-J]:=I*J;
For I:=0 to 9 do
begin

For J:=0 to 9 do
Write(B[1,J]:2," *);
Writeln;

32

CHAPTER 3. TYPES

end;
end.

The output will be 2 identical matrices.

Dynamic arrays

As of version 1.1, Free Pascal also knows dynamic arrays: In that case, the array range is omitted, as
in the following example:

Type
TByteArray : Array of Byte;

When declaring a variable of a dynamic array type, the initial length of the array is zero. The actual
length of the array must be set with the stand8edLength function, which will allocate the
memory to contain the array elements on the heap. The following example will set the length to
1000:

Var
A : TByteArray;

begin
SetLength(A,1000);

After a call toSetLength , valid array indexes are 0 to 999: the array index is always zero-based.

Note that the length of the array is set in elements, not in bytes of allocated mmemory (although
these may be the same). The amount of memory allocated is the size of the array multiplied by the
size of 1 element in the array. The memory will be disposed of at the exit of the current procedure or
function.

It is also possible to resize the array: in that case, as much of the elements in the array as will fit in
the new size, will be kept. The array can be resized to zero, which effectively resets the variable.

At all times, trying to access an element of the array that is not in the current length of the array will
generate a run-time error.

Assignment of one dynamic array-type variable to another will let both variables point to the same
array. Contrary to ansistrings, an assignment to an element of one array will be reflected in the other:

Var
A,B : TByteArray;

begin

SetLength(A,10);

A[1]:=33;

B:=A;

A[1]:=31;
After the second assignment, the first element in B will also contain 31.
It can also be seen from the output of the following example:

program testarrayl;

Type
TA = Array of array of Integer;

33

CHAPTER 3. TYPES

var
AB : TA;
I,J : Integer,
begin

Setlength(A,10,10);
For I:=0 to 9 do
For J:=0 to 9 do

AlLJ]:=1*J;
For 1:=0 to 9 do
begin

For J:=0 to 9 do
Write(A[l,J]:2,”);

Writeln;
end;

B:=A;

Writeln;

For 1:=0 to 9 do
For J:=0 to 9 do

A[9-1,9-J]:=I*J;
For 1:=0 to 9 do
begin

For J:=0 to 9 do
Write(B[1,J]:2,”);
Writeln;
end;
end.

The output will be a matrix of numbers, and then the same matrix, mirrorred.

Dynamic arrays are reference counted: if in one of the previous examples A goes out of scope and B
does not, then the array is not yet disposed of: the reference count of A (and B) is decreased with 1.
As soon as the reference count reaches zero, the memory is disposed of.

It is also possible to copy and/or resize the array with the star@apg function, which acts as the
copy function for strings:

program testarray3;

Type

TA = array of Integer;
var

AB : TA;

[,J : Integer;
begin

Setlength(A,10);
For 1:=0 to 9 do
All]:=l;
B:=Copy(A,3,9);
For 1:=0 to 5 do
Writeln(B[1]);
end.

The Copy function will copy 9 elements of the array to a new array. Starting at the element at index
3 (i.e. the fourth element) of the array.

34

CHAPTER 3. TYPES

The Low function on a dynamic array will always return 0, and the High function will return the
valueLength-1 , i.e., the value of the highest allowed array index. Tlagth function will
return the number of elements in the array.

Record types

Free Pascal supports fixed records and records with variant parts. The syntax diagram for a record
type is

[
Record types

=»— record type ﬁ record — end — >
packed — Lfield list J

»— field list 717 fixed fields —
variant part J L ; J

Lfixed fields —; J

»— fixed fields T identifier list —: — type ‘ >

»— variant part — case — ordinal type identifier — of — variant —
[identifier - j L ; I“

»— variant — constant —, = () -
u Lfield list J

So the following are valid record types declarations:

Type
Point = Record
X,Y,Z : Real
end;

RPoint = Record
Case Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

BetterRPoint = Record
Case UsePolar : Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

The variant part must be last in the record. The optional identifier in the case statement serves to
access the tag field value, which otherwise would be invisible to the programmer. It can be used to
see which variant is active at a certain time. In effect, it introduces a new field in the record.

Remark: Itis possible to nest variant parts, as in:
Type

MyRec = Record
X : Longint;

35

CHAPTER 3. TYPES

Case byte of
2 : (Y : Longint;
case byte of
3 : (Z : Longint);
)i

end;

The size of arecord is the sum of the sizes of its fields, each size of a field is rounded up to a power of
two. If the record contains a variant part, the size of the variant part is the size of the biggest variant,
plus the size of the tag field typéan identifier was declared for.it Here also, the size of each

part is first rounded up to two. So in the above examBleeOf (185 would return 24 foPoint ,

24 for RPoint and 26 forBetterRPoint . For MyRec, the value would be 12. If a typed file

with records, produced by a Turbo Pascal program, must be read, then chances are that attempting
to read that file correctly will fail. The reason for this is that by default, elements of a record are
aligned at 2-byte boundaries, for performance reasons. This default behaviour can be changed with
the{$PackRecords n} switch. Possible values for are 1, 2, 4, 16 oDefault . This switch

tells the compiler to align elements of a record or object or class that have size largemtharbyte
boundaries. Elements that have size smaller or equalriteme aligned on natural boundaries, i.e.

to the first power of two that is larger than or equal to the size of the record element. The keyword
Default selects the default value for the platform that the code is compiled for (currently, this is 2
on all platforms) Take a look at the following program:

Program PackRecordsDemo;
type
{$PackRecords 2}
Trecl = Record

A : byte;
B : Word,
end;

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}
Trec3 = Record
A,B : byte;
end;

{$PackRecords 1}
Trec4 = Record
AB : Byte;
end;
{$PackRecords 4}
Trec5 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;

end;

{$PackRecords 8}
Trec6 = Record
A : Byte;

36

CHAPTER 3. TYPES

B : Array[1..3] of byte;
C : byte;
end,
{$PackRecords 4}
Trec7 = Record

A : Byte;
B : Array[l..7] of byte;
C : byte;

end;

{$PackRecords 8}
Trec8 = Record

A : Byte;

B : Array[l..7] of byte;
C : byte;

end,;

Var recl : Trecl;

rec2 : Trec2;

rec3 . TRecsS;

rec4d . TRec4;

rec5 . Trec5;

recé : TRec6;

rec? . TRec7,

rec8 : TRec8;
begin

Write ('Size Trecl :
Writeln (* Offset B :

', SizeOf(Trecl));
",Longint(@rec1.B)-Longint(@recl));

Write ('Size Trec2 : ’,SizeOf(Trec2));
",Longint(@rec2.B)-Longint(@rec2));
Write ('Size Trec3 : ’,SizeOf(Trec3));
",Longint(@rec3.B)-Longint(@rec3));
Write ('Size Trec4 : ’,SizeOf(Trec4));

. ’,Longint(@rec4.B)-Longint(@rec4));
Write ('Size Trecb : ’,SizeOf(Trecb));

Writeln (Offset B : ’,Longint(@rec5.B)-Longint(@recb),
",Longint(@rec5.C)-Longint(@rec5));
Write ('Size Trec6 : ’,SizeOf(Trec6));

Writeln (* Offset B : ’,Longint(@rec6.B)-Longint(@rec6),
",Longint(@rec6.C)-Longint(@rec6));

Writeln (Offset B :
Writeln (* Offset B :

Writeln (* Offset B

'’ Offset C :

' Offset C :
Write ('Size Trec7 : ’,SizeOf(Trec7));
Writeln (* Offset B : ’,Longint(@rec7.B)-Longint(@rec7),
",Longint(@rec7.C)-Longint(@rec7));
Write ('Size Trec8 : ’,SizeOf(Trec8));
Writeln (* Offset B : ’,Longint(@rec8.B)-Longint(@rec8),
. ’,Longint(@rec8.C)-Longint(@rec8));

" Offset C :

" Offset C
end.

The output of this program will be :

Size Trecl : 4 Offset B :

Size Trec2 : 3 Offset B

Size Trec3 : 2 Offset B :
Size Trec4 : 2 Offset B :

2
1
1
1

37

CHAPTER 3. TYPES

Size Trech : 8 Offset B : 4 Offset C : 7
Size Trec6 : 8 Offset B : 4 Offset C : 7
Size Trec7 : 12 Offset B : 4 Offset C : 11
Size Trec8 : 16 Offset B : 8 Offset C : 15

And this is as expected. [frecl , sinceB has size 2, it is aligned on a 2 byte boundary, thus leaving

an empty byte betweef andB, and making the total size 4. [frec2 , B is aligned on a 1-byte
boundary, right afteA, hence, the total size of the record is 3. Foec3 , the sizes oA,B are 1,

and hence they are aligned on 1 byte boundaries. The same is titreédr . ForTrec5 , since the

size of B — 3 —is smaller than 8 will be on a 4-byte boundary, as this is the first power of two that

is larger than it’s size. The same holds fec6 . ForTrec7 , Bis aligned on a 4 byte boundary,

since it's size — 7 — is larger than 4. Howeverlirec8 , it is aligned on a 8-byte boundary, since 8

is the first power of two that is greater than 7, thus making the total size of the record 16. Free Pascal
supports also the 'packed record’, this is a record where all the elements are byte-aligned. Thus the
two following declarations are equivalent:

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}
and

Trec2 = Packed Record

A : Byte;
B : Word;
end;

Note the{$PackRecords 2} after the first declaration !

Set types
Free Pascal supports the set types as in Turbo Pascal. The prototype of a set declaration is:

[1
Set Types

»— set type — set — of — ordinal type — »—

Each of the elements &etType must be of typdargetType . TargetType can be any ordinal
type with a range betweehand255. A set can contain maximall255 elements. The following
are valid set declaration:

Type
Junk = Set of Char;

Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
WorkDays : Set of days;

Given this set declarations, the following assignment is legal:

38

CHAPTER 3. TYPES

WorkDays = [Mon, Tue, Wed, Thu, Fri];

The operators and functions for manipulations of sets are listed in talifle (Two sets can be

Table 3.6: Set Manipulation operators

Operation Operator
Union +
Difference -
Intersection *

Add element include
Delete element exclude

compared with the> and= operators, but not (yet) with theand> operators. The compiler stores
small sets (less than 32 elements) in a Longint, if the type range allows it. This allows for faster
processing and decreases program size. Otherwise, sets are stored in 32 bytes.

File types

File types are types that store a sequence of some base type, which can be any type except another file
type. It can contain (in principle) an infinite number of elements. File types are used commonly to
store data on disk. Nothing prevents the programmer, however, from writing a file driver that stores
it's data in memory. Here is the type declaration for a file type:

[
File types

»— file type —file —
L of —type J

If no type identifier is given, then the file is an untyped file; it can be considered as equivalent to a file
of bytes. Untyped files require special commands to act on thenB(eekread (131), Blockwrite
(13D). The following declaration declares a file of records:

Type
Point = Record
X,Y,Z : real
end;

PointFile = File of Point;

Internally, files are represented by thideRec record, which is declared in the DOS unit.

A special file type is th@ext file type, represented by thieextRec record. A file of typeText
uses special input-output routines.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an address in memory,
where the data of another variable may be stored.

39

Remark:

CHAPTER 3. TYPES

[
Pointer types

»— pointer type — " — type identifier >

As can be seen from this diagram, pointers are typed, which means that they point to a particular kind
of data. The type of this data must be known at compile time. Dereferencing the pointer (denoted by
adding” after the variable name) behaves then like a variable. This variable has the type declared
in the pointer declaration, and the variable is stored in the address that is pointed to by the pointer
variable. Consider the following example:

Program pointers;

type
Buffer = String[255];
BufPtr = ~Buffer;
Var B : Buffer;
BP : BufPtr;
PP : Pointer;
etc..

In this exampleBP is a pointer toa Buffer type; whileB is a variable of typeBuffer . B takes
256 bytes memory, ar8lP only takes 4 bytes of memory (enough to keep an adress in memory).

Free Pascal treats pointers much the same way as C does. This means that a pointer to some type
can be treated as being an array of this type. The pointer then points to the zeroeth element of this
array. Thus the following pointer declaration
Var p : “Longint;

Can be considered equivalent to the following array declaration:

Var p : array[O..Infinity] of Longint;

The difference is that the former declaration allocates memory for the pointer only (not for the array),
and the second declaration allocates memory for the entire array. If the former is used, the memory
must be allocated manually, using tBetmem (153 function. The referencB” is then the same

asp[0] . The following program illustrates this maybe more clear:

program PointerArray;

var i : Longint;
p : “Longint;
pp : array[0..100] of Longint;
begin
for i := 0 to 100 do pp[i] := i; { Fill array }
p = @pp|0]; { Let p point to pp }
for i := 0 to 100 do

if plil<>ppli] then
WriteLn ('Ohoh, problem ")
end.

Free Pascal supports pointer arithmetic as C does. This means tRais # typed pointer, the
instructions

40

CHAPTER 3. TYPES

Inc(P);
Dec(P);

Will increase, respectively decrease the address the pointer points to with the size of tRestype
pointer to. For example

Var P : “Longint;

Ine (p);

will increaseP with 4. Normal arithmetic operators on pointers can also be used, that is, the following
are valid pointer arithmetic operations:

var pl,p2 : “Longint;

L : Longint;

begin

P1 = @P2;

P2 = @L;

L := P1-P2;

P1 = P1-4;

P2 = P2+4;
end.

Here, the value that is added or substraésenhultiplied by the size of the type the pointer points to.
In the previous examplBl1 will be decremented by 16 bytes, aR& will be incremented by 16.

3.5 Forward type declarations

Programs often need to maintain a linked list of records. Each record then contains a pointer to the
next record (and possibly to the previous record as well). For type safety, it is best to define this
pointer as a typed pointer, so the next record can be allocated on the heap udieytball. In

order to do so, the record should be defined something like this:

Type
TListltem = Record
Data : Integer,
Next : ~TListltem;
end;

When trying to compile this, the compiler will complain that feistitem type is not yet defined
when it encounters thidext declaration: This is correct, as the definition is still being parsed.

To be able to have thidext element as a typed pointer, a 'Forward type declaration’ must be intro-
duced:

Type
PListltem = ATListltem;
TListltem = Record
Data : Integer;
Next : PTListltem;
end;

When the compiler encounters a typed pointer declaration where the referenced type is not yet known,
it postpones resolving the reference later on: The pointer definition is a 'Forward type declaration’.

41

CHAPTER 3. TYPES

The referenced type should be introduced later in the Seype block. No other block may come
between the definition of the pointer type and the referenced type. Indeed, even th&yperd

itself may not re-appear: in effect it would start a new type-block, causing the compiler to resolve
all pending declarations in the current block. In most cases, the definition of the referenced type will
follow immediatly after the definition of the pointer type, as shown in the above listing. The forward
defined type can be used in any type definition following its declaration.

Note that a forward type declaration is only possible with pointer types and classes, not with other
types.

3.6 Procedural types

Free Pascal has support for procedural types, although it differs a little from the Turbo Pascal imple-
mentation of them. The type declaration remains the same, as can be seen in the following syntax
diagram:

[
Procedural types

»— procedural type —— function header — <
Tprocedure header J Lof — object J L ; — call modifiers J

»— function header — function - formal parameter list —: — result type

»— procedure header — procedure - formal parameter list >

»— call modifiers ——— register -
—— cdecl ——
—— pascal ——
—— stdcall
— safecall —
I saveregisters —
L— popstack —

For a description of formal parameter lists, see chatpage84. The two following examples are
valid type declarations:

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real;

var proc : TOneArg;
func : TNOArg;

One can assign the following values to a procedural type variable:

1. Nil , for both normal procedure pointers and method pointers.
2. Avariable reference of a procedural type, i.e. another variable of the same type.

3. A global procedure or function address, with matching function or procedure header and call-
ing convention.

4. A method address.

Given these declarations, the following assignments are valid:

42

Remark:

CHAPTER 3. TYPES

Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;

Proc = @printit;
Func = @Pij;

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’'t necessary to
use the address operat@ (vhen assigning a procedural type variable, whereas in Free Pascal it is
required (unless theSo switch is used, in which case the address operator can be dropped.)

The modifiers concerning the calling conventions must be the same as the declaration; i.e. the
following code would give an error:

Type TOneArgCcall = Procedure (Var X : integer);cdecl;
var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begin
WriteLn (x);
end;
begin
Proc := @printit;
end.

Because th&@OneArgCcall type is a procedure that uses the cdecl calling convention.

3.7 Variant types

Definition
As of version 1.1, FPC has support for variants. For variant support to be enablgdritivés unit

must be included in every unit that uses variants in some way. Furthermore, the compiler must be in
Delphi or ObjFPC mode.

The type of a value stored in a variant is only determined at runtime: it depends what has been
assigned to the to the variant. Almost any type can be assigned to variants: ordinal types, string
types, int64 types. Structured types such as sets, records, arrays, files, objects and classes are not
assign-compatible with a variant, as well as pointers. Interfaces and COM or CORBA objects can be
assigned to a variant.

This means that the following assignments are valid:

Type

TMyEnum = (One,Two,Three);
Var

V : Variant;

| : Integer,

B : Byte,

W : Word;

Q : Int64;

E : Extended;

D : Double;

En : TMyEnum;

43

Remark:

Remark:

CHAPTER 3. TYPES

AS : AnsiString;
WS : WideString;

begin

L <<<<<<<<<
LI U o |
>OmMmO s

I
=
w

en

2

And of course vice-versa as well.

The enumerated type assignment is broken in the early 1.1 development series of the compiler. It is
expected that this is fixed soon.

A variant can hold an an array of values: All elements in the array have the same type (but can be of
type 'variant’). For a variant that contains an array, the variant can be indexed:

Program testv;

uses variants;

Var
A : Variant;
| . integer;
begin

A:=VarArrayCreate([1,10],varinteger);
For I:=1 to 10 do
All]:=l;
end.

(for the explanation o¥arArrayCreate , seeUnit reference

Note that when the array contains a string, this is not considered an ’array of characters’, and so the
variant cannot be indexed to retrieve a character at a certain position in the string.

The array functionality is broken in the early 1.1 development series of the compiler. It is expected
that this is fixed soon.

Variants in assignments and expressions

As can be seen from the definition above, most simple types can be assigned to a variant. Likewise,
a variant can be assigned to a simple type: If possible, the value of the variant will be converted to
the type that is being assigned to. This may fail: Assigning a variant containing a string to an integer
will fail unless the string represents a valid integer. In the following example, the first assignment
will work, the second will fail:

program testv3,;

uses Variants;

44

file:../units/units.html

Remark:

CHAPTER 3. TYPES

Var
V : Variant;
| . Integer;

begin
V:="100";
=V,
Writeln(l : ,D);
V:='Something else’;
.=V,
Writeln('l = ,I);

end.

The first assignment will work, but the second will not,Ssmething else cannot be converted
to a valid integer value. ARConvertError exception will be the result.

The result of an expression involving a variant will be of type variant again, but this can be assigned
to a variable of a