Free Component Library (FCL) :
Reference guide.

Reference guide for FCL units.
Document version 1.9
January 2004

Michaél Van Canneyt

Contents

1 Reference for unit 'Classes’ 20
1.1 UsedUnitS o o o 20
1.2 OVEIVIEW . . . o o o i e e e e e e e 20
1.3 Constants, typesandvariables. oo Lo 20

Constants. 20
TYPES . . o e e e e 22
Variables 30
1.4 Proceduresandfunctions. 31
BeginGlobalLoading. 31
Bounds 31
CollectionsEqual 31
EndGlobalLoading e 31
FIndClass e 31
FindNestedComponent e 32
GetClass. 32
GetFixuplnstanceNames 32
GetFixupReferenceNames 32
GlobalFixupReferences e 33
[dentTolnt. 33
InitComponentRes. 33
InitinheritedComponent 33
IntToldent 34
LineStart e 34
NotifyGlobalLoading. e 34
ObjectBinaryTOTeXt o o i e e e 34
ObjectResourceToText v i i e e e e e 34
ObjectTextToBinary o e e 35
ObjectTextToResouUrce o i it e e e 35
Point. e 35
ReadComponentRes. e 35

CONTENTS

ReadComponentResEx. 36
ReadComponentResFile 36
RecCt 36
RedirectFixupReferences. L 36
RegisterClass. 37
RegisterClassAlias. e 37
RegisterClasses 37
RegisterComponents e 37
RegisterinitComponentHandler. 38
RegisterintegerConsts. e 38
RegisterNolcon. e 38
RegisterNonActiveX e 38
RemoveFixupReferences. 39
RemMOVEFIXUPS 39
SmallPoint. e 39
UnRegisterClass. e 39
UnRegisterClasses. it i 40
UnRegisterModuleClasses e 40
WriteComponentResFile 40
1.5 EBItSError. 40
Description e 40
1.6 EClassNotFound. 40
DesCription e e 40
1.7 EComponentError. e 41
Description e 41
1.8 EFCreateError. e 41
DescCription e e 41
1.9 EFilerError o 41
Description e 41
1.10 EFOPEeNnEIror. o e 41
DesCription 41
1.11 Elnvalidimage e e 41
Description 41
1.12 ElnvalidOperation 41
DesCription e 41
1.13 ELISTEITOr. o o 42
Description 42
1.14 EMethodNotFound. 42
DesCription e 42
1.15 EOUtOfRESOUrcesS. 42

CONTENTS

Description 42
1.16 EParserError. e e e e 42
DesCription e 42
1.17 EReadError. e 42
Description 42
1.18 EResNotFound. 43
DesCription e e 43
1.19 EStreamEITOr e e 43
Description 43
1.20 EStringLIStError 43
DescCription e 43
1.21 EWrteEITOr. o 43
Description e 43
1.22 IStringSAdapter. 43
DescCription e 43
1.23 TAbstractObjectReader. 44
Description 44
Method overview. 44
TAbstractObjectReader.NextValue. 44
TAbstractObjectReader.ReadValue 44
TAbstractObjectReader.BeginRootComponent. 45
TAbstractObjectReader.BeginComponent. 45
TAbstractObjectReader.BeginProperty. 45
TAbstractObjectReader.ReadBinary. 46
TAbstractObjectReader.ReadFloat. 46
TAbstractObjectReader.ReadSingle 46
TAbstractObjectReader.ReadDate. 47
TAbstractObjectReader.Readldent. 47
TAbstractObjectReader.ReadInt8 47
TAbstractObjectReader.ReadIntl6. 48
TAbstractObjectReader.ReadInt32. 48
TAbstractObjectReader.ReadInt6é4. 48
TAbstractObjectReader.ReadSet., 49
TAbstractObjectReader.ReadStr. 49
TAbstractObjectReader.ReadString 49
TAbstractObjectReader.SkipComponent 50
TAbstractObjectReader.SkipValue L. 50
1.24 TAbstractObjectWriter. 50
DesCription e e 50
Method overview 50

CONTENTS

TAbstractObjectWriter.BeginCollection 51
TAbstractObjectWriter.BeginComponent 51
TAbstractObjectWriter.BeginList 51
TAbstractObjectWriter.EndList o 51
TAbstractObjectWriter.BeginProperty 51
TAbstractObjectWriter.EndProperty 51
TAbstractObjectWriter.WriteBinary. 52
TAbstractObjectWriter.WriteBoolean. 52
TAbstractObjectWriter.WriteFloat. 52
TAbstractObjectWriter.WriteSingle. 52
TAbstractObjectWriterWriteDate. 52
TAbstractObjectWriter.Writeldent. 52
TAbstractObjectWriter.Writelnteger. 53
TAbstractObjectWriter. WriteMethodName. 53
TAbstractObjectWriterWriteSet. 53
TAbstractObjectWriterWriteString, 53
1.25 TBaSICACLON. 53
Description 53
Method overview 54
Property overview e 54
TBasicAction.Change 54
TBasicAction.SetOnExecute 54
TBasicAction.Create. 54
TBasicAction.Destroy e 55
TBasicAction.HandlesTarget 55
TBasicAction.UpdateTarget. 55
TBasicAction.ExecuteTarget 56
TBasiCACtion.Execute e 56
TBasicAction.RegisterChanges. 56
TBasicAction.UnRegisterChanges. 56
TBasicAction.Update. e 57
TBasicAction.OnChange i 57
TBasicAction.ActionComponent 57
TBasicAction.OnExecute e 57
TBasicAction.OnUpdate. e 58
1.26 TBasicActionLink L 58
Description e 58
Method overview e 58
Property overview e e 59
TBasicActionLink.AssignClient. 59

CONTENTS

TBasicActionLink.Change. 59
TBasicActionLink.IsOnExecuteLinked. 59
TBasicActionLink.SetAction. 59
TBasicActionLink.SetOnExecute. L 60
TBasicActionLink.Create 60
TBasicActionLink.Destroy. 60
TBasicActionLink.Execute. 60
TBasicActionLink.Update 61
TBasicActionLink. Action. 61
TBasicActionLink.OnChange. i i it i 61
1.27 TBinaryObjectReader. e 62
Description 62
Method overview e 62
TBinaryObjectReader.Create. i it 62
TBinaryObjectReader.Destroy e 62
TBinaryObjectReader.NextValue. 63
TBinaryObjectReader.ReadValue 63
TBinaryObjectReader.BeginRootComponent. 63
TBinaryObjectReader.BeginComponent. 63
TBinaryObjectReader.BeginProperty. 63
TBinaryObjectReader.ReadBinary. 63
TBinaryObjectReader.ReadFloat. 63
TBinaryObjectReader.ReadSingle. 64
TBinaryObjectReader.ReadDate. 64
TBinaryObjectReader.Readldent. 64
TBinaryObjectReader.ReadInt8 64
TBinaryObjectReader.ReadIntl6. 64
TBinaryObjectReader.ReadInt32. 64
TBinaryObjectReader.ReadInt64. 64
TBinaryObjectReader.ReadSet. 64
TBinaryObjectReader.ReadStr. 64
TBinaryObjectReader.ReadString 65
TBinaryObjectReader.SkipComponent 65
TBinaryObjectReader.SkipValue 65
1.28 TBinaryObjectWriter. e e 65
Description e e 65
Method overview L 65
TBinaryObjectWriter.Create. 65
TBinaryObjectWriter.Destroy e 66
TBinaryObjectWriter.BeginCollection 66

CONTENTS

TBinaryObjectWriter.BeginComponent 66
TBinaryObjectWriter.BeginList 66
TBinaryObjectWriter.EndList 66
TBinaryObjectWriter.BeginProperty o 66
TBinaryObjectWriter.EndProperty 67
TBinaryObjectWriterWriteBinary. 67
TBinaryObjectWriter.WriteBoolean. 67
TBinaryObjectWriterWriteFloat. 67
TBinaryObjectWriterWriteSingle. oo 67
TBinaryObjectWriterWriteDate. 67
TBinaryObjectWriter.Writeldent. 67
TBinaryObjectWriter.Writelnteger. 68
TBinaryObjectWriterWriteMethodName. 68
TBinaryObjectWriterWriteSet 68
TBinaryObjectWriterWriteString e 68
1.29 TBItS e 68
Description 68
Method overview. e 69
Property overview e e e e e 69
TBits.Create. 69
TBits.Destroy 69
TBIits.GetFSize e 70
TBIts.SetONn. 70
TBits.Clear e 70
TBits.Clearall e 70
TBits. AndBItS. e 71
TBits.OrBitS. e 71
TBIits.XOrBits e 71
TBits.NotBits e 72
TBIits.Get e 72
TBItS.GIrOW 72
TBits.Equals e 72
TBits.Setlndex e 73
TBits.FindFirstBit. 73
TBits.FindNextBit 73
TBits.FindPrevBit. 74
TBIits.OpenBit. 74
TBIits.Bits e 74
TBItS.Size. e 75
1.30 TCollection. e 75

CONTENTS

Description 75
Method overview. e 75
Property overview e e e e 76
TCollection.GetAttrCount 76
TCollection.GetAttr. e 76
TCollection.GetltemAttr e 76
TCollection.GetNamePath 76
TCollection.Changed. e 77
TCollection.Getltem 77
TCollection.Setltem e 77
TCollection.SetltemName. 78
TCollection.SetPropName. 78
TCollection.Update. 78
TCollection.Create. e 78
TCollection.DeStroy o v i i e e e e 79
TCollection.Add 79
TCollection.AsSSign. 79
TCollection.BeginUpdate 79
TCollection.Clear. e 80
TCollection.EndUpdate e 80
TCollection.FindltemID 80
TCollection.PropName. 81
TCollection.Count 81
TCollection.ltemClass 81
TCollection.ltems. L 81
1.31 TCollectionltem e 82
DescCription e 82
Method overview 82
Property OVerview 82
TCollectionltem.Changed. 82
TCollectionltem.GetNamePath. 83
TCollectionltem.GetOwner 83
TCollectionltem.GetDisplayName 83
TCollectionltem.Setindex 84
TCollectionltem.SetDisplayName 84
TCollectionltem.Create 84
TCollectionltem.Destroy. 84
TCollectionltem.Collection 85
TCollectionltem.ID 85
TCollectionltem.Index 85

CONTENTS

TCollectionltem.DisplayName 86
1.32 TCOMPONENt. o o e e 86
DescCription e 86
Method overview 87
Property OVerview 88
TComponent.ChangeName. 88
TComponent.DefineProperties. 88
TComponent.GetChildren. 88
TComponent.GetChildOwner. 89
TComponent.GetChildParent. 89
TComponent.GetNamePath. 89
TComponent.GetOWNer. e e 89
TComponent.Loaded 90
TComponent.Notification 90
TComponent.ReadState. 90
TComponent.SetAncestor. e 91
TComponent.SetDesigning. 91
TComponent.SetName e 91
TComponent.SetChildOrder. 92
TComponent.SetParentComponent 92
TComponent.Updating. 92
TComponent.Updated. 92
TComponent.UpdateRegistry. 93
TComponent.ValidateRename 93
TComponent.ValidateContainer. 93
TComponent.Validatelnsert. 93
TComponent.WriteState. e 94
TComponent.Create. 0 i i e e e e 94
TComponent.Destroy 94
TComponent.DestroyComponents. v, 94
TComponent.Destroying. o i e 95
TComponent.ExecuteAction e 95
TComponent.FindComponent 95
TComponent.FreeNotification. 95
TComponent.RemoveFreeNotification. 95
TComponent.FreeOnRelease., 96
TComponent.GetParentComponent. 96
TComponent.HasParent. 96
TComponent.InsertComponent. 96
TComponent.RemoveComponent v i i v 97

CONTENTS

TComponent.SafeCallException. 97
TComponent.UpdateAction. 97
TComponent.Components i i e e e 97
TComponent.ComponentCount 97
TComponent.Componentindex. 98
TComponent.ComponentState. 98
TComponent.ComponentStyle, 98
TComponent.Designinfo. 99
TComponent.OWNEr. 99
TComponent.VCLComObject. 99
TComponent.Name e e e 99
TComponent.Tag. o o e e 100
1.33 TCustomMemoryStream e 100
DesCription 100
Method overview 100
Property overview 100
TCustomMemoryStream.SetPointer. 100
TCustomMemoryStream.Read. 101
TCustomMemoryStream.Seek 101
TCustomMemoryStream.SaveToStream o v v .. 101
TCustomMemoryStream.SaveToFile. 102
TCustomMemoryStream.Memory 102
1.34 TDataModule. e 103
Method overview 103
Property OVerview 103
TDataModule.DoCreate. 103
TDataModule.DoDestroy o e 103
TDataModule.DefineProperties. 103
TDataModule.GetChildren L 103
TDataModule.HandleCreateException. 104
TDataModule.ReadState 104
TDataModule.Create. 104
TDataModule.CreateNew o 104
TDataModule.Destroy o o o e 104
TDataModule.AfterConstruction 104
TDataModule.BeforeDestruction. 104
TDataModule.DesignOffset. 104
TDataModule.DesignSize. 105
TDataModule.OnCreate. o i it e 105
TDataModule.OnDestroy e 105

CONTENTS

TDataModule.OldCreateOrder 105
1.35 TFiler o e e 105
Description e e e e e 105
Method overview 105
Property OVerview 105
TFiler.SetRoot e 106
TFiler.DefineProperty e e 106
TFiler.DefineBinaryProperty. 106
TFilerrRoot e 106
TRilerLoOKUPROOt 106
TRIlerAncestor. e 107
TFiler.gnoreChildren. e 107
1.36 TFileStream e 107
DesCription 107
Method overview 107
Property overview 107
TFileStream.Create e 108
TRileStream.Destroy. o e 108
TFileStream.FileName. 108
1.37 THandleStream e 109
DesCription e 109
Method overview. 109
Property overview e e e 109
THandleStream.SetSize. 109
THandleStream.Create 109
THandleStream.Read 110
THandleStream.Write e 110
THandleStream.Seek 110
THandleStream.Handle 110
1.38 TList. e 111
DescCription e e e e 111
Method overview 111
Property overview 111
TLiSt.Get e 111
TLISLGIOW o 112
TLISLPUt . . . e 112
TLiSt.NOtify 112
TList.SetCapacity. e 112
TList.SetCount e 112
TLISt.DeStroy 112

CONTENTS

TLISLAAD e 112
TList.Clear e 113
TList.Delete. 113
TLISLEITOr e 113
TList.Exchange. 113
TLiSt.Expand 113
TLISLEXtract 114
TLISLFIrst o 114
TLISLASSION. 114
TList.IndexOf e e 114
TLIst.Insert 114
TList.Last 115
TLiStMove e 115
TLIStREMOVE. e e 115
TList.Pack. 115
TLISLSOIt 116
TList.Capacity 116
TLiSt.Count e e e 116
TLISt.Items 117
TLISLLISt e e 117
1.39 TMemoryStream. o o e 117
DesCription 117
Method overview. 117
Property overview e 117
TMemoryStream.Realloc L 118
TMemoryStream.Destroy 118
TMemoryStream.Clear. e 118
TMemoryStream.LoadFromStream 118
TMemoryStream.LoadFromFile L. 119
TMemoryStream.SetSize 119
TMemoryStream.Write. e 119
TMemoryStream.Capacity. e 120
1.40 TRarser. o o e 120
Description 120
Method overview. 120
Property overview e e 120
TParser.Create. e 120
TParser.Destroy 121
TParser.CheckToken. e 121
TParser.CheckTokenSymbal 121

CONTENTS

TParser.Ermor. 121
TParser.ErrorFmt. e 121
TParser.ErrorStr 122
TParser.HexToBinary e 122
TParser.NextToken. e 122
TParser.SourcePos e 122
TParser.TokenComponentldent 122
TParser.TokenFloat 122
TParser.TokenInt. 123
TParser.TokenString. o o 123
TParser.TokenSymbolls. 123
TParser.SourceLine 123
TParser.Token e 123
1.41 TPersistent. e 124
DescCription e e e 124
Method overview 124
TPersistent. AssignTa oo 124
TPersistent.DefineProperties. 124
TPersistent.GetOwWNner. 125
TPersistent.Destroy e 125
TPersistent. ASSigN. 125
TPersistent.GetNamePath 126
1.42 TReader. 126
Description e 126
Method overview 127
Property OVerview o 128
TReader.Error. 128
TReader.FindMethod 128
TReader.ReadProperty 129
TReader.ReadPropValue 129
TReader.PropertyError. o 129
TReader.ReadData 129
TReader.Create e 129
TReader.Destroy. 129
TReader.BeginReferences e 130
TReader.CheckValue 130
TReader.DefineProperty. 130
TReader.DefineBinaryProperty. 130
TReader.EndOfList. 130
TReader.EndReferences 131

CONTENTS

TReader.FixupReferences 131
TReader.NextValue. e 131
TReader.ReadBoolean 131
TReader.ReadChar e 131
TReader.ReadCollection 131
TReader.ReadComponent 132
TReader.ReadComponents. i i i it 132
TReader.ReadFloat 132
TReader.ReadSingle. 132
TReader.ReadDate e 132
TReader.Readldent 132
TReader.ReadInteger e 133
TReader.ReadInt64 e 133
TReader.ReadListBegin. 133
TReader.ReadListEnd. e 133
TReader.ReadRootComponent. 133
TReader.ReadString. 133
TReader.ReadValue e 134
TReader.CopyValue e 134
TReader.PropName e 134
TReader.CanHandleExceptions, 134
TReader.Driver. e 134
TReaderOWNEer. e e 135
TReader.Parent. 135
TReader OnError. 135
TReader.OnPropertyNotFound. 135
TReader.OnFindMethod. 135
TReader.OnSetMethodProperty 136
TReader.OnSetName 136
TReader.OnReferenceName 136
TReader.OnAncestorNotFound. 136
TReader.OnCreateComponent. v ... 136
TReader.OnFindComponentClass. 137
1.43 TRecall e 137
Method overview. 137
Property overview e e 137
TRecall.Create 137
TRecall.Destroy. o e 137
TRecall.Store. 137
TRecall.LForget e 137

CONTENTS

TRecallLReference. 138
1.44 TResourceStream. o v i i e e e e 138
Description e e e e e 138
Method overview 138
TResourceStream.Create. o 138
TResourceStream.CreateFromlD 138
TResourceStream.Destroy e 138
TResourceStream.Write. 139
1.45 TStream. o e e e e 139
DesCription e 139
Method overview. 139
Property overview 140
TStream.SetSize. e 140
TStream.Read e 140
TStream.Write e 140
TStream.Seek 141
TStream.ReadBuffer. 141
TStream.WriteBuffer. 141
TStream.CopyFrom e 142
TStream.ReadComponent 142
TStream.ReadComponentRes 142
TStream.WriteComponent 143
TStream.WriteComponentRes i e 143
TStream.WriteDescendent o 143
TStream.WriteDescendentRes. 144
TStream.WriteResourceHeader, 144
TStream.FixupResourceHeader 144
TStream.ReadResHeader. 144
TStream.ReadByte. 145
TStream.ReadWord 145
TStream.ReadDWord 145
TStream.ReadAnsiString 146
TStream.WriteByte. L 146
TStream.WriteWord 146
TStream.WriteDWord 146
TStream.WriteAnsiString 147
TStream.Position. 147
TStream.Size. e e 147
1.46 TStringList e e 148
Description e 148

CONTENTS

Method overview e 148
Property OVEervieW o o 149
TStringList.Changed. e 149
TStringList.Changing. 149
TStringList.Get. 149
TStringList.GetCapacity. 149
TStringList.GetCount e 149
TStringList.GetObject 150
TStringList.Put 150
TStringList.PutObject 150
TStringList.SetCapacity e 150
TStringList.SetUpdateState. 150
TStringList.Destroy. 151
TStringList Add. e 151
TStringList.Clear. e 151
TStringList.Delete e 151
TStringList.Exchange 152
TStringList.Find. 152
TStringList.IndexOf. 152
TStringList.nsert. e 152
TStringList.Sort. 153
TStringList.CustomSort 153
TStringList.Duplicates. e 153
TStringList.Sorted 153
TStringList.OnChange. 154
TStringList.OnChanging. 154
147 TSUINGS. . o o o o e e e e e e e e e e e 154
Description e 154
Method overview 155
Property OVerview 155
TStrings.DefineProperties. e 156
TStrings.Error. e 156
TStrings.Get 156
TStrings.GetCapacity o 156
TStrings.GetCount. e 157
TStrings.GetObject. e 157
TStrings.GetTextStr 157
TStrings.Put. 157
TStrings.PutObject. 158
TStrings.SetCapacity. e 158

15

CONTENTS

TStrings.SetTextStr 158
TStrings.SetUpdateState 159
TStrings.Destroy 159
TStrings. Add 159
TStrings.AddObject 159
TStrings. Append 160
TStrings. AddStrings e 160
TStringS.ASSION. e e 160
TStrings.BeginUpdate. 160
TStrings.Clear 161
TStrings.Delete. e 161
TStrings.EndUpdate. 161
TStrings.Equals. 162
TStrings.Exchange. 162
TStrings.GetText. o e e 162
TStrings.IndexOf. 162
TStrings.IndexOfName 163
TStrings.IndexOfObject 163
TStrings.InNsert e e e 163
TStrings.InsertObject e 164
TStrings.LoadFromFile 164
TStrings.LoadFromStream 164
TSINGS.MOVE e e e 165
TStrings.SaveToFile e 165
TStrings.SaveToStream. 166
TStrings.SetText e 166
TStrings.Capacity. e e e 166
TStrings.CommaText e 166
TStings.Count. 167
TStrings.Names e 167
TStrings.Objects 168
TStrings.Values. e 168
TSiNgS.SNGS 169
TSNgS. TeXt 169
TStrings.StringsAdapter. e 169
1.48 TStringStream e e e 170
Description e 170
Method overview. e 170
Property overview e e 170
TStringStream.SetSize 170

CONTENTS

TStringStream.Create 170
TStringStream.Read. 171
TStringStream.ReadString 171
TStringStream.Seek L 171
TStringStream.Write. 171
TStringStream WriteString 171
TStringStream.DataString. 172
1.49 TTextObjectWriter. e e 172
DesCription e 172
1.50 TThreadList. e e 172
Description e e e 172
Method overview. 172
TThreadList.Create 172
TThreadList.Destroy. o o i e 172
TThreadList.Add e 173
TThreadList.Clear 173
TThreadList.LockList 173
TThreadList.Remove. 173
TThreadList.UnlockList 174
151 TWHIEr . . o o o 174
DesCription e 174
Method overview. 174
Property overview e e e 174
TWriter.SetRoot 175
TWriter.WriteBinary 175
TWriter.WriteProperty 175
TWriter.WriteProperties e 175
TWriter.Create 175
TWriter.Destroy. 175
TWriter.DefineProperty. 176
TWriter.DefineBinaryProperty. e 176
TWriter.WriteBoolean 176
TWriter.WriteCollection 176
TWriter.WriteComponent o 176
TWriter.WriteChar e 177
TWriter.WriteDescendent 177
TWriter.WriteFloat 177
TWriter.WriteSingle e 177
TWriter.WriteDate e 177
TWriter.Writeldent 177

CONTENTS

TWriter.Writelnteger 178
TWriter.WriteListBegin. 178
TWriterWriteListEnd. 178
TWriter.WriteRootComponent o 178
TWriter.WriteString. o o 178
TWriter.ROOtANCEStOr e 179
TWriter OnFindAncestor. 179
TWriter.OnWriteMethodProperty. 179
TWriter.Driver e 179

18

CONTENTS

About this guide

This document describes all constants, types, variables, functions and procedures as they are declared
in the units that come standard with the FCL (Free Component Library).

Throughout this document, we will refer to functions, types and variablestypwriter font.

Functions and procedures gave their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.
Description What does the procedure exactly do ?
Errors What errors can occur.

See Also Cross references to other related functions/commands.

19

Chapter 1

Reference for unit 'Classes’

1.1 Used units

Table 1.1: Used units by unit 'Classes’

Name Page
sysutils 20
typinfo 20

1.2 Overview

This documentation describes the FEl&sses unit. TheClasses unit contains basic classes for the
Free Component Library (FCL):

a TList (117) class for maintaining lists of pointers,

TStringList (L48) for lists of strings,

TCollection (75) to manage collections of objects

TStream {39 classes to support streaming.

Furthermore it introduces methods for object persistence, and classes that understand an owner-
owned relationship, with automatic memory management.

1.3 Constants, types and variables

Constants
BITSHIFT = 5

Used to calculate the size of a bits array

FilerSignature : Array[1..4] of Char

20

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Constant that is found at the start of a binary stream containing a streamed component.
fmCreate = \$FFFF

TFileStream.Createl08) creates a new file if needed.
fmOpenRead = 0

TFileStream.Createl 08) opens a file with read-only access.
fmOpenReadWrite = 2

TFileStream.Createl08) opens a file with read-write access.
fmOpenWrite = 1

TFileStream.Createl08) opens a file with write-only access.
MASK = 31

Bitmask with all bits on.

MaxBitFlags = MaxBitRec * 32

Maximum number of bits in TBits collection.

MaxBitRec = \$FFFF div (SizeOf (longint))
Maximum number of bit records in TBits.

MaxListSize = Maxint div 16

This constant sets the maximum number of elements in a TLisH) (
scAlt = \$8000

Indicates ALT key in a keyboard shortcut.

scCtrl = \$4000

indicates CTRL key in a keyboard shortcut.

scNone = 0

Indicates no special key is presed in a keyboard shortcut.
scShift = \$2000

Indicates Shift key in a keyboard shortcut.
soFromBeginning = 0

Seek (41]) starts relative to the stream origin.

soFromCurrent = 1

21

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Seek (41 starts relative to the current position in the stream.

soFromEnd = 2

Seek (41]) starts relative to the stream end.

toEOF = Char (0)

Value returned by TParser.Toket?@d when the end of the input stream was reached.
toFloat = Char (4)

Value returned by TParser.Toket2@d) when a floating point value was found in the input stream.
tolnteger = Char (3)

Value returned by TParser.Toket?(d when an integer was found in the input stream.
toString = Char (2)

Value returned by TParser.Toket?@d when a string was found in the input stream.
toSymbol = Char (1)

Value returned by TParser.Toket? when a symbol was found in the input stream.

Types
HMODULE = Longint

FPC doesn’t support modules yet, so this is a dummy type.

HRSRC = Longint

This type is provided for Delphi compatibilty, it is used for resource streams.
PPointerList = \» TPointerList

Pointer to an array of pointers.

PStringltem = * TStringltem

Pointer to a TStringltem20) record.

PStringltemList = \™ TStringltemList

Pointer to a TStringltemList20).

TActiveXRegType = (axrComponentOnly,axrincludeDescendants)

This type is provided for compatibility only, and is currently not used in Free Pascal.

TAlignment = (taLeftJustify,taRightJustify,taCenter)

22

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Table 1.2: Enumeration values for type TActiveXRegType

Value Explanation
axrComponentOnly
axrincludeDescendants

Table 1.3: Enumeration values for type TAlignment

Value Explanation

taCenter Text is displayed centered.
taLeftJustify Textis displayed aligned to the left
taRightJustify Text is displayed aligned to the right.

TheTAlignment type is used to specify the alignment of the text in controls that display a text.

TAncestorNotFoundEvent = procedure(Reader: TReader;
const ComponentName: String;
ComponentClass: TPersistentClass;
var Component: TComponent) of object

This event occurs when an ancestor component cannot be found.

TBasicActionClass = Class of TBasicAction

TBasicAction 63) class reference.

TBasicActionLinkClass = Class of TBasicActionLink

TBasicActionLink 68) class reference.

TBitArray = Array[0..MaxBitRec-1] of cardinal

Array to store bits.

TCollectionltemClass = Class of TCollectionltem

TCollectionltemClass is used by the TCollection.ltemClaslj property of TCollection15)
to identify the descendent class of TCollectionltedf)(which should be created and managed.

TComponentClass = Class of TComponent

The TComponentClass type is used when constructing TCompone38) (descendent instances
and when registering components.

TComponentName = String

Names of components are of typ€omponentName. By specifying a different type, the Object
inspector can handle this property differently than a standard string property.

TComponentState= Set of (csLoading,csReading,csWriting,csDestroying,

csDesigning,csAncestor,csUpdating,csFixups,
csFreeNatification,cslinline,csDesigninstance)

23

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Indicates the state of the component during the streaming process.
TComponentStyle= Set of (csInheritable,csCheckPropAvail)
Describes the style of the component.

TCreateComponentEvent = procedure(Reader: TReader;
ComponentClass: TComponentClass;
var Component: TComponent) of object

Event handler type, occurs when a component instance must be created when a component is read
from a stream.

TDuplicates = (duplgnore,dupAccept,dupError)

Table 1.4: Enumeration values for type TDuplicates

Value Explanation

dupAccept Duplicate values can be added to the list.
dupError If an attempt is made to add a duplicate value to the list, an EStringListE8ja@xception is raised.
duplgnore Duplicate values will not be be added to the list, but no error will be triggered.

Type to describe what to do with duplicate values in a TStringlid8).

TFilerFlag = (fflnherited,ffChildPos,ffInline)

Table 1.5: Enumeration values for type TFilerFlag

Value Explanation

ffChildPos The position of the child on it’s parent is included.
ffinherited Stored object is an inherited object.

ffinline Used for frames.

TheTFiler class uses this enumeration type to decide whether the streamed object was streamed
as part of an inherited form or not.

TFilerFlags= Set of (ffChildPos,fflnherited,fflnline)
Set of TFilerFlag 24)

TFindAncestorEvent = procedure(Writer: TWriter;Component: TComponent;
const Name: String;
var Ancestor: TComponent;
var RootAncestor: TComponent) of object

Event that occurs w

TFindComponentClassEvent = procedure(Reader: TReader;
const ClassName: String;
var ComponentClass: TComponentClass)
of object

24

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Event handler type, occurs when a component class pointer must be found when reading a component
from a stream.

TFindGlobalComponent = function(const Name: String) : TComponent
TFindGlobalComponent is a callback used to find a component in a global scope. It is used

when the streaming system needs to find a component which is not part of the component which is
currently being streamed. It should return the component with néanee or Nil if none is found.

The variable FindGlobalComponer8() is a callback of typd FindGlobalComponent . It can
be set by the IDE when an unknown reference is found, to offer the designer to redirect the link to a
new component.

TFindMethodEvent = procedure(Reader: TReader;const MethodName: String;
var Address: Pointer;var Error: Boolean)
of object

If a TReader 126) instance needs to locate a method and it doesn't find it in the streamed form, then
the OnFindMethodX35) event handler will be called, if one is installed. This event can be assigned
in order to use different locating methods. If a method is found, then its address should be returned
in Address . TheError should be set t@rue if the reader should raise an exception after the
event was handled. If it is set false no exception will be raised, even if no method was found.

On entry,Error will be set toTrue .

TGetChildProc = procedure(Child: TComponent) of object

Callback used when obtaining child components.

TGetStrProc = procedure(const S: String) of object

This event is used as a callback to retrieve string values. It is used, among other things, to pass along
string properties in property editors.

THANDLE = Longint

This type is used as the handle for THandleStrehd9)(stream descendents
THelpContext = -MaxLongint..MaxLongint

Range type to specify help contexts.

THelpEvent = function(Command: Word;Data: Longint;var CallHelp: Boolean)
: Boolean of object

This event is used for display of online help.
THelpType = (htKeyword,htContext)
Enumeration type specifying the kind of help requested.
TldentMapEntry = record
Value : Integer;

Name : String;
end

25

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Table 1.6: Enumeration values for type THelpType

Value Explanation
htContext
htKeyword

TidentMapEntry is used internally by the IdentToln8®) and IntToldent 84) calls to store the
mapping between the identifiers and the integers they represent.

TldentTolnt = function(const Ident: String;var Int: Longint) : Boolean

TldentTolnt is a callback used to look up identifiedsl¢nt) and return an integer value cor-
responding to this identifiedr{t). The callback should returfirue if a value corresponding to
integerldent was foundfalse if not.

A callback of typeTldentTolnt should be specified when an integer is registered using the Reg-
isterIntegerConsts3@) call.

TInitComponentHandler = function(Instance: TComponent;
RootAncestor: TClass) : Boolean

TIntToldent = function(Int: Longlnt;var Ident: String) : Boolean

TldentTolnt is a callback used to look up integelddnt) and return an identifierdent)
that can be used to represent this integer value in an IDE. The callback shouldTireteirif a value
corresponding to integédent was foundfalse if not.

A callback of typeTIntToldent should be specified when an integer is registered using the Reg-
isterintegerConsts3@) call.

TListNotification = (InAdded,InExtracted,InDeleted)

Table 1.7: Enumeration values for type TListNotification

Value Explanation
InAdded

InDeleted

InExtracted

Kind of list notification event.

TListSortCompare = function(lteml: Pointer;ltem2: Pointer) : Integer

Callback type for the list sort algorithm.

TNotifyEvent = procedure(Sender: TObject) of object

Most event handlers are implemented as a property of TipetifyEvent . When this is set to

a certain method of a class, when the event occurs, the method will be called, and the class that
generated the event will pass itself along asSkader argument.

26

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Table 1.8: Enumeration values for type TOperation

Value Explanation
oplnsert A new component is being inserted in the child component list.
opRemove A component is being removed from the child component list.

TOperation = (oplnsert,opRemove)

Operation of which a component is naotified.

TPersistentClass = Class of TPersistent

TPersistentClass is the class reference type for the TPersistéat) class.

TPoint = record

X : Integer;
y : Integer,
end

This record describes a coordinate. It is used to handle the 8®patd Left 86) properties of
TComponent§6).

Xrepresents the X-Coordinate of the point described by the re¥aapresents the Y-Coordinate of
the point described by the record.

TPointerList = Array[0..MaxListSize-1] of Pointer

Type for an Array of pointers.
TPropertyNotFoundEvent = procedure(Reader: TReader;
Instance: TPersistent;
var PropName: String;IsPath: Boolean;

var Handled: Boolean;
var Skip: Boolean) of object

TReadComponentsProc = procedure(Component: TComponent) of object

Callback type when reading a component from a stream

TReaderError = procedure(Reader: TReader;const Message: String;
var Handled: Boolean) of object

Event handler type, called when an error occurs during the streaming.
TReaderProc = procedure(Reader: TReader) of object
The TReaderProc reader procedure is a callback procedure which will be used by a TPersistent

(124) descendent to read user properties from a stream during the streaming proceRgadibe
argument is the writer object which can be used read properties from the stream.

27

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TRect = record
end

TRect describes a rectangle in space with its upper-left Tiop(Left>)) and lower-right (in
(Bottom ,Right)) corners.

TReferenceNameEvent = procedure(Reader: TReader;var Name: String)
of object

Occurs when a named object needs to be looked up.

TSeekOrigin = (soBeginning,soCurrent,soEnd)

Table 1.9: Enumeration values for type TSeekOrigin

Value Explanation

soBeginning Offset is interpreted relative to the start of the stream.

soCurrent Offset is interpreted relative to the current position in the stream.
soEnd Offset is interpreted relative to the end of the stream.

Specifies the origin of the TStream.Se&Kk 1) method.

TSetMethodPropertyEvent = procedure(Reader: TReader;
Instance: TPersistent;
Propinfo: PProplinfo;
const TheMethodName: String;
var Handled: Boolean) of object

TSetNameEvent = procedure(Reader: TReader;Component: TComponent;
var Name: String) of object

Occurs when the reader needs to set a component’s name.

TShiftState= Set of (ssShift,ssAlt,ssCtrl,ssLeft,ssRight,ssMiddle,
ssDouble,ssMeta,ssSuper,ssHyper,ssAltGr,ssCaps,
ssNum,ssScroll,ssTriple,ssQuad)

This type is used when describing a shortcut key or when describing what special keys are pressed
on a keyboard when a key event is generated.

The set contains the special keys that can be used in combination with a 'normal’ key.
TShortCut = (Word)..High (Word)

Enumeration type to identify shortcut key combinations.

TSmallPoint = record

X : Smallint;
y : Smallint;
end

28

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Same as TPoinR({), only the X and Y ranges are limited to 2-byte integers instead of 4-byte integers.
TStreamProc = procedure(Stream: TStream) of object
Procedure type used in streaming.
TStringltem = record
FString : String;

FObject : TObject;
end

The TStringltem is used to store the string and object items in a TStringlLlig8Y string list
instance. It should never be used directly.

TStringltemList = Array[0..MaxListSize] of TStringltem
This declaration is provided for Delphi compatibility, it is not used in Free Pascal.

TStringListSortCompare = function(List: TStringList;Index1: Integer;
Index2: Integer) : Integer

Callback type used in stringlist compares.

TValueType = (vaNull,vaList,valnt8,valnt16,valnt32,vaExtended,vaString,
valdent,vaFalse,vaTrue,vaBinary,vaSet,valL String,vaNil,
vaCollection,vaSingle,vaCurrency,vaDate,vaWString,valnt64)

Table 1.10: Enumeration values for type TValueType

Value Explanation

vaBinary Binary data follows.
vaCollection Collection follows
vaCurrency Currency value follows

vaDate Date value follows
vaExtended Extended value.

vaFalse Booleakalse value.
valdent Identifier.

valnt16 Integer value, 16 bits long.
valnt32 Integer value, 32 bits long.
valnt64 Integer value, 64 bits long.
valnt8 Integer value, 8 bits long.
valList Identifies the start of a list of values
valL String Ansistring data follows.
vaNil Nil pointer.

vaNull Empty value. Ends a list.
vaSet Set data follows.

vaSingle Single type follows.
vaString String value.

vaTrue BooleaMrue value.

vaWsString Widestring value follows.

Enumerated type used to identify the kind of streamed property

29

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TWriteMethodPropertyEvent = procedure(Writer: TWriter;
Instance: TPersistent;
Propinfo: PProplinfo;
const MethodValue: TMethod:;
const DefMethodCodeValue: Pointer;
var Handled: Boolean) of object

TWriterProc = procedure(Writer: TWriter) of object

The TWriterProc writer procedure is a callback procedure which will be used by a TPersistent
(124 descendent to write user properties from a stream during the streaming proce¥®éritEhe
argument is the writer object which can be used write properties to the stream.

Variables
AddDataModule : procedure(DataModule: TDataModule) of object

ApplicationHandleException : procedure(Sender: TObject) of object

ApplicationShowException : procedure(E: Exception) of object

FindGlobalComponent : TFindGlobalComponent

FindGlobalComponent is a callback of type TFindGlobalComponeg8). It can be set by the
IDE when an unknown reference is found, to offer the user to redirect the link to a new component.

It is a callback used to find a component in a global scope. It is used when the streaming system
needs to find a component which is not part of the component which is currently being streamed. It
should return the component with natdame or Nil if none is found.

MainThreadlD : THANDLE

ID of main thread. Unused at this point.

RegisterComponentsProc : procedure(const Page: String;
ComponentClasses: Array[] of TComponentClass)

RegisterComponentsProc can be set by an IDE to be notified when new components are being
registered. Application programmers should never have tBegisterComponentsProc

RegisterNolconProc : procedure(ComponentClasses: Array[] of TComponentClass)
RegisterNolconProc can be set by an IDE to be notified when new components are being
registered, and which do not need an Icon in the component palette. Application programmers should

never have to sdkegisterComponentsProc

RemoveDataModule : procedure(DataModule: TDataModule) of object

30

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.4 Procedures and functions

BeginGlobalLoading
Synopsis: Not yet implemented
Declaration: procedure BeginGlobalLoading
Visibility: default

Description: Not yet implemented

Bounds

Synopsis: Returns a'Rect structure with the bounding rect of the given location and size.

Declaration: function Bounds(ALeft: Integer;ATop: Integer;AWidth: Integer;
AHeight: Integer) : TRect

Visibility: default

Description: Bounds returns a TRect48) record with the given origifALeft,ATop) and dimensionfAWidth,AHeight)
filled in.

CollectionsEqual

Synopsis: ReturnsTrue if two collections are equal.
Declaration: function CollectionsEqual(C1: TCollection;C2: TCollection) : Boolean
Visibility: default

Description: CollectionsEqual is not yet implemented. It simply returfalse

EndGloballLoading

Synopsis: Not yet implemented.
Declaration: procedure EndGlobalLoading
Visibility: default

Description: Not yet implemented.

FindClass

Synopsis: Returns the class pointer of a class with given name.
Declaration: function FindClass(const AClassName: String) : TPersistentClass
Visibility: default

Description: FindClass searches for the class nantéldhssName in the list of registered classes and returns a
class pointer to the definition. If no class with the given name could be found, an exception is raised.

The GetClass3?2) function does not raise an exception when it does not find the class, but returns a
Nil pointer instead.

See also: RegisterClass3y), GetClass2)

31

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

FindNestedComponent
Synopsis: Finds the component with name path starting at the indicated root component.

Declaration: function FindNestedComponent(Root: TComponent;const NamePath: String)
: TComponent

Visibility: default

Description: FindNestedComponent will descend through the list of owned components (startingaat)
and will return the component whose name path matbleesePath. As a path separator the char-
acters . (dot), - (dash) and > (greater than) can be used

See also: GlobalFixupReferenceS898)

GetClass

Synopsis: Returns the class pointer of a class with given name.
Declaration: function GetClass(const AClassName: String) : TPersistentClass
Visibility: default

Description: GetClass searches for the class nantéhssName in the list of registered classes and returns a
class pointer to the definition. If no class with the given name could be fdlihdjs returned.

The FindClass31) function will raise an exception if the does not find the class.

See also: RegisterClass3y7), GetClass32)

GetFixuplnstanceNames

Synopsis: Returns the names of elements that need to be resolved fovdhe component, whose reference
containsReferenceRootName

Declaration: procedure GetFixuplnstanceNames(Root: TComponent;
const ReferenceRootName: String;
Names: TStrings)

Visibility: default

Description: GetFixuplnstanceNames examines the list of unresolved references and returns the names of
classes that contain unresolved references t&®Rtf@ component in the liskames The list is not
cleared prior to filling it.

See also: GetFixupReferenceName33), GlobalFixupReference839)

GetFixupReferenceNames
Synopsis: Returns the names of elements that need to be resolved faydhe component.

Declaration: procedure GetFixupReferenceNames(Root: TComponent;Names: TStrings)
Visibility: default

Description: GetFixupReferenceNames examines the list of unresolved references and returns the names
of properties that must be resolved for the compoiadt in the listNames The listis not cleared
prior to filling it.

See also: GetFixuplnstanceNames82), GlobalFixupReference88)

32

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

GlobalFixupReferences

Synopsis: Called to resolve unresolved references after forms are loaded.
Declaration: procedure GlobalFixupReferences
Visibility: default

Description: GlobalFixupReferences runs over the list of unresolved references and tries to resolve them.
This routine should under normal circumstances not be called in an application programmer’s code.
It is called automatically by the streaming system after a component has been instantiated and its
properties read from a stream. It will attempt to resolve references to other global components.

See also: GetFixupReferenceName33), GetFixuplnstanceNames2)

IdentTolnt

Synopsis: Looks up an integer value in a integer-to-identifier map list.

Declaration: function IdentTolnt(const Ident: String;var Int: Longint;
const Map: Array[] of TldentMapEntry) : Boolean

Visibility: default

Description: IdentTolnt searche#lapfor an entry whos&lamefield matchesdent and returns the corre-
sponding integer value imt . If a match was found, the function returfirue , otherwisefalse
is returned.

See also: TldentTolnt £6), TIntToldent 6), IntToldent 34), TidentMapEntry 26)

InitComponentRes
Synopsis: Provided for Delphi compatibility only

Declaration: function InitComponentRes(const ResName: String;Instance: TComponent)
: Boolean

Visibility: default
Description: This function is provided for Delphi compatibility. It always retufasse

See also: ReadComponentRe8%)

InitinheritedComponent
Synopsis: Initializes a component descending frétootAncestor

Declaration: function InitinheritedComponent(Instance: TComponent;
RootAncestor: TClass) : Boolean

Visibility: default

Description: InitinheritedComponent should be called from a constructor to read properties of the com-
ponentinstance from the streaming system. Th&otAncestor class is the root class from
whichlInstance isadescendent. This must be ond@Batamodule , TCustomForm or TFrame.

The function return3rue if the properties were successfully read from a streafatse if some
error occurred.

See also: ReadComponentRe8%), ReadComponentResE3q), ReadComponentResFilgg)

33

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

IntToldent

Synopsis: Looks up an identifier for an integer value in a identifier-to-integer map list.

Declaration: function IntToldent(Int: Longint;var Ident: String;
const Map: Array[] of TldentMapEntry) : Boolean

Visibility: default

Description: IdentTolnt searcheMap for an entry whos&/alue field matchednt and returns the corre-
sponding identifier indent . If a match was found, the function returiieue , otherwise False
is returned.

See also: TldentTolnt £6), TintToldent @6), IdentTolnt 83), TIdentMapEntry 26)

LineStart
Synopsis: Finds the start of a line iBuffer beforeBufPos .

Declaration: function LineStart(Buffer: PChar;BufPos: PChar) : PChar
Visibility: default

Description: LineStart reversely scanBuffer starting atBufPos for a linefeed character. It returns a
pointer at the linefeed character.

NotifyGlobalLoading

Synopsis: Not yet implemented.
Declaration: procedure NotifyGlobalLoading
Visibility: default

Description: Not yet implemented.

ObjectBinaryToText

Synopsis: Converts an object stream from a binary to a text format.
Declaration: procedure ObjectBinaryToText(Input: TStream;Output: TStream)
Visibility: default

Description: ObjectBinaryToText reads an object stream in binary format fronput and writes the
object stream in text format ©utput . No components are instantiated during the process, thisis a
pure conversion routine.

See also: ObjectTextToBinary §5)

ObjectResourceToText

Synopsis: Converts an object stream from a (windows) resource to a text format.
Declaration: procedure ObjectResourceToText(Input: TStream;Output: TStream)

Visibility: default

34

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: ObjectResourceToText reads the resource header fromlimgut stream and then passes the
streams to ObjectBinaryToTex34)

See also: ObjectBinaryToText34), ObjectTextToResourc&%)

ObjectTextToBinary

Synopsis: Converts an object stream from a text to a binary format.
Declaration: procedure ObjectTextToBinary(Input: TStream;Output: TStream)
Visibility: default

Description: Converts an object stream from a text to a binary format.

ObjectTextToResource
Synopsis: Converts an object stream from a text to a (windows) resource format.

Declaration: procedure ObjectTextToResource(Input: TStream;Output: TStream)
Visibility: default

Description: ObjectTextToResource reads an object stream in text format frdnput and writes a re-
source stream tQutput .

Note that for the current implementation of this method in Free Pascal, the output stream should
support positioning. (e.g. it should not be a pipe)

See also: ObjectBinaryToText§4), ObjectResourceToTex84)

Point

Synopsis: Returns @'Point record with the given coordinates.
Declaration: function Point(AX: Integer;AY: Integer) : TPoint
Visibility: default
Description: Point returns a TPointZ7) record with the given coordinatés andAY filled in.

See also: TPoint 27), SmallPoint 89), Rect 36), Bounds 81)

ReadComponentRes
Synopsis: Read component properties from a resource in the current module

Declaration: function ReadComponentRes(const ResName: String;Instance: TComponent)
. TComponent

Visibility: default

Description: This function is provided for Delphi compatibility. It always retuids .

35

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

ReadComponentResEx

Synopsis: Read component properties from a resource in the specified module

Declaration: function ReadComponentResEx(HInstance: THANDLE;const ResName: String)
: TComponent

Visibility: default

Description: This function is provided for Delphi compatibility. It always retuids .

ReadComponentResFile

Synopsis: Read component properties from a specified resource file

Declaration: function ReadComponentResFile(const FileName: String;
Instance: TComponent) : TComponent

Visibility: default

Description: ReadComponentResFile starts reading properties forstance from the fileFileName . It
creates a filestream froffileName and then calls the TStream.ReadComponentR48 fnethod
to read the state of the component from the stream.

See also: TStream.ReadComponentRéag®), WriteComponentResFilel()

Rect

Synopsis: Returns a'Rect record with the given coordinates.

Declaration: function Rect(ALeft: Integer;ATop: Integer;ARight: Integer;
ABottom: Integer) : TRect

Visibility: default

Description: Rect returns a TRectd8) record with the given top-lefALeft,ATop) and bottom-righ{ABottom,ARight)
corners filled in.

No checking is done to see whether the coordinates are valid.

See also: TRect £8), Point 35), SmallPoint 89), Bounds 81)

RedirectFixupReferences

Synopsis: Redirects references under ttomt object fromOldRootName to NewRootName

Declaration: procedure RedirectFixupReferences(Root: TComponent;
const OldRootName: String;
const NewRootName: String)

Visibility: default

Description: RedirectFixupReferences examines the list of unresolved references and replaces refer-
ences to a root object nam@ldRootName with references to root objettewRootName

An application programmer should never need to RatlirectFixupReferences . This func-
tion can be used by an IDE to support redirection of broken component links.

See also: RemoveFixupReference39)

36

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

RegisterClass
Synopsis: Registers a class with the streaming system.
Declaration: procedure RegisterClass(AClass: TPersistentClass)
Visibility: default

Description: RegisterClass registers the clas&Class in the streaming system. After the class has been
registered, it can be read from a stream when a reference to this class is encountered.

See also: RegisterClasse87), RegisterClassAlias3{), RegisterComponent87), UnregisterClass3Q)

RegisterClassAlias

Synopsis: Registers a class alias with the streaming system.

Declaration: procedure RegisterClassAlias(AClass: TPersistentClass;
const Alias: String)

Visibility: default

Description: RegisterClassAlias registers a class alias in the streaming system. If a reference to a class
Alias is encountered in a stream, then an instance of the Al@tsss will be created instead by
the streaming code.

See also: RegisterClass3?), RegisterClasse8T7), RegisterComponent87), UnregisterClass30)

RegisterClasses
Synopsis: Registers multiple classes with the streaming system.
Declaration: procedure RegisterClasses(AClasses: Array[] of TPersistentClass)
Visibility: default

Description: RegisterClasses registers the specified class&€lass in the streaming system. After the
classes have been registered, they can be read from a stream when a reference to this class is encoun-
tered.

See also: RegisterClass3y7), RegisterClassAlias3{), RegisterComponent8T7), UnregisterClass3Q)

RegisterComponents

Synopsis: Registers components for the component palette.

Declaration: procedure RegisterComponents(const Page: String;
ComponentClasses: Array[] of TComponentClass)

Visibility: default

Description: RegisterComponents registers the component on the appropriate component page. The com-
ponent pages can be used by an IDE to display the known components so an application programmer
may pick and use the components in his programs.

Registercomponents inserts the component class in the correct component padeedjisher ComponentsProc
procedure is set, this is called as well. Note that this behaviour is different from Delphi’s behaviour
where an exception will be raised if the procedural variable is not set.

See also: RegisterClass3(7), RegisterNolcon38)

37

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

RegisterinitComponentHandler

Declaration: procedure RegisterInitComponentHandler(ComponentClass: TComponentClass;
Handler: TInitComponentHandler)

Visibility: default

RegisterintegerConsts
Synopsis: Registers some integer-to-identifier mappings.

Declaration: procedure RegisterintegerConsts(IntegerType: Pointer;
IdentTolntFn: TldentTolnt;
IntToldentFn: TIntToldent)

Visibility: default

Description: RegisterintegerConsts registers a pair of callbacks to be used when an integer of type
IntegerType must be mapped to an identifier (usingToldentFn) or when an identifier
must be mapper to an integer (usidgntTolntFn).

Component programmers can URegisterintegerConsts to associate a series of identifier
strings with integer values for a property. A necessary condition is that the property should have a
separate type declared using tiipe integer syntax. If a type of integer is defined in this way,

an IDE can show symbolic names for the values of these properties.

ThelntegerType should be a pointer to the type information of the integer type.litioldentFn
andldentToIntFn are two callbacks that will be used when converting between the identifier and
integer value and vice versa. The functions IdentTo®3) @nd IntToldent 84) can be used to im-
plement these callback functions.

See also: TldentTolnt 6), TintToldent 6), IdentTolnt @3), IntToldent 34)

RegisterNolcon
Synopsis: Registers components that have no icon on the component palette.

Declaration: procedure RegisterNolcon(ComponentClasses: Array[] of TComponentClass)
Visibility: default

Description: RegisterNolcon performs the same function as RegisterComponeWsdxcept that it calls
RegisterNolconProc3(Q) instead of RegisterComponentsPrao)(

See also: RegisterNolconProc3Q), RegisterComponent87)

RegisterNonActiveX

Synopsis: Register non-activex component.

Declaration: procedure RegisterNonActiveX
(ComponentClasses: Array[] of TComponentClass;
AxRegType: TActiveXRegType)

Visibility: default

Description: Not yet implemented in Free Pascal

38

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

RemoveFixupReferences

Synopsis: Removes references to rootname from the fixup list.
Declaration: procedure RemoveFixupReferences(Root: TComponent;const RootName: String)
Visibility: default

Description: RemoveFixupReferences examines the list of unresolved references and removes references
to a root object pointing &oot or a root component namdtbotName.

An application programmer should never need to BalinoveFixupReferences . This function
can be used by an IDE to support removal of broken component links.

See also: RedirectFixupReferencesg)

RemoveFixups

Synopsis: Removednstance from the fixup list.
Declaration: procedure RemoveFixups(Instance: TPersistent)
Visibility: default

Description: RemoveFixups removes all entries for compondmnistance from the list of unresolved refer-
ences.a

See also: RedirectFixupReference86), RemoveFixupReference3q)

SmallPoint

Synopsis: Returns ar'SmallPoint record with the given coordinates.
Declaration: function SmallPoint(AX: Smallint;AY: Smallint) : TSmallPoint
Visibility: default
Description: SmallPoint returns a TSmallPoin®Q) record with the given coordinatésXandAY filled in.

See also: TSmallPoint 29), Point 35), Rect 386), Bounds 81)

UnRegisterClass

Synopsis: Unregisters a class from the streaming system.
Declaration: procedure UnRegisterClass(AClass: TPersistentClass)
Visibility: default
Description: UnregisterClass removes the clagsClass from the class definitions in the streaming system.

See also: UnRegisterClasse4(), UnRegisterModuleClasse4(), RegisterClass3({)

39

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

UnRegisterClasses
Synopsis: Unregisters multiple classes from the streaming system.

Declaration: procedure UnRegisterClasses(AClasses: Array[] of TPersistentClass)
Visibility: default

Description: UnregisterClasses removes the classesitClasses from the class definitions in the stream-
ing system.

UnRegisterModuleClasses
Synopsis: Unregisters classes registered by module.

Declaration: procedure UnRegisterModuleClasses(Module: HMODULE)
Visibility: default

Description: UnRegisterModuleClasses unregisters all classes which reside in the modidelule . For
each registered class, the definition pointer is checked to see whether it resides in the module, and if
it does, the definition is removed.

See also: UnRegisterClass3Q), UnRegisterClassegd (), RegisterClasse87)

WriteComponentResFile
Synopsis: Write component properties to a specified resource file

Declaration: procedure WriteComponentResFile(const FileName: String;
Instance: TComponent)

Visibility: default

Description: WriteComponentResFile starts writing properties dihstance to the fileFileName . It
creates a filestream frofileName and then calls TStream.WriteComponentRE$3(method to
write the state of the component to the stream.

See also: TStream.WriteComponentReE43), ReadComponentResFilgq)

1.5 EBitsError
Description

When an index of a bit in a TBit$@) is out of the valid range)(to Count-1) then aEBitsError
exception is raised.

1.6 EClassNotFound

Description

When the streaming system needs to create a component, it looks for the class pointer (VMT) in the
list of registered classes by its name. If this name is not found, th&CassNotFound s raised.

40

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.7 EComponentError

Description

When an error occurs during the registration of a component, or when naming a component, then a
EComponentError is raised. Possible causes are:

1. An name with an illegal character was assigned to a component.
2. A component with the same name and owner already exists.

3. The component registration system isn’t set up properly.

1.8 EFCreateError
Description

When the operating system reports an error during creation of a new file in the Filestream Constructor
(108), aEFCreateError s raised.

1.9 EFilerError
Description

This class serves as an ancestor class for exceptions that are raised when an error occurs during
component streaming. BFilerError exception is raised when a class is registered twice.

1.10 EFOpenError
Description

When the operating system reports an error during the opening of a file in the Filestream Constructor
(108, aEFOpenkError is raised.

1.11 Elnvalidimage

Description
This exception is not used by Free Pascal but is provided for Delphi compatibility.

1.12 ElnvalidOperation

Description
This exception is not used in Free Pascal, it is defined for Delphi compatibiliy purposes only.

41

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.13 EListError

Description

If an error occurs in one of the TLisL{1) or TStrings (54 methods, then BListError excep-
tion is raised. This can occur in one of the following cases:

. There is not enough memory to expand the list.

. The list tried to grow beyond its maximal capacity.

. An attempt was made to reduce the capacity of the list below the current element count.
. An attempt was made to set the list count to a negative value.

. A non-existent element of the list was referenced. (i.e. the list index was out of bounds)

oo o~ W N P

. An attempt was made to move an item to a position outside the list's bounds.

1.14 EMethodNotFound

Description

This exception is no longer used in the streaming system. This error is replaced by a EReadError
(42).

1.15 EOutOfResources

Description
This exception is not used in Free Pascal, it is defined for Delphi compatibiliy purposes only.

1.16 EParserError

Description

When an error occurs during the parsing of a streantzBarserError is raised. Usually this
indicates that an invalid token was found on the input stream, or the token read from the stream
wasn't the expected token.

1.17 EReadError

Description

If an error occurs when reading from a strearReadError exception is raised. Possible causes
for this are:

1. Not enough data is available when reading from a stream

2. The stream containing a component’s data contains invalid data. this will occurr only when
reading a component from a stream.

42

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.18 EResNotFound

Description

This exception is not used by Free Pascal but is provided for Delphi compatibility.

1.19 EStreamError

Description

An EStreamError is raised when an error occurs during reading from or writhg to a stream:
Possible causes are

1. Not enough data is available in the stream.
2. Trying to seek beyond the beginning or end of the stream.
3. Trying to set the capacity of a memory stream and no memory is available.

4. Trying to write to a resource stream.

1.20 EStringListError

Description

When an error occurs in one of the methods of TStririgsl) then anEStringListError is
raised. This can have one of the following causes:

1. There is not enough memory to expand the list.
2. The list tried to grow beyond its maximal capacity.
3. A non-existent element of the list was referenced. (i.e. the list index was out of bounds)

4. An attempt was made to add a duplicate entry to a TStringL#&)(when TStringList.AllowDuplicates
(148 is False .

1.21 EWriteError

Description

If an error occurs when writing to a streamE®VriteError exception is raised. Possible causes
for this are:

1. The stream doesn't allow writing.

2. An error occurred when writing a property to a stream.

1.22 IStringsAdapter

Description
Is not yet supported in Free Pascal.

43

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.23 TAbstractObjectReader

Description

The Free Pascal streaming mechanism, while compatible with Delphi’s mechanism, differs from

it in the sense that the streaming mechanism uses a driver class when streaming components. The
TAbstractObjectReader class is the base driver class for reading property values from streams.

It consists entirely of abstract methods, which must be implemented by descendent classes.

Different streaming mechanisms can be implemented by making a descendehfdbstractObjectReader
The TBinaryObjectReade6®) class is such a descendent class, which streams data in binary (Delphi
compatible) format.

All methods described in this class, mustbe implemented by descendent classes.

Method overview

Page Method Description

45 BeginComponent Marks the reading of a new component.

45 BeginProperty Marks the reading of a property value.

45 BeginRootComponent Starts the reading of the root component.

44 NextValue Returns the type of the next value in the stream.
46 ReadBinary Read binary data from the stream.

47 ReadDate Read a date value from the stream.

46 ReadFloat Read a float value from the stream.

a7 Readldent Read an identifier from the stream.

48 ReadInt16 Read a 16-bit integer from the stream.

48 ReadInt32 Read a 32-bit integer from the stream.

48 ReadInt64 Read a 64-bit integer from the stream.

a7 ReadInt8 Read an 8-bit integer from the stream.

49 ReadSet Reads a set from the stream.

46 ReadSingle Read a single (real-type) value from the stream.
49 ReadStr Read a shortstring from the stream

49 ReadString Read a string of ty@ringType from the stream.
44 ReadValue Reads the type of the next value.

50 SkipComponent Skip till the end of the component.

50 SkipValue Skip the current value.

TAbstractObjectReader.NextValue

Synopsis: Returns the type of the next value in the stream.
Declaration: function NextValue : TValueType; Virtual, Abstract
Visibility: public

Description: This function should return the type of the next value in the stream, but should not read it, i.e. the
stream position should not be altered by this method. This is used to 'peek’ in the stream what value
is next.

See also: TAbstractObjectReader.ReadValuel)

TAbstractObjectReader.ReadValue

Synopsis: Reads the type of the next value.

44

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Declaration: function ReadValue : TValueType; Virtual; Abstract
Visibility: public

Description: This function returns the type of the next value in the stream and reads it. i.e. after the call to this
method, the stream is positioned to read the value of the type returned by this function.

See also: TAbstractObjectReader.ReadValuel)

TAbstractObjectReader.BeginRootComponent

Synopsis: Starts the reading of the root component.
Declaration: procedure BeginRootComponent; Virtual, Abstract
Visibility: public

Description: This function can be used to initialize the driver class for reading a component. It is called once at
the beginning of the read process, and is immediatly followed by a call to BeginCompdggnt (

See also: TAbstractObjectReader.BeginComponett)(

TAbstractObjectReader.BeginComponent
Synopsis: Marks the reading of a new component.

Declaration: procedure BeginComponent(var Flags: TFilerFlags;var AChildPos: Integer;
var CompClassName: String;var CompName: String)
; Virtual; Abstract

Visibility: public
Description: This method is called when the streaming process wants to start reading a new component.

Descendent classes should override this method to read the start of a component new component
definition and return the needed argumerlags should be filled with any flags that were found

at the component definition, as well A&€hildPos . TheCompClassName should be filled with

the class name of the streamed component, an€dmpNameargument should be filled with the

name of the component.

See also: TAbstractObjectReader.BeginRootCompondi®) (TAbstractObjectReader.BeginProperp)

TAbstractObjectReader.BeginProperty

Synopsis: Marks the reading of a property value.
Declaration: function BeginProperty : String; Virtual; Abstract
Visibility: public

Description: BeginProperty s called by the streaming system when it wants to read a new property. The
return value of the function is the name of the property which can be read from the stream.

See also: TAbstractObjectReader.BeginComponett)(

45

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TAbstractObjectReader.ReadBinary
Synopsis: Read binary data from the stream.

Declaration: procedure ReadBinary(const DestData: TMemoryStream);

Virtual; Abstract
Visibility: public

Description: ReadBinary is called when binary data should be read from the stream (i.e. after Read¥djue (

returned a valuetype ofaBinary). The data should be stored in tBestData memory stream
by descendent classes.

See also: TAbstractObjectReader.ReadFlo&b), TAbstractObjectReader.ReadDat@) TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readlded¥), TAbstractObjectReader.ReadInt87], TAbstractOb-
jectReader.ReadInt188), TAbstractObjectReader.ReadInt3B), TAbstractObjectReader.ReadInt64
(48), TabstractObjectReader.Read3&) (TabstractObjectReader.Readd8)(TabstractObjectReader.ReadString
(49)

TAbstractObjectReader.ReadFloat

Synopsis: Read a float value from the stream.

Declaration: function ReadFloat : Extended; Virtual, Abstract
Visibility: public

Description: ReadFloat is called by the streaming system when it wants to read a float from the stream (i.e.

after ReadValue44) returned a valuetype ofaExtended). The return value should be the value
of the float.

See also: TAbstractObjectReader.ReadFlo&b), TAbstractObjectReader.ReadDat&) TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readldedl), TAbstractObjectReader.ReadInt&7], TAbstractOb-
jectReader.ReadInt188), TAbstractObjectReader.ReadInt3B), TAbstractObjectReader.ReadInt64
(48), TabstractObjectReader.Read3&) (TabstractObjectReader.Read88)(TabstractObjectReader.ReadString
(49)

TAbstractObjectReader.ReadSingle
Synopsis: Read a single (real-type) value from the stream.

Declaration: function ReadSingle : Single; Virtual;, Abstract

Visibility: public

Description: ReadSingle is called by the streaming system when it wants to read a single-type float from the

stream (i.e. after ReadValué4) returned a valuetype afaSingle). The return value should be
the value of the float.

See also: TAbstractObjectReader.ReadFloéd), TAbstractObjectReader.ReadDat&); TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readldedf), TAbstractObjectReader.ReadIni&7], TAbstractOb-
jectReader.ReadInt188), TAbstractObjectReader.ReadInt3B), TAbstractObjectReader.ReadInt64
(48), TabstractObjectReader.Read &) (TabstractObjectReader.Read88)(TabstractObjectReader.ReadString
(49

46

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TAbstractObjectReader.ReadDate
Synopsis: Read a date value from the stream.
Declaration: function ReadDate : TDateTime; Virtual; Abstract
Visibility: public
Description: ReadDate is called by the streaming system when it wants to read a date/time value from the

stream (i.e. after ReadValué4) returned a valuetype ofaDate). The return value should be the
date/time value. (This value can be stored as a float, SiDegeTime is nothing but a float.)

See also: TAbstractObjectReader.ReadFlod6), TAbstractObjectReader.ReadSingld) TAbstractObjec-
tReader.Readldentt{), TAbstractObjectReader.ReadInt87], TAbstractObjectReader.ReadInt16
(48), TAbstractObjectReader.ReadInt328), TAbstractObjectReader.ReadInt648), TabstractO-

bjectReader.ReadSet9), TabstractObjectReader.ReadS3tB)(TabstractObjectReader.ReadString
(49

TAbstractObjectReader.Readldent
Synopsis: Read an identifier from the stream.
Declaration: function Readldent(ValueType: TValueType) : String; Virtual; Abstract
Visibility: public
Description: Readldent is called by the streaming system if it expects to read an identifier oMgheType

from the stream after a call to ReadValde) returnedvaldent . The identifier should be returned
as a string. Note that in some cases the identifier does not actually have to be in the stream;

Table 1.11:
ValueType Expected value
valdent Read from stream.
vaNil 'Nil'. This does not have to be read from the stream.
vaFalse 'False’. This does not have to be read from the stream.
vaTrue "True’. This does not have to be read from the stream.
vaNull 'Null’. This does not have to be read from the stream.

See also: TAbstractObjectReader.ReadFlo4b), TAbstractObjectReader.ReadDat@) TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.ReadInt@r), TAbstractObjectReader.ReadInt188), TAbstractOb-
jectReader.ReadInt328), TAbstractObjectReader.ReadInté¥B), TabstractObjectReader.ReadSet
(49), TabstractObjectReader.Read3t9)(TabstractObjectReader.ReadStridg)(

TAbstractObjectReader.ReadInt8
Synopsis: Read an 8-bit integer from the stream.
Declaration: function ReadInt8 : Shortint; Virtual, Abstract
Visibility: public
Description: ReadInt8 is called by the streaming process if it expects to read an integer value with a size of 8

bits (1 byte) from the stream (i.e. after ReadValdié) feturned a valuetype efalnt8). The return

value is the value if the integer. Note that the size of the value in the stream does not actually have to
be 1 byte.

47

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

See also: TAbstractObjectReader.ReadFlo4f), TAbstractObjectReader.ReadDag&)(TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readldeat), TAbstractObjectReader.ReadInt¥B), TAbstractOb-
jectReader.ReadInt328), TAbstractObjectReader.ReadInt&B), TabstractObjectReader.ReadSet
(49), TabstractObjectReader.Read3®)(TabstractObjectReader.ReadStriAg)(

TAbstractObjectReader.ReadInt16
Synopsis: Read a 16-bit integer from the stream.
Declaration: function ReadIntl6 : Smallint; Virtual, Abstract
Visibility: public
Description: ReadInt16 is called by the streaming process if it expects to read an integer value with a size of
16 bits (2 bytes) from the stream (i.e. after ReadVali# (eturned a valuetype ofalntl6). The

return value is the value if the integer. Note that the size of the value in the stream does not actually
have to be 2 bytes.

See also: TAbstractObjectReader.ReadFlo&b), TAbstractObjectReader.ReadDat&) TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readlded¥), TAbstractObjectReader.ReadInt87], TAbstractOb-
jectReader.ReadInt328), TAbstractObjectReader.ReadInté¥B), TabstractObjectReader.ReadSet
(49), TabstractObjectReader.Read39)(TabstractObjectReader.ReadStridg)(

TAbstractObjectReader.ReadInt32
Synopsis: Read a 32-bit integer from the stream.
Declaration: function ReadInt32 : Longint; Virtual, Abstract
Visibility: public
Description: ReadInt32 is called by the streaming process if it expects to read an integer value with a size of
32 bits (4 bytes) from the stream (i.e. after ReadValyg (eturned a valuetype ofaint32). The

return value is the value of the integer. Note that the size of the value in the stream does not actually
have to be 4 bytes.

See also: TAbstractObjectReader.ReadFlo4b), TAbstractObjectReader.ReadDat&) TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readldedf), TAbstractObjectReader.ReadInt87], TAbstractOb-
jectReader.ReadInt1@8), TAbstractObjectReader.ReadInté¥B), TabstractObjectReader.ReadSet
(49), TabstractObjectReader.Read3@)(TabstractObjectReader.ReadStrid§)(

TAbstractObjectReader.ReadInt64
Synopsis: Read a 64-bit integer from the stream.
Declaration: function ReadInt64 : Int64; Virtual; Abstract
Visibility: public
Description: ReadInt64 is called by the streaming process if it expects to read an int64 value with a size of
64 bits (8 bytes) from the stream (i.e. after ReadVal® (eturned a valuetype ofalnt64). The

return value is the value if the integer. Note that the size of the value in the stream does not actually
have to be 8 bytes.

See also: TAbstractObjectReader.ReadFlo&b), TAbstractObjectReader.ReadDat&); TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readldedl), TAbstractObjectReader.ReadInt7], TAbstractOb-
jectReader.ReadInt1@8), TAbstractObjectReader.ReadInt3B), TabstractObjectReader.ReadSet
(49), TabstractObjectReader.Read3@)(TabstractObjectReader.ReadStriAg)(

48

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TAbstractObjectReader.ReadSet

Synopsis: Reads a set from the stream.
Declaration: function ReadSet(EnumType: Pointer) : Integer; Virtual; Abstract
Visibility: public

Description: This method is called by the streaming system if it expects to read a set from the stream (i.e. after
ReadValue44) returned a valuetype afaSet). The return value is the contents of the set, encoded
in a bitmask the following way:

For each (enumerated) value in the set, the bit corresponding to the ordinal value of the enumerated
value should be set. i.e. asshl ord(value)

See also: TAbstractObjectReader.ReadFlo&b), TAbstractObjectReader.ReadDat&) TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readlded¥), TAbstractObjectReader.ReadInt87], TAbstractOb-
jectReader.ReadInt188), TAbstractObjectReader.ReadInt3B), TAbstractObjectReader.ReadInt64
(48), TabstractObjectReader.Read3)(TabstractObjectReader.ReadStridg)(

TAbstractObjectReader.ReadStr
Synopsis: Read a shortstring from the stream

Declaration: function ReadStr : String; Virtual, Abstract
Visibility: public

Description: ReadStr is called by the streaming system if it expects to read a shortstring from the stream (i.e.
after ReadValued4) returned a valuetype @BLString ,vaWstring orvaString). The return
value is the string.

See also: TAbstractObjectReader.ReadFlo4f), TAbstractObjectReader.ReadDad&)(TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.Readldedl), TAbstractObjectReader.ReadInt@7), TAbstractOb-
jectReader.ReadInt188§), TAbstractObjectReader.ReadInt3B), TAbstractObjectReader.ReadInt64
(48), TabstractObjectReader.ReadS3) (TabstractObjectReader.ReadStridg)(

TAbstractObjectReader.ReadString
Synopsis: Read a string of typ8tringType from the stream.

Declaration: function ReadString(StringType: TValueType) : String; Virtual
; Abstract

Visibility: public

Description: ReadStr is called by the streaming system if it expects to read a string from the stream (i.e. after
ReadValue44) returned a valuetype ®aLString ,vaWstring orvaString). The returnvalue
is the string.

See also: TAbstractObjectReader.ReadFlo&b), TAbstractObjectReader.ReadDat@) TAbstractObjectReader.ReadSingle
(46), TAbstractObjectReader.ReadldeAt), TAbstractObjectReader.ReadInr), TAbstractOb-
jectReader.ReadInt188), TAbstractObjectReader.ReadInt3B), TAbstractObjectReader.ReadInt64
(48), TabstractObjectReader.ReadSE) (TabstractObjectReader.Read 39)(

49

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TAbstractObjectReader.SkipComponent
Synopsis: Skip till the end of the component.

Declaration: procedure SkipComponent(SkipComponentinfos: Boolean); Virtual
;. Abstract

Visibility: public

Description: This method is used to skip the entire declaration of a component in the stream. Each descendent of
TAbstractObjectReader should implement this in a way which is optimal for the implemented
stream format.

See also: TAbstractObjectReader.BeginComponetH)(TAbstractObjectReader.SkipValugdj

TAbstractObjectReader.SkipValue
Synopsis: Skip the current value.

Declaration: procedure SkipValue; Virtual; Abstract
Visibility: public

Description: SkipValue should be used when skipping a value in the stream; The method should determine the
type of the value which should be skipped by itself, if this is necessary.

See also: TAbstractObjectReader.SkipComponesi)(

1.24 TAbstractObjectWriter

Description

Abstract driver class for writing component data.

Method overview

Page Method Description

51 BeginCollection Start writing a collection.

51 BeginComponent Start writing a component

51 BeginList Start writing a list.

51 BeginProperty Start writing a property

51 EndList Mark the end of a list.

51 EndProperty Marks the end of writing of a property.
52 WriteBinary Writes binary data to the stream.

52 WriteBoolean Writes a boolean value to the stream.
52 WriteDate Writes a date type to the stream.

52 WriteFloat Writes a float value to the stream.

52 Writeldent Writes an identifier to the stream.

53 Writelnteger Writes an integer value to the stream
53 WriteMethodName Writes a methodname to the stream.
53 WriteSet Writes a set value to the stream.

52 WriteSingle Writes a single-type real value to the stream.
53 WriteString Writes a string value to the stream.

50

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TAbstractObjectWriter.BeginCollection

Synopsis: Start writing a collection.
Declaration: procedure BeginCollection;
Visibility: public

Description: Start writing a collection.

Virtual; Abstract

TAbstractObjectWriter.BeginComponent

Synopsis: Start writing a component

Declaration: procedure BeginComponent(Component: TComponent;Flags: TFilerFlags;

Visibility: public

Description: Start writing a component

ChildPos: Integer); Virtual, Abstract

TAbstractObjectWriter.BeginList

Synopsis: Start writing a list.

Declaration: procedure BeginList; Virtual,

Visibility: public

Description: Start writing a list.

Abstract

TAbstractObjectWriter.EndList

Synopsis: Mark the end of a list.

Declaration: procedure EndList; Virtual;

Visibility: public

Description: Mark the end of a list.

Abstract

TAbstractObjectWriter.BeginProperty

Synopsis: Start writing a property

Declaration: procedure BeginProperty(const PropName: String); Virtual; Abstract

Visibility: public

Description: Start writing a property

TAbstractObjectWriter.EndProperty

Synopsis: Marks the end of writing of a property.

Declaration: procedure EndProperty; Virtual; Abstract

Visibility: public

Description: Marks the end of writing of a property.

51

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TAbstractObjectWriter.WriteBinary

Synopsis: Writes binary data to the stream.
Declaration: procedure WriteBinary(const Buffer;Count: Longint); Virtual; Abstract
Visibility: public

Description: Writes binary data to the stream.

TAbstractObjectWriter.WriteBoolean

Synopsis: Writes a boolean value to the stream.
Declaration: procedure WriteBoolean(Value: Boolean); Virtual, Abstract
Visibility: public

Description: Writes a boolean value to the stream.

TAbstractObjectWriter.WriteFloat

Synopsis: Writes a float value to the stream.
Declaration: procedure WriteFloat(const Value: Extended); Virtual; Abstract
Visibility: public

Description: Writes a float value to the stream.

TAbstractObjectWriter.WriteSingle

Synopsis: Writes a single-type real value to the stream.
Declaration: procedure WriteSingle(const Value: Single); Virtual; Abstract
Visibility: public

Description: Writes a single-type real value to the stream.

TAbstractObjectWriter.WriteDate
Synopsis: Writes a date type to the stream.

Declaration: procedure WriteDate(const Value: TDateTime); Virtual, Abstract
Visibility: public

Description: Writes a date type to the stream.

TAbstractObjectWriter.Writeldent
Synopsis: Writes an identifier to the stream.

Declaration: procedure Writeldent(const Ident: String); Virtual;, Abstract
Visibility: public

Description: Writes an identifier to the stream.

52

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TAbstractObjectWriter.WriteInteger

Synopsis: Writes an integer value to the stream
Declaration: procedure Writelnteger(Value: Int64); Virtual, Abstract
Visibility: public

Description: Writes an integer value to the stream

TAbstractObjectWriter.WriteMethodName

Synopsis: Writes a methodname to the stream.
Declaration: procedure WriteMethodName(const Name: String); Virtual; Abstract
Visibility: public

Description: Writes a methodname to the stream.

TAbstractObjectWriter.WriteSet

Synopsis: Writes a set value to the stream.
Declaration: procedure WriteSet(Value: Longint;SetType: Pointer); Virtual; Abstract
Visibility: public

Description: Writes a set value to the stream.

TAbstractObjectWriter.WriteString

Synopsis: Writes a string value to the stream.
Declaration: procedure WriteString(const Value: String); Virtual; Abstract
Visibility: public

Description: Writes a string value to the stream.

1.25 TBasicAction

Description

TBasicAction implements a basic action class from which all actions are derived. It introduces all
basic methods of an action, and implements functionality to maintain a list of clients, i.e. components
that are connected with this action.

Do not create instances ©BasicAction . Instead, create a descendent class and create an instance
of this class instead.

53

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Method overview

Page Method Description

54 Change Calls the OnChanggr} handler.

54 Create Creates a new instance of a TBasicActi®) ¢lass.
55 Destroy Destroys the action.

56 Execute Triggers the OnExecuter} event

56 ExecuteTarget

55 HandlesTarget

56 RegisterChanges
54 SetOnExecute

56 UnRegisterChanges

Executes the action onTlagget object

Determines whetfi@rget can be handled by this action
Registers a new client with the action.

Assigns an OnExecUdé) event handler

Unregisters a client from the list of clients

57 Update Triggers the OnUpdatgg) event

55 UpdateTarget

Notify client controls when the action updates itself.

Property overview

Page Property Access Description

57 ActionComponent rw Returns the component that initiated the action.

57 OnChange rw Occurs when one of the action’s properties changes.
57 OnExecute rw Event triggered when the action executes.

58 OnUpdate rw Event trigged when the application is idle.

TBasicAction.Change

Synopsis: Calls the OnChangé{) handler.

Declaration: procedure Change; Virtual

Visibility: protected

Description: Change calls the OnChangé{) handler if one is assigned.
Application programmers should not c@lhange directly. It is called automatically if a property of

an action component changes.

Descendent classesDBasicAction should call explicitly callChange if one of their properties
that affect client controls changes its value.

TBasicAction.SetOnExecute
Synopsis: Assigns an OnExecut&7) event handler

Declaration: procedure SetOnExecute(Value: TNotifyEvent); Virtual

Visibility: protected

Description: SetOnExecute sets the OnExecut&T) handler of the component. It also propagates this event

to all client controls, and finally triggers the OnChang@) event.

See also: TBasicAction.OnExecutes(y), TBasicAction.OnChangesy)

TBasicAction.Create

Synopsis: Creates a new instance of a TBasicActiéB)(class.

Declaration: constructor Create(AOwner: TComponent); Override

54

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Visibility: public

Description: Create calls the inherited constructor, and then initializes the list of clients controls (or action lists)
by adding theAClient argument to the list of client controls.

Under normal circumstances it should not be necessary to creBBasicAction descendent
manually, actions are created in an IDE.

See also: TBasicAction.Destroyg5), TBasicAction.AssignClient3)

TBasicAction.Destroy

Synopsis: Destroys the action.
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy cleans up the list of client controls and then calls the inherited destructor.

An application programmer should not cBlestroy directly; Instead-ree should be called, if it
needs to be called at all. Normally the controlling class (e.g. a TActionList) will destroy the action.

TBasicAction.HandlesTarget
Synopsis: Determines whetheéFarget can be handled by this action

Declaration: function HandlesTarget(Target: TObject) : Boolean; Virtual
Visibility: public

Description: HandlesTarget returnsTrue if Target is a valid client for this action and if so, if it is
in a suitable state to execute the action. An application programmer should never need to call
HandlesTarget directly, it will be called by the action itself when needed.

In TBasicAction this method is empty; descendent classes should override this method to imple-
ment appropriate checks.

See also: TBasicAction.UpdateTargeb§), TBasicAction.ExecuteTargeb)

TBasicAction.UpdateTarget

Synopsis: Notify client controls when the action updates itself.
Declaration: procedure UpdateTarget(Target: TObject); Virtual
Visibility: public

Description: UpdateTarget should update the client control specified Bgrget when the action updates
itself. In TBasicAction , the implementation of/pdateTarget is empty. Descendent classes
should override and implemeblipdateTarget to actually update th€arget object.

An application programmer should never need to EhdlesTarget directly, it will be called
by the action itself when needed.

See also: TBasicAction.HandlesTargeb®), TBasicAction.ExecuteTargeb6)

55

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBasicAction.ExecuteTarget

Synopsis: Executes the action on tHearget object
Declaration: procedure ExecuteTarget(Target: TObject); Virtual
Visibility: public

Description: ExecuteTarget performs the action on th€arget object. InTBasicAction this method
does nothing. Descendent classes should implement the action to be performed. For instance an
action to post data in a dataset could callBwest method of the dataset.

An application programmer should never dakecuteTarget directly.

See also: TBasicAction.HandlesTargeb®), TBasicAction.ExecuteTargeb§), TBasicAction.Executesp)

TBasicAction.Execute
Synopsis: Triggers the OnExecut&() event

Declaration: function Execute : Boolean; Dynamic
Visibility: public

Description: Execute triggers theOnExecute event, if one is assigned. It returfisue if the event handler
was calledFalse otherwise.

TBasicAction.RegisterChanges
Synopsis: Registers a new client with the action.

Declaration: procedure RegisterChanges(Value: TBasicActionLink)
Visibility: public
Description: RegisterChanges addsValue to the list of clients.

See also: TBasicAction.UnregisterChangesg)

TBasicAction.UnRegisterChanges

Synopsis: Unregisters a client from the list of clients
Declaration: procedure UnRegisterChanges(Value: TBasicActionLink)
Visibility: public

Description: UnregisterChanges removesValue from the list of clients. This is called for instance when
the action is destroyed, or when the client is assigned a new action.

See also: TBasicAction.UnregisterChanges), TBasicAction.Destroyg5)

56

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBasicAction.Update
Synopsis: Triggers the OnUpdatég) event

Declaration: function Update : Boolean; Virtual
Visibility: public

Description: Update triggers theéOnUpdate event, if one is assigned. It returfisue if the event was triggered,
or False if no event was assigned.

Application programmers should never rupdate directly. TheUpdate method is called auto-
matically by the action mechanism; Normally this is in the Idle time of an application. An application
programmer should assign the OnUpd&®) event, and perform any checks in that handler.

See also: TBasicAction.OnUpdates), TBasicAction.Executesg), TBAsicAction.UpdateTargeb6)

TBasicAction.OnChange
Synopsis: Occurs when one of the action’s properties changes.

Declaration: Property OnChange : TNotifyEvent
Visibility: protected
Access: Read,Write

Description: OnChange is the event that is triggered when one of the action’s properties changes. This event
should be used by client controls or descendent classes to respond to these changes in the properties
of the action.

Application programmers should never use @@Change event directly.

TBasicAction.ActionComponent

Synopsis: Returns the component that initiated the action.
Declaration: Property ActionComponent : TComponent
Visibility: public
Access: Read,Write

Description: ActionComponent is set to the component that caused the action to execute, e.g. a toolbutton or
a menu item. The property is set just before the action executes, and is reset to nil after the action
was executed.

See also: TBasicAction.Execute5p), TBasicAction.OnExecuteésy)

TBasicAction.OnExecute

Synopsis: Event triggered when the action executes.
Declaration: Property OnExecute : TNotifyEvent
Visibility: public

Access: Read,Write

57

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: OnExecute is the event triggered when the action is activated (executed). The event is triggered
e.g. when the user clicks e.g. on a menu item or a button associated to the action. The application
programmer should provide @nExecute event handler to execute whatever code is necessary
when the button is pressed or the menu item is chosen.

Note that assigning a@nExecute handler will result in the Execut®&) method returning arue
value. Predefined actions (such as dataset actions) will check the re&xeafte and will not
perform their normal task if th®nExecute handler was called.

See also: TBasicAction.Execute56), TBasicAction.OnUpdatesg)

TBasicAction.OnUpdate
Synopsis: Event trigged when the application is idle.

Declaration: Property OnUpdate : TNotifyEvent
Visibility: public
Access: Read,Write

Description: OnUpdate is the event triggered when the application is idle, and the action is being updated. The
OnUpdate event can be used to set the state of the action, for instance disable it if the action cannot
be executed at this point in time.

See also: TBasicAction.UpdateH7), TBasicAction.OnExecutes()

1.26 TBasicActionLink

Description

TBasicActionLink links an Action to its clients. With each client for an actiod,BasicActionLink
class is instantiated to handle the communication between the action and the client. It passes events
between the action and its clients, and thus presents the action with a uniform interface to the clients.

An application programmer should never us€asicActionLink instance directly; They are
created automatically when an action is associated with a component. Component programmers
should create specialized descendenfBRdsicActionLink which communicate changes in the
action to the component.

Method overview

Page Method Description

59 AssignClient Assigns a control (client) to the action link.

59 Change Executed whenever the Action is changed.

60 Create Creates a new instance of the TBasicActionLink class

60 Destroy Destroys the TBasicActionLink instance.

60 Execute Calls the action’s Execute method.

59 IsOnExecuteLinked Returns whether the client has it's OnExecute property linked.
59 SetAction Sets the action with which the actionlink is associated.

60 SetOnExecute Assigns the OnExecli@) (handler to the client

61 Update Calls the action’s Update method

58

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Property overview

Page Property Access Description
61 Action rw The action to which the link was assigned.
61 OnChange rw Event handler triggered when the action’s properties change

TBasicActionLink.AssignClient

Synopsis: Assigns a control (client) to the action link.
Declaration: procedure AssignClient(AClient: TObject); Virtual
Visibility: protected

Description: AssignClient assigns a control to the actionlink and hence to the action. Descendent classes
can overrideAssignClient to check whether the new client is a suitable client for this action.

See also: TBasicActionLink.Action 61)

TBasicActionLink.Change

Synopsis: Executed whenever the Action is changed.
Declaration: procedure Change; Virtual
Visibility: protected

Description: Change is executed whenever the action changes. It executes the OnClgdhgaridler, if one is
assigned.

Component programmers may decide to overrideGhange procedure in descendent classes to
perform aditional actions when the properties of the action changes.

See also: TBasicActionLink.OnChanges(l), TBasicAction.Changesd)

TBasicActionLink.IsOnExecuteLinked

Synopsis: Returns whether the client has it's OnExecute property linked.
Declaration: function IsOnExecuteLinked : Boolean; Virtual
Visibility: protected

Description: IsOnExecuteLinked always returns true iffBasicActionLink . Descendent classes can
override this method to provide a different result.

TBasicActionLink.SetAction

Synopsis: Sets the action with which the actionlink is associated.
Declaration: procedure SetAction(Value: TBasicAction); Virtual
Visibility: protected

Description: SetAction s the write handler for the Actior6() property. It sets théction property to it's
new value, after unregistering itself with the old action, if there was one.

See also: TBasicActionLink.Action 61), TBasicAction £3)

59

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBasicActionLink.SetOnExecute
Synopsis: Assigns the OnExecut&T) handler to the client

Declaration: procedure SetOnExecute(Value: TNotifyEvent); Virtual
Visibility: protected

Description: SetOnExecute must be overridden by descendent classes to pas3rtBgecute handler of the
associated action to the client control. It will attach @eExecute handler to whatever handler is
appropriate for the client control.

See also: TBasicAction.OnExecutes{), TBasicAction 63)

TBasicActionLink.Create
Synopsis: Creates a new instance of the TBasicActionLink class

Declaration: constructor Create(AClient: TObject); Virtual
Visibility: public

Description: Create creates a new instance off@asicActionLink and assigné\Client as the client of
the link.

Application programmers should never instantiiasicActionLink classes directly. An in-
stance is created automatically when an action is assigned to a control (client).

Component programmers can override the create constructor to initialize further properties.

See also: TBasicActionLink.Destroy§0)

TBasicActionLink.Destroy
Synopsis: Destroys the TBasicActionLink instance.

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy unregisters th@BasicActionLink with the action, and then calls the inherited de-
structor.

Application programmers should never cakstroy directly. If a link should be destroyed at all,
theFree method should be called instead.

See also: TBasicActionLink.Createg0)

TBasicActionLink.Execute

Synopsis: Calls the action’s Execute method.
Declaration: function Execute(AComponent: TComponent) : Boolean; Virtual

Visibility: public

60

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: Execute sets the ActionComponert) property of the associated Actiofik) to AComponent
and then calls the Action’s executsd] method. After the action has executed, AwtionComponent
property is cleared again.

The return value of the function is the return value of the Action’s execute method.

Application programmers should never dakecute directly. This method will be called automat-
ically when the associated control is activated. (e.g. a button is clicked on)

Component programmers should dalecute whenever the action should be activated.

See also: TBasicActionLink.Action 61), TBasicAction.ActionComponenb{), TBasicAction.Execute5p),
TBasicAction.onExecutes()

TBasicActionLink.Update

Synopsis: Calls the action’s Update method
Declaration: function Update : Boolean; Virtual
Visibility: public
Description: Update calls the associated Action’s Updater) methoda.

Component programmers can override thedate method to provide additional processing when
theUpdate method occurs.

TBasicActionLink.Action

Synopsis: The action to which the link was assigned.
Declaration: Property Action : TBasicAction
Visibility: public
Access: Read,Write

Description: Action represents the Actiorb8) which was assigned to the client. Setting this property will
unregister the client at the old action (if one existed) and registers the client at the new action.

See also: TBasicAction 63)

TBasicActionLink.OnChange
Synopsis: Event handler triggered when the action’s properties change

Declaration: Property OnChange : TNotifyEvent
Visibility: public
Access: Read,Write

Description: OnChange is the event triggered when the action’s properties change.

Application programmers should never need to assign this event. Component programmers can
assign this event to have a client control reflect any changes in an Action’s properties.

See also: TBasicActionLink.Changex9), TBasicAction.Changebd)

61

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.27

TBinaryObjectReader

Description

The TBinaryObjectReader class reads component data stored in binary form in a file. For
this, it overrides or implements all abstract methods from TAbstractObjectReéd)er o new
functionality is added by this class, it is a driver class for the streaming system.

Method overview

Page

Method Description

63
63
63
62
62
63
63
64
63
64
64
64
64
64
64
64
64
65
63
65
65

BeginComponent
BeginProperty
BeginRootComponent
Create Creates a new binary data reader instance.
Destroy Destroys the binary data reader.
NextValue
ReadBinary
ReadDate

ReadFloat

Readldent

ReadInt16

ReadInt32

ReadInt64

ReadInt8

ReadSet

ReadSingle

ReadStr

ReadString
ReadValue
SkipComponent
SkipValue

TBinaryObjectReader.Create
Synopsis: Creates a new binary data reader instance.

Declaration: constructor Create(Stream: TStream;BufSize: Integer)

Visibility: public

Description: Create

instantiates a new binary component data reader.Siream stream is the stream from

which data will be read. ThBufSize argument is the size of the internal buffer that will be used
by the reader. This can be used to optimize the reading process.

See also: TAbstractObjectReaded)

TBinaryObjectReader.Destroy

Synopsis: Destroys the binary data reader.

Declaration: destructor Destroy; Override

Visibility: public

62

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: Destroy frees the buffer allocated when the instance was created. It also positions the stream on
the last used position in the stream (the buffering may cause the reader to read more bytes than were
actually used.)

See also: TBinaryObjectReader.Creaté?)

TBinaryObjectReader.NextValue
Declaration: function NextValue : TValueType; Override

Visibility: public

TBinaryObjectReader.ReadValue

Declaration: function ReadValue : TValueType; Override

Visibility: public

TBinaryObjectReader.BeginRootComponent

Declaration: procedure BeginRootComponent; Override

Visibility: public

TBinaryObjectReader.BeginComponent

Declaration: procedure BeginComponent(var Flags: TFilerFlags;var AChildPos: Integer;
var CompClassName: String;var CompName: String)
; Override

Visibility: public

TBinaryObjectReader.BeginProperty
Declaration: function BeginProperty : String; Override

Visibility: public

TBinaryObjectReader.ReadBinary

Declaration: procedure ReadBinary(const DestData: TMemoryStream); Override

Visibility: public
TBinaryObjectReader.ReadFloat

Declaration: function ReadFloat : Extended; Override

Visibility: public

63

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBinaryObjectReader.ReadSingle

Declaration: function ReadSingle : Single; Override

Visibility: public

TBinaryObjectReader.ReadDate
Declaration: function ReadDate : TDateTime; Override

Visibility: public

TBinaryObjectReader.Readldent
Declaration: function Readldent(ValueType: TValueType) : String; Override

Visibility: public

TBinaryObjectReader.ReadInt8
Declaration: function ReadInt8 : Shortint; Override

Visibility: public

TBinaryObjectReader.ReadInt16

Declaration: function ReadIntl6 : Smallint; Override

Visibility: public

TBinaryObjectReader.ReadInt32
Declaration: function ReadInt32 : Longint; Override

Visibility: public

TBinaryObjectReader.ReadInt64
Declaration: function ReadInt64 : Int64; Override

Visibility: public

TBinaryObjectReader.ReadSet

Declaration: function ReadSet(EnumType: Pointer) : Integer; Override

Visibility: public

TBinaryObjectReader.ReadStr
Declaration: function ReadStr : String; Override

Visibility: public

64

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBinaryObjectReader.ReadString
Declaration: function ReadString(StringType: TValueType) : String; Override

Visibility: public

TBinaryObjectReader.SkipComponent
Declaration: procedure SkipComponent(SkipComponentinfos: Boolean); Override

Visibility: public

TBinaryObjectReader.SkipValue

Declaration: procedure SkipValue;

Visibility: public

Override

1.28 TBinaryObjectWriter

Description
Driver class which stores component data in binary form.

Method overview

Page

Method

Description

66
66
66
66
65
66
66
67
67
67
67
67
67
68
68
68
67
68

BeginCollection
BeginComponent
BeginList
BeginProperty
Create

Destroy

EndList
EndProperty
WriteBinary
WriteBoolean
WriteDate
WriteFloat
Writeldent
Writelnteger
WriteMethodName
WriteSet
WriteSingle
WriteString

Start writing a collection.
Start writing a component
Start writing a list.
Start writing a property
Creates a new instance of a binary object writer.
Destroys an instance of the binary object writer.
Mark the end of a list.
Marks the end of writing of a property.
Writes binary data to the stream.
Writes a boolean value to the stream.
Writes a date type to the stream.
Writes a float value to the stream.
Writes an identifier to the stream.
Writes an integer value to the stream.
Writes a methodname to the stream.
Writes a set value to the stream.
Writes a single-type real value to the stream.
Writes a string value to the stream.

TBinaryObjectWriter.Create
Synopsis: Creates a new instance of a binary object writer.

Declaration: constructor Create(Stream: TStream;BufSize: Integer)

Visibility: public

65

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: Creates a new instance of a binary object writer.

TBinaryObjectWriter.Destroy

Synopsis: Destroys an instance of the binary object writer.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroys an instance of the binary object writer.

TBinaryObjectWriter.BeginCollection

Synopsis: Start writing a collection.
Declaration: procedure BeginCollection; Override

Visibility: public

TBinaryObjectWriter.BeginComponent

Synopsis: Start writing a component

Declaration: procedure BeginComponent(Component: TComponent;Flags: TFilerFlags;
ChildPos: Integer); Override

Visibility: public

TBinaryObjectWriter.BeginList
Synopsis: Start writing a list.
Declaration: procedure BeginList; Override

Visibility: public

TBinaryObjectWriter.EndList
Synopsis: Mark the end of a list.

Declaration: procedure EndList; Override

Visibility: public

TBinaryObjectWriter.BeginProperty
Synopsis: Start writing a property
Declaration: procedure BeginProperty(const PropName: String); Override

Visibility: public

66

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBinaryObjectWriter.EndProperty

Synopsis: Marks the end of writing of a property.
Declaration: procedure EndProperty; Override

Visibility: public

TBinaryObjectWriter.WriteBinary

Synopsis: Writes binary data to the stream.
Declaration: procedure WriteBinary(const Buffer;Count: Longint); Override

Visibility: public

TBinaryObjectWriter.WriteBoolean
Synopsis: Writes a boolean value to the stream.

Declaration: procedure WriteBoolean(Value: Boolean); Override

Visibility: public

TBinaryObjectWriter.WriteFloat

Synopsis: Writes a float value to the stream.
Declaration: procedure WriteFloat(const Value: Extended); Override

Visibility: public

TBinaryObjectWriter.WriteSingle

Synopsis: Writes a single-type real value to the stream.
Declaration: procedure WriteSingle(const Value: Single); Override

Visibility: public

TBinaryObjectWriter.WriteDate
Synopsis: Writes a date type to the stream.

Declaration: procedure WriteDate(const Value: TDateTime); Override

Visibility: public

TBinaryObjectWriter.Writeldent

Synopsis: Writes an identifier to the stream.
Declaration: procedure Writeldent(const Ident: String); Override

Visibility: public

67

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBinaryObjectWriter.Writelnteger

Synopsis: Writes an integer value to the stream.
Declaration: procedure Writelnteger(Value: Int64); Override

Visibility: public

TBinaryObjectWriter.WriteMethodName

Synopsis: Writes a methodname to the stream.
Declaration: procedure WriteMethodName(const Name: String); Override

Visibility: public

TBinaryObjectWriter.WriteSet

Synopsis: Writes a set value to the stream.
Declaration: procedure WriteSet(Value: Longint;SetType: Pointer); Override

Visibility: public

TBinaryObjectWriter.WriteString

Synopsis: Writes a string value to the stream.
Declaration: procedure WriteString(const Value: String); Override

Visibility: public

1.29 TBits

Description

TBits can be used to store collections of bits in an indexed array. This is especially useful for
storing collections of booleans: Normally the size of a boolean is the size of the smallest enumerated
type, i.e. 1 byte. Since a bit can take 2 values it can be used to store a boolean as well. Since TBits
can store 8 hits in a byte, it takes 8 times less space to store an array of booleans in a TBits class then
it would take to stoe them in a conventional array.

TBits introduces methods to store and retrieve bit values, apply masks, and search for bits.

68

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Method overview

Page Method Description

71 AndBits Performs amand operation on the bits.

70 Clear Clears a particular bit.

70 Clearall Clears all bits in the array.

69 Create Creates a new bits collection.

69 Destroy Destroys a bit collection

72 Equals Determines whether the bits of 2 arrays are equal.

73 FindFirstBit Find first bit with a particular value
73 FindNextBit Searches the next bit with a particular value.
74 FindPrevBit Searches the previous bit with a particular value.

72 Get Retrieve the value of a particular bit

70 GetFSize Returns the number of records used to store the bits.

72 Grow Expands the bits array to the requested size.

72 NotBits Performs aot operation on the bits.

74 OpenBit Returns the position of the first bit that is sefFtdse .

71 OrBits Performs aor operation on the bits.

73 Setindex Sets the start position for FindNextBi8and FindPrevBitT4)
70 SetOn Turn a particular bit on.

71 XorBits Performs &or operation on the bits.

Property overview

Page Property Access Description
74 Bits rw Access to all bits in the array.
75 Size rw Current size of the array of bits.

TBits.Create
Synopsis: Creates a new bits collection.
Declaration: constructor Create(TheSize: Longint); Virtual
Visibility: public
Description: Create creates a new bit collection with initial siZéheSize . The size of the collection can be
changed later on.

All bits are initially set to zero.

See also: TBits.Destroy 69)

TBits.Destroy
Synopsis: Destroys a bit collection
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy destroys a previously created bit collection and releases all memory used to store the bit
collection.

Destroy should never be called directlyree should be used instead.
Errors: None.
See also: TBits.Create §9)

69

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBits.GetFSize
Synopsis: Returns the number of records used to store the bits.

Declaration: function GetFSize : Longlnt
Visibility: public
Description: GetFSize returns the number of records used to store the current number of bits.
Errors: None.

See also: TBits.Size {5)

TBits.SetOn

Synopsis: Turn a particular bit on.
Declaration: procedure SetOn(Bit: Longint)
Visibility: public

Description: SetOn turns on the bit at positiobit , i.e. sets it to 1. Ibit is at a position bigger than the
current size, the collection is expanded to the required size using G&w (

Errors: If bit is larger than the maximum allowed bits array size or is negative, an EBitsE@)axception
is raised.

See also: TBits.Bits (74), TBits.clear {0)

TBits.Clear

Synopsis: Clears a particular bit.
Declaration: procedure Clear(Bit: Longint)
Visibility: public

Description: Clear clears the bit at positiobit . If the array Ifbit is at a position bigger than the current size,
the collection is expanded to the required size using Git&\ (

Errors: If bit is larger than the maximum allowed bits array size or is negative, an EBitsE@)axception
is raised.

See also: TBits.Bits (74), TBits.clear {0)

TBits.Clearall

Synopsis: Clears all bits in the array.
Declaration: procedure Clearall
Visibility: public

Description: ClearAll clears all bits in the array, i.e. sets them to z&@tearAll works faster than clearing
all individual bits, since it uses the packed nature of the bits.

Errors: None.

See also: TBits.Bits (74), TBits.clear {0)

70

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBits.AndBits
Synopsis: Performs arand operation on the bits.

Declaration: procedure AndBits(BitSet: TBits)
Visibility: public

Description: andbits performs armand operation on the bits in the array with the bits of ar&iySet . If
BitSet contains less bits than the current array, then all bits which have no counterBa&én

are cleared.

Errors: None.

See also: TBits.clearall 70), TBits.orbits {1), TBits.xorbits {1), TBits.notbits {2)

TBits.OrBits
Synopsis: Performs aror operation on the bits.

Declaration: procedure OrBits(BitSet: TBits)
Visibility: public
Description: andbits performs aror operation on the bits in the array with the bits of arBitSet
If BitSet contains less bits than the current array, then all bits which have no counterpart in
BitSet are left untouched.
If the current array contains less bits tHaitSet then it is grown to the size d@itSet before the
or operation is performed.

Errors: None.

See also: TBits.clearall 70), TBits.andbits 71), TBits.xorbits {1), TBits.notbits {2)

TBits.XorBits
Synopsis: Performs aor operation on the bits.

Declaration: procedure XorBits(BitSet: TBits)
Visibility: public
Description: XorBits performs axor operation on the bits in the array with the bits of arBitSet
If BitSet contains less bits than the current array, then all bits which have no counterpart in
BitSet are left untouched.
If the current array contains less bits tHaitSet then it is grown to the size d@itSet before the
Xor operation is performed.

Errors: None.

See also: TBits.clearall 70), TBits.andbits 71), TBits.orbits 1), TBits.notbits {2)

71

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBits.NotBits

Synopsis: Performs anot operation on the bits.
Declaration: procedure NotBits(BitSet: TBits)
Visibility: public
Description: NotBits performs anot operation on the bits in the array with the bits of arBitset

If BitSet contains less bits than the current array, then all bits which have no counterpart in
BitSet are left untouched.

Errors: None.

See also: TBits.clearall 70), TBits.andbits 71), TBits.orbits { 1), TBits.xorbits {1)

TBits.Get
Synopsis: Retrieve the value of a particular bit

Declaration: function Get(Bit: Longint) : Boolean
Visibility: public
Description: Get returnsTrue if the bit at positiorbit is set, orFalse if it is not set.
Errors: If bit is not a valid bit index then an EBitsErrcf@) exception is raised.

See also: TBits.Bits (74), TBits.FindFirstBit {3), TBits.seton 70)

TBits.Grow
Synopsis: Expands the bits array to the requested size.

Declaration: procedure Grow(NBit: Longlint)
Visibility: public

Description: Grow expands the bit array so it can at least contdiit bits. If nbit is less than the current size,
nothing happens.

Errors: If there is not enough memory to complete the operation, then an EBitsEfl)is (aised.

See also: TBits.Size {5)

TBits.Equals
Synopsis: Determines whether the bits of 2 arrays are equal.
Declaration: function Equals(BitSet: TBits) : Boolean
Visibility: public
Description: equals returnsTrue if all the bits inBitSet are the same as the ones in the current BitSet; if
not,False is returned.

If the sizes of the two BitSets are different, the arrays are still reported equal when all the bits in the
larger set, which are not present in the smaller set, are zero.

Errors: None.

See also: TBits.clearall 70), TBits.andbits 71), TBits.orbits {1), TBits.xorbits {1)

72

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBits.Setlndex
Synopsis: Sets the start position for FindNextBit3) and FindPrevBit14)

Declaration: procedure Setindex(Index: Longint)
Visibility: public

Description: Setindex sets the search start position forFindNextBiB)(and FindPrevBit14) to Index . This
means that these calls will start searching from positiatex .

This mechanism provides an alternative to FindFirstB8) (vhich can also be used to position for
theFindNextBit andFindPrevBit calls.

Errors: None.

See also: TBits.FindNextBit (3), TBits.FindPrevBit {4), TBits.FindFirstBit 3), TBits.OpenBit {4)

TBits.FindFirstBit

Synopsis: Find first bit with a particular value
Declaration: function FindFirstBit(State: Boolean) : Longint
Visibility: public

Description: FindFirstBit searches for the first bit with valugtate . It returns the position of this bit, or
-1 if no such bit was found.

The search starts at position 0 in the array. If the first search returned a positive result, the found
position is saved, and the FindNextBit3) and FindPrevBit 74) will use this position to resume the
search. To start a search from a certain position, the start position can be set with the Se8hdex (
instead.

Errors: None.

See also: TBits.FindNextBit (3), TBits.FindPrevBit 4), TBits.OpenBit {4), TBits.Setindex13)

TBits.FindNextBit

Synopsis: Searches the next bit with a particular value.
Declaration: function FindNextBit : Longint
Visibility: public

Description: FindNextBit ~ resumes a previously started search. It searches for the next bit with the value
specified in the FindFirstBit/3). The search is done towards the end of the array and starts at the
position last reported by one of tikénd calls or at the position set with Setinde3d].

If another bit with the same value is found, its position is returned. If no more bits with the same
value are present in the array, is returned.

Errors: None.

See also: TBits.FindFirstBit 73), TBits.FindPrevBit {4), TBits.OpenBit {4), TBits.Setindex13)

73

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBits.FindPrevBit

Synopsis: Searches the previous bit with a particular value.
Declaration: function FindPrevBit : Longint
Visibility: public

Description: FindPrevBit resumes a previously started search. It searches for the previous bit with the value
specified in the FindFirstBif73). The search is done towards the beginning of the array and starts at
the position last reported by one of thind calls or at the position set with Setindesd].

If another bit with the same value is found, its position is returned. If no more bits with the same
value are present in the array, is returned.

Errors: None.

See also: TBits.FindFirstBit (73), TBits.FindNextBit {3), TBits.OpenBit {4), TBits.SetIndex 13)

TBits.OpenBit
Synopsis: Returns the position of the first bit that is sefRalse .

Declaration: function OpenBit : Longint
Visibility: public

Description: OpenBit returns the position of the first bit whose valueDigFalse), or -1 if no open bit was
found. This call is equivalent tBindFirstBit(False) , except that it doesn’t set the position
for the next searches.

Errors: None.

See also: TBits.FindFirstBit {73), TBits.FindPrevBit {4), TBits.FindFirstBit 3), TBits.Setindex13)

TBits.Bits

Synopsis: Access to all bits in the array.
Declaration: Property Bits[Bit: Longint]: Boolean; default
Visibility: public
Access: Read,Write

Description: Bits allows indexed access to all of the bits in the array. It giVage if the bit is 1, False
otherwise; Assigning to this property will set, respectively clear the bit.

Errors: If an index is specified which is out of the allowed range then an EBitsEArekception is raised.

See also: TBits.Size 5)

74

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TBits.Size
Synopsis: Current size of the array of bits.

Declaration: Property Size : Longint
Visibility: public
Access: Read,Write

Description: Size is the current size of the bit array. Setting this property will adjust the size; this is equivalent
to calling Grow(Value-1)

Errors: If an invalid size (negative or too large) is specified, a EBitsEM460) éxception is raised.

See also: TBits.Bits (74)

1.30 TCollection

Description

TCollection implements functionality to manage a collection of named objects. Each of these
objects needs to be a descendent of the TCollectionl83nc{ass. Exactly which type of object is
managed can be seen from the TCollection.ltemClR&sproperty.

Normally, no TCollection is created directly. Instead, a descendent3 ©bllection and
TCollectionltem 82) are created as a pair.

Method overview

Page Method Description

79 Add Creates and adds a new item to the collection.

79 Assign Assigns one collection to another.

79 BeginUpdate Start an update batch.

77 Changed Procedure called if an item is added to or removed from the collection.
80 Clear Removes all items from the collection.

78 Create Creates a new collection.

79 Destroy Destroys the collection and frees all the objects it manages.

80 EndUpdate Ends an update batch.
80 FindltemID Searches for an Item in the collection, based on its TCollectionltem.ID

(85) property.

76 GetAttr Returns an attribute of the collection.
76 GetAttrCount Returns the count of attributes associated with each item.
77 Getltem Read handler for the TCollection.lter8§)(property.

76 GetltemAttr Returns the attributes of an item.

76 GetNamePath Overrides TPersistent. GetNameR2#) {o return a proper pathname.
77 Setltem Write handler for the TCollection.Iten&l) property.

78 SetltemName Virtual method to set the name of the specified item

78 SetPropName Write handler for the TCollection.PropNa&ig roperty

78 Update Hander called when an item in the collection has changed.

75

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Property overview

Page Property Access Description

81 Count r Number of items in the collection.

81 ltemClass r Class pointer for each item in the collection.

81 ltems rw Indexed array of items in the collection.

81 PropName rw Name of the property that this collection represents.

TCollection.GetAttrCount
Synopsis: Returns the count of attributes associated with each item.

Declaration: function GetAttrCount : Integer; Dynamic
Visibility: protected

Description: GetAttrCount returns 0 in thél Collection implementation. It can be used to determine the
number of attributes associated with each collection item. Descendent objects should override this
method to return the number of attributes.

This method is provided for compatibility with Delphi only and is not used in Free Pascal.

See also: TCollection.GetAttr {6), TCollection.GetltemAttr 76)

TCollection.GetAttr
Synopsis: Returns an attribute of the collection.

Declaration: function GetAttr(Index: Integer) : String; Dynamic
Visibility: protected
Description: This method is provided for compatibility with Delphi only and is not used in Free Pascal.

See also: TCollection.GetAttrCount{6), TCollection.GetltemAttr 16)

TCollection.GetltemAttr

Synopsis: Returns the attributes of an item.

Declaration: function GetltemAttr(Index: Integer;ltemindex: Integer) : String
; Dynamic

Visibility: protected
Description: This method is provided for compatibility with Delphi only and is not used in Free Pascal.

See also: TCollection.GetAttr {6), TCollection.GetAttrCount{6)

TCollection.GetNamePath
Synopsis: Overrides TPersistent. GetNameP&tBg) to return a proper pathname.

Declaration: function GetNamePath : String; Override
Visibility: protected

Description: GetNamePath returns the name path for this collection. If the following conditions are satisfied:

76

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.There is an owner object.
2.The owner object returns a non-empty name path.
3.The TCollection.Propnam@&{) property is not empty

collection has an owner and the owning object has a name, then the function returns the owner name,
followed by the propname. If one of the conditions is not satisfied, then the classname is returned.

See also: TCollection.GetOwner{45), TCollection.Propname3()

TCollection.Changed
Synopsis: Procedure called if an item is added to or removed from the collection.

Declaration: procedure Changed
Visibility: protected

Description: Changed is called if a change takes place in the collection managed by the class. If the update
count ghas reached zero, it calls TCollection.Upda& ith a nil argument.

See also: TCollection.Update{8), TCollection.Add 79), TCollection.Clear&0)

TCollection.Getltem
Synopsis: Read handler for the TCollection.Iltentl] property.

Declaration: function Getltem(Index: Integer) : TCollectionltem
Visibility: protected

Description: Getltem is the read handler for the TCollection.lten&L) property. It returns théndex -th
element from the list of objects.

Errors: If Index is outside the allowed range, then an EListErdR)(exception is raised.

See also: TCollection.ltems 1), TCollection.Count&1), TCollection.Setltem47)

TCollection.Setltem
Synopsis: Write handler for the TCollection.ltem81) property.

Declaration: procedure Setltem(Index: Integer;Value: TCollectionltem)
Visibility: protected

Description: Setltem implements the write handler for the TCollection.Iter@$)(property. It assignegalue
to thelndex -th element in the array. For this to work properly, the TPersistent. Assf (hethod
of theltem must work correctly.

Errors: If Index is outside the allowed range, then an EListErdi) (exception is raised.

See also: TCollection.ltems 1), TCollection.Count&1), TCollection.Getltem{7)

77

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TCollection.SetltemName
Synopsis: Virtual method to set the name of the specified item

Declaration: procedure SetltemName(ltem: TCollectionltem); Virtual
Visibility: protected

Description: Virtual method to set the name of the specified item

TCollection.SetPropName
Synopsis: Write handler for the TCollection.PropNam&lj property

Declaration: procedure SetPropName; Virtual
Visibility: protected

Description: SetPropName must be overridden by descendent objects to set the TCollection.Propi8ame (
property to a suitable value. By defaulietPropName sets thePropName property to empty.

See also: TCollection.PropNames()

TCollection.Update
Synopsis: Hander called when an item in the collection has changed.

Declaration: procedure Update(ltem: TCollectionltem); Virtual
Visibility: protected
Description: Update is called in the following cases:

1.An item is added to or removed from the collection.
2.An item is moved in the list, i.e. its TCollectionltem.Inde85] property changes.
3.An item’s TCollectionltem.DisplayName36) property changes.

Descendent classes can override this method to perform additional actions when the collection changes.
Theltem parameter indicates the item that was changed. This cétilbe

See also: TCollection.Changedr(7)

TCollection.Create
Synopsis: Creates a new collection.

Declaration: constructor Create(AltemClass: TCollectionltemClass)
Visibility: public

Description: Create instantiates a new instance of th€ollection class which will manage objects of class
AltemClass . It creates the list used to hold all objects, and storestteenClass for the adding
of new objects to the collection.

See also: TCollection.ltemClassg1), TCollection.Destroy{9)

78

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TCollection.Destroy
Synopsis: Destroys the collection and frees all the objects it manages.

Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy first clears the collection, and then frees all memory allocated to this instance.
Don't call Destroy directly, callFree instead.

See also: TCollection.Createq8)

TCollection.Add
Synopsis: Creates and adds a new item to the collection.

Declaration: function Add : TCollectionltem
Visibility: public

Description: Add instantiates a new item of class TCollection.ltemCl&d$ &nd adds it to the list. The newly
created object is returned.

See also: TCollection.ltemClass31), TCollection.Clear§0)

TCollection.Assign
Synopsis: Assigns one collection to another.
Declaration: procedure Assign(Source: TPersistent); Override
Visibility: public

Description: Assign assigns the contents of one collection to another. It does this by clearing the items list, and
adding as much elements as there are inSberce collection; it assigns to each created element
the contents of it's counterpart in ti8ource element.

Two collections cannot be assigned to each other if instances ttetih€lass classes cannot be
assigned to each other.

Errors: If the objects in the collections cannot be assigned to one another, theG@@mvertError is
raised.

See also: TPersistent.Assigrl@5), TCollectionltem 82)

TCollection.BeginUpdate
Synopsis: Start an update batch.
Declaration: procedure BeginUpdate
Visibility: public
Description: BeginUpdate is called at the beginning of a batch update. It raises the update count with 1.

Call BeginUpdate at the beginning of a series of operations that will change the state of the
collection. This will avoid the call to TCollection.Updatég) for each operation. At the end of the
operations, a corresponding callEndUpdate must be made. It is best to do this in the context of
aTry ... finally block:

79

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

With MyCollection Do

try

BeginUpdate;

/l Some Lengthy operations
finally

EndUpdate;
end;

This insures that the number of calls BeginUpdate always matches the number of calls to
TCollection.EndUpdateBQ), even in case of an exception.

See also: TCollection.EndUpdate80), TCollection.Changed?({), TCollection.Updateq8)

TCollection.Clear

Synopsis: Removes all items from the collection.
Declaration: procedure Clear
Visibility: public

Description: Clear will clear the collection, i.e. each item in the collection is destroyed and removed from
memory. After a call taClear , Count is zero.

See also: TCollection.Add {79), TCollectionltem.Destroy84), TCollection.Destroy{9)

TCollection.EndUpdate
Synopsis: Ends an update batch.

Declaration: procedure EndUpdate
Visibility: public

Description: EndUpdate signals the end of a series of operations that change the state of the collection, pos-
sibly triggering an update event. It does this by decreasing the update count with 1 and calling
TCollection.Changed7() it should always be used in conjunction with TCollection.BeginUpdate
(79), preferably in theFinally ~ section of alry ... Finally block.

See also: TCollection.BeginUpdate7@©), TCollection.Changed/(7), TCollection.Updateq8)

TCollection.FinditemID
Synopsis: Searches for an Item in the collection, based on its TCollectionlten8®ppfoperty.

Declaration: function FindltemID(ID: Integer) : TCollectionltem
Visibility: public

Description: FindltemID searches through the collection for the item that has a vallie dér its TCollec-
tionltem.ID @5) property, and returns the found item. If no such item is found in the colledtiibn,
is returned.

The routine performs a linear search, so this can be slow on very large collections.

See also: TCollection.ltems §1), TCollectionltem.ID 85)

80

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TCollection.PropName

Synopsis: Name of the property that this collection represents.
Declaration: Property PropName : String
Visibility: protected
Access: Read,Write

Description: PropName indicates the name of the property that this collection is supposed to represent. By
default, this is the empty string. Descendents can override this property to return the name of the
property that is represented by this collection.

See also: TCollection.SetPropNamé&), TCollection.GetPropNamé&'§)

TCollection.Count

Synopsis: Number of items in the collection.
Declaration: Property Count : Integer
Visibility: public
Access: Read

Description: Count contains the number of items in the collection.

Remark: The items in the collection are identified by their TCollectionltem.Ind8® property, which is a
zero-based index, meaning that it can take values bet@eenCount .

See also: TCollectionltem.Index&5), TCollection.ltems §1)

TCollection.ltemClass

Synopsis: Class pointer for each item in the collection.
Declaration: Property ItemClass : TCollectionltemClass
Visibility: public
Access: Read

Description: ItemClass is the class pointer with which each new item in the collection is created. It is the
value that was passed to the collection’s constructor when it was created, and does not change during
the lifetime of the collection.

See also: TCollectionltem 82), TCollection.ltems§1)

TCollection.ltems

Synopsis: Indexed array of items in the collection.
Declaration: Property Items[Index: Integer]: TCollectionltem
Visibility: public

Access: Read,Write

81

Description:

See also:

Synopsis:

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Iltems provides indexed access to the items in the collection. Since the array is zerothdegd,
should be an integer betweBrandCount-1 .

It is possible to set or retrieve an element in the array. When setting an element of the array, the
object that is assigned should be compatible with the class of the objects in the collection, as given
by the TCollection.ltemClass8{) property.

Adding an element to the array can be done with the TCollection.A€ddethod. The array can be
cleared with the TCollection.Clea8@) method. Removing an element of the array should be done
by freeing that element.

TCollection.Count81), TCollection.ltemClassgl), TCollection.Clear&0), TCollection.Add 79)

1.31 TCollectionltem

Description
TCollectionltem and TCollection 75) form a pair of base classes that manage a collection of
named objects. Th&Collectionltem is the named object that is managed, it represents one

item in the collection. An item in the collection is represented by two properties: TCollection-
Item.DisplayNameg&6), TCollection.Index 75) and TCollectionltem.ID&5).

A TCollectionltem object is never created directly. To manage a set of nhamed items, it is
necessary to make a descendent @bllectionltem to which needed properties and methods
are added. This descendant can then be managed with a TColletooldss. The managing
collection will create and destroy it's items by itself, it should therefore never be necessary to create
TCollectionltem descendents manually.

Method overview

Page Method Description

82 Changed Method to notify the managing collection that the name or index of
this item has changed.

84 Create Creates a new instance of this collection item.

84 Destroy Destroyes this collection item.

83 GetDisplayName Returns the TCollectionltem.DisplayNa&® ¢f the collectionitem

83 GetNamePath Returns the namepath of this collection item.

83 GetOwner Returns the managing collection.

84 SetDisplayName Write method for the TCollectionltem.DisplayNa&t property

84 Setindex Write method for the TCollectionltem.Ind&6) property.

Property overview

Page Property Access Description

85 Collection rw Pointer to the collection managing this item.

86 DisplayName rw Name of the item, displayed in the object inspector.

85 ID r Initial index of this item.

85 Index rw Index of the item in its managing collection TCollection.ltems

(81) property.

TCollectionltem.Changed

Method to notify the managing collection that the name or index of this item has changed.

82

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Declaration: procedure Changed(Allltems: Boolean)
Visibility: protected

Description: This method is called when the TCollectionltem.DisplayNa8®) {s set or when the TCollection-
Item.Index B5) is changed.

See also: TCollectionltem.ld 85), TCollectionltem.Index&5), TCollection.Updateq8)

TCollectionltem.GetNamePath

Synopsis: Returns the namepath of this collection item.
Declaration: function GetNamePath : String; Override
Visibility: protected

Description: GetNamePath overrides the TPersistent. GetNamePadtheg method to return the name of the
managing collection and appends its TCollectionltem.In@&x groperty.

See also: TCollectionltem.Collectiong5), TPersistent.GetNamePatt?g), TCollectionltem.Indexg&5)

TCollectionltem.GetOwner

Synopsis: Returns the managing collection.
Declaration: function GetOwner : TPersistent; Override
Visibility: protected

Description: TCollectionltem overrides TPersistent.GetOwné&g6) to and returns the TCollectionltem.Collection
(85) that manages it.

See also: TPersistent.GetOwnet 25), TCollectionltem.Collectiong5)

TCollectionltem.GetDisplayName

Synopsis: Returns the TCollectionltem.DisplayNant&g] of the collectionitem
Declaration: function GetDisplayName : String; Virtual
Visibility: protected

Description: GetDisplayName returns the value of the TCollectionltem.DisplayNarBié)(property. By de-

fault, this is the classname of the actti@lollectionltem descendant.
Descendants of Collectionltem can and should override this method to return a more mean-
ingful value.

See also: TCollectionltem.DisplayName3E)

83

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TCollectionltem.SetIindex
Synopsis: Write method for the TCollectionltem.Inde®%) property.

Declaration: procedure Setindex(Value: Integer); Virtual
Visibility: protected

Description: Setindex implements the write handler for the TCollectionltem.Ind8%)(property. It requests
the managing collection to move this item to the desired inddue .

See also: TCollectionltem.Index&b5)

TCollectionltem.SetDisplayName
Synopsis: Write method for the TCollectionltem.DisplayNan&6] property

Declaration: procedure SetDisplayName(const Value: String); Virtual
Visibility: protected

Description: SetDisplayName is the write method for the TCollectionltem.DisplayNan&8)(property. It
does nothing but notifying the managing collection that the displayname has changed. It does NOT
store the actuaValue .

Descendants ofCollectionltem should override this method to store the actual displayname if
this is required.

See also: TCollectionltem.DisplayNameBg)

TCollectionltem.Create

Synopsis: Creates a new instance of this collection item.
Declaration: constructor Create(ACollection: TCollection); Virtual
Visibility: public

Description: Create instantiates a new item in a TCollectioi5]. It is called by the TCollection.Add7Q)
function and should under normal circumstances never be called directly. called

See also: TCollectionltem.Destroyg4)

TCollectionltem.Destroy

Synopsis: Destroyes this collection item.
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy removes the item from the managing collection and Destroys the item instance.
This is the only way to remove items from a collection;

See also: TCollectionltem.Createdd)

84

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TCollectionltem.Collection
Synopsis: Pointer to the collection managing this item.

Declaration: Property Collection : TCollection
Visibility: public
Access: Read,Write

Description: Collection points to the collection managing this item. This property can be set to point to a
new collection. If this is done, the old collection will be notified that the item should no longer be
managed, and the new collection is notified that it should manage this item as well.

See also: TCollection (75)

TCollectionltem.ID
Synopsis: Initial index of this item.
Declaration: Property ID : Integer
Visibility: public
Access: Read

Description: ID is the initial value of TCollectionltem.Index8§); it doesn’t change after the index changes. It
can be used to uniquely identify the item. Tl property doesn’t change as items are added and
removed from the collection.

While the TCollectionltem.Index86) property forms a continuous seri¢b, does not. If items are
removed from the collection, theiD is not used again, leaving gaps. Only when the collection is
initialiiy created, thdD andIndex properties will be equal.

See also: TCollection.ltems 1), TCollectionltem.Index&5)

TCollectionltem.Index
Synopsis: Index of the item in its managing collection TCollection.lter@%)(property.

Declaration: Property Index : Integer
Visibility: public
Access: Read,Write

Description: Index is the current index of the item in its managing collection’s TCollection.|te3fisgroperty.
This property may change as items are added and removed from the collection.

The index of an item is zero-based, i.e. the first item has index zero. The last item has index
Count-1 whereCount is the number of items in the collection.

Thelndex property of the items in a collection form a continuous series ranging@tmCount-1 .
The TCollectionltem.ID 85) property does not form a continuous series, but can also be used to iden-
tify an item.

See also: TCollectionltem.ID 85), TCollection.ltems§1)

85

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TCollectionltem.DisplayName

Synopsis: Name of the item, displayed in the object inspector.
Declaration: Property DisplayName : String
Visibility: public
Access: Read,Write

Description: DisplayName contains the name of this item as shown in the object inspectofl. Galtectionltem
this returns always the class name of the managing collection, followed by the index of the item.

TCollectionltem does not implement any functionality to store DisplayName property.

The property can be set, but this will have no effect other than that the managing collection is no-
tified of a change. The actual displayname will remain unchanged. To stoi@ishlyName
propertyT Collectionltem descendants should override the TCollectionltem.SetDisplayName
(84) and TCollectionltem.GetDisplayNam@&3) to add storage functionality.

See also: TCollectionltem.Index&5), TCollectionltem.ID 85), TCollectionltem.GetDisplayNam&8), TCol-
lectionltem.SetDisplayNam@&4)

1.32 TComponent

Description

TComponent is the base class for any set of classes that needs owner-owned functionality, and
which needs support for property streaming. All classes that should be handled by an IDE (Inte-
grated Development Environment) must descend fi@omponent, as it includes all support for
streaming all its published properties.

Components can 'own’ other componenf€Component introduces methods for enumerating the
child components. It also allows to name the owned components with a unique name. Furthermore,
functionality for sending notifications when a component is removed from the list or removed from
memory alltogether is also introducediomponent

TComponent introduces a form of automatic memory management. When a component is de-
stroyed, all its child components will be destroyed first.

86

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Method overview
Page Method

Description

88 ChangeName

94 Create
88 DefineProperties
94 Destroy

94 DestroyComponents
95 Destroying

95 ExecuteAction

95 FindComponent

95 FreeNotification
96 FreeOnRelease
89 GetChildOwner
89 GetChildParent
88 GetChildren

89 GetNamePath

89 GetOwner

96 GetParentComponent
96 HasParent

96 InsertComponent

90 Loaded

90 Notification

90 ReadState
97 RemoveComponent

95 RemoveFreeNotification
97 SafeCallException

91 SetAncestor

92 SetChildOrder

91 SetDesigning

91 SetName

92 SetParentComponent
97 UpdateAction

92 Updated
93 UpdateRegistry
92 Updating

93 ValidateContainer
93 Validatelnsert

93 ValidateRename
94 WriteState

Actually sets the component name.
Creates a new instance of the component.

Defines fake top,left properties for handling in the IDE.
Destroys the instance of the component.

Destroy child components.
Called when the component is being destroyed

Finds and returns the named component in the owned compo-
nents.
Ask the component to notify called when it is being destroyed.
Part of théCLComObiject interface.
Returns the owner of any children.
Returns the parent of any children.
Must be overridden by descendents to return all child compo-
nents that must be streamed.
Returns the name path of this component.
Returns the owner of this component.
Returns the parent component.
Does the component have a parent ?
Insert the given component in the list of owned components.
Called when the component has finished loading.
Called by components that are freed and which received a
FreeNotification.
Read the component’s state from a stream.
Remove the given component from the list of owned compo-
nents.

Part of tH¥ CLComObject Interface.
Sets thesAncestor state of the component.
Determines the order in which children are streamed/created.
Sets thesDesigning state of the component.
Write handler for Nam@9) property.
Set the parent component.

Ends thesUpdating state.

For compatibilty only.
Sets the state tsUpdating

??

Called when an insert must be validated.
Called when a name change must be validated
Writes the component to a stream.

87

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Property overview

Page Property Access Description

97 ComponentCount r Count of owned components

98 Componentindex rw Index of component in it's owner’s list.
97 Components r Indexed list (zero-based) of all owned components.
98 ComponentState r Current component’s state.

98 ComponentStyle r Current component’s style.

99 Designinfo rw Information for IDE designer.

99 Name rws Name of the component.

99 Owner r Owner of this component.

100 Tag rw Tag value of the component.

99 VCLComObject rw Not implemented.

TComponent.ChangeName
Synopsis: Actually sets the component name.
Declaration: procedure ChangeName(const NewName: TComponentName)
Visibility: protected

Description: ChangeNameis called by the SetNam&1) procedure when the component name is set and the
name has been verified. It actually sets the name of the compondatitNameand can be used to
bypass the name checks which are done when the Na@heroperty is set.

Application programmers should never \®etName directly.

See also: TComponent.SetNam®&1), TComponent.Namedg)

TComponent.DefineProperties
Synopsis: Defines fake top,left properties for handling in the IDE.
Declaration: procedure DefineProperties(Filer: TFiler); Override
Visibility: protected

Description: DefineProperties overrides the standard TPersistent.DefinePrope(tiz$ {o store the top/left
properties used to display an icon for a non-visual component in an IDE.

See also: TPersistent.DefinePropertiek?d)

TComponent.GetChildren
Synopsis: Must be overridden by descendents to return all child components that must be streamed.
Declaration: procedure GetChildren(Proc: TGetChildProc;Root: TComponent); Dynamic
Visibility: protected

Description: GetChildren is called by the streaming system to determine which child components should
be streamed as well when the component is being streamed. By default, no child components are
streamed, i.e. thEComponent implementation is empty.

TComponent descendents should override this method. For each child that needs to be streamed,
Proc should be called with as an argument the child component that must be streamdRbcdthe
argument contains the root component relative to which all streaming is done.

See also: TComponent.WriteStat®4)

88

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TComponent.GetChildOwner

Synopsis: Returns the owner of any children.
Declaration: function GetChildOwner : TComponent; Dynamic

Visibility: protected

Description: GetChildOwner returns the owner of the children that are read from the stream. If the method re-
turnsNil (the default) this means that streamed child components are owned by the root component

of the streaming process (usually a Form or Datamodule)
Application programmers should not c&etChildOwner directly, it is called by the streaming
system when needed.

See also: TComponent.WriteState94), TComponent.ReadStatéd), TComponent.Ownerd@), TCompo-
nent.GetChildParen8Q)

TComponent.GetChildParent

Synopsis: Returns the parent of any children.
Declaration: function GetChildParent : TComponent; Dynamic
Visibility: protected

Description: GetChildParent returns the parent component of the child components being streamed. The
parent property is a visual property, which is not always meaningful. If there is no parent com-
ponent, the owner of child components that are streamed is return&dl. Ifs returned, then the
root component of the streaming operation is assumed.TGQwnponent implementation of this

method returnself .
Application programmers should not call this method, it is called automatically by the streaming
mechanism.

See also: TComponent.GetChildOwne89)

TComponent.GetNamePath

Synopsis: Returns the name path of this component.
Declaration: function GetNamePath : String; Override

Visibility: protected
Description: GetNamePath returns the name of the component as it will be shown in the object inspector.
TComponent overridesGetNamePath so it returns the Nameég) property of the component.

See also: TComponent.Name9g), TPersistent. GetNamePattP)

TComponent.GetOwner

Synopsis: Returns the owner of this component.
Declaration: function GetOwner : TPersistent; Override

Visibility: protected

89

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: GetOwner returns the owner of this component as indicated by the Owd@rgdroperty. The

GetOwner call is introduced in TPersisteritZ4) and is used by the streaming system to determine
the owner’ of a component.

See also: TPersistent.GetOwnet 25, TComponent.OwneRQ)

TComponent.Loaded

Synopsis: Called when the component has finished loading.

Declaration: procedure Loaded; Virtual

Visibility: protected

Description: Loaded is called by the streaming system when a root component was completely read from a

stream and all properties and references to other objects have been resolved by the streaming system.
Descendents ofComponent should override this method to do some additional processing of
properties after all published properties have been set from values obtained from the stream.

Application programmers should never chbbaded directly, this is done automatically by the
streaming system.

See also: TComponent.ReadStat@d), TComponent.ComponentSta@s)

TComponent.Notification

Synopsis: Called by components that are freed and which received a FreeNotification.

Declaration: procedure Notification(AComponent: TComponent;Operation: TOperation)

; Virtual

Visibility: protected

Description: Notification is called whenever a child component is destroyed, inserted or removed from the

list of owned component. Components that were requested to send a notification when they are freed
((with FreeNotification 95)) will also call Notification when they are freed.

The AComponent parameter specifies which component sends the notificationQperdation
specifies whether the component is being inserted into or removed from the child component list, or
whether it is being destroyed.

Descendents of Component can use FreeNotificatior®$) to request notification of the destruc-

tion of another object. By overriding theotification method, they can do special process-

ing (typically, set a reference to this componentNib) when this component is destroyed. The
Notification method is called quite often in the streaming process, so speed should be a con-
sideration when overriding this method.

See also: TOperation 27), TComponent.FreeNotificatio®%)

TComponent.ReadState

Synopsis: Read the component’s state from a stream.

Declaration: procedure ReadState(Reader: TReader); Virtual

Visibility: protected

90

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: ReadState reads the component's state from a stream through the reader gdetr . Values
for all published properties of the component can be read from the stream. Normally there is no need
to callReadState directly. The streaming system caRgeadState itself.

The TComponent86) implementation oReadState simply calls TReader.ReadDath20) De-
scendent classes can, however, overRdadState to provide additional processing of stream data.

See also: TComponent.WriteStat®{), TStream.ReadComponeni#?), TReader.ReadDatd %9

TComponent.SetAncestor
Synopsis: Sets theesAncestor state of the component.

Declaration: procedure SetAncestor(Value: Boolean)
Visibility: protected

Description: SetAncestor includes or excludes thesAncestor flag in the ComponentStateg) set prop-
erty, depending on the booledfalue . The flag is set recursively for all owned components as
well.

This is normally only done during the streaming system, and should not be called directly by an
application programmer.

See also: TComponent.ComponentSta&s)

TComponent.SetDesigning

Synopsis: Sets theesDesigning state of the component.
Declaration: procedure SetDesigning(Value: Boolean)
Visibility: protected

Description: SetDesigning includes or excludes thesDesigning flag in the ComponentStat®§) set
property, depending on the booledalue . The flag is set recursively for all owned components as
well.

This is normally only done during the streaming system, and should not be called directly by an
application programmer.

TComponent.SetName
Synopsis: Write handler for NameQ09) property.

Declaration: procedure SetName(const NewName: TComponentName); Virtual
Visibility: protected

Description: SetName is the write handler for the Nam®&9g) property. It checks whether the desired name is
valid (i.e is a valid identifier) and is unique among the children of the owner component. If either
conditions is not satisfied, an exception is raised.

See also: TComponent.Namedg), TComponent.ValidateRenam@3j

91

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TComponent.SetChildOrder
Synopsis: Determines the order in which children are streamed/created.

Declaration: procedure SetChildOrder(Child: TComponent;Order: Integer); Dynamic
Visibility: protected

Description: This method does nothing. It can be used to change the order in which child components are
streamed and created. This can be used by descendent classes to optimize or correct the order in
which child components are streamed.

See also: TComponent.ReadStatgd)

TComponent.SetParentComponent

Synopsis: Set the parent component.
Declaration: procedure SetParentComponent(Value: TComponent); Dynamic
Visibility: protected

Description: SetParentComponent does nothing, but is called by the streaming system to set the parent
component of the current component. This method can be overridden by descendent components to
set the parent component of the current component.

See also: TComponent.Owner90)

TComponent.Updating
Synopsis: Sets the state tosUpdating

Declaration: procedure Updating; Dynamic
Visibility: protected

Description: Updating includescsUpdating in the ComponentStat®®) property of the component.

Normally, an application programmer should not call this method directly, it is called automatically
by the streaming system.

See also: TComponent.Update®®), TComponent.ComponentSta&s)

TComponent.Updated
Synopsis: Ends thecsUpdating state.

Declaration: procedure Updated; Dynamic
Visibility: protected

Description: Updated excludescsUpdating from the ComponentStat&&) property of the component.

Normally, an application programmer should not call this method directly, it is called automatically
by the streaming system.

See also: TComponent.Updatingd@), TComponent.ComponentStags)

92

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TComponent.UpdateRegistry
Synopsis: For compatibilty only.

Declaration: procedure UpdateRegistry(Register: Boolean;const ClassID: String;
const ProgID: String); Dynamic

Visibility: protected

Description: This method does nothing, and is provided for compatibility only.

TComponent.ValidateRename

Synopsis: Called when a nhame change must be validated

Declaration: procedure ValidateRename(AComponent: TComponent;const CurName: String;
const NewName: String); Virtual

Visibility: protected

Description: ValidateRename checks whethdlewNamaés a valid replacement faZurName for component
AComponent. Two owned components of a component can not have the same name. If a child
component with the same name is found, then an exception is raised.

See also: TComponent.SetNam®&1), TComponent.Namedg)

TComponent.ValidateContainer
Synopsis: ??
Declaration: procedure ValidateContainer(AComponent; TComponent); Dynamic
Visibility: protected

Description: ValidateContainer is provided for compatibility only. It doesn’t do anything in Free Pascal.

TComponent.Validatelnsert

Synopsis: Called when an insert must be validated.
Declaration: procedure Validatelnsert(AComponent: TComponent); Dynamic
Visibility: protected

Description: Validatelnsert should be implemented by descendent components to see whetA€rdhwonent
component may be inserted in the list of owned components.

This procedure does nothing in ti€omponent implementation, it should be overridden by de-
scendant components.

See also: TComponent.InseriBE)

93

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TComponent.WriteState
Synopsis: Writes the component to a stream.
Declaration: procedure WriteState(Writer: TWriter); Virtual
Visibility: public
Description: WriteState writes the component’s current state to a stream through the wiife) Object

writer . Values for all published properties of the component can be written to the stream. Normally
there is no need to caliriteState directly. The streaming system caliériteState itself.

The TComponentgp) implementation ofWriteState simply calls TWriter.WriteDatal(74). De-
scendent classes can, however, overiiddteState to provide additional processing of stream
data.

See also: TComponent.ReadStat@qd), TStream.WriteComponent43), TWriter.WriteData {74)

TComponent.Create
Synopsis: Creates a new instance of the component.
Declaration: constructor Create(AOwner: TComponent); Virtual
Visibility: public
Description: Create creates a new instance off€omponent class. IfAOwner is notNil , the new compo-

nent attempts to insert itself in the list of owned components of the owner.

See also: TComponent.Inser8g), TComponent.Owne9P)

TComponent.Destroy
Synopsis: Destroys the instance of the component.
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy sends apRemove notification to all components in the free-notification list. After that,
all owned components are destroyed by calling DestroyCompor@fjtsand hence removed from

the list of owned components). When this is done, the component removes itself from its owner’s
child component list. After that, the parent’s destroy method is called.

See also: TComponent.Notification90), TComponent.Ownerd0), TComponent.DestroyComponen&),
TComponent.Component87)

TComponent.DestroyComponents
Synopsis: Destroy child components.

Declaration: procedure DestroyComponents
Visibility: public

Description: DestroyComponents calls the destructor of all owned components, till no more components are
left in the Component() array.

Calling the destructor of an owned component has as the effect that the component will remove itself
from the list of owned components, if nothing has disrupted the sequence of destructors.

94

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Errors: If an overridden 'destroy’ method does not call it's intherited destructor or raises an exception, it's
TComponent.Destroyd) destructor will not be called, which may result in an endless loop.

See also: TComponent.Destroyd), TComponent.Component3?)

TComponent.Destroying
Synopsis: Called when the component is being destroyed

Declaration: procedure Destroying
Visibility: public

Description: Destroying sets thecsDestroying flag in the component’s stat8) property, and does the
same for all owned components.

Itis not necessary to cdllestroying directly, the destructor Destro94) does this automatically.

See also: TComponent.State3¢), TComponent.Destroydd)

TComponent.ExecuteAction
Declaration: function ExecuteAction(Action: TBasicAction) : Boolean; Dynamic

Visibility: public

TComponent.FindComponent

Synopsis: Finds and returns the named component in the owned components.
Declaration: function FindComponent(const AName: String) : TComponent
Visibility: public

Description: FindComponent searches the component with naAldamein the list of owned components. If
ANameis empty, themNil is returned.

See also: TComponent.Component87), TComponent.NamedQ)

TComponent.FreeNotification
Synopsis: Ask the component to notify called when it is being destroyed.

Declaration: procedure FreeNotification(AComponent: TComponent)
Visibility: public

Description: FreeNotification insertsAComponent in the freenatification list. When the component is
destroyed, the Notificatio®() method is called for all components in the freenatification list.

See also: TComponent.Component87), TComponent.Notification90)

TComponent.RemoveFreeNotification
Declaration: procedure RemoveFreeNotification(AComponent: TComponent)

Visibility: public

95

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TComponent.FreeOnRelease
Synopsis: Part of thelVCLComObject interface.

Declaration: procedure FreeOnRelease
Visibility: public

Description: Provided for Delphi compatibility, but is not yet impltmentedd.

TComponent.GetParentComponent

Synopsis: Returns the parent component.
Declaration: function GetParentComponent : TComponent; Dynamic
Visibility: public

Description: GetParentComponent can be implemented to return the parent component of this component.
The implementation of this method IComponent always returndNil . Descendent classes must
override this method to return the visual parent of the component.

See also: TComponent.HasParer@if), TComponent.Ownei9Q)

TComponent.HasParent

Synopsis: Does the component have a parent ?
Declaration: function HasParent : Boolean; Dynamic
Visibility: public

Description: HasParent can be implemented to return whether the parent of the component exists. The im-
plementation of this method in TComponent always retlalse , and should be overridden by
descendent classes to retdirue when a parent is available. HasParent returnsTrue , then
GetParentComponer2§) will return the parent component.

See also: TComponent.HasPareri§), TComponent.Ownei9Q)

TComponent.InsertComponent

Synopsis: Insert the given component in the list of owned components.
Declaration: procedure InsertComponent(AComponent: TComponent)
Visibility: public

Description: InsertComponent attempts to inserAComponent in the list with owned components. It first
calls ValidateComponen86) to see whether the component can be inserted. It then checks whether
there are no name conflicts by calling ValidateRena@3® (f neither of these checks have raised an
exception the component is inserted, and notified of the insert.

See also: TComponent.RemoveCompone@t), TComponent.InserBg), TComponent.ValidateContain&3),
TComponent.ValidateRenam@3), TComponent.Notificatiorn9Q)

96

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TComponent.RemoveComponent
Synopsis: Remove the given component from the list of owned components.
Declaration: procedure RemoveComponent(AComponent: TComponent)
Visibility: public

Description: RemoveComponent will send anopRemove notification toAComponent and will then proceed
to removeAComponent from the list of owned components.

See also: TComponent.InsertCompone®t), TComponent.Remov&6), TComponent.ValidateRenant&s),
TComponent.Notification9Q)

TComponent.SafeCallException
Synopsis: Part of thelVCLComObject Interface.

Declaration: function SafeCallException(ExceptObject: TObject;ExceptAddr: Pointer)
. Integer; Override

Visibility: public

Description: Provided for Delphi compatibility, but not implemented.

TComponent.UpdateAction
Declaration: function UpdateAction(Action: TBasicAction) : Boolean; Dynamic

Visibility: public

TComponent.Components
Synopsis: Indexed list (zero-based) of all owned components.

Declaration: Property Components[index: Integer]: TComponent
Visibility: public
Access: Read

Description: Components provides indexed access to the list of owned componémdex can range from O
to ComponentCount-197).

See also: TComponent.ComponentCou¥7), TComponent.OwnetdQ)

TComponent.ComponentCount

Synopsis: Count of owned components
Declaration: Property ComponentCount : Integer
Visibility: public
Access: Read

Description: ComponentCount returns the number of components that the current component owns. It can be
used to determine the valid index range in the Compor&Entgrray.

See also: TComponent.Component87), TComponent.Ownei90)

97

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TComponent.Componentindex
Synopsis: Index of component in it's owner’s list.
Declaration: Property Componentindex : Integer
Visibility: public
Access: Read,Write

Description: Componentindex is the index of the current component in its owner’s list of components. If the
component has no owner, the value of this property is -1.

See also: TComponent.Component87), TComponent.ComponentCouf, TComponent.Ownei9Q)

TComponent.ComponentState
Synopsis: Current component’s state.
Declaration: Property ComponentState : TComponentState
Visibility: public
Access: Read

Description: ComponentState indicates the current state of the component. It is a set of flags which indicate
the various stages in the lifetime of a component. The following values can occur in this set:

Table 1.12: Component states

Flag Meaning

csLoading The component is being loaded from stream
csReading Component properties are being read from stream.
csWriting Component properties are weing written to stream.
csDestroying The component or one of it's owners is being destoyed.
csAncestor The component is being streamed as part of a frame
csUpdating The component is being updated

csFixups References to other components are being resolved
csFreeNotification The component has freenatifications.

csinline The component is being loaded as part of a frame

csDesigninstance ? not used.

The component state is set by various actions such as reading it from stream, destroying it etc.

See also: TComponent.SetAncestd]), TComponent.SetDesigningl), TComponent.Setinlingdg), TCom-
ponent.SetDesigninstancgs], TComponent.Updatingd@), TComponent.Update®?), TCompo-
nent.Loaded90)

TComponent.ComponentStyle
Synopsis: Current component’s style.
Declaration: Property ComponentStyle : TComponentStyle
Visibility: public
Access: Read

Description: Current component’s style.

98

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TComponent.Designinfo

Synopsis: Information for IDE designer.
Declaration: Property Designinfo : Longint
Visibility: public
Access: Read,Write

Description: Designinformation can be used by an IDE to store design information in the component. It
should not be used by an application programmer.

See also: TComponent.Tagl00

TComponent.Owner

Synopsis: Owner of this component.
Declaration: Property Owner : TComponent
Visibility: public
Access: Read

Description: Owner returns the owner of this component. The owner cannot be set except by explicitly inserting
the component in another component’s owned components list using that component’s InsertCompo-
nent ©6) method, or by removing the component from it's owner’s owned component list using the
RemoveComponen®{) method.

See also: TComponent.Componentdy), TComponent.InsertComponef, TComponent.RemoveComponent

(97)

TComponent.VCLComObject

Synopsis: Not implemented.
Declaration: Property VCLComObject : Pointer
Visibility: public
Access: Read,Write

Description: VCLComObiject is not yet implemented in Free Pascal.

TComponent.Name
Synopsis: Name of the component.
Declaration: Property Name : TComponentName
Visibility: published
Access: Read,Write

Description: Nameis the name of the component. This nhame should be a valid identifier, i.e. must start with a
letter, and can contain only letters, numbers and the underscore character. When attempting to set
the name of a component, the name will be checked for validity. Furthermore, when a component
is owned by another component, the name must be either empty or must be unique among the child
component names.

99

Errors:

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Attempting to set the name to an invalid value will result in an exception being raised.

See also: TComponent.ValidateRenam@3j, TComponent.Ownei90)

TComponent.Tag

Synopsis: Tag value of the component.

Declaration:

Property Tag : Longint

Visibility: published

Access: Read,Write

Description:

Tag can be used to store an integer value in the component. This value is streamed together with all
other published properties. It can be used for instance to quickly identify a component in an event
handler.

See also: TComponent.Namedg)

Remark:

1.33 TCustomMemoryStream

Description

TCustomMemoryStream is the parent class for streams that stored their data in memory. It intro-
duces all needed functions to handle reading from and navigating through the memory, and introduces
a Memory (02 property which points to the memory area where the stream data is kept.

The only thing whichTCustomMemoryStream does not do is obtain memory to store data when
writing data or the writing of data. This functionality is implemented in descendent streams such
as TMemoryStreaml(l7). The reason for this approach is that this way it is possible to create e.g.
read-only descendents 8€ustomMemoryStream that point to a fixed part in memory which can

be read from, but not written to.

SinceTCustomMemoryStream is an abstract class, do not create instanc@d#moryStream
directly. Instead, create instances of descendents such as TMemoryStigam (

Method overview

Page Method Description

101 Read Read€ount bytes from the stream intouffer

102 SaveToFile Writes the contents of the stream to a file.

101 SaveToStream Writes the contents of the memory stream to another stream.
101 Seek Sets a new position in the stream.

100 SetPointer Sets the internal memory pointer and size of the memory block.

Property overview

Page Property Access Description
102 Memory r Pointer to the data kept in the memory stream.

TCustomMemoryStream.SetPointer

Synopsis: Sets the internal memory pointer and size of the memory block.

100

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Declaration: procedure SetPointer(Ptr: Pointer;ASize: Longlnt)
Visibility: protected

Description: SetPointer updates the internal memory pointer and the size of the memory area pointed to.

Descendent memory streams should call this method whenever they set or reset the memory the
stream should read from or write to.

See also: TCustomMemoryStream.Memor§@2), TStream.Sizel47)

TCustomMemoryStream.Read

Synopsis: ReadsCount bytes from the stream intauffer
Declaration: function Read(var Buffer;Count: Longint) : Longint; Override
Visibility: public

Description: Read readsCount bytes from the stream into the memory pointed todojfer . It returns the
number of bytes actually read.

This method overrides the abstract TStream.Rddd)(method of TStreaml1@39). It will read as
much bytes as are still available in the memory area pointer to by Merhi©g). (After the bytes are
read, the internal stream position is updated.

See also: TCustomMemoryStream.Memor§ @2, TStream.Readl@0)

TCustomMemoryStream.Seek

Synopsis: Sets a new position in the stream.
Declaration: function Seek(Offset: Longint;Origin: Word) : Longint; Override
Visibility: public

Description: Seek overrides the abstract TStream.Seé&k1) method. It simply updates the internal stream
position, and returns the new position.

Errors: No checking is done whether the new position is still a valid position, i.e. whether the position is
still within the range0..Size . Attempting a seek outside the valid memory range of the stream
may result in an exception at the next read or write operation.

See also: TStream.Positionl47), TStream.Sizeld7), TCustomMemoryStream.Memor§@2

TCustomMemoryStream.SaveToStream

Synopsis: Writes the contents of the memory stream to another stream.
Declaration: procedure SaveToStream(Stream: TStream)
Visibility: public

Description: SaveToStream writes the contents of the memory streanSteeam . The content oStream is
not cleared first. The current position of the memory stream is not changed by this action.

Remark: This method will work much faster than the use of the TStream.CopyFtd®) (nethod:

Seek(0,soFromBeginning);
Stream.CopyFrom(Self,Size);

101

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

because th€opyFrom method copies the contents in blocks, wilaveToStream writes the
contents of the memory as one big block.

Errors: If an error occurs when writing t8tream an EStreamError@3) exception will be raised.

See also: TCustomMemoryStream.SaveToFilEQ), TStream.CopyFroml@?2)

TCustomMemoryStream.SaveToFile

Synopsis: Writes the contents of the stream to a file.
Declaration: procedure SaveToFile(const FileName: String)
Visibility: public

Description: SaveToFile writes the contents of the stream to a file with nafileName . It simply creates a
filestream and writes the contents of the memorystream to this file stream using TCustomMemoryS-
tream.SaveToStream@1).

Remark: This method will work much faster than the use of the TStream.CopyFtd@) (hethod:

Stream:=TFileStream.Create(fmCreate,FileName);
Seek(0,soFromBeginning);
Stream.CopyFrom(Self,Size);

because th€opyFrom method copies the contents in blocks, wilaveToFile writes the con-
tents of the memory as one big block.

Errors: If an error occurs when creating or writing to the file, an EStreamE#A@réxception may occur.

See also: TCustomMemoryStream.SaveToStred]), TFileStream 107), TStream.CopyFromil@?2)

TCustomMemoryStream.Memory

Synopsis: Pointer to the data kept in the memory stream.
Declaration: Property Memory : Pointer
Visibility: public
Access: Read

Description: Memory points to the memory area where stream keeps it's data. The property is read-only, so the
pointer cannot be set this way.

Remark: Do not write to the memory pointed to Byemory, since the memory content may be read-only,
and thus writing to it may cause errors.

See also: TStream.Sizel47)

102

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.34 TDataModule

Method overview

Page Method Description
104 AfterConstruction

104 BeforeDestruction

104 Create

104 CreateNew

103 DefineProperties

104 Destroy

103 DoCreate

103 DoDestroy

103 GetChildren

104 HandleCreateException
104 ReadState

Property overview

Page Property Access Description
104 DesignOffset rw

105 DesignSize rw

105 OldCreateOrder rw

105 OnCreate rw

105 OnDestroy rw

TDataModule.DoCreate

Declaration: procedure DoCreate; Virtual

Visibility: protected

TDataModule.DoDestroy

Declaration: procedure DoDestroy; Virtual

Visibility: protected

TDataModule.DefineProperties
Declaration: procedure DefineProperties(Filer: TFiler); Override

Visibility: protected
TDataModule.GetChildren

Declaration: procedure GetChildren(Proc: TGetChildProc;Root: TComponent); Override

Visibility: protected

103

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TDataModule.HandleCreateException

Declaration: function HandleCreateException : Boolean; Virtual

Visibility: protected

TDataModule.ReadState

Declaration: procedure ReadState(Reader: TReader); Override

Visibility: protected

TDataModule.Create

Declaration: constructor Create(AOwner: TComponent); Override

Visibility: public

TDataModule.CreateNew

Declaration: constructor CreateNew(AOwner: TComponent)
constructor CreateNew(AOwner: TComponent;CreateMode: Integer); Virtual

Visibility: public

TDataModule.Destroy

Declaration: destructor Destroy; Override

Visibility: public

TDataModule.AfterConstruction

Declaration: procedure AfterConstruction; Override

Visibility: public

TDataModule.BeforeDestruction

Declaration: procedure BeforeDestruction; Override

Visibility: public

TDataModule.DesignOffset
Declaration: Property DesignOffset : TPoint

Visibility: public

Access: Read,Write

104

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TDataModule.DesignSize

Declaration: Property DesignSize : TPoint
Visibility: public

Access: Read,Write

TDataModule.OnCreate
Declaration: Property OnCreate : TNotifyEvent

Visibility: published

Access: Read,Write

TDataModule.OnDestroy
Declaration: Property OnDestroy : TNotifyEvent

Visibility: published

Access: Read,Write

TDataModule.OldCreateOrder

Declaration: Property OldCreateOrder : Boolean
Visibility: published

Access: Read,Write

1.35 TFiler

Description
Class responsible for streaming of components.

Method overview
Page Method Description
106 DefineBinaryProperty

106 DefineProperty
106 SetRoot Sets the root component which is being streamed.

Property overview

Page Property Access Description

107 Ancestor rw Ancestor component from which an inherited component is
streamed.

107 IgnoreChildren rw Determines whether children will be streamed as well.

106 LookupRoot r Component used to look up ancestor components.

106 Root rw The root component is the initial component which is being
streamed.

105

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TFiler.SetRoot
Synopsis: Sets the root component which is being streamed.

Declaration: procedure SetRoot(ARoot: TComponent); Virtual
Visibility: protected

Description: Sets the root component. The root component is the initial component which is being streamed.

TFiler.DefineProperty
Synopsis:

Declaration: procedure DefineProperty(const Name: String;ReadData: TReaderProc;
WriteData: TWriterProc;HasData: Boolean)
; Virtual;, Abstract

Visibility: public

Description:

TFiler.DefineBinaryProperty
Synopsis:

Declaration: procedure DefineBinaryProperty(const Name: String;ReadData: TStreamProc;
WriteData: TStreamProc;HasData: Boolean)
; Virtual; Abstract

Visibility: public

Description:

TFiler.Root

Synopsis: The root component is the initial component which is being streamed.
Declaration: Property Root : TComponent
Visibility: public
Access: Read,Write

Description: The streaming process will stream a component and all the components which it owriRodthe
component is the component which is initially streamed.

See also: TFiler.LookupRoot 106)

TFiler.LookupRoot
Synopsis: Component used to look up ancestor components.

Declaration: Property LookupRoot : TComponent
Visibility: public

Access: Read

106

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: When comparing inherited component’s values against parent values, the values are compared with
the component ilookupRoot . Initially, it is set to Root 106).

See also: TFiler.Root (L06)

TFiler.Ancestor
Synopsis: Ancestor component from which an inherited component is streamed.
Declaration: Property Ancestor : TPersistent
Visibility: public
Access: Read,Write

Description: When streaming a component, this is the parent component. Only properties that differ from the
parent’s property value will be streamed.

See also: TFiler.Root (L06), TFiler.LookupRoot 106)

TFiler.IgnoreChildren
Synopsis: Determines whether children will be streamed as well.

Declaration: Property IgnoreChildren : Boolean
Visibility: public
Access: Read,Write

Description: By default, all children (i.e. owned objects) will also be streamed when streaming a component.
This property can be used to prevent owned objects from being streamed.

1.36 TFileStream

Description
TFileStream is a TStream 139 descdendent that stores or reads it's data from a named file in
the filesystem of the operating system.

To this end, it overrides some of the abstract methods$imeam and implements them for the case
of files on disk, and it adds the FileNant@) property to the list of public properties.

Method overview

Page Method Description
108 Create Creates a file stream.
108 Destroy Destroys the file stream.

Property overview

Page Property Access Description
108 FileName r The filename of the stream.

107

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TFileStream.Create

Synopsis: Creates a file stream.

Declaration: constructor Create(const AFileName: String;Mode: Word)
constructor Create(const AFileName: String;Mode: Word;Rights: Cardinal)

Visibility: public

Description: Create creates a new instance ofT&ileStream class. It opens the filAFileName with
modeMode, which can have one of the following values:

Table 1.13:
fmCreate TFileStream.Creat&(Qg) creates a new file if needed.
fmOpenRead TFileStream.Creal®8 opens a file with read-only access.
fmOpenWrite TFileStream.Creat&(8) opens a file with write-only access.

fmOpenReadWrite TFileStream.Creal®®) opens a file with read-write access.

After the file has been opened in the requested mode and a handle has been obtained from the oper-
ating system, the inherited constructor is called.

Errors: If the file could not be opened in the requested mode, an EFOpenBEijaxception is raised.

See also: TStream 139), TFileStream.FileNamelQ8), THandleStream.Creat&@9)

TFileStream.Destroy

Synopsis: Destroys the file stream.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy closes the file (causing possible buffered data to be written to disk) and then calls the
inherited destructor.

Do not calldestroy directly, instead call thEree method. Destroy does not check whetBetf
is nil, while Free does.

See also: TFileStream.Createl 08

TFileStream.FileName
Synopsis: The filename of the stream.

Declaration: Property FileName : String
Visibility: public
Access: Read

Description: FileName is the name of the file that the stream reads from or writes to. It is the name as passed in
the constructor of the stream; it cannot be changed. To write to another file, the stream must be freed
and created again with the new filename.

See also: TFileStream.Createl 08

108

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.37 THandleStream

Description

THandleStream is an abstract descendent of the TStred88) class that provides methods for
a stream to handle all reading and writing to and from a handle, provided by the underlying OS. To
this end, it overrides the Readl(0) and Write (10) methods of TStream.

Remark:

e ThandleStream does not obtain a handle from the OS by itself, it just handles reading and
writing to such a handle by wrapping the system calls for reading and writing; Descendent
classes should obtain a handle from the OS by themselves and pass it on in the inherited
constructor.

e Contrary to Delphi, no seek is implemented fddandleStream , since pipes and sockets
do not support this. The seek is implemented in descendent methods that support it.

Method overview

Page Method Description
109 Create Create a handlestream from an OS Handle.

110 Read Overrides standard read method.
110 Seek
109 SetSize

110 Write Overrides standard write method.

Property overview

Page Property Access Description
110 Handle r The OS handle of the stream.

THandleStream.SetSize

Declaration: procedure SetSize(NewSize: Longint); Override
procedure SetSize(NewSize: Int64); Override

Visibility: protected

THandleStream.Create
Synopsis: Create a handlestream from an OS Handle.

Declaration: constructor Create(AHandle: Integer)
Visibility: public

Description: Create creates a new instance off&dlandleStream class. It store®\Handle in an internal
variable and then calls the inherited constructor.

See also: TStream 139

109

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

THandleStream.Read
Synopsis: Overrides standard read method.

Declaration: function Read(var Buffer;Count: Longint) : Longint; Override
Visibility: public

Description: Read implements the abstract Red#t() method ofTStream . It uses the Handl€l(LO) property
to read theCount bytes intoBuffer

If no error occurs while reading, the number of bytes actually read will be returned.
Errors: If the operating system reports an error while reading from the handle, -1 is returned.

See also: TStream.Readld0), THandleStream.Writel(L0), THandleStream.Handl&4 10

THandleStream.Write

Synopsis: Overrides standard write method.
Declaration: function Write(const Buffer;Count: Longint) : Longint; Override
Visibility: public

Description: Write implements the abstract Writé40 method ofT Stream . It uses the Handlel(LO) property
to write theCount bytes fromBuffer

If no error occurs while writing, the number of bytes actually written will be returned.
Errors: If the operating system reports an error while writing to handle, -1 is returned.

See also: TStream.Readl40), THandleStream.Writel(L0), THandleStream.Handl& 10

THandleStream.Seek
Declaration: function Seek(Offset: Int64;0rigin: TSeekOrigin) : Int64; Override

Visibility: public

THandleStream.Handle
Synopsis: The OS handle of the stream.

Declaration: Property Handle : Integer
Visibility: public
Access: Read

Description: Handle represents the Operating system handle to which reading and writing is done. The handle
can be read only, i.e. it cannot be set afterTiHandlestream instance was created. It should be
passed to the constructor THandleStream.Crd#i8 (

See also: THandleStream1(09), THandleStream.Creaté@9)

110

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.38 TList

Description

TList is a class that can be used to manage collections of pointers. It introduces methods and
properties to store the pointers, search in the list of pointers, sort them. It manages its memory by
itself, no intervention for that is needed.

To manage collections of strings, it is better to use a TStrihi§d) (descendent such as TStringList
(148. To manage general objects, a TCollecti@b)(class exists, from which a descendent can be
made to manage collections of various kinds.

Method overview

Page Method Description

112 Add Adds a new pointer to the list.

114 Assign

113 Clear Clears the pointer list.

113 Delete Removes a pointer from the list.

112 Destroy Destroys the list and releases the memory used to store the list elements.
113 Error Raises an EListErro#®) exception.

113 Exchange Exchanges two pointers in the list.

113 Expand Increases the capacity of the list if needed.

114 Extract

114 First Returns the first non-nil pointer in the list.

111 Get

112 Grow

114 IndexOf Returns the index of a given pointer.

114 Insert Inserts a new pointer in the list at a given position.

115 Last Returns the last non-nil pointer in the list.

115 Move Moves a pointer from one position in the list to another.
112 Notify

115 Pack Removehlil pointers from the list and frees unused memory.
112 Put

115 Remove Removes a value from the list.

112 SetCapacity
112 SetCount
116 Sort Sorts the pointers in the list.

Property overview
Page Property Access Description

116 Capacity rw Current capacity (i.e. number of pointers that can be stored) of the
list.
116 Count rw Current number of pointers in the list.
117 lItems rw Probides access to the pointers in the list.
117 List r Memory array where pointers are stored.
TList.Get

Declaration: function Get(Index: Integer) : Pointer

Visibility: protected

111

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TList.Grow

Declaration: procedure Grow; Virtual

Visibility: protected

TList.Put

Declaration: procedure Put(Index: Integer;ltem: Pointer)

Visibility: protected

TList.Notify

Declaration: procedure Notify(Ptr: Pointer;Action: TListNotification); Virtual

Visibility: protected

TList.SetCapacity

Declaration: procedure SetCapacity(NewCapacity: Integer)

Visibility: protected

TList.SetCount

Declaration: procedure SetCount(NewCount: Integer)

Visibility: protected

TList.Destroy
Synopsis: Destroys the list and releases the memory used to store the list elements.

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy destroys the list and releases the memory used to store the list elements. The elements
themselves are in no way touched, i.e. any meomory they point to must be explicitly released before
calling the destructor.

TList.Add

Synopsis: Adds a new pointer to the list.
Declaration: function Add(ltem: Pointer) : Integer
Visibility: public

Description: Add adds a new pointer to the list after the last pointer (i.e. at pos@iomnt , thus increasing the
item count with 1. If the list is at full capacity, the capacity of the list is expanded, using the Grow
(112 method.

To insert a pointer at a certain position in the list, use the In§é#)(method instead.

See also: TList.Delete (13, TList.Grow (L12), TList.Insert (14)

112

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TList.Clear

Synopsis: Clears the pointer list.
Declaration: procedure Clear; Dynamic
Visibility: public

Description: Clear removes all pointers from the list, and sets the capacity to 0, thus freeing any memory
allocated to maintain the list.

See also: TList.Destroy (12

TList.Delete

Synopsis: Removes a pointer from the list.
Declaration: procedure Delete(Index: Integer)
Visibility: public

Description: Delete removes the pointer at positidndex from the list, shifting all following pointers one
position up (or to the left).

The memory the pointer is pointing ton®t deallocated.

TList.Error
Synopsis: Raises an EListErrod@) exception.

Declaration: procedure Error(const Msg: String;Data: Integer); Virtual
Visibility: public

Description: Error raises an EListError4@) exception, with a message formatted willsg andData .

TList.Exchange

Synopsis: Exchanges two pointers in the list.
Declaration: procedure Exchange(lndexl: Integer;index2: Integer)
Visibility: public

Description: Exchange exchanges the pointers at positidnslexl andIndex2 . Both pointers must be
withing the current range of the list, or an EListErrd@) exception will be raised.

TList.Expand

Synopsis: Increases the capacity of the list if needed.
Declaration: function Expand : TList
Visibility: public

Description: Expand increases the capacity of the list if the current element count matches the current list ca-
pacity.

The capacity is increased according to the following algorithm:

113

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.If the capacity is less than 3, the capacity is increased with 4.
2.If the capacity is larger than 3 and less than 8, the capacity is increased with 8.
3.If the capacity is larger than 8, the capacity is increased with 16.

The return value iSelf .

See also: TList.Capacity 116),

TList.Extract

Declaration: function Extract(item: Pointer) : Pointer

Visibility: public

TList.First

Synopsis: Returns the first non-nil pointer in the list.
Declaration: function First : Pointer
Visibility: public
Description: First returns the value of the first non-nil pointer in the list.
If there are no pointers in the list or all pointers egddl , thenNil is returned.

See also: TList.Last (115

TList.Assign
Declaration: procedure Assign(Obj: TList)

Visibility: public

TList.IndexOf

Synopsis: Returns the index of a given pointer.
Declaration: function IndexOf(Iltem: Pointer) : Integer
Visibility: public

Description: IndexOf searches for the pointéem in the list of pointers, and returns the index of the pointer,
if found.

If no pointer with the valuétem was found, -1 is returned.

TList.Insert

Synopsis: Inserts a new pointer in the list at a given position.
Declaration: procedure Insert(Index: Integer;ltem: Pointer)

Visibility: public

114

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: Insert inserts pointeftem at positionindex in the list. All pointers starting fronindex are
shifted to the right.

If Index is not a valid position, then a EListErro42) exception is raised.

See also: TList.Add (112, Tlist.Delete (13

TList.Last
Synopsis: Returns the last non-nil pointer in the list.

Declaration: function Last : Pointer
Visibility: public
Description: Last returns the value of the last non-nil pointer in the list.

If there are no pointers in the list or all pointers egiél , thenNil is returned.

See also: TList.First (114)

TList.Move
Synopsis: Moves a pointer from one position in the list to another.

Declaration: procedure Move(Curlndex: Integer;Newindex: Integer)
Visibility: public

Description: Move moves the pointer at positiddurindex to positionNewlndex . This is done by storing the
value at positiorCurindex , deleting the pointer at positicd@urindex , and reinserting the value
at positionNewlndex

If Curlndex orNewindex are notinside the valid range of indices, an EListErd#) @xception
is raised.

See also: TList.Exchange113

TList.Remove
Synopsis: Removes a value from the list.

Declaration: function Remove(ltem: Pointer) : Integer
Visibility: public

Description: Remove searchedtem in the list, and, if it finds it, deletes the item from the list. Only the first
occurrence oftem is removed.

See also: TList.Delete (13, TList.IndexOf (L14), Tlist.Insert (14)

TList.Pack
Synopsis: RemoveNil pointers from the list and frees unused memory.

Declaration: procedure Pack

Visibility: public

115

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: Pack removes alhil pointers from the list. The capacity of the list is then set to the number of
pointers in the list. This method can be used to free unused memory if the list has grown to very large

sizes and has a lot of unneeded nil pointers in it.

See also: TList.Clear (13

TList.Sort
Synopsis: Sorts the pointers in the list.
Declaration: procedure Sort(Compare: TListSortCompare)
Visibility: public
Description: Sort> sorts the pointers in the list. Two pointers are compared by passing themG@mtheare
function. The result of this function determines how the pointers will be sorted:

o|f the result of this function is negative, the first pointer is assumed to be 'less’ than the second
and will be moved before the second in the list.

o|f the function result is positive, the first pointer is assumed to be 'greater than’ the second and
will be moved after the second in the list.

oif the function result is zero, the pointers are assumed to be 'equal’ and no moving will take

place.

The sort is done using a quicksort algorithm.

TList.Capacity
Synopsis: Current capacity (i.e. number of pointers that can be stored) of the list.
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity contains the number of pointers the list can store before it starts to grow.

If a new pointer is added to the list using add ®) or insert ((14), and there is hot enough memory

to store the new pointer, then the list will try to allocate more memory to store the new pointer.
Since this is a time consuming operation, it is important that this operation be performed as little as
possible. If it is known how many pointers there will be before filling the list, it is a good idea to
set the capacity first before filling. This ensures that the list doesn’t need to grow, and will speed up

filling the list.
See also: TList.SetCapacity{12), TList.Count (L16)

TList.Count
Synopsis: Current number of pointers in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read,Write

Description: Count is the current number of (possibNil) pointers in the list. Since the list is zero-based, the
index of the largest pointer Sount-1 .

116

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TList.ltems

Synopsis: Probides access to the pointers in the list.
Declaration: Property Items[index: Integer]: Pointer; default
Visibility: public
Access: Read,Write

Description: Items is used to access the pointers in the list. It is the default property dfltlet class, so it
can be omitted.

The list is zero-based, so Index must be in the rahgeCount-1 .

TList.List
Synopsis: Memory array where pointers are stored.
Declaration: Property List : PPointerList
Visibility: public
Access: Read

Description: List points to the memory space where the pointers are stored. This can be used to quickly copy
the list of pinters to another location.

1.39 TMemoryStream

Description

TMemoryStream is a TStream139) descendent that stores it’s data in memory. It descends directly
from TCustomMemoryStreani (0 and implements the necessary to allocate and de-allocate mem-
ory diretly from the heap. Itimplements the Writel© method which is missing iiCustomMemoryStream .

TMemoryStream also introduces methods to load the contents of another stream or a file into the
memory stream.

Itis not necessary to do any memory management manually, as the stream will allocate or de-allocate
memory as needed. When the stream is freed, all allocated memory will be freed as well.

Method overview

Page Method Description

118 Clear Zeroes the position, capacity and size of the stream.

118 Destroy Frees any allocated memory and destroys the memory stream.
119 LoadFromFile Loads the contents of a file into memory.

118 LoadFromStream Loads the contents of a stream into memory.

118 Realloc Sets the new capacity for the memory stream

119 SetSize Sets the size for the memory stream.

119 Write Writes data to the stream’s memory.

Property overview

Page Property Access Description
120 Capacity rw Current capacity of the stream.

117

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TMemoryStream.Realloc

Synopsis: Sets the new capacity for the memory stream
Declaration: function Realloc(var NewCapacity: Longint) : Pointer; Virtual
Visibility: protected

Description: SetCapacity sets the capacity of the memory stream, i.e. does the actual allocation or de-
allocation of memory for the stream. It allocates at I&dstvCapacity bytes on the heap, moves
the current contents of the stream to this location (as much as fits in) and returns the new memory
location. Extra allocated memory is not initialized, i.e. may contain garbage.

Memory is allocated in blocks of 4 Kb; this can be changed by overriding the method.

See also: TMemoryStream.Capacity 20

TMemoryStream.Destroy
Synopsis: Frees any allocated memory and destroys the memory stream.

Declaration: destructor Destroy; Override
Visibility: public

Description: Free clears the memory stream, thus in effect freeing any memory allocated for it, and then frees
the memory stream.

TMemoryStream.Clear
Synopsis: Zeroes the position, capacity and size of the stream.
Declaration: procedure Clear
Visibility: public

Description: Clear sets the position and size to 0, and sets the capacity of the stream to 0, thus freeing all
memory allocated for the stream.

See also: TStream.Sizel47), TStream.Positionl47), TCustomMemoryStream.Memor§ @2

TMemoryStream.LoadFromStream

Synopsis: Loads the contents of a stream into memory.
Declaration: procedure LoadFromStream(Stream: TStream)
Visibility: public

Description: LoadFromStream loads the contents dbtream into the memorybuffer of the stream. Any
previous contents of the memory stream are overwritten. Memory is allocated as needed.

Remark: ThelLoadFromStream uses the Sizel@7) property ofStream to determine how much memory
must be allocated. Some streams do not allow the stream size to be determined, so care must be taken
when using this method.

This method will work much faster than the use of the TStream.CopyFidf) (nethod:

Seek(0,soFromBeginning);
CopyFrom(Stream,Stream.Size);

118

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

because th€opyFrom method copies the contents in blocks, whittadFromStream reads the
contents of the stream as one big block.

Errors: If an error occurs when reading from the stream, an EStreamBE8pmnay occur.

See also: TStream.CopyFroml@?2), TMemoryStream.LoadFromFild {9

TMemoryStream.LoadFromFile
Synopsis: Loads the contents of a file into memory.
Declaration: procedure LoadFromFile(const FileName: String)
Visibility: public

Description: LoadFromFile loads the contents of the file with narRdeName into the memory stream. The

current contents of the memory stream is replaced by the contents of the file. Memory is allocated as
needed.

TheLoadFromFile

method simply creates a filestream and then calls the TMemoryStream.LoadFromStream
(118 method.

See also: TMemoryStream.LoadFromStreahl®

TMemoryStream.SetSize
Synopsis: Sets the size for the memory stream.
Declaration: procedure SetSize(NewSize: Longint); Override
Visibility: public
Description: SetSize sets the size of the memory streanNewSize . This will set the capacity of the stream
to NewSize and correct the current position in the stream when needed.

See also: TStream.Positionl47), TStream.Sizel47)

TMemoryStream.Write
Synopsis: Writes data to the stream’s memory.
Declaration: function Write(const Buffer;Count: Longint) : Longint; Override
Visibility: public
Description: Write writesCount bytes fromBuffer to the stream’s memory, starting at the current position in
the stream. If more memory is needed than currently allocated, more memory will be allocated. Any

contents in the memory stream at the current position will be overwritten. The function returns the
number of bytes actually written (which should under normal circumstances alwaysGayurdl).

This method overrides the abstract TStream. Wit method.

Errors: If no more memory could be allocated, then an exception will be raised.

See also: TCustomMemoryStream.Reati()(1)

119

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TMemoryStream.Capacity
Synopsis: Current capacity of the stream.

Declaration: Property Capacity : Longint
Visibility: protected
Access: Read,Write

Description: Capacity is the current capacity of the stream, this is the current size of the memory allocated to
the stream. This is not necessarily equal to the size of the stream, but will always be larger than or
equal to the size of the stream. When writing to the stream, the TMemoryStream.Wi§eséts
the capacity to the needed value.

If a lot of write operations will occur, performance may be improved by setting the capacity to a large
value, so less reallocations of memory will occur while writing to the stream.

See also: TMemoryStream.ReAllocl(18

1.40 TParser

Description
Class to parse the contents of a stream containing text data.

Method overview

Page Method Description

121 CheckToken Checks whether the token if of the given type.

121 CheckTokenSymbol Checks whether the token equals the given symbol

120 Create Creates a new parser instance.

121 Destroy Destroys the parser instance.

121 Error Raises an EParserErrdi2] exception with the given message
121 ErrorFmt Raises an EParserErrdp) exception and formats the message.
122 ErrorStr Raises an EParserErrdP) exception with the given message
122 HexToBinary Writes hexadecimal data to the stream.

122 NextToken Reads the next token and returns its type.

122 SourcePos Returns the current position in the stream.

122 TokenComponentldent Checks whether the current token is a component identifier.
122 TokenFloat Returns the current token as a float.

123 Tokenint Returns the current token as an integer.

123 TokenString Returns the current token as a string.

123 TokenSymbolls Returngrue if the current token is a symbol.

Property overview

Page Property Access Description
123 SourcelLine r Current source linenumber.
123 Token r Contents of the current token.

TParser.Create

Synopsis: Creates a new parser instance.

120

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Declaration: constructor Create(Stream: TStream)
Visibility: public

Description: Creates a new parser instance.

TParser.Destroy

Synopsis: Destroys the parser instance.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroys the parser instance.

TParser.CheckToken
Synopsis: Checks whether the token if of the given type.

Declaration: procedure CheckToken(T: Char)
Visibility: public

Description: Checks whether the token if of the given type.

TParser.CheckTokenSymbol
Synopsis: Checks whether the token equals the given symbol

Declaration: procedure CheckTokenSymbol(const S: String)
Visibility: public

Description: Checks whether the token equals the given symbol

TParser.Error

Synopsis: Raises an EParserErratd) exception with the given message
Declaration: procedure Error(const Ident: String)
Visibility: public

Description: Raises an EParserErratd) exception with the given message

TParser.ErrorFmt

Synopsis: Raises an EParserErratd) exception and formats the message.
Declaration: procedure ErrorFmt(const Ident: String;const Args: Array[] of const)
Visibility: public

Description: Raises an EParserErretd) exception and formats the message.

121

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TParser.ErrorStr

Synopsis: Raises an EParserErratd) exception with the given message
Declaration: procedure ErrorStr(const Message: String)
Visibility: public

Description: Raises an EParserErratd) exception with the given message

TParser.HexToBinary

Synopsis: Writes hexadecimal data to the stream.
Declaration: procedure HexToBinary(Stream: TStream)
Visibility: public

Description: Writes hexadecimal data to the stream.

TParser.NextToken

Synopsis: Reads the next token and returns its type.
Declaration: function NextToken : Char
Visibility: public

Description: Reads the next token and returns its type.

TParser.SourcePos

Synopsis: Returns the current position in the stream.
Declaration: function SourcePos : Longint
Visibility: public

Description: Returns the current position in the stream.

TParser.TokenComponentldent
Synopsis: Checks whether the current token is a component identifier.

Declaration: function TokenComponentident : String
Visibility: public

Description: Checks whether the current token is a component identifier.

TParser.TokenFloat

Synopsis: Returns the current token as a float.
Declaration: function TokenFloat : Extended
Visibility: public

Description: Returns the current token as a float.

122

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TParser.TokenlInt

Synopsis: Returns the current token as an integer.
Declaration: function TokenInt : Longint
Visibility: public

Description: Returns the current token as an integer.

TParser.TokenString

Synopsis: Returns the current token as a string.
Declaration: function TokenString : String
Visibility: public

Description: Returns the current token as a string.

TParser.TokenSymbolls

Synopsis: ReturnsTrue if the current token is a symbol.
Declaration: function TokenSymbolls(const S: String) : Boolean
Visibility: public

Description: ReturnsTrue if the current token is a symbol.

TParser.SourceLine

Synopsis: Current source linenumber.
Declaration: Property SourcelLine : Integer
Visibility: public
Access: Read

Description: Current source linenumber.

TParser.Token

Synopsis: Contents of the current token.
Declaration: Property Token : Char
Visibility: public
Access: Read

Description: Contents of the current token.

123

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.41 TPersistent

Description

TPersistent is the basic class for the streaming system. Since it is compiled ii$ihe¢} state,
the compiler generates RTTI (Run-Time Type Information) for it and all classes that descend from
it. This information can be used to stream all properties of classes.

It also introduces functionality to assign the contents of 2 classes to each other.

Method overview

Page Method Description

125 Assign Assign the contents of one class to another.

124 AssignTo Generic assignment function.

124 DefineProperties Declare non-published properties that need to be streamed.
125 Destroy Destroys th&Persistent instance.

126 GetNamePath Returns a string that can be used to identify the class instance.
125 GetOwner Returns the owner of the component.

TPersistent.AssignTo
Synopsis: Generic assignment function.
Declaration: procedure AssignTo(Dest: TPersistent); Virtual
Visibility: protected

Description: AssignTo is the generic function to assign the class’ contents to another class. This method
must be overridden by descendent classes to actually assign the content of the source instance to
the destination instance.

The TPersistentl24) implementation oAssignto raises arEConvertError exception. Thisis

done for the following reason: If the source class doesn’t know how to assign itself to the destination
class (usingAssignTo), the destination class may know how get the data from the source class
(using Assign {25). If all descendent methods are implemented correctly, then if neither of the two
classes knows how to assign their contents to each other, execution will end up at TPersistent.Assign
(125), which will simply execute

Dest.AssignTo(Self);

If neither of the classes knows how to assign to/from each other, then execution will end up at the
TPersistent implementation oAssignTo , and an exception will be raised.

See also: TPersistent. Assigrl@b)

TPersistent.DefineProperties

Synopsis: Declare non-published properties that need to be streamed.
Declaration: procedure DefineProperties(Filer: TFiler); Virtual

Visibility: protected

124

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: DefineProperties must be overridden by descendent classes to indicate to the streaming sys-
tem which non-published properties must also be streamed.

The streaming systems stores only published properties in the stream. Sometimes it is hecessary to
store additional data in the stream, data which is not published. This can be done by overriding the
DefineProperties method. TheFiler object is the class that is responsible for writing all
properties to the stream.

To define new properties, two methods of the TFilE5) class should be used:

1.DefineProperty106), to define a property which can be represented as text.
2 DefineProperty106), to define a property which contains binary data.

On order for the streaming to work correctly, a call to the inheridedineProperties is also
needed, so ancestor objects also get the possibility to read or write their private data to the stream.
Failure to call the inherited method will result in component properties not being streamed correctly.

See also: TFiler.DefinePropertieslQ5), TFiler (105

TPersistent.GetOwner
Synopsis: Returns the owner of the component.
Declaration: function GetOwner : TPersistent; Dynamic
Visibility: protected

Description: GetOwner returns the owning component of the classes instane. TPeesistent implemen-
tation ofGetOwner returnsNil . TComponent&6) overrides this method.

See also: TComponent&6)

TPersistent.Destroy
Synopsis: Destroys thel Persistent instance.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy disposes of the persistent object. This method should never be called directly. Instead the
Free method should be used.

TPersistent.Assign
Synopsis: Assign the contents of one class to another.
Declaration: procedure Assign(Source: TPersistent); Virtual
Visibility: public
Description: Assign copies the contents &ource to Self |, if the classes of the destination and source classes
are compatible.

TheTPersistent implementation oAssign does nothing but calling the AssignTod4) method

of source. This means that if the destination class does not know how to assign the contents of the
source class, the source class instance is asked to assign itself to the destination class. This means
that it is necessary to implement only one of the two methods so that two classes can be assiged to
one another.

Remark: In general, a statement of the form

125

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Destination:=Source;

(whereDestination andSource are classes) does not achieve the same as a statement of the
form

Destination.Assign(Source);

After the former statement, botBource andDestination will point to the same object. The
latter statemtent will copy theontentsof the Source class to théestination class.

See also: TPersistent.AssignTd.@4)

TPersistent. GetNamePath
Synopsis: Returns a string that can be used to identify the class instance.
Declaration: function GetNamePath : String; Virtual
Visibility: public

Description: GetNamePath returns a string that can be used to identify the class instance. This can be used to
display a name for this instance in a Object designer.

GetNamePath constructs a name by recursively prepending @Gessname of the Owner in-
stance to th€lassname of this instance, separated by a dot.

See also: TPersistent.GetOwnet 25

1.42 TReader

Description

The TReader class is a reader class that implements generic component streaming capabilities,
independent of the format of the data in the stream. It uses a driver class TAbstractObjectReader
(44) to do the actual reading of data. The interface oftReader class should be identical to the
interface in Delphi.

126

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Method overview

Page Method Description

130 BeginReferences Initializes the component referencing mechanism.

130 Checkvalue Raises an exception if the next value in the stream is not of type
Value

134 CopyValue Copy a value to a writer.

129 Create Creates a new reader class

130 DefineBinaryProperty Reads a user-defined binary property from the stream.

130 DefineProperty Reads a user-defined property from the stream.

129 Destroy Destroys a reader class.

130 EndOfList Returns true if the stream contains an end-of-list marker.

131 EndReferences Finalizes the component referencing mechanism.

128 Error Calls an installed error handler and passéteissage

128 FindMethod Return the address of a published method.

131 FixupReferences Tries to resolve all unresolved component references.

131 NextValue Returns the type of the next value.

129 PropertyError Skips a property value and raises an exception.

131 ReadBoolean Reads a boolean from the stream.

131 ReadChar Reads a character from the stream.

131 ReadCollection Reads a collection from the stream.

132 ReadComponent Starts reading a component from the stream.

132 ReadComponents Starts reading child components from the stream.

129 ReadData Reads the components data after it has been created.

132 ReadDate Reads a date from the stream

132 ReadFloat Reads a float from the stream.

132 Readldent Reads an identifier from the stream.

133 ReadInt64 Reads a 64-bit integer from the stream.

133 Readinteger Reads an integer from the stream

133 ReadListBegin Checks for the beginning of a list.

133 ReadListEnd Checks for the end of a list.

129 ReadProperty Read and process a property name

129 ReadPropValue Reads a property valueFoopinfo

133 ReadRootComponent Starts reading a root component.

132 ReadSingle Reads a single-type real from the stream.

133 ReadString Reads a string from the stream.

134 ReadValue Reads the next value type from the stream.

127

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Property overview

Page Property Access Description

134 CanHandleExceptions r Indicates whether the reader is handling exceptions
at this stage.

134 Driver r The driver in use for streaming the data.

136 OnAncestorNotFound rw Handler called when the ancestor component cannot
be found.

136 OnCreateComponent rw Handler called when a component needs to be cre-
ated.

135 OnError rw Handler called when an error occurs.

137 OnFindComponentClass rw Handler called when a component class reference
needs to be found.

135 OnFindMethod rw Handler to find or change a method address.

135 OnPropertyNotFound rw

136 OnReferenceName rw Handler called when another component is refer-
enced.

136 OnSetMethodProperty rw

136 OnSetName rw Handler called when setting a component name.

135 Owner rw Owner of the component being read

135 Parent rw Parent of the component being read.

134 PropName r Name of the property being read at this moment.

TReader.Error
Synopsis: Calls an installed error handler and passé4dtssage
Declaration: function Error(const Message: String) : Boolean; Virtual
Visibility: protected

Description: Error returnsFalse if no TReader.OnErrorl(35 handler is installed. If one is installed, then it
will be called, passing the reader instance, message, and function return value as parameters.

If the function resulfFalse , i.e. when there is no handler installed or the handler restoatske |
then the calling code will raise an exception.

See also: TReader.FindMethodl@8)

TReader.FindMethod

Synopsis: Return the address of a published method.

Declaration: function FindMethod(ARoot: TComponent;const AMethodName: String)
. Pointer; Virtual

Visibility: protected

Description: FindMethod will search for the method iRoot. If it isn't found there, then it will call a
OnFindMethod handler, if one is installed, passing it the method n#&kkethodName, the result
pointer and a variable which says whether an exception should be raised if no method with name
AMethodName is found.

If the method cannot be found and the OnFindMetHI®E returnsTrue , then an exception will be
raised.

See also: TReader.OnFindMethod 85), TFindMethodEvent5)

128

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.ReadProperty

Synopsis: Read and process a property name
Declaration: procedure ReadProperty(Alnstance: TPersistent)
Visibility: protected

Description: Read and process a property name

TReader.ReadPropValue

Synopsis: Reads a property value f@roplinfo
Declaration: procedure ReadPropValue(Instance: TPersistent;Propinfo: Pointer)
Visibility: protected

Description: Reads a property value f@ropinfo

TReader.PropertyError

Synopsis: Skips a property value and raises an exception.
Declaration: procedure PropertyError
Visibility: protected

Description: Skips a property value and raises an exception.

TReader.ReadData

Synopsis: Reads the components data after it has been created.
Declaration: procedure ReadData(Instance: TComponent)
Visibility: protected

Description: Reads the components data after it has been created.

TReader.Create

Synopsis: Creates a new reader class
Declaration: constructor Create(Stream: TStream;BufSize: Integer)
Visibility: public

Description: Creates a new reader class

TReader.Destroy

Synopsis: Destroys a reader class.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroys a reader class.

129

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.BeginReferences

Synopsis: Initializes the component referencing mechanism.
Declaration: procedure BeginReferences
Visibility: public

Description: Initializes the component referencing mechanism.

TReader.CheckValue

Synopsis: Raises an exception if the next value in the stream is not of ghee
Declaration: procedure CheckValue(Value: TValueType)
Visibility: public

Description: Raises an exception if the next value in the stream is not of\igbee

TReader.DefineProperty
Synopsis: Reads a user-defined property from the stream.

Declaration: procedure DefineProperty(const Name: String;AReadData: TReaderProc;
WriteData: TWriterProc;HasData: Boolean)
; Override

Visibility: public

Description: Reads a user-defined property from the stream.

TReader.DefineBinaryProperty
Synopsis: Reads a user-defined binary property from the stream.

Declaration: procedure DefineBinaryProperty(const Name: String;
AReadData: TStreamProc;
WriteData: TStreamProc;HasData: Boolean)
; Override

Visibility: public

Description: Reads a user-defined binary property from the stream.

TReader.EndOfList

Synopsis: Returns true if the stream contains an end-of-list marker.
Declaration: function EndOfList : Boolean
Visibility: public

Description: Returns true if the stream contains an end-of-list marker.

130

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.EndReferences
Synopsis: Finalizes the component referencing mechanism.

Declaration: procedure EndReferences
Visibility: public

Description: Finalizes the component referencing mechanism.

TReader.FixupReferences

Synopsis: Tries to resolve all unresolved component references.
Declaration: procedure FixupReferences
Visibility: public

Description: Tries to resolve all unresolved component references.

TReader.NextValue
Synopsis: Returns the type of the next value.

Declaration: function NextValue : TValueType
Visibility: public

Description: Returns the type of the next value.

TReader.ReadBoolean

Synopsis: Reads a boolean from the stream.
Declaration: function ReadBoolean : Boolean
Visibility: public

Description: Reads a boolean from the stream.

TReader.ReadChar

Synopsis: Reads a character from the stream.
Declaration: function ReadChar : Char
Visibility: public

Description: Reads a character from the stream.

TReader.ReadCollection

Synopsis: Reads a collection from the stream.
Declaration: procedure ReadCollection(Collection: TCollection)
Visibility: public

Description: Reads a collection from the stream.

131

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.ReadComponent
Synopsis: Starts reading a component from the stream.
Declaration: function ReadComponent(Component: TComponent) : TComponent
Visibility: public

Description: Starts reading a component from the stream.

TReader.ReadComponents
Synopsis: Starts reading child components from the stream.

Declaration: procedure ReadComponents(AOwner: TComponent;AParent: TComponent;
Proc: TReadComponentsProc)

Visibility: public

Description: Starts reading child components from the stream.

TReader.ReadFloat
Synopsis: Reads a float from the stream.
Declaration: function ReadFloat : Extended
Visibility: public

Description: Reads a float from the stream.

TReader.ReadSingle
Synopsis: Reads a single-type real from the stream.

Declaration: function ReadSingle : Single
Visibility: public

Description: Reads a single-type real from the stream.

TReader.ReadDate
Synopsis: Reads a date from the stream
Declaration: function ReadDate : TDateTime
Visibility: public

Description: Reads a date from the stream

TReader.Readldent
Synopsis: Reads an identifier from the stream.
Declaration: function Readldent : String
Visibility: public

Description: Reads an identifier from the stream.

132

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.ReadlInteger
Synopsis: Reads an integer from the stream

Declaration: function ReadInteger : Longint
Visibility: public

Description: Reads an integer from the stream

TReader.ReadInt64

Synopsis: Reads a 64-bit integer from the stream.

Declaration: function ReadInt64 : Int64

Visibility: public

Description: Reads a 64-bit integer from the stream.

TReader.ReadListBegin
Synopsis: Checks for the beginning of a list.

Declaration: procedure ReadListBegin
Visibility: public

Description: Checks for the beginning of a list.

TReader.ReadListEnd
Synopsis: Checks for the end of a list.

Declaration: procedure ReadListEnd
Visibility: public

Description: Checks for the end of a list.

TReader.ReadRootComponent

Synopsis: Starts reading a root component.

Declaration: function ReadRootComponent(ARoot: TComponent) : TComponent

Visibility: public

Description: Starts reading a root component.

TReader.ReadString

Synopsis: Reads a string from the stream.
Declaration: function ReadString : String
Visibility: public

Description: Reads a string from the stream.

133

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.ReadValue

Synopsis: Reads the next value type from the stream.
Declaration: function ReadValue : TValueType
Visibility: public

Description: Reads the next value type from the stream.

TReader.CopyValue

Synopsis: Copy a value to a writer.
Declaration: procedure CopyValue(Writer: TWriter)
Visibility: public

Description: Copy a value to a writer.

TReader.PropName
Synopsis: Name of the property being read at this moment.

Declaration: Property PropName : String
Visibility: protected
Access: Read

Description: Name of the property being read at this moment.

TReader.CanHandleExceptions

Synopsis: Indicates whether the reader is handling exceptions at this stage.
Declaration: Property CanHandleExceptions : Boolean
Visibility: protected
Access: Read

Description: Indicates whether the reader is handling exceptions at this stage.

TReader.Driver

Synopsis: The driver in use for streaming the data.
Declaration: Property Driver : TAbstractObjectReader
Visibility: public
Access: Read

Description: The driver in use for streaming the data.

134

Synopsis

Declaration

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.Owner

: Owner of the component being read

- Property Owner : TComponent

Visibility: public

Access

Description

Synopsis

Declaration

Visibility:

Access

Description

Synopsis

Declaration

Visibility:

Access

Description

Declaration
Visibility

Access

Synopsis

Declaration

Visibility:

Access

Description

: Read,Write

: Owner of the component being read

TReader.Parent

: Parent of the component being read.
: Property Parent : TComponent
public

: Read,Write

: Parent of the component being read.

TReader.OnError

: Handler called when an error occurs.
: Property OnError : TReaderError
public

: Read,Write

: Handler called when an error occurs.

TReader.OnPropertyNotFound

: Property OnPropertyNotFound : TPropertyNotFoundEvent
. public
: Read,Write
TReader.OnFindMethod
: Handler to find or change a method address.
: Property OnFindMethod : TFindMethodEvent
public
: Read,Write
: Handler to find or change a method address.

135

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.OnSetMethodProperty
Declaration: Property OnSetMethodProperty : TSetMethodPropertyEvent

Visibility: public

Access: Read,Write

TReader.OnSetName

Synopsis: Handler called when setting a component name.
Declaration: Property OnSetName : TSetNameEvent
Visibility: public
Access: Read,Write

Description: Handler called when setting a component name.

TReader.OnReferenceName

Synopsis: Handler called when another component is referenced.
Declaration: Property OnReferenceName : TReferenceNameEvent
Visibility: public
Access: Read,Write

Description: Handler called when another component is referenced.

TReader.OnAncestorNotFound
Synopsis: Handler called when the ancestor component cannot be found.

Declaration: Property OnAncestorNotFound : TAncestorNotFoundEvent
Visibility: public
Access: Read,Write

Description: Handler called when the ancestor component cannot be found.

TReader.OnCreateComponent

Synopsis: Handler called when a component needs to be created.
Declaration: Property OnCreateComponent : TCreateComponentEvent
Visibility: public
Access: Read,Write

Description: Handler called when a component needs to be created.

136

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TReader.OnFindComponentClass
Synopsis: Handler called when a component class reference needs to be found.

Declaration: Property OnFindComponentClass : TFindComponentClassEvent
Visibility: public
Access: Read,Write

Description: Handler called when a component class reference needs to be found.

1.43 TRecall

Method overview
Page Method Description

137 Create
137 Destroy
137 Forget
137 Store

Property overview

Page Property Access Description
138 Reference r

TRecall.Create
Declaration: constructor Create(AStorage: TPersistent;AReference: TPersistent)

Visibility: public

TRecall.Destroy

Declaration: destructor Destroy; Override

Visibility: public

TRecall.Store

Declaration: procedure Store

Visibility: public
TRecall.Forget

Declaration: procedure Forget

Visibility: public

137

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TRecall.Reference

Declaration: Property Reference : TPersistent
Visibility: public
Access: Read

1.44 TResourceStream

Description

Stream that reads its data from a resource object.

Method overview

Page Method Description

138 Create Creates a new instance of a resource stream.

138 CreateFromID Creates a new instance of a resource stream with resource
138 Destroy Destroys the instance of the resource stream.

139 Write Write implements the abstract TStream.Writ€ () method.

TResourceStream.Create
Synopsis: Creates a new instance of a resource stream.

Declaration: constructor Create(Instance: THANDLE;const ResName: String;
ResType: PChar)

Visibility: public

Description: Creates a new instance of a resource stream.

TResourceStream.CreateFromID
Synopsis: Creates a new instance of a resource stream with resource

Declaration: constructor CreateFromID(Instance: THANDLE;ResID: Integer;
ResType: PChar)

Visibility: public

Description: Creates a new instance of a resource stream with resource

TResourceStream.Destroy
Synopsis: Destroys the instance of the resource stream.

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroys the instance of the resource stream.

138

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TResourceStream.Write

Synopsis: Write

implements the abstract TStream.Writd() method.

Declaration: function Write(const Buffer;Count: Longint) : Longint; Override

Visibility: public

Description: Write

implements the abstract TStream.Writd() method.

1.45 TStream

Description

TStream is the base class for all streaming classes. It defines abstract methods for réd@jng (
writing (140 from and to streams, as well as functions to determine the size of the stream as well as
the current position of the stream.

Descendent classes such as TMemoryStrelii) or TFileStream 107) then implement these ab-
stract methods to write streams to memory or file.

Method overview

Page Method Description

142 CopyFrom Copy data from one stream to another

144 FixupResourceHeader Notimplemented in FPC

140 Read Reads data from the stream to a buffer and returns the number of
bytes read.

146 ReadAnsiString Read an ansistring from the stream and return its value.

141 ReadBuffer Reads data from the stream to a buffer

145 ReadByte Read a byte from the stream and return its value.

142 ReadComponent Reads component data from a stream

142 ReadComponentRes Reads component data and resource header from a stream

145 ReadDWord Read a DWord from the stream and return its value.

144 ReadResHeader Read a resource header from the stream.

145 ReadWord Read a word from the stream and return its value.

141 Seek Sets the current position in the stream

140 SetSize Sets the size of the stream

140 Write Writes data from the stream to the buffer and returns the number
of bytes written.

147 WriteAnsiString Write an ansistring to the stream.

141 WriteBuffer Writes data from the stream to the buffer

146 WriteByte Write a byte to the stream.

143 WriteComponent Write component data to the stream

143 WriteComponentRes Write resource header and component data to a stream

143 WriteDescendent Write component data to a stream, relative to an ancestor

144 WriteDescendentRes Write resource header and component data to a stream, relative
to an ancestor

146 WriteDWord Write a DWord to the stream.

144 WriteResourceHeader Write resource header to the stream

146 WriteWord Write a word to the stream.

139

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Property overview

Page Property Access Description
147 Position rw The current position in the stream.
147 Size rw The current size of the stream.

TStream.SetSize
Synopsis: Sets the size of the stream

Declaration: procedure SetSize(NewSize: Longlint); Virtual; Overload
procedure SetSize(NewSize: Int64); Virtual, Overload

Visibility: protected

Description: SetSize is the write handler for the TStream.SiZel) property. ThelStream implementation
of SetSize does nothing, but descendent classes may override this methods to allow programmers
to set the size of the stream.

See also: TStream.GetSizelB9), TStream.Sizel47)

TStream.Read
Synopsis: Reads data from the stream to a buffer and returns the number of bytes read.
Declaration: function Read(var Buffer;Count: Longint) : Longint; Virtual, Abstract
Visibility: public
Description: Read attempts to rea@ount from the stream t8uffer and returns the number of bytes actually
read.

This method should be used when the number of bytes is not determined. If a specific number of
bytes is expected, use TSTream.ReadBuffdd) instead.

Read is an abstract method that is overridden by descendent classes to do the actual reading.

Errors: Descendent classes that do not allow reading from the stream may raise an exception \Realthe
is used.

See also: TStream.Write {40, TStream.ReadBuffel@1)

TStream.Write
Synopsis: Writes data from the stream to the buffer and returns the number of bytes written.

Declaration: function Write(const Buffer;Count: Longint) : Longint; Virtual
; Abstract

Visibility: public
Description: Write attempts to writeCount bytes fromBuffer to the stream. It returns the actual number of
bytes written to the stream.

This method should be used when the number of bytes that should be written is not determined. If a
specific number of bytes should be written, use TSTream.Write Buffel) nstead.

Write is an abstract method that is overridden by descendent classes to do the actual writinging.

Errors: Descendent classes that do not allow writing to the stream may raise an exceptioWwtgenis
used.

See also: TStream.Readl@40), TStream.WriteBuffer{41)

140

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStream.Seek

Synopsis: Sets the current position in the stream

Declaration: function Seek(Offset: Longint;Origin: Word) : Longint; Virtual
; Overload

function Seek(Offset: Int64;0rigin: TSeekOrigin) : Int64; Virtual
; Overload

Visibility: public

Description: Seek sets the position of the stream@jfset bytes fromOrigin . Origin can have one of the
following values:

Table 1.14:
Constant Meaning
soFromBeginning Set the position relative to the start of the stream.
soFromCurrent Set the position relative to the beginning of the stream.
soFromEnd Set the position relative to the end of the stream.

Offset should be negative when the origirSsFromEnd. It should be positive fosoFromBeginning
and can have both signs feoFromCurrent

This is an abstract method, which must be overridden by descendent classes. They may choose not
to implement this method for all values Gfrigin andOffset

Errors: An exception may be raised if this method is called with an invalid pabftéet ,Origin values.
e.g. a negativeffset for soFromBeginning

See also: TStream.Positionl47)

TStream.ReadBuffer

Synopsis: Reads data from the stream to a buffer
Declaration: procedure ReadBuffer(var Buffer;Count: Longlnt)
Visibility: public

Description: ReadBuffer readsCount bytes of the stream intBuffer . If the stream does not contain
Count bytes, then an exception is raised.

ReadBuffer should be used to read in a fixed number of bytes, such as when reading structures or
the content of variables. If the number of bytes is not determined, use TStream1R6gnm$tead.
ReadBuffer usesRead internally to do the actual reading.

Errors: If the stream does not allow to re@bunt bytes, then an exception is raised.

See also: TStream.Readl@(), TStream.WriteBuffer141)

TStream.WriteBuffer

Synopsis: Writes data from the stream to the buffer
Declaration: procedure WriteBuffer(const Buffer;Count: Longint)

Visibility: public

141

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: WriteBuffer writes Count bytes to the stream froBuffer . If the stream does not allow

Count bytes to be written, then an exception is raised.
should be used to read in a fixed number of bytes, such as when writing structures or

WriteBuffer
the content of variables. If the number of bytes is not determined, use TStream.Jdfiténstead.

WriteBuffer usesWrite internally to do the actual reading.

Errors: If the stream does not allow to writdount bytes, then an exception is raised.

See also: TStream.Write 140, TStream.ReadBuffedl@1)

TStream.CopyFrom
Synopsis: Copy data from one stream to another

Declaration: function CopyFrom(Source: TStream;Count: Int64) : Int64
Visibility: public

Description: CopyFrom readsCount bytes fromSource and writes them to the current stream. This updates
the current position in the stream. After the action is completed, the number of bytes copied is

returned.
This can be used to quickly copy data from one stream to another or to copy the whole contents of

the stream.
See also: TStream.Readl40), TStream.Write 140

TStream.ReadComponent
Synopsis: Reads component data from a stream
Declaration: function ReadComponent(Instance: TComponent) : TComponent

Visibility: public
Description: ReadComponent reads a component state from the stream and transfers this skastatoce
If Instance is nil, then itis created first based on the type stored in the strBaadComponent
returns the component as it is read from the stream.
ReadComponent simply creates a TReadetZ6) object and calls its ReadRootComponet3)

method.
Errors: If an error occurs during the reading of the component, an EFilerEtidrekception is raised.

See also: TStream.WriteComponent43), TStream.ReadComponentR&d%), TReader.ReadRootComponent
(133

TStream.ReadComponentRes
Synopsis: Reads component data and resource header from a stream

Declaration: function ReadComponentRes(Instance: TComponent) : TComponent

Visibility: public

142

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: ReadComponentRes reads a resource header from the stream, and then calls ReadComponent
(142 to read the component state from the stream linstance

This method is usually called by the global streaming method when instantiating forms and datamod-
ules as created by an IDE. It should be used mainly on Windows, to store components in Windows
resources.

Errors: If an error occurs during the reading of the component, an EFilerEtfgrekception is raised.

See also: TStream.ReadComponent4?), TStream.WriteComponentReEA®)

TStream.WriteComponent
Synopsis: Write component data to the stream

Declaration: procedure WriteComponent(Instance: TComponent)
Visibility: public

Description: WriteComponent writes the published properties bfstance to the stream, so they can later
be read with TStream.ReadComponed). This method is intended to be used by an IDE, to
preserve the state of a form or datamodule as designed in the IDE.

WriteComponent simply calls WriteDescendent43 with Nil ancestor.

See also: TStream.ReadComponeri4?), TStream.WriteComponentReBAQ)

TStream.WriteComponentRes

Synopsis: Write resource header and component data to a stream
Declaration: procedure WriteComponentRes(const ResName: String;Instance: TComponent)
Visibility: public

Description: WriteComponentRes writes aResNameresource header to the stream and then calls Write-
Component143) to write the published properties bfstance to the stream.

This method is intened for use by an IDE that can use it to store forms or datamodules as designed
in a Windows resource stream.

See also: TStream.WriteComponent43), TStream.ReadComponentRég?)

TStream.WriteDescendent

Synopsis: Write component data to a stream, relative to an ancestor
Declaration: procedure WriteDescendent(Instance: TComponent;Ancestor: TComponent)
Visibility: public

Description: WriteDescendent writes the state dhstance to the stream where it differs frodncestor
i.e. only the changed properties are written to the stream.

WriteDescendent creates a TWriter1(74) object and calls its WriteDescendenf7{) object.
The writer is passed a binary driver obje6b) by default.

143

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStream.WriteDescendentRes
Synopsis: Write resource header and component data to a stream, relative to an ancestor

Declaration: procedure WriteDescendentRes(const ResName: String;Instance: TComponent;
Ancestor: TComponent)

Visibility: public

Description: WriteDescendentRes writes aResNameresource header, and then calls WriteDescendent
(143 to write the state ofnstance to the stream where it differs frofAncestor , i.e. only
the changed properties are written to the stream.

This method is intened for use by an IDE that can use it to store forms or datamodules as designed
in a Windows resource stream.

TStream.WriteResourceHeader

Synopsis: Write resource header to the stream

Declaration: procedure WriteResourceHeader(const ResName: String;
var Fixuplnfo: Integer)

Visibility: public

Description: WriteResourceHeader writes a resource-file header for a resource cdledName It returns
in Fixuplnfo the argument that should be passed on to TStream.FixupResourceHegdler (

WriteResourceHeader should not be used directly. Itis called by the TStream.WriteComponentRes
(143 and TStream.WriteDescendentR&44) methods.

See also: TStream.FixupResourceHeadg44), TStream.WriteComponentRelA@), TStream.WriteDescendentRes
(144

TStream.FixupResourceHeader
Synopsis: Not implemented in FPC

Declaration: procedure FixupResourceHeader(Fixupinfo: Integer)
Visibility: public

Description: FixupResourceHeader is used to write the size of the resource after a component was written
to stream. The size is determined from the current position, and it is written at pdsitigeinfo
After that the current position is restored.

FixupResourceHeader should never be called directly; it is handled by the streaming system.

See also: TStream.WriteResourceHead&d), TStream.WriteComponentRelA@), TStream.WriteDescendentRes
(144

TStream.ReadResHeader

Synopsis: Read a resource header from the stream.
Declaration: procedure ReadResHeader

Visibility: public

144

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: ReadResourceHeader reads a reasource file header from the stream. It positions the stream just
beyond the header.

ReadResourceHeader should not be called directly, it is called by the streaming system when
needed.

Errors: If the resource header is invalid an Elnvalidimagé)(exception is raised.

See also: TStream.ReadComponentRé4®), Elnvalidimage 41)

TStream.ReadByte
Synopsis: Read a byte from the stream and return its value.

Declaration: function ReadByte : Byte
Visibility: public
Description: ReadByte reads one byte from the stream and returns its value.

Errors: If the byte cannot be read, a EStreamEre8) (exception will be raised. This is a utility function
which symply calls the Read 40) function.

See also: TStream.Read1@0), TStream.WriteByte §46), TStream.ReadWordL45), TStream.ReadDWord
(145, TStream.ReadAnsiString46)

TStream.ReadWord

Synopsis: Read a word from the stream and return its value.
Declaration: function ReadWord : Word
Visibility: public

Description: ReadWord reads one Word (i.e. 2 bytes) from the stream and returns its value. This is a utility
function which symply calls the Read40) function.

Errors: If the word cannot be read, a EStreamErri)(exception will be raised.

See also: TStream.Read1@0), TStream.WriteWord {46), TStream.ReadByteld5), TStream.ReadDWord
(145, TStream.ReadAnsiString46)

TStream.ReadDWord
Synopsis: Read a DWord from the stream and return its value.

Declaration: function ReadDWord : Cardinal
Visibility: public

Description: ReadDWord reads one DWord (i.e. 4 bytes) from the stream and returns its value. This is a utility
function which simply calls the Read40) function.

Errors: If the DWord cannot be read, a EStreamErd)(exception will be raised.

See also: TStream.Read1@0), TStream.WriteDWord 146), TStream.ReadBytel$5), TStream.ReadWord
(145, TStream.ReadAnsiString46)

145

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStream.ReadAnsiString
Synopsis: Read an ansistring from the stream and return its value.

Declaration: function ReadAnsiString : String
Visibility: public

Description: ReadAnsiString reads an ansistring from the stream and returns its value. This is a utility func-
tion which simply calls the read function several times. The Ansistring should be stored as 4 bytes
(a DWord) representing the length of the string, and then the string value itself. The WriteAnsiString
(147) function writes an ansistring in such a format.

Errors: If the AnsiString cannot be read, a EStreamEre8) @xception will be raised.

See also: TStream.Readld0), TStream.WriteAnsiStringld7), TStream.ReadBytd 45), TStream.ReadWord
(145, TStream.ReadDWord 45

TStream.WriteByte

Synopsis: Write a byte to the stream.
Declaration: procedure WriteByte(b: Byte)
Visibility: public

Description: WriteByte writes the byteB to the stream. This is a utility function which simply calls the Write
(140 function. The byte can be read from the stream using the ReadB4B:f(inction.

Errors: If an error occurs when attempting to write, an EStreamE#8y €xception will be raised.

See also: TStream.Write {40), TStream.ReadBytel45), TStream.WriteWord¥46), TStream.WriteDWord
(146), TStream.WriteAnsiStringl@47)

TStream.WriteWord

Synopsis: Write a word to the stream.
Declaration: procedure WriteWord(w: Word)
Visibility: public

Description: WriteWord writes the wordW/(i.e. 2 bytes) to the stream. This is a utility function which simply
calls the Write 140 function. The word can be read from the stream using the Read\Wd&) (
function.

Errors: If an error occurs when attempting to write, an EStreamE#8) €xception will be raised.

See also: TStream.Write 140), TStream.ReadWordL45), TStream.WriteByteX46), TStream.WriteDWord
(146), TStream.WriteAnsiStringl@7)

TStream.WriteDWord
Synopsis: Write a DWord to the stream.

Declaration: procedure WriteDWord(d: Cardinal)

Visibility: public

146

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: WriteDWord writes the DWordD(i.e. 4 bytes) to the stream. This is a utility function which simply
calls the Write 140) function. The DWord can be read from the stream using the ReadDW4E) (
function.

Errors: If an error occurs when attempting to write, an EStreamE#8y éxception will be raised.

See also: TStream.Write 140), TStream.ReadDWordLd5), TStream.WriteByteX46), TStream.WriteWord
(146), TStream.WriteAnsiStringl@47)

TStream.WriteAnsiString

Synopsis: Write an ansistring to the stream.
Declaration: procedure WriteAnsiString(S: String)
Visibility: public

Description: WriteAnsiString writes the AnsiStrings (i.e. 4 bytes) to the stream. This is a utility function
which simply calls the Write 40 function. The ansistring is written as a 4 byte length specifier,
followed by the ansistring’s content. The ansistring can be read from the stream using the ReadAn-
siString (L46) function.

Errors: If an error occurs when attempting to write, an EStreamE#8y €xception will be raised.

See also: TStream.Write 140), TStream.ReadAnsiStrind46), TStream.WriteByteX46), TStream.WriteWord
(146), TStream.WriteDWord1(46)

TStream.Position

Synopsis: The current position in the stream.
Declaration: Property Position : Int64
Visibility: public
Access: Read,Write

Description: Position can be read to determine the current position in the stream. It can be written to to set the
(absolute) position in the stream. The position is zero-based, so to set the position at the beginning
of the stream, the position must be set to zero.

Remark: Not all TStream descendants support setting the position in the stream, so this should be used with
care.

Errors: Some descendents may raise an EStreamEtBpekception if they do not support setting the stream
position.

See also: TStream.Sizeld7), TStream.SeekKl@1)

TStream.Size

Synopsis: The current size of the stream.
Declaration: Property Size : Int64
Visibility: public

Access: Read,Write

147

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: Size can be read to determine the stream size or to set the stream size.

Remark: Not all descendents of Stream support getting or setting the stream size; they may raise an
exception if theSize property is read or set.

See also: TStream.Position147), TStream.Seekl@1)

1.46 TStringList

Description

TStringList

is a descendent class of TStrind$4) that implements all of the abstract methods

introduced there. It also introduces some additional methods:

e Sort the list, or keep the list sorted at all times

e Special handling of duplicates in sorted lists

¢ Notification of changes in the list

Method overview

Page Method Description

151 Add Implements the TStrings.Add %9 function.

149 Changed Called when the list of strings was modified.

149 Changing Called when the list is changing.

151 Clear Implements the TStrings.Ad@i59) function.

153 CustomSort

151 Delete Implements the TStrings.Delet& () function.

151 Destroy Destroys the stringlist.

152 Exchange Implements the TStrings.Exchargg?) function.

152 Find Locates the index for a given string in sorted lists.

149 Get Overrides the standard read handler for the TStrings. Striegs{rop-
erty.

149 GetCapacity Overrides the standard read handler for the TStrings.CapEe@y (
property.

149 GetCount Overrides the standard read handler for the TStrings.Ciftafop-
erty.

150 GetObject Overrides the standard read handler for the TStrings.Obj&8s (
property.

152 IndexOf Overrides the TStrings.IndexQfg2) property.

152 Insert Overrides the TStrings.Insett@) method.

150 Put Overrides the standard write handler for the TStrings.Stritig8) (
property.

150 PutObject Overrides the standard write handler for the TStrings.Objg6& (
property.

150 SetCapacity Overrides the standard write handler for the TStrings.Capa6ly (
property.

150 SetUpdateState Overrides the standard TStrings.SetUpdatetSgtedll.

153 Sort Sorts the strings in the list.

148

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Property overview

Page Property Access Description
153 Duplicates rw Describes the behaviour of a sorted list with respect to duplicate
strings.
154 OnChange rw Event triggered after the list was modified.
154 OnChanging rw Event triggered when the list is about to be modified.
153 Sorted rw Determines whether the list is sorted or not.
TStringList.Changed

Synopsis: Called when the list of strings was modified.
Declaration: procedure Changed; Virtual
Visibility: protected

Description: Called when the list of strings was modified.

TStringList.Changing
Synopsis: Called when the list is changing.
Declaration: procedure Changing; Virtual
Visibility: protected

Description: Called when the list is changing.

TStringList.Get
Synopsis: Overrides the standard read handler for the TStrings.Strik& property.
Declaration: function Get(Index: Integer) : String; Override
Visibility: protected
Description: Overrides the standard read handler for the TStrings.Strit®f} property.

TStringList.GetCapacity
Synopsis: Overrides the standard read handler for the TStrings.Capdé&6y property.
Declaration: function GetCapacity : Integer; Override
Visibility: protected
Description: Overrides the standard read handler for the TStrings.Capdd&ey property.

TStringList.GetCount
Synopsis: Overrides the standard read handler for the TStrings.Cd@n} property.
Declaration: function GetCount : Integer; Override
Visibility: protected
Description: Overrides the standard read handler for the TStrings.CdA&T) property.

149

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStringList.GetObject
Synopsis: Overrides the standard read handler for the TStrings.Obj&68 property.

Declaration: function GetObject(Index: Integer) : TObject; Override
Visibility: protected

Description: Overrides the standard read handler for the TStrings.Obj&68 property.

TStringList.Put
Synopsis: Overrides the standard write handler for the TStrings.Strihi§8) (property.

Declaration: procedure Put(Index: Integer;const S: String); Override
Visibility: protected

Description: Overrides the standard write handler for the TStrings.Strih§9) (property.

TStringList.PutObject
Synopsis: Overrides the standard write handler for the TStrings.Objd&8) (property.

Declaration: procedure PutObject(Index: Integer;AObject: TObject); Override
Visibility: protected

Description: Overrides the standard write handler for the TStrings.Objd&8) property.

TStringList.SetCapacity
Synopsis: Overrides the standard write handler for the TStrings.Capab@§) property.

Declaration: procedure SetCapacity(NewCapacity: Integer); Override
Visibility: protected

Description: Overrides the standard write handler for the TStrings.Capat@§) (property.

TStringList.SetUpdateState
Synopsis: Overrides the standard TStrings.SetUpdate Sici6) call.

Declaration: procedure SetUpdateState(Updating: Boolean); Override
Visibility: protected
Description: Overrides the standard TStrings.SetUpdateSi6) call.

150

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStringList.Destroy
Synopsis: Destroys the stringlist.

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy clears the stringlist, release all memory allocated for the storage of the strings, and then
calls the inherited destroy method.

Remark: Any objects associated to strings in the list widit be destroyed; it is the responsability of the caller
to destroy all objects associated with strings in the list.

TStringList.Add
Synopsis: Implements the TStrings.Add %9 function.
Declaration: function Add(const S: String) : Integer; Override
Visibility: public
Description: Add will add S to the list. If the list is sorted and the strir®)is already present in the list and

TStringList.Duplicates 53 is dupError then an EStringListError4(3) exception is raised. If
Duplicates is set toduplgnore then the return value is underfined.

If the list is sorted, new strings will not necessarily be added to the end of the list, rather they will be
inserted at their alphabetical position.

Errors: If the list is sorted and the string is already present in the list and TStringList.Duplicates3 is
dupError then an EStringListErroi@) exception is raised.

See also: TStringList.Insert {52), TStringList.Duplicates153

TStringList.Clear
Synopsis: Implements the TStrings.Add %9 function.

Declaration: procedure Clear; Override
Visibility: public

Description: Implements the TStrings.Add %9 function.

TStringList.Delete
Synopsis: Implements the TStrings.Delet&g1) function.

Declaration: procedure Delete(Index: Integer); Override
Visibility: public

Description: Implements the TStrings.Delet&q1) function.

151

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStringList.Exchange
Synopsis: Implements the TStrings.Exchandes@) function.
Declaration: procedure Exchange(lndexl: Integer;index2: Integer); Override
Visibility: public
Description: Exchange will exchange two items in the list as described in TStrings.Exchab@®.(

Remark: Exchange will not check whether the list os sorted or notEkchange is called on a sorted list
and the strings are not identical, the sort order of the list will be destroyed.

See also: TStringList.Sorted153), TStrings.Exchangel62)

TStringList.Find
Synopsis: Locates the index for a given string in sorted lists.
Declaration: function Find(const S: String;var Index: Integer) : Boolean; Virtual
Visibility: public

Description: Find returnsTrue if the stringSis present in the list. Upon exit, thedex parameter will contain
the position of the string in the list. If the string is not found, the function will refeafse and
Index will contain the position where the string will be inserted if it is added to the list.

Remark:

1.Use this method only on sorted lists. For unsorted lists, use TStringList.Indés@fiistead.
2.Find uses a binary search method to locate the string

TStringList.IndexOf
Synopsis: Overrides the TStrings.IndexO1§2) property.

Declaration: function IndexOf(const S: String) : Integer; Override
Visibility: public

Description: IndexOf overrides the ancestor method TStrings.indext®. It tries to optimize the search by
executing a binary search if the list is sorted. The function returns the positi®iif dfis found in
the list, or -1 if the string is not found in the list.

See also: TStrings.IndexOf162), TStringList.Find (52

TStringList.Insert
Synopsis: Overrides the TStrings.Inset§3 method.

Declaration: procedure Insert(Index: Integer;const S: String); Override
Visibility: public

Description: Insert will insert the stringS at positionindex in the list. If the list is sorted, an EStringListError
(43) exception will be raised insteathdex is a zero-based position.

Errors: If Index contains an invalid value (less than zero or larger tBannt , or the list is sorted, an
EStringListError 43) exception will be raised.

See also: TStringList.Add (L51), TStrings.Insert163), TStringList.InsertObjectl(48)

152

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStringList.Sort
Synopsis: Sorts the strings in the list.

Declaration: procedure Sort; Virtual
Visibility: public

Description: Sort will sort the strings in the list using the quicksort algorithm. If the list has its TStringList.Sorted
(153 property set td'rue then nothing will be done.

See also: TStringList.Sorted153)

TStringList.CustomSort

Declaration: procedure CustomSort(CompareFn: TStringListSortCompare)

Visibility: public

TStringList.Duplicates
Synopsis: Describes the behaviour of a sorted list with respect to duplicate strings.

Declaration: Property Duplicates : TDuplicates
Visibility: public
Access: Read,Write

Description: Duplicates describes what to do in case a duplicate value is added to the list:
Table 1.15:

duplgnore Duplicate values will not be be added to the list, but no error will be triggered.
dupError If an attempt is made to add a duplicate value to the list, an EStringListEBjaxception is raised.
dupAccept Duplicate values can be added to the list.

If the stringlist is not sorted, thBuplicates setting is ignored.

TStringList.Sorted
Synopsis: Determines whether the list is sorted or not.

Declaration: Property Sorted : Boolean
Visibility: public
Access: Read,Write

Description: Sorted can be settdrue in order to cause the list of strings to be sorted. Further additions to the
list will be inserted at the correct position so the list remains sorted at all times. Setting the property
to False has no immediate effect, but will allow strings to be inserted at any position.

Remark:

1WhenSorted isTrue , TStringList.Insert152) cannot be used. For sorted lists, TStringList.Add
(151) should be used instead.

153

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

2If Sorted isTrue , the TStringList.Duplicatesl&3) setting has effect. This setting is ignored
whenSorted is False .

See also: TStringList.Sort {53), TStringList.Duplicatesi53), TStringList.Add (151), TstringList.Insert{52

TStringList.OnChange
Synopsis: Event triggered after the list was modified.
Declaration: Property OnChange : TNotifyEvent
Visibility: public
Access: Read,Write

Description: OnChange can be assigned to respond to changes that have occurred in the list. The handler is
called whenever strings are added, moved, modified or deleted from the list.
TheOnchange event is triggered after the modification took place. When the modification is about
to happen, an TstringList.OnChangirih@) event occurs.

See also: TStringList.OnChangingl(c4)

TStringList.OnChanging
Synopsis: Event triggered when the list is about to be modified.
Declaration: Property OnChanging : TNotifyEvent
Visibility: public
Access: Read,Write

Description: OnChanging can be assigned to respond to changes that will occurred in the list. The handler is
called whenever strings will be added, moved, modified or deleted from the list.
TheOnchanging event s triggered before the modification will take place. When the modification
has happened, an TstringList. OnChant@4{ event occurs.

See also: TStringList.OnChangelG4)

1.47 TStrings

Description

TStrings implements an abstract class to manage an array of strings. It introduces methods to set
and retrieve strings in the array, searching for a particular string, concatenating the strings and so on.
It also allows an arbitrary object to be associated with each string.

It also introduces methods to manage a serigsaofie=value settings, as found in many configu-
ration files.

An instance offStrings is never created directly, instead a descendent class such as TStringList
(148 should be created. This is becauBgtrings is an abstract class which does not imple-
ment all methodsTStrings also doesn't store any strings, this is the functionality introduced in
descendents such as TStringLi&48).

154

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Method overview

Page Method Description

159 Add Add a string to the list

159 AddObject Add a string and associated object to the list.

160 AddStrings Add contents of another stringlist to this list.

160 Append Add a string to the list.

160 Assign Assign the contents of another stringlist to this one.

160 BeginUpdate Mark the beginning of an update batch.

161 Clear Removes all strings and associated objects from the list.
156 DefineProperties Method to stream the contents of the string collection
161 Delete Delete a string from the list.

159 Destroy Frees all strings and objects, and removes the list from memory.
161 EndUpdate Mark the end of an update batch.

162 Equals Compares the contents of two stringlists.

156 Error Raises an EStringListErro4) exception.

162 Exchange Exchanges two strings in the list.

156 Get Abstract read handler for the TStrings.Strint89 property.
156 GetCapacity Abstract Read handler for the TStrings.Capat§) property.
157 GetCount Abstract read handler for the TStrings.Col&¥Y property.
157 GetObject Abstract read handler for the TStrings.Objelé§)(property.
162 GetText Returns the contents as a PChar

157 GetTextStr Read handler for the TStrings.Ted@9) property.

162 IndexOf Find a string in the list and return its position.

163 IndexOfName Finds the index of a name in the name-value pairs.

163 IndexOfObject Finds an object in the list and returns its index.

163 Insert Insert a string in the list.

164 InsertObject Insert a string and associated object in the list.

164 LoadFromFile Load the contents of a file as a series of strings.

164 LoadFromStream Load the contents of a stream as a series of strings.
165 Move Move a string from one place in the list to another.

157 Put Write handler for the TStrings.Strings60) property.

158 PutObject Write handler for the TStrings.Object8®) property.

165 SaveToFile Save the contents of the list to a file.

166 SaveToStream Save the contents of the string to a stream.

158 SetCapacity Write handler for the TStrings.Capacli§g) property.

166 SetText Set the contents of the list from a PChar.

158 SetTextStr Write handler for the TStrings.Tex60) property.

159 SetUpdateState Sets the update state.

Property overview

Page Property Access Description

166 Capacity rw Capacity of the list, i.e. number of strings that the list can
currently hold before it tries to expand.

166 CommaText rw Contents of the list as a comma-separated string.

167 Count r Number of strings in the list.

167 Names r Name parts of the name-value pairs in the list.

168 Objects rw Indexed access to the objects associated with the strings in the
list.

169 Strings rw Indexed access to teh strings in the list.

169 StringsAdapter rw Not implemented in Free Pascal.

169 Text rw Contents of the list as one big string.

168 \Values rw Value parts of the name-value pairs in the list.

155

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStrings.DefineProperties
Synopsis: Method to stream the contents of the string collection

Declaration: procedure DefineProperties(Filer: TFiler); Override
Visibility: protected

Description: DefineProperties allows the contents of the string collection to be streamed. As such, it
overrides TPersistent.DefineProperti&24)

See also: TPersistent.DefinePropertiel2d)

TStrings.Error
Synopsis: Raises an EStringListErrod8) exception.

Declaration: procedure Error(const Msg: String;Data: Integer)
Visibility: protected

Description: Error raises an EStringListErrod8) exception. It passedsg as a format wittData as the only
argument.
This method can be used by descendent objects to raise an error.

See also: EStringListError 43)

TStrings.Get
Synopsis: Abstract read handler for the TStrings.Strint§9) property.

Declaration: function Get(Index: Integer) : String; Virtual, Abstract
Visibility: protected

Description: Get is the abstract read handler for the TStrings.Stridg®)(property. This is an abstract method,
hence it is not implemented RStrings

Descendent classes, such as TStringLigdi8(must override this method and implement a routine
that retrieves théndex -th string in the listindex should have a value betwe8randCount-1
in all other cases an error should be raised using TStrings. Brs6y. (

See also: TStrings.Strings169), TStrings.Put157), TStrings.GetObjectlG7)

TStrings.GetCapacity
Synopsis: Abstract Read handler for the TStrings.Capacliygj property.
Declaration: function GetCapacity : Integer; Virtual
Visibility: protected

Description: GetCapacity is the read handler for the TStrings.Capacitg®) property. The implementation
in TStrings will return 0.
Descendent classes can override this method. It should return the current number of strings that can
be held by the stringlist before it attempts to expand it's storage space.

See also: TStrings.Capacityl(66), TStrings.SetCapacitylb8)

156

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStrings.GetCount
Synopsis: Abstract read handler for the TStrings.Cout® () property.

Declaration: function GetCount : Integer; Virtual; Abstract

Visibility: protected
Description: GetCount is the abstract read handler for the TStrings.Cob%) property. This is an abstract

method, hence it is not implementedTiStrings
Descendent classes must override this method. It should return the current number of strings in the

list. (empty strings included).

See also: TStrings.Count167)

TStrings.GetObject
Synopsis: Abstract read handler for the TStrings.Objedi€8) property.

Declaration: function GetObject(Index: Integer) : TObject; Virtual

Visibility: protected
Description: GetObject is the read handler for the TStrings.Object68) property. TheTStrings imple-
mentation of this method ignores thelex argument and simply returmdil .

Descendent classes that should support object storage should override this method and return the
object associated to tHadex -th string in the list. Index should have a value betweénand
Count-1 . If Index is outside the allowed range, an error should be raised using TStrings.Error

(156).
See also: TStrings.Objectsi(68), TStrings.PutObjectlc8), TStrings.Get156)

TStrings.GetTextStr
Synopsis: Read handler for the TStrings. Texttq9) property.

Declaration: function GetTextStr : String; Virtual

Visibility: protected
Description: GetTextStr is the read handler for the TStrings.Tet60) property. It simply concatenates all
strings in the list with a linefeed between them, and returns the resulting string.

Descendent classes may override this method to implement an efficienter algorithm which is more
suitable to their storage method.

See also: TStrings.Text {69, TStrings.SetTextStr168)

TStrings.Put
Synopsis: Write handler for the TStrings.String&&9) property.

Declaration: procedure Put(Index: Integer;const S: String); Virtual

Visibility: protected

157

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: Put is the write handler for the TStrings.Strings6@) property. It does this by saving the object
associated to thiemdex -th string, deleting théndex -th string, and insertin§ and the saved object
at positionindex with TStrings.InsertObjectl64)

Descendent classes may wish to overidg to implement a more efficient method.

See also: TStrings.Strings169), TStrings.Get156), TStrings.PutObject1G8)

TStrings.PutObject
Synopsis: Write handler for the TStrings.Objectsg8) property.
Declaration: procedure PutObject(Index: Integer;AObject: TObject); Virtual
Visibility: protected

Description: PutObject s the write handler for the TStrings.Objecfis6g) property. TheTStrings imple-
mentation ofPutObject does nothing.

Descendent objects that should support Object storage must override this method to #Giej¢ot
so that it is associated with thadex -th string in the list.Index should have a value betweén
andCount-1 . If the value ofindex is out of range, an error should be raised using TStrings.Error

(156).
See also: TStrings.Objects1(68), TStrings.GetObjectlc7), TStrings.Put157)

TStrings.SetCapacity
Synopsis: Write handler for the TStrings.Capacityg6) property.

Declaration: procedure SetCapacity(NewCapacity: Integer); Virtual
Visibility: protected

Description: SetCapacity is the write handler for the TStrings.Capacity6g) property. TheTStrings
implementation oSetCapacity does nothing.

Descendent classes can override this method to set the current capacity of the striNgleCiapacity .
The capacity is the number of strings the list can hold before it tries to expand its storage space.
NewCapacity should be no less thadount .

See also: TStrings.Capacityl(66), TStrings.GetCapacityl66)

TStrings.SetTextStr
Synopsis: Write handler for the TStrings.Text§9 property.

Declaration: procedure SetTextStr(const Value: String); Virtual
Visibility: protected

Description: SetTextStr is the write method for the TStrings. Textq9) property. It does nothing other than
calling TStrings.SetTextl©6).

Descendent classes may override this method to implement a more efficient algoritm that fits their
storage method better.

See also: TStrings.Text {69), TStrings.GetTextStri57)

158

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStrings.SetUpdateState
Synopsis: Sets the update state.

Declaration: procedure SetUpdateState(Updating: Boolean); Virtual
Visibility: protected

Description: SetUpdateState sets the update statelipdating . TheTStrings implementation oSetUpdateState
does nothing.

Descendent objects may override this method to implement optimizatiokkpdHiting is True
then the list of strings is about to be updated (possibly many times). IFdlse no more updates
will take place till the nexGetUpdateState call.

See also: TStrings.BeginUpdatel60), TStrings.EndUpdatel61)

TStrings.Destroy
Synopsis: Frees all strings and objects, and removes the list from memory.

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy is the destructor of Strings it does nothing except calling the inherited destructor.

TStrings.Add
Synopsis: Add a string to the list

Declaration: function Add(const S: String) : Integer; Virtual
Visibility: public

Description: Add addsS at the end of the list and returns the indexSan the list (which should equal Tstrings.Count
(167)

See also: TStrings.ltems154), TStrings.AddObject59), TStrings.Insert163), TStrings.Deletel61), TStrings.Strings
(169, TStrings.Count167)

TStrings.AddObject

Synopsis: Add a string and associated object to the list.
Declaration: function AddObject(const S: String;AObject: TObject) : Integer; Virtual
Visibility: public
Description: AddObject addsS to the list of strings, and associaé®bject with it. It returns the index o8.

Remark: An object added to the list is not automatically destroyed by the list of the list is destroyed or the
string it is associated with is deleted. It is the responsibility of the application to destroy any objects
associated with strings.

See also: TStrings.Add (59, Tstrings.ltems154), TStrings.Objects1(68), Tstrings.InsertObjectlE4)

159

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStrings.Append
Synopsis: Add a string to the list.

Declaration: procedure Append(const S: String)
Visibility: public

Description: Append does the same as TStrings.Adib$), only it does not return the index of the inserted
string.

See also: TStrings.Add (59

TStrings.AddStrings
Synopsis: Add contents of another stringlist to this list.
Declaration: procedure AddStrings(TheStrings: TStrings); Virtual
Visibility: public

Description: AddStrings adds the contents dfheStrings to the stringlist. Any associated objects are
added as well.

See also: TStrings.Add (59, TStrings.Assign160)

TStrings.Assign

Synopsis: Assign the contents of another stringlist to this one.
Declaration: procedure Assign(Source: TPersistent); Override
Visibility: public

Description: Assign replaces the contents of the stringlist with the contentSairce if Source is also of
typeTStrings . Any associated objects are copied as well.

See also: TStrings.Add 159, TStrings.AddStrings1(60), TPersistent.Assigrie5

TStrings.BeginUpdate
Synopsis: Mark the beginning of an update batch.

Declaration: procedure BeginUpdate
Visibility: public

Description: BeginUpdate increases the update count by one. It is advisable toBedinUpdate before
lengthy operations on the stringlist. At the end of these operation, TStrings.EndUp@#tsi{ould
be called to mark the end of the operation. Descendent classes may use this information to perform
optmizations. e.g. updating the screen only once after many strings were added to the list.

All TStrings methods that modify the string list c@eginUpdate before the actual operation,
and callendUpdate when the operation is finished. Descendent classes should also call these
methods when modifying the string list.

Remark: Always put the corresponding call to TStrings.EndUpdéag&d) in the context of &inally block,
to ensure that the update count is always descreased at the end of the operation, even if an exception
occurred:

160

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

With MyStrings do

try

BeginUpdate;

/l Some lengthy operation.
Finally

EndUpdate
end;

See also: TStrings.EndUpdatelel)

TStrings.Clear
Synopsis: Removes all strings and associated objects from the list.

Declaration: procedure Clear; Virtual; Abstract
Visibility: public

Description: Clear will remove all strings and their associated objects from the list. After a call to clear,
TStrings.Count167) is zero.

Since it is an abstract metho@iStrings itself does not implemertlear . Descendent classes
such as TStringListl(48) implement this method.

See also: TStrings.ltems154), TStrings.DeleteX61), TStrings.Count167),

TStrings.Delete
Synopsis: Delete a string from the list.

Declaration: procedure Delete(Index: Integer); Virtual, Abstract
Visibility: public

Description: Delete deletes the string at positidndex from the list. The associated object is also removed
from the list, but not destroyedindex is zero-based, and should be in the ra@de Count-1 .

Since it is an abstract metho@Strings itself does not implemeribelete . Descendent classes
such as TStringListl(48) implement this method.

Errors: If Index is not in the allowed range, an EStringListErrdf) is raised.

See also: TStrings.Insert163), TStrings.ltems154), TStrings.Clear161)

TStrings.EndUpdate
Synopsis: Mark the end of an update batch.

Declaration: procedure EndUpdate
Visibility: public

Description: EndUpdate should be called at the end of a lengthy operation on the stringlist, but only if there was
a call toBeginUpdate before the operation was started. It is best to put the c&indUpdate
in the context of &inally block, so it will be called even if an exception occurs.

For more information, see TStrings.BeginUpdétéd).
See also: TStrings.BeginUpdatel0)

161

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStrings.Equals
Synopsis: Compares the contents of two stringlists.

Declaration: function Equals(TheStrings: TStrings) : Boolean
Visibility: public

Description: Equals compares the contents of the stringlist with the contenf&hefStrings . If the contents
match, i.e. the stringlist contain an equal amount of strings, and all strings matchTrienis
returned. If the number of strings in the lists is is unequal, or they contain one or more different
strings,False is returned.

Remark:

1.The strings are compared case-insensitively.
2.The associated objects are not compared

See also: Tstrings.ltems154), TStrings.Count167), TStrings.Assign160)

TStrings.Exchange
Synopsis: Exchanges two strings in the list.

Declaration: procedure Exchange(Indexl: Integer;Index2: Integer); Virtual
Visibility: public

Description: Exchange exchanges the strings at positidnslexl andIndex2 . The associated objects are
also exchanged.

Both indexes must be in the range of valid indexes, i.e. must have a value béaadCount-1 .

Errors: If eitherindex1l oriIndex2 is notinthe range of valid indexes, an EStringListErds)(exception
is raised.

See also: TStrings.Move {65), TStrings.Strings¥69), TStrings.Count167)

TStrings.GetText
Synopsis: Returns the contents as a PChar

Declaration: function GetText : PChar; Virtual
Visibility: public

Description: GetText allocates a memory buffer and compies the contents of the stringlist to this buffer as a
series of strings, separated by an end-of-line marker. The buffer is zero terminated.

Remark: The caller is responsible for freeing the returned memaory buffer.

TStrings.IndexOf
Synopsis: Find a string in the list and return its position.

Declaration: function IndexOf(const S: String) : Integer; Virtual

Visibility: public

162

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: IndexOf searches the list fd8. The search is case-insensitive. If a matching entry is found, its
position is returned. if no matching string is found, is returned.

Remark:

1.0nly the first occurrence of the string is returned.
2.The returned position is zero-based, i.e. 0 indicates the first string in the list.

See also: TStrings.IndexOfObjectl63), TStrings.IndexOfNamel©3), TStrings.Strings169)

TStrings.IndexOfName
Synopsis: Finds the index of a name in the name-value pairs.
Declaration: function IndexOfName(const Name: String) : Integer
Visibility: public

Description: IndexOfName searches in the list of strings for a name-value pair with nameNzarte If such
a pair is found, it returns the index of the pair in the stringlist. If no such pair is found, the function
returns-1 . The search is done case-insensitive.

Remark:

1.0nly the first occurrence of a matching name-value pair is returned.
2.The returned position is zero-based, i.e. 0 indicates the first string in the list.

See also: TStrings.IndexOf162), TStrings.IndexOfObjectl©3), TStrings.Strings169)

TStrings.IndexOfObject
Synopsis: Finds an object in the list and returns its index.
Declaration: function IndexOfObject(AObject: TObject) : Integer
Visibility: public

Description: IndexOfObject searchs through the list of strings till it find a string associated Witbject |,
and returns the index of this string. If no such string is fouddjs returned.

Remark:

1.0nly the first occurrence of a string with associated obj&abject is returned; if more strings
in the list can be associated wi#Object , they will not be found by this routine.

2.The returned position is zero-based, i.e. 0 indicates the first string in the list.

TStrings.Insert

Synopsis: Insert a string in the list.
Declaration: procedure Insert(Index: Integer;const S: String); Virtual; Abstract
Visibility: public

Description: Insert inserts the string at positionindex in the list.Index is a zero-based position, and can
have values fron® to Count . If Index equalsCount then the string is appended to the list.

Remark:

163

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.All methods that add strings to the list usmsert to add a string to the list.
2.If the string has an associated object, use TStrings.InsertOb@ftiastead.

Errors: If Index is less than zero or larger th@ount then an EStringListErrord@3) exception is raised.

See also: TStrings.Add (59, TStrings.InsertObjectl@4), TStrings.AppendX60), TStrings.Delete61)

TStrings.InsertObject

Synopsis: Insert a string and associated object in the list.
Declaration: procedure InsertObject(Index: Integer;const S: String;AObject: TObject)
Visibility: public

Description: InsertObject inserts the string and its associated objédbject at positionindex in the
list. Index is azero-based position, and can have values faaCount . If Index equalsCount
then the string is appended to the list.

Errors: If Index is less than zero or larger th@ount then an EStringListErrord3) exception is raised.

See also: TStrings.Insert163), TStrings.AddObjecti59), TStrings.AppendX60), TStrings.Deletel61)

TStrings.LoadFromFile

Synopsis: Load the contents of a file as a series of strings.
Declaration: procedure LoadFromFile(const FileName: String); Virtual
Visibility: public

Description: LoadFromFile loads the contents of a file into the stringlist. Each line in the file (as marked
by the end-of-line marker of the particular OS the application runs on) becomes one string in the
stringlist. This action replaces the contents of the stringlist, it does not append the strings to the
current content.

LoadFromFile simply creates a file streani@7) with the given filename, and then executes
TStrings.LoadfromStreami64); after that the file stream object is destroyed again.

See also: TStrings.LoadFromStreami§4), TStrings.SaveToFilelgh), Tstrings.SaveToStreart§6)

TStrings.LoadFromStream

Synopsis: Load the contents of a stream as a series of strings.
Declaration: procedure LoadFromStream(Stream: TStream); Virtual
Visibility: public

Description: LoadFromStream loads the contents @tream into the stringlist. Each line in the stream (as
marked by the end-of-line marker of the particular OS the application runs on) becomes one string in
the stringlist. This action replaces the contents of the stringlist, it does not append the strings to the
current content.

See also: TStrings.LoadFromFilel64), TStrings.SaveToFilelgh), Tstrings.SaveToStrearh§6)

164

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStrings.Move

Synopsis: Move a string from one place in the list to another.
Declaration: procedure Move(Curlndex: Integer;Newindex: Integer); Virtual
Visibility: public

Description: Move moves the string at positic@urindex so it has positioiNewIndex after the move opera-
tion. The object associated to the string is also mo@dIndex andNewlndex should be in the
range of0 to Count-1 .

Remark: Newlndex is notthe position in the stringlist before the move operation starts. The move operation

1removes the string from positiddurindex
2.inserts the string at positiddewlndex

This may not lead to the desired resultNeEwindex is bigger thanCurindex . Consider the
following example:

With MyStrings do
begin
Clear;
Add(’String 0);
Add(’String 17);
Add(’'String 2');
Add(’String 3’);
Add(’String 4%;
Move(1,3);
end;

After the Move operation has completed, 'String 1’ will be between 'String 3’ and 'String 4'.

Errors: If either Curindex or NewlIndex is outside the allowed range, an EStringListErdB)(is raised.

See also: TStrings.Exchangel6?)

TStrings.SaveToFile
Synopsis: Save the contents of the list to a file.

Declaration: procedure SaveToFile(const FileName: String); Virtual
Visibility: public

Description: SaveToFile saves the contents of the stringlist to the file with ndfileName . It writes the
strings to the file, separated by end-of-line markers, so each line in the file will contain 1 string from
the stringlist.

SaveToFile creates afile stream@7) with nameFileName |, calls TStrings.SaveToStreatt6)
and then destroys the file stream object.

Errors: An EStreamError43) exception can be raised if the fildeName cannot be opened, or if it cannot
be written to.

See also: TStrings.SaveToStream6), Tstrings.LoadFromStream§4), TStrings.LoadFromFilel64)

165

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStrings.SaveToStream

Synopsis: Save the contents of the string to a stream.
Declaration: procedure SaveToStream(Stream: TStream); Virtual
Visibility: public

Description: SaveToStream saves the contents of the stringlist3tream . It writes the strings to the stream,
separated by end-of-line markers, so each 'line’ in the stream will contain 1 string from the stringlist.

Errors: An EStreamError43) exception can be raised if the stream cannot be written to.

See also: TStrings.SaveToFilelg5), Tstrings.LoadFromStream@4), TStrings.LoadFromFilel64)

TStrings.SetText
Synopsis: Set the contents of the list from a PChar.

Declaration: procedure SetText(TheText: PChar); Virtual
Visibility: public

Description: SetText parses the contents ®heText and fills the stringlist based on the contents. It regards
TheText as a series of strings, separated by end-of-line markers. Each of these strings is added to
the stringlist.

See also: TStrings. Text {69

TStrings.Capacity
Synopsis: Capacity of the list, i.e. number of strings that the list can currently hold before it tries to expand.
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity is the number of strings that the list can hold before it tries to allocate more memory.

TStrings returns TStrings.CountLl67) when read. Trying to set the capacity has no effect. De-
scendent classes such as TStringligitd] can override this property such that it actually sets the new
capacity.

See also: TStringList (148), TStrings.Count167)

TStrings.CommaText
Synopsis: Contents of the list as a comma-separated string.
Declaration: Property CommaText : String
Visibility: public
Access: Read,Write

Description: CommaText represents the stringlist as a single string, consisting of a comma-separated concate-
nation of the strings in the list. If one of the strings contains spaces, comma'’s or quotes it will be
enclosed by double quotes. Any double quotes in a string will be doubled. For instance the following
strings:

166

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Comma,string
Quote"string
Space string
NormalSttring

is converted to
"Comma,string","Quote""String","Space string",NormalString

Conversely, when setting tteommaText property, the text will be parsed according to the rules
outlined above, and the strings will be set accordingly. Note that spaces will in this context be
regarded as string separators, unless the string as a whole is contained in double quotes. Spaces that
occur next to a delimiter will be ignored. The following string:

"Comma,string” , "Quote"'String",Space string,, NormalString
Will be converted to

Comma,String
Quote"String
Space

String

NormalString

See also: TStrings.Text {69), TStrings.SetTextl(66)

TStrings.Count

Synopsis: Number of strings in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read

Description: Count is the current number of strings in the lisEStrings does not implement this property;
descendent classes should override the property read handler to return the correct value.

Strings in the list are always uniquely identified by theidex ; the index of a string is zero-based,
i.e. it's supported range &to Count-1 . trying to access a string with an index larger than or equal
to Count will result in an error. Code that iterates over the list in a stringlist should always take into
account the zero-based character of the list index.

See also: TStrings.Strings169), TStrings.Objects1(68), TStrings.Capacityl(66)

TStrings.Names

Synopsis: Name parts of the name-value pairs in the list.
Declaration: Property Names[index: Integer]: String

Visibility: public

167

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Access: Read

Description: Namesprovides indexed access to the names of teh name-value pairs in the list. It returns the name
part of thelndex -th string in the list.

Remark: The index is not an index based on the number of name-value pairs in the list. It is the name part of
the name-value pair a strirgdex in the list. If the string at positiotndex is not a name-value
pair (i.e. does not contain the equal sign (=)), then an empty hame is returned.

See also: TStrings.Values168), TStrings.IndexOfNamelg3)

TStrings.Objects
Synopsis: Indexed access to the objects associated with the strings in the list.
Declaration: Property Objects[Index: Integer]: TObject
Visibility: public
Access: Read,Write

Description: Objects provides indexed access to the objects associated to the strings in tHadest. is a
zero-based index and must be in the rangé tf Count-1 .

Setting theobjects property will not free the previously associated object, if there was one. The
caller is repsonsible for freeing the object that was previously associated to the string.

TStrings does notimplement any storage for objects. Readin@tijects property will always
returnNil , Setting the property will have no effect. It is the responsability of the descendent classes
to provide storage for the associated objects.

Errors: If an Index outside the valid range is specified, an EStringListErd@ éxception will be raised.

See also: TStrings.Stringsi69), TStrings.IndexOfObjectl63), TStrings.Namesl67), TStrings.Valuesi68

TStrings.Values

Synopsis: Value parts of the name-value pairs in the list.
Declaration: Property Values[Name: String]: String
Visibility: public
Access: Read,Write

Description: Values represents the value parts of the name-value pairs in the list.

When reading this property, if there is a name-value pair in the list of strings that has name part
Name then the corresponding value is returned. If there is no such pair, an empty string is returned.

When writing this value, first it is checked whether there exists a name-value pair in the list with
nameName If such a pair is found, it's value part is overwritten with the specified value. If no such
pair is found, a new name-value pair is added with the spedifaadeand value.

Remark:

1.Names are compared case-insensitively.

2.Any character, including whitespace, up till the first equal (=) sign in a string is considered part
of the name.

See also: TStrings.Namesl67), TStrings.StringsX69), TStrings.Objects1(68)

168

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStrings.Strings
Synopsis: Indexed access to teh strings in the list.
Declaration: Property Strings[Index: Integer]: String; default
Visibility: public
Access: Read,Write

Description: Strings is the default property ofStrings . It provides indexed read-write access to the list of
strings. Reading it will return the string at positibrdex in the list. Writing it will set the string at
positionindex .

Index is the position of the string in the list. It is zero-based, i.e. valued values rangef(time
first string in the list) tillCount-1 (the last string in the list). When browsing through the strings in
the list, this fact must be taken into account.

To access the objects associated with the strings in the list, use the TStrings.Qlfj8csperty.
The name parts of name-value pairs can be accessed with the TStrings.N&M)gw¢perty, and
the values can be set or read through the TStrings.Vall&s property.

Searching through the list can be done using the TStrings.Indé&82f (hethod.
Errors: If Index is outside the allowed range, an EStringListEr#8)(exception is raised.

See also: TStrings.Count167), TStrings.Objectsl(68), TStrings.Namesl7), TStrings.Values¥68), TStrings.IndexOf
(162

TStrings. Text

Synopsis: Contents of the list as one big string.
Declaration: Property Text : String
Visibility: public
Access: Read,Write

Description: Text returns, when read, the contents of the stringlist as one big string consisting of all strings in
the list, separated by an end-of-line marker. When this property is set, the string will be cut into
smaller strings, based on the positions of end-of-line markers in the string. Any previous content of
the stringlist will be lost.

Remark: If any of the strings in the list contains an end-of-line marker, then the resulting string will ap-
pear to contain more strings than actually present in the list. To avoid this ambiguity, use the
TStrings.CommaTextlE6) property instead.

See also: TStrings.Strings169), TStrings.Count167), TStrings.CommaTextlE6)

TStrings.StringsAdapter

Synopsis: Not implemented in Free Pascal.
Declaration: Property StringsAdapter : IStringsAdapter
Visibility: public
Access: Read,Write

Description: Not implemented in Free Pascal.

169

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

1.48 TStringStream

Description

TStringStream stores its data in an ansistring. The contents of this string is available as the
DataString 172 property. It also introduces some methods to read or write parts of the stringstream’s
data as a string.

The main purpose of @StringSTream is to be able to treat a string as a stream from which can
be read.

Method overview

Page Method Description

170 Create Creates a new stringstream and sets its initial content.
171 Read Reads from the stream.

171 ReadString Reads a string of len@tbunt

171 Seek Sets the position in the stream.

170 SetSize Sets the size of the stream.

171 Write Write implements the abstract TStream.Write() method.

171 WriteString WriteString writes a string to the stream.

Property overview

Page Property Access Description
172 DataString r Contains the contents of the stream in string form

TStringStream.SetSize
Synopsis: Sets the size of the stream.

Declaration: procedure SetSize(NewSize: Longint); Override
Visibility: protected

Description: SetSize sets the size of the streamriewsize . It does this by setting the size of the ansisting in
which the stream is storetllewSize can have any value greater than or equal to zero.

Errors: In case there is not enough memory, an exception may be raised.

See also: TStream.Sizel47)

TStringStream.Create
Synopsis: Creates a new stringstream and sets its initial content.

Declaration: constructor Create(const AString: String)
Visibility: public

Description: Create creates a neWwStringStream instance and sets its initial contentAstring . The
position is still 0 but the size of the stream will equal the length of the string.

See also: TStringStream.DataStrind. {2

170

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStringStream.Read
Synopsis: Reads from the stream.
Declaration: function Read(var Buffer;Count: Longint) : Longint; Override
Visibility: public
Description: Read implements the abstract Reat¥4() from TStream {39). It tries to readCount bytes into
Buffer . It returns the number of bytes actually read. The position of the stream is advanced with

the number of bytes actually read; When the reading has reached the end of the Data%8)ing (
then the reading stops, i.e. it is not possible to read beyond the end of the datastring.

See also: TStream.Readl@d0), TStringStream.Writel(71), TStringStream.DataStrind. 72

TStringStream.ReadString
Synopsis: Reads a string of lengi@ount
Declaration: function ReadString(Count: Longint) : String
Visibility: public

Description: ReadString readsCount bytes from the stream and returns the read bytes as a string. If less
thanCount bytes were available, the string has as many characters as bytes could be read.

The ReadString method is a wrapper around the Redd1) method. It does not do the same
stringas the TStream.ReadAnsiStridgl§) method, which first reads a length integer to determine
the length of the string to be read.

See also: TStringStream.Read { 1), TStream.ReadAnsiStrind 46)

TStringStream.Seek
Synopsis: Sets the position in the stream.
Declaration: function Seek(Offset: Longint;Origin: Word) : Longint; Override
Visibility: public

Description: Seek implements the abstract Sedld() method.

TStringStream.Write
Synopsis: Write implements the abstract TStream.Writ&d() method.
Declaration: function Write(const Buffer;Count: Longint) : Longint; Override
Visibility: public

Description: Write implements the abstract TStream.Writd() method.

TStringStream.WriteString
Synopsis: WriteString writes a string to the stream.
Declaration: procedure WriteString(const AString: String)
Visibility: public

Description: WriteString writes a string to the stream.

171

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TStringStream.DataString

Synopsis: Contains the contents of the stream in string form
Declaration: Property DataString : String
Visibility: public
Access: Read

Description: Contains the contents of the stream in string form

1.49 TTextObjectWriter

Description

Not yet implemented.

1.50 TThreadList

Description
This class is not yet implemented in Free Pascal.

Method overview

Page Method Description

173 Add Adds an element to the list.

173 Clear Removes all emements from the list.
172 Create Creates a new thread-safe list.

172 Destroy Destroys the list instance.

173 LockList Locks the list for exclusive access.
173 Remove Removes an item from the list.

174 UnlockList Unlocks the list after it was locked.

TThreadList.Create

Synopsis: Creates a new thread-safe list.
Declaration: constructor Create
Visibility: public
Description: This class is not yet implemented in Free Pascal.

Errors:

TThreadList.Destroy

Synopsis: Destroys the list instance.
Declaration: destructor Destroy; Override

Visibility: public

172

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

Description: This class is not yet implemented in Free Pascal.

Errors:

TThreadList.Add
Synopsis: Adds an element to the list.

Declaration: procedure Add(ltem: Pointer)
Visibility: public
Description: This class is not yet implemented in Free Pascal.

Errors:

TThreadList.Clear

Synopsis: Removes all emements from the list.
Declaration: procedure Clear
Visibility: public
Description: This class is not yet implemented in Free Pascal.

Errors:

TThreadList.LockList

Synopsis: Locks the list for exclusive access.
Declaration: function LockList : TList
Visibility: public
Description: This class is not yet implemented in Free Pascal.

Errors:

TThreadList.Remove
Synopsis: Removes an item from the list.

Declaration: procedure Remove(ltem: Pointer)
Visibility: public
Description: This class is not yet implemented in Free Pascal.

Errors:

173

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TThreadList.UnlockList
Synopsis: Unlocks the list after it was locked.

Declaration: procedure UnlockList

Visibility: public

Description: This class is not yet implemented in Free Pascal.

Errors:

1.51

TWriter

Description

Object to write component data to an arbitrary format.

Method overview

Page Method Description

175 Create Creates a new Writer with a stream and bufsize.
176 DefineBinaryProperty Callback used when defining and streaming custom properties.
176 DefineProperty Callback used when defining and streaming custom properties.
175 Destroy Destroys the writer instance.

175 SetRoot Sets the root component

175 WriteBinary Writes binary data to the stream.

176 WriteBoolean Write boolean value to the stream.

177 WriteChar Write a character to the stream.

176 WriteCollection Write a collection to the stream.

176 WriteComponent Stream a component to the stream.

177 WriteDate Write a date to the stream.

177 WriteDescendent Write a descendent component to the stream.
177 WriteFloat Write a float to the stream.

177 Writeldent Write an identifier to the stream.

178 Writelnteger Write an integer to the stream.

178 WriteListBegin Write a start-of-list marker to the stream.

178 WriteListEnd Write an end-of-list marker to the stream.

175 WriteProperties Writes the published properties to the stream.
175 WriteProperty Writes one property to the stream.

178 WriteRootComponent Write a root component to the stream.

177 WriteSingle Write a single-type real to the stream.

178 WriteString Write a string to the stream.

Property overview

Page Property Access Description

179 Driver r Driver used when writing to the stream.

179 OnFindAncestor rw Event occurring when an ancestor component must
be found.

179 OnWriteMethodProperty rw

179 RootAncestor rw Ancestor of root component.

174

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TWriter.SetRoot

Synopsis: Sets the root component
Declaration: procedure SetRoot(ARoot: TComponent); Override

Visibility: protected

TWriter.WriteBinary

Synopsis: Writes binary data to the stream.
Declaration: procedure WriteBinary(AWriteData: TStreamProc)
Visibility: protected

Description: Writes binary data to the stream.

TWriter.WriteProperty
Synopsis: Writes one property to the stream.

Declaration: procedure WriteProperty(Instance: TPersistent;Propinfo: Pointer)
Visibility: protected

Description: Writes one property to the stream.

TWriter.WriteProperties

Synopsis: Writes the published properties to the stream.
Declaration: procedure WriteProperties(Instance: TPersistent)
Visibility: protected

Description: Writes the published properties to the stream.

TWriter.Create

Synopsis: Creates a new Writer with a stream and bufsize.

Declaration: constructor Create(ADriver: TAbstractObjectWriter)
constructor Create(Stream: TStream;BufSize: Integer)

Visibility: public

Description: Creates a new Writer with a stream and bufsize.

TWriter.Destroy
Synopsis: Destroys the writer instance.

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroys the writer instance.

175

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TWriter.DefineProperty

Synopsis: Callback used when defining and streaming custom properties.

Declaration: procedure DefineProperty(const Name: String;ReadData: TReaderProc;
AWriteData: TWriterProc;HasData: Boolean)
; Override

Visibility: public

Description: Callback used when defining and streaming custom properties.

TWriter.DefineBinaryProperty

Synopsis: Callback used when defining and streaming custom properties.

Declaration: procedure DefineBinaryProperty(const Name: String;ReadData: TStreamProc;
AWriteData: TStreamProc;HasData: Boolean)
; Override

Visibility: public

Description: Callback used when defining and streaming custom properties.

TWriter.WriteBoolean

Synopsis: Write boolean value to the stream.
Declaration: procedure WriteBoolean(Value: Boolean)
Visibility: public

Description: Write boolean value to the stream.

TWriter.WriteCollection

Synopsis: Write a collection to the stream.
Declaration: procedure WriteCollection(Value: TCollection)
Visibility: public

Description: Write a collection to the stream.

TWriter.WriteComponent
Synopsis: Stream a component to the stream.

Declaration: procedure WriteComponent(Component: TComponent)
Visibility: public

Description: Stream a component to the stream.

176

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TWriter.WriteChar

Synopsis: Write a character to the stream.
Declaration: procedure WriteChar(Value: Char)
Visibility: public

Description: Write a character to the stream.

TWriter.WriteDescendent

Synopsis: Write a descendent component to the stream.
Declaration: procedure WriteDescendent(ARoot: TComponent;AAncestor: TComponent)
Visibility: public

Description: Write a descendent component to the stream.

TWriter.WriteFloat

Synopsis: Write a float to the stream.
Declaration: procedure WriteFloat(const Value: Extended)
Visibility: public

Description: Write a float to the stream.

TWriter.WriteSingle

Synopsis: Write a single-type real to the stream.
Declaration: procedure WriteSingle(const Value: Single)
Visibility: public

Description: Write a single-type real to the stream.

TWriter.WriteDate

Synopsis: Write a date to the stream.
Declaration: procedure WriteDate(const Value: TDateTime)
Visibility: public

Description: Write a date to the stream.

TWriter.Writeldent

Synopsis: Write an identifier to the stream.
Declaration: procedure Writeldent(const Ident: String)
Visibility: public

Description: Write an identifier to the stream.

177

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TWriter.Writelnteger

Synopsis: Write an integer to the stream.

Declaration: procedure Writelnteger(Value: Longint); Overload
procedure Writelnteger(Value: Int64); Overload

Visibility: public

Description: Write an integer to the stream.

TWriter.WriteListBegin

Synopsis: Write a start-of-list marker to the stream.
Declaration: procedure WriteListBegin
Visibility: public

Description: Write a start-of-list marker to the stream.

TWriter.WriteListEnd

Synopsis: Write an end-of-list marker to the stream.
Declaration: procedure WriteListEnd
Visibility: public

Description: Write an end-of-list marker to the stream.

TWriter.WriteRootComponent

Synopsis: Write a root component to the stream.
Declaration: procedure WriteRootComponent(ARoot: TComponent)
Visibility: public

Description: Write a root component to the stream.

TWriter.WriteString

Synopsis: Write a string to the stream.
Declaration: procedure WriteString(const Value: String)
Visibility: public

Description: Write a string to the stream.

178

CHAPTER 1. REFERENCE FOR UNIT "CLASSES’

TWriter.RootAncestor

Synopsis: Ancestor of root component.
Declaration: Property RootAncestor : TComponent
Visibility: public
Access: Read,Write

Description: Ancestor of root component.

TWriter.OnFindAncestor

Synopsis: Event occurring when an ancestor component must be found.
Declaration: Property OnFindAncestor : TFindAncestorEvent
Visibility: public
Access: Read,Write

Description: Event occurring when an ancestor component must be found.

TWriter.OnWriteMethodProperty
Declaration: Property OnWriteMethodProperty : TWriteMethodPropertyEvent

Visibility: public

Access: Read,Write

TWriter.Driver

Synopsis: Driver used when writing to the stream.
Declaration: Property Driver : TAbstractObjectWriter
Visibility: public
Access: Read

Description: Driver used when writing to the stream.

179

	Reference for unit 'Classes'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types
	Variables

	Procedures and functions
	BeginGlobalLoading
	Bounds
	CollectionsEqual
	EndGlobalLoading
	FindClass
	FindNestedComponent
	GetClass
	GetFixupInstanceNames
	GetFixupReferenceNames
	GlobalFixupReferences
	IdentToInt
	InitComponentRes
	InitInheritedComponent
	IntToIdent
	LineStart
	NotifyGlobalLoading
	ObjectBinaryToText
	ObjectResourceToText
	ObjectTextToBinary
	ObjectTextToResource
	Point
	ReadComponentRes
	ReadComponentResEx
	ReadComponentResFile
	Rect
	RedirectFixupReferences
	RegisterClass
	RegisterClassAlias
	RegisterClasses
	RegisterComponents
	RegisterInitComponentHandler
	RegisterIntegerConsts
	RegisterNoIcon
	RegisterNonActiveX
	RemoveFixupReferences
	RemoveFixups
	SmallPoint
	UnRegisterClass
	UnRegisterClasses
	UnRegisterModuleClasses
	WriteComponentResFile

	EBitsError
	Description

	EClassNotFound
	Description

	EComponentError
	Description

	EFCreateError
	Description

	EFilerError
	Description

	EFOpenError
	Description

	EInvalidImage
	Description

	EInvalidOperation
	Description

	EListError
	Description

	EMethodNotFound
	Description

	EOutOfResources
	Description

	EParserError
	Description

	EReadError
	Description

	EResNotFound
	Description

	EStreamError
	Description

	EStringListError
	Description

	EWriteError
	Description

	IStringsAdapter
	Description

	TAbstractObjectReader
	Description
	Method overview
	TAbstractObjectReader.NextValue
	TAbstractObjectReader.ReadValue
	TAbstractObjectReader.BeginRootComponent
	TAbstractObjectReader.BeginComponent
	TAbstractObjectReader.BeginProperty
	TAbstractObjectReader.ReadBinary
	TAbstractObjectReader.ReadFloat
	TAbstractObjectReader.ReadSingle
	TAbstractObjectReader.ReadDate
	TAbstractObjectReader.ReadIdent
	TAbstractObjectReader.ReadInt8
	TAbstractObjectReader.ReadInt16
	TAbstractObjectReader.ReadInt32
	TAbstractObjectReader.ReadInt64
	TAbstractObjectReader.ReadSet
	TAbstractObjectReader.ReadStr
	TAbstractObjectReader.ReadString
	TAbstractObjectReader.SkipComponent
	TAbstractObjectReader.SkipValue

	TAbstractObjectWriter
	Description
	Method overview
	TAbstractObjectWriter.BeginCollection
	TAbstractObjectWriter.BeginComponent
	TAbstractObjectWriter.BeginList
	TAbstractObjectWriter.EndList
	TAbstractObjectWriter.BeginProperty
	TAbstractObjectWriter.EndProperty
	TAbstractObjectWriter.WriteBinary
	TAbstractObjectWriter.WriteBoolean
	TAbstractObjectWriter.WriteFloat
	TAbstractObjectWriter.WriteSingle
	TAbstractObjectWriter.WriteDate
	TAbstractObjectWriter.WriteIdent
	TAbstractObjectWriter.WriteInteger
	TAbstractObjectWriter.WriteMethodName
	TAbstractObjectWriter.WriteSet
	TAbstractObjectWriter.WriteString

	TBasicAction
	Description
	Method overview
	Property overview
	TBasicAction.Change
	TBasicAction.SetOnExecute
	TBasicAction.Create
	TBasicAction.Destroy
	TBasicAction.HandlesTarget
	TBasicAction.UpdateTarget
	TBasicAction.ExecuteTarget
	TBasicAction.Execute
	TBasicAction.RegisterChanges
	TBasicAction.UnRegisterChanges
	TBasicAction.Update
	TBasicAction.OnChange
	TBasicAction.ActionComponent
	TBasicAction.OnExecute
	TBasicAction.OnUpdate

	TBasicActionLink
	Description
	Method overview
	Property overview
	TBasicActionLink.AssignClient
	TBasicActionLink.Change
	TBasicActionLink.IsOnExecuteLinked
	TBasicActionLink.SetAction
	TBasicActionLink.SetOnExecute
	TBasicActionLink.Create
	TBasicActionLink.Destroy
	TBasicActionLink.Execute
	TBasicActionLink.Update
	TBasicActionLink.Action
	TBasicActionLink.OnChange

	TBinaryObjectReader
	Description
	Method overview
	TBinaryObjectReader.Create
	TBinaryObjectReader.Destroy
	TBinaryObjectReader.NextValue
	TBinaryObjectReader.ReadValue
	TBinaryObjectReader.BeginRootComponent
	TBinaryObjectReader.BeginComponent
	TBinaryObjectReader.BeginProperty
	TBinaryObjectReader.ReadBinary
	TBinaryObjectReader.ReadFloat
	TBinaryObjectReader.ReadSingle
	TBinaryObjectReader.ReadDate
	TBinaryObjectReader.ReadIdent
	TBinaryObjectReader.ReadInt8
	TBinaryObjectReader.ReadInt16
	TBinaryObjectReader.ReadInt32
	TBinaryObjectReader.ReadInt64
	TBinaryObjectReader.ReadSet
	TBinaryObjectReader.ReadStr
	TBinaryObjectReader.ReadString
	TBinaryObjectReader.SkipComponent
	TBinaryObjectReader.SkipValue

	TBinaryObjectWriter
	Description
	Method overview
	TBinaryObjectWriter.Create
	TBinaryObjectWriter.Destroy
	TBinaryObjectWriter.BeginCollection
	TBinaryObjectWriter.BeginComponent
	TBinaryObjectWriter.BeginList
	TBinaryObjectWriter.EndList
	TBinaryObjectWriter.BeginProperty
	TBinaryObjectWriter.EndProperty
	TBinaryObjectWriter.WriteBinary
	TBinaryObjectWriter.WriteBoolean
	TBinaryObjectWriter.WriteFloat
	TBinaryObjectWriter.WriteSingle
	TBinaryObjectWriter.WriteDate
	TBinaryObjectWriter.WriteIdent
	TBinaryObjectWriter.WriteInteger
	TBinaryObjectWriter.WriteMethodName
	TBinaryObjectWriter.WriteSet
	TBinaryObjectWriter.WriteString

	TBits
	Description
	Method overview
	Property overview
	TBits.Create
	TBits.Destroy
	TBits.GetFSize
	TBits.SetOn
	TBits.Clear
	TBits.Clearall
	TBits.AndBits
	TBits.OrBits
	TBits.XorBits
	TBits.NotBits
	TBits.Get
	TBits.Grow
	TBits.Equals
	TBits.SetIndex
	TBits.FindFirstBit
	TBits.FindNextBit
	TBits.FindPrevBit
	TBits.OpenBit
	TBits.Bits
	TBits.Size

	TCollection
	Description
	Method overview
	Property overview
	TCollection.GetAttrCount
	TCollection.GetAttr
	TCollection.GetItemAttr
	TCollection.GetNamePath
	TCollection.Changed
	TCollection.GetItem
	TCollection.SetItem
	TCollection.SetItemName
	TCollection.SetPropName
	TCollection.Update
	TCollection.Create
	TCollection.Destroy
	TCollection.Add
	TCollection.Assign
	TCollection.BeginUpdate
	TCollection.Clear
	TCollection.EndUpdate
	TCollection.FindItemID
	TCollection.PropName
	TCollection.Count
	TCollection.ItemClass
	TCollection.Items

	TCollectionItem
	Description
	Method overview
	Property overview
	TCollectionItem.Changed
	TCollectionItem.GetNamePath
	TCollectionItem.GetOwner
	TCollectionItem.GetDisplayName
	TCollectionItem.SetIndex
	TCollectionItem.SetDisplayName
	TCollectionItem.Create
	TCollectionItem.Destroy
	TCollectionItem.Collection
	TCollectionItem.ID
	TCollectionItem.Index
	TCollectionItem.DisplayName

	TComponent
	Description
	Method overview
	Property overview
	TComponent.ChangeName
	TComponent.DefineProperties
	TComponent.GetChildren
	TComponent.GetChildOwner
	TComponent.GetChildParent
	TComponent.GetNamePath
	TComponent.GetOwner
	TComponent.Loaded
	TComponent.Notification
	TComponent.ReadState
	TComponent.SetAncestor
	TComponent.SetDesigning
	TComponent.SetName
	TComponent.SetChildOrder
	TComponent.SetParentComponent
	TComponent.Updating
	TComponent.Updated
	TComponent.UpdateRegistry
	TComponent.ValidateRename
	TComponent.ValidateContainer
	TComponent.ValidateInsert
	TComponent.WriteState
	TComponent.Create
	TComponent.Destroy
	TComponent.DestroyComponents
	TComponent.Destroying
	TComponent.ExecuteAction
	TComponent.FindComponent
	TComponent.FreeNotification
	TComponent.RemoveFreeNotification
	TComponent.FreeOnRelease
	TComponent.GetParentComponent
	TComponent.HasParent
	TComponent.InsertComponent
	TComponent.RemoveComponent
	TComponent.SafeCallException
	TComponent.UpdateAction
	TComponent.Components
	TComponent.ComponentCount
	TComponent.ComponentIndex
	TComponent.ComponentState
	TComponent.ComponentStyle
	TComponent.DesignInfo
	TComponent.Owner
	TComponent.VCLComObject
	TComponent.Name
	TComponent.Tag

	TCustomMemoryStream
	Description
	Method overview
	Property overview
	TCustomMemoryStream.SetPointer
	TCustomMemoryStream.Read
	TCustomMemoryStream.Seek
	TCustomMemoryStream.SaveToStream
	TCustomMemoryStream.SaveToFile
	TCustomMemoryStream.Memory

	TDataModule
	Method overview
	Property overview
	TDataModule.DoCreate
	TDataModule.DoDestroy
	TDataModule.DefineProperties
	TDataModule.GetChildren
	TDataModule.HandleCreateException
	TDataModule.ReadState
	TDataModule.Create
	TDataModule.CreateNew
	TDataModule.Destroy
	TDataModule.AfterConstruction
	TDataModule.BeforeDestruction
	TDataModule.DesignOffset
	TDataModule.DesignSize
	TDataModule.OnCreate
	TDataModule.OnDestroy
	TDataModule.OldCreateOrder

	TFiler
	Description
	Method overview
	Property overview
	TFiler.SetRoot
	TFiler.DefineProperty
	TFiler.DefineBinaryProperty
	TFiler.Root
	TFiler.LookupRoot
	TFiler.Ancestor
	TFiler.IgnoreChildren

	TFileStream
	Description
	Method overview
	Property overview
	TFileStream.Create
	TFileStream.Destroy
	TFileStream.FileName

	THandleStream
	Description
	Method overview
	Property overview
	THandleStream.SetSize
	THandleStream.Create
	THandleStream.Read
	THandleStream.Write
	THandleStream.Seek
	THandleStream.Handle

	TList
	Description
	Method overview
	Property overview
	TList.Get
	TList.Grow
	TList.Put
	TList.Notify
	TList.SetCapacity
	TList.SetCount
	TList.Destroy
	TList.Add
	TList.Clear
	TList.Delete
	TList.Error
	TList.Exchange
	TList.Expand
	TList.Extract
	TList.First
	TList.Assign
	TList.IndexOf
	TList.Insert
	TList.Last
	TList.Move
	TList.Remove
	TList.Pack
	TList.Sort
	TList.Capacity
	TList.Count
	TList.Items
	TList.List

	TMemoryStream
	Description
	Method overview
	Property overview
	TMemoryStream.Realloc
	TMemoryStream.Destroy
	TMemoryStream.Clear
	TMemoryStream.LoadFromStream
	TMemoryStream.LoadFromFile
	TMemoryStream.SetSize
	TMemoryStream.Write
	TMemoryStream.Capacity

	TParser
	Description
	Method overview
	Property overview
	TParser.Create
	TParser.Destroy
	TParser.CheckToken
	TParser.CheckTokenSymbol
	TParser.Error
	TParser.ErrorFmt
	TParser.ErrorStr
	TParser.HexToBinary
	TParser.NextToken
	TParser.SourcePos
	TParser.TokenComponentIdent
	TParser.TokenFloat
	TParser.TokenInt
	TParser.TokenString
	TParser.TokenSymbolIs
	TParser.SourceLine
	TParser.Token

	TPersistent
	Description
	Method overview
	TPersistent.AssignTo
	TPersistent.DefineProperties
	TPersistent.GetOwner
	TPersistent.Destroy
	TPersistent.Assign
	TPersistent.GetNamePath

	TReader
	Description
	Method overview
	Property overview
	TReader.Error
	TReader.FindMethod
	TReader.ReadProperty
	TReader.ReadPropValue
	TReader.PropertyError
	TReader.ReadData
	TReader.Create
	TReader.Destroy
	TReader.BeginReferences
	TReader.CheckValue
	TReader.DefineProperty
	TReader.DefineBinaryProperty
	TReader.EndOfList
	TReader.EndReferences
	TReader.FixupReferences
	TReader.NextValue
	TReader.ReadBoolean
	TReader.ReadChar
	TReader.ReadCollection
	TReader.ReadComponent
	TReader.ReadComponents
	TReader.ReadFloat
	TReader.ReadSingle
	TReader.ReadDate
	TReader.ReadIdent
	TReader.ReadInteger
	TReader.ReadInt64
	TReader.ReadListBegin
	TReader.ReadListEnd
	TReader.ReadRootComponent
	TReader.ReadString
	TReader.ReadValue
	TReader.CopyValue
	TReader.PropName
	TReader.CanHandleExceptions
	TReader.Driver
	TReader.Owner
	TReader.Parent
	TReader.OnError
	TReader.OnPropertyNotFound
	TReader.OnFindMethod
	TReader.OnSetMethodProperty
	TReader.OnSetName
	TReader.OnReferenceName
	TReader.OnAncestorNotFound
	TReader.OnCreateComponent
	TReader.OnFindComponentClass

	TRecall
	Method overview
	Property overview
	TRecall.Create
	TRecall.Destroy
	TRecall.Store
	TRecall.Forget
	TRecall.Reference

	TResourceStream
	Description
	Method overview
	TResourceStream.Create
	TResourceStream.CreateFromID
	TResourceStream.Destroy
	TResourceStream.Write

	TStream
	Description
	Method overview
	Property overview
	TStream.SetSize
	TStream.Read
	TStream.Write
	TStream.Seek
	TStream.ReadBuffer
	TStream.WriteBuffer
	TStream.CopyFrom
	TStream.ReadComponent
	TStream.ReadComponentRes
	TStream.WriteComponent
	TStream.WriteComponentRes
	TStream.WriteDescendent
	TStream.WriteDescendentRes
	TStream.WriteResourceHeader
	TStream.FixupResourceHeader
	TStream.ReadResHeader
	TStream.ReadByte
	TStream.ReadWord
	TStream.ReadDWord
	TStream.ReadAnsiString
	TStream.WriteByte
	TStream.WriteWord
	TStream.WriteDWord
	TStream.WriteAnsiString
	TStream.Position
	TStream.Size

	TStringList
	Description
	Method overview
	Property overview
	TStringList.Changed
	TStringList.Changing
	TStringList.Get
	TStringList.GetCapacity
	TStringList.GetCount
	TStringList.GetObject
	TStringList.Put
	TStringList.PutObject
	TStringList.SetCapacity
	TStringList.SetUpdateState
	TStringList.Destroy
	TStringList.Add
	TStringList.Clear
	TStringList.Delete
	TStringList.Exchange
	TStringList.Find
	TStringList.IndexOf
	TStringList.Insert
	TStringList.Sort
	TStringList.CustomSort
	TStringList.Duplicates
	TStringList.Sorted
	TStringList.OnChange
	TStringList.OnChanging

	TStrings
	Description
	Method overview
	Property overview
	TStrings.DefineProperties
	TStrings.Error
	TStrings.Get
	TStrings.GetCapacity
	TStrings.GetCount
	TStrings.GetObject
	TStrings.GetTextStr
	TStrings.Put
	TStrings.PutObject
	TStrings.SetCapacity
	TStrings.SetTextStr
	TStrings.SetUpdateState
	TStrings.Destroy
	TStrings.Add
	TStrings.AddObject
	TStrings.Append
	TStrings.AddStrings
	TStrings.Assign
	TStrings.BeginUpdate
	TStrings.Clear
	TStrings.Delete
	TStrings.EndUpdate
	TStrings.Equals
	TStrings.Exchange
	TStrings.GetText
	TStrings.IndexOf
	TStrings.IndexOfName
	TStrings.IndexOfObject
	TStrings.Insert
	TStrings.InsertObject
	TStrings.LoadFromFile
	TStrings.LoadFromStream
	TStrings.Move
	TStrings.SaveToFile
	TStrings.SaveToStream
	TStrings.SetText
	TStrings.Capacity
	TStrings.CommaText
	TStrings.Count
	TStrings.Names
	TStrings.Objects
	TStrings.Values
	TStrings.Strings
	TStrings.Text
	TStrings.StringsAdapter

	TStringStream
	Description
	Method overview
	Property overview
	TStringStream.SetSize
	TStringStream.Create
	TStringStream.Read
	TStringStream.ReadString
	TStringStream.Seek
	TStringStream.Write
	TStringStream.WriteString
	TStringStream.DataString

	TTextObjectWriter
	Description

	TThreadList
	Description
	Method overview
	TThreadList.Create
	TThreadList.Destroy
	TThreadList.Add
	TThreadList.Clear
	TThreadList.LockList
	TThreadList.Remove
	TThreadList.UnlockList

	TWriter
	Description
	Method overview
	Property overview
	TWriter.SetRoot
	TWriter.WriteBinary
	TWriter.WriteProperty
	TWriter.WriteProperties
	TWriter.Create
	TWriter.Destroy
	TWriter.DefineProperty
	TWriter.DefineBinaryProperty
	TWriter.WriteBoolean
	TWriter.WriteCollection
	TWriter.WriteComponent
	TWriter.WriteChar
	TWriter.WriteDescendent
	TWriter.WriteFloat
	TWriter.WriteSingle
	TWriter.WriteDate
	TWriter.WriteIdent
	TWriter.WriteInteger
	TWriter.WriteListBegin
	TWriter.WriteListEnd
	TWriter.WriteRootComponent
	TWriter.WriteString
	TWriter.RootAncestor
	TWriter.OnFindAncestor
	TWriter.OnWriteMethodProperty
	TWriter.Driver

