category-extras-0.53.5: Various modules and constructs inspired by category theory
Source code
Contents
Index
Control.Morphism.Postpro
Portability
non-portable (rank-2 polymorphism)
Stability
experimental
Maintainer
Edward Kmett <ekmett@gmail.com>
Description
See Maarten Fokkinga''s PhD Dissertation for postpro. g_postpro is an obvious generalization.
Synopsis
postpro
::
Functor
f =>
Coalgebra
f c -> (f
:~>
f) -> c ->
FixF
f
g_postpro
:: (
Functor
f,
Monad
m) =>
Dist
m f ->
GCoalgebra
f m a -> (f
:~>
f) -> a ->
FixF
f
bipostpro
::
Bifunctor
f
Hask
Hask
Hask
=>
Coalgebra
(f a) c -> (f a
:~>
f a) -> c ->
Fix
f a
g_bipostpro
:: (
Bifunctor
f
Hask
Hask
Hask
,
Monad
m) =>
Dist
m (f a) ->
GCoalgebra
(f a) m c -> (f a
:~>
f a) -> c ->
Fix
f a
Documentation
postpro
::
Functor
f =>
Coalgebra
f c -> (f
:~>
f) -> c ->
FixF
f
Source
g_postpro
:: (
Functor
f,
Monad
m) =>
Dist
m f ->
GCoalgebra
f m a -> (f
:~>
f) -> a ->
FixF
f
Source
Generalized postpromorphisms
bipostpro
::
Bifunctor
f
Hask
Hask
Hask
=>
Coalgebra
(f a) c -> (f a
:~>
f a) -> c ->
Fix
f a
Source
g_bipostpro
:: (
Bifunctor
f
Hask
Hask
Hask
,
Monad
m) =>
Dist
m (f a) ->
GCoalgebra
(f a) m c -> (f a
:~>
f a) -> c ->
Fix
f a
Source
Produced by
Haddock
version 2.4.2