
Dynamic DCS
Configuration Evaluation

Server Manual
Publication Date 09/20/06



Copyright ©2002-2006 Nominum, Inc. - All Rights Reserved

This manual, in whole or in part, may not be reproduced, translated or reduced to any 
machine-readable form without prior written approval.

Nominum, Incorporated
2385 Bay Road

Redwood City, CA, 94063
USA

http://www.nominum.com

ANS, CNS, and DCS are trademarks of Nominum, Incorporated.
License Information

Solaris™ is a registered trademark of Sun Microsystems, Inc. All rights reserved.

Linux® is a registered trademark of Red Hat, Inc. All rights reserved.

http://www.nominum.com


Table of Contents
1 Overview...................................................................................1

Introduction ..........................................................................................................1

Target Audience ....................................................................................................1

About this Manual.................................................................................................1
Typographical Conventions ...................................................................................................2

2 Lab Setup..................................................................................3

Lab Setup..............................................................................................................3

Tools......................................................................................................................4

Evaluation Goals ...................................................................................................5

Before You Begin...................................................................................................5
Checklist:..............................................................................................................................6

3 DCS Overview...........................................................................7

DCS Concepts .......................................................................................................7
Command Channel Structure ................................................................................................8
Options and Parameters ........................................................................................................8
The Server Object .................................................................................................................9
The Shared Network Object ..................................................................................................9
The Network Object ..............................................................................................................9

Configuration Options ...........................................................................................9
The Command Channel.......................................................................................................10

4 Testing DCS............................................................................15
Nominum Confidential i



ii Table of Contents
Basic Functionality .............................................................................................15

Advanced Functionality ......................................................................................19
DHCP Failover ...................................................................................................................20
Dynamic DNS .....................................................................................................................22
Statistics .............................................................................................................................22
Events.................................................................................................................................25
Triggers ...............................................................................................................................27

5 Embedded Python...................................................................29

Overview .............................................................................................................29

Embedded Python Functions ..............................................................................30
Packet Receipt Function.....................................................................................................30
Client Lookup Function ......................................................................................................30
Association Function ..........................................................................................................30
Attribute Complete Function ..............................................................................................31
Filter Function....................................................................................................................31
Lease In Use function .........................................................................................................31
Lease No Longer Used function ..........................................................................................31
Lease Bind Update Received function ................................................................................31

Examples ............................................................................................................31
Example – Restriction by MAC Address ............................................................................31
DCS Configuration ..............................................................................................................32
DCS Embedded Python Functions ......................................................................................32

Example – Pool Selection based on Relay agent .................................................33
DCS Configuration ..............................................................................................................33
Embedded Python Functions ..............................................................................................34

6 Client and Packet Objects ......................................................37

The Packet Object...............................................................................................38

The Client Object................................................................................................40

DHCP Options ....................................................................................................42

A DCS Configuration Script........................................................47

B DCS Test Plan.........................................................................51
Nominum Confidential



Table of Contents iii
Overview .............................................................................................................51

Target Audience ..................................................................................................51

Lab Setup............................................................................................................52

Test Cases ...........................................................................................................52

Basic Operations .................................................................................................52

Interoperability with Network Devices ................................................................54

Load and Capacity ..............................................................................................55

Denial of Service .................................................................................................55

Long Running Test ..............................................................................................56

DCHP Failover....................................................................................................57
Nominum Confidential



iv Table of Contents
Nominum Confidential



List of Tables
Table 1-1 Typographical conventions .......................................................................................2
Table 2-1 Checklist...................................................................................................................6
Table 4-1 State Codes .............................................................................................................19
Table 4-2 Failover state values ...............................................................................................21
Table 4-3 Calculations on Statistics ........................................................................................23
Table 4-4 DCS statistic types ..................................................................................................24
Table 4-5 DCS subscribable events ........................................................................................26
Table 6-1 The Packet Object ..................................................................................................38
Table 6-2 Client Parameter Data Types ..................................................................................40
Table 6-3 DHCP Options ........................................................................................................42
Table B-1 Single Client Test #1 - Clients Curcuit ID is known ...............................................53
Table B-2 Single Client Test #1 - Clients Curcuit ID is not known .........................................54
Table B-3 Interoperability with Network Devices Test ............................................................54
Table B-4 Load and Capacity Test ..........................................................................................55
Table B-5 Denial of Service Test: Small population of Mac Addresses....................................56
Table B-6 Denial of Service Test: Large population of Mac Addresses....................................56
Table B-7 Long Running Test .................................................................................................57
Table B-8 On the fly configuration test....................................................................................57
Table B-9 DHCP Failover Test................................................................................................58
Nominum Confidential v



vi List of Tables
Nominum Confidential



List of Figures
Figure 2-1 Lab Setup..................................................................................................................4
Figure 3-1 Hierarchy Model .......................................................................................................8
Figure B-1 Lab Setup................................................................................................................52
Nominum Confidential vii



viii List of Figures
Nominum Confidential



1

Overview
This chapter briefly introduces the Nominum Domain Caching Server (DCS) engine and this manual.

Introduction

DCS is designed to be a very scalable, flexible DHCP server. It is designed to operate in a service pro-
vider network and integrate with the existing systems on the service provider network. With DCS, 
the administrator has the ability to customize the logic of  the lease allocation process.  There are 
several integration points where the logic can be configured. This is covered in more detail later in 
this document.

Target Audience

This guide is aimed at potential Nominum customers who are interested in evaluating DCS. A good 
working knowledge of DHCP is expected. Similarly, proficiency in the various supported operating 
systems and tools is assumed. The evaluator is assumed to have a general familiarity of the configu-
ration of DCS based on the documentation.

About this Manual

This document is intended to serve as a guide to assist in the process of evaluating Nominum’s 
Dynamic Configuration Server (DCS). While this document provides a look at many of DCS’ features, 
Nominum Confidential 1



2 Chapter 1: Overview
it is not intended to be a definitive or comprehensive guide.  Rather, it is intended to provide some 
guidance towards getting DCS up and running quickly and seeing some of the advantages that DCS 
provides over other DHCP servers.

Chapter 1, Overview, introduces the Nominum Domain Caching Server (DCS) engine and this man-
ual.

Chapter 2, Lab Setup, describes the lab setup and the useful tools for evaluating DCS.

Chapter 3, DCS Overview, describes fundamental DCS concepts and how they relate to DHCP.

Chapter 4, Testing DCS, details suggested methodology to test DCS. It covers the basics such as 
doing the initial configuration and testing some of the more common configurations for DCS. These 
tests assume a network topology similar to the one described in section.

Chapter 5, Embedded Python, is a brief overview of the Python environment within DCS.

Chapter 6, Client and Packet Objects, describes the client and packet objects that are accessible by 
Embedded Python and have a great deal of information that is accessible to the Python functions.

Appendix A, DCS Configuration Script, contains a script that can be used to populate DCS with the 
configuration data described above. This is a simple shell script which calls the nom_tell utility.

Appendix B, DCS Test Plan, provides a concise plan for testing and evaluating DCS.

Typographical Conventions

Table 1-1 summarizes the typographical conventions used in this manual.

bold font Resource names, command names, menu selections, 
keywords and system facilities.

italic font Filenames, program names, domain names, UNIX 
pathnames and Uniform Resource Locators (URLs) 
such as http://www.nominum.com.

constant width font Instances of resources, and excerpts from code and 
configuration files.

constant width bold font User-provided input for interactive sessions or scripts.

constant width italic Variables for which a context-sensitive substitution 
should be made.

% The command-line prompt for interactive sessions.

# The prompt for the root user.

Table 1-1 Typographical conventions  
Nominum Confidential



2

Lab Setup
This chapter describes the lab setup and the useful tools for evaluating DCS.

Lab Setup

In order to test all of the major features of DCS, it is important to have two machines to run DCS in 
failover mode. In addition, it is useful to have at least one router to forward DHCP traffic to the DCS 
servers. The diagram below shows a sample configuration that will allow for testing of all of the sce-
Nominum Confidential 3



4 Chapter 2: Lab Setup
narios described below. In addition, if load testing is required, a traffic generation tool may also be 
connected to the network. 

Tools

In order to test DCS, several tools can be used. Some tools, such as nom_tell and the Engine Admin-
istration Console (EAC) are included with DCS or can be obtained from Nominum. In addition, other 
tools can be used; In order to test the throughput and latency of  DCS, traffic generators by vendors 
such as Spirent and Agilent can be used. This assumes that the evaluator has access to these tools.  
Ad-hoc DHCP requests can be generated using DHCP clients such as Windows or Unix/Linux sys-
tems, Cable/DSL Modems or other devices. 

Further, the following tools may come in handy:

• Tcpdump, snoop, ethereal or similar tools for capturing and inspecting packets;

• dhcperf for simulating loads in a test situation;

• Programmable UNIX shells such as sh, bash, csh;

• Scripting tools such as Python, Perl etc.

Figure 2-1 Lab Setup
Nominum Confidential



Evaluation Goals 5
Evaluation Goals

Depending on the requirements of the individual organization, the goals of the evaluation may dif-
fer.  In general, the following represent a reasonable subset of requirements to be tested during 
evaluation: 

Configuration using the following methods:

• nom_tell

• Engine Administration Console (EAC).

DCS Features

• Allocation of IP addresses based on network topology

• DCHP Failover

• Events and Statistics

• Selection of DCS Pools based on criteria determined by the evaluator. Some common crite-
ria are:

• Mac Address

• DCHP Relay information (option 82)

Before You Begin

Complete ISC DHCP configurations can be imported using the “isc2dcs” utility, while new configu-
rations can be created using the DCS configuration file which is then compiled into DCS or by the 
Nominum Command Channel. Since DCS implements similar functionality in different ways, some 
complex ISC DHCP configuration files may not be completely migrated and may need some addi-
tional work to complete. Note that the configuration file compilation is a one time only activity.  If 
no migration is necessary, there is no need to create a configuration file. All examples in this docu-
ment use the Nominum Command Channel and assume that no configuration file was used. Please 
refer to the “Nominum Dynamic Configuration Server Administrator’s Guide” for more details.  This 
evaluation guide assumes that you have already determined which networks and address ranges will 
be used for the testing. In order to test DHCP failover, two machines are required to run DCS. They 
do not need to be running the same operating system but must both be DCS supported platforms. 
Note: it is important to isolate the DCS test network from other, production networks so that DCS 
does not receive requests from, and potentially allocate addresses to, production clients.
Nominum Confidential



6 Chapter 2: Lab Setup
Checklist:

Table 2-1 Checklist

Item Required?

DCS Software Yes

Supported Hardware/Software platform (X2 for failover testing) Yes

Knowledge of the Lab network layout Yes

ISC DHCP configuration file No

DHCP Clients Yes

DHCP Traffic Generator No

DCHP Documentation Yes
Nominum Confidential



3

DCS Overview
This chapter describes fundamental DCS concepts and how they relate to DHCP.

DCS Concepts

Nominum DCS is a highly scalable DHCP server with support for DHCP failover and load sharing. 
There are six main configuration objects within DCS, these will be described in more detail below. 
DCS uses object based configuration. All configuration is applied to one or more objects within DCS. 
Objects are also hierarchical within DCS. As each object is described below, its place in the hierarchy 
will also be described. Any configuration applied to an object will be inherited by its subordinate 
Nominum Confidential 7



8 Chapter 3: DCS Overview
objects unless specifically overridden by configuration at a lower level. The hierarchy model is shown 
below:

Command Channel Structure

DCS uses the Nominum Command Channel protocol in a very structured, object-oriented way. Every 
command will have the following components:

• Service Name – This specifies which DCS server the command will be sent to. This service 
name is resolved in the /etc/channel.conf file.

• Command Type—This will always be ‘ccdb’

• Object Type (objtype)—The object that the command will affect (i.e. server, pool, network, 
etc.)

• Method—The type of operation to be performed (create, delete, list, get, etc.)

• Name—The name of the particular object to be affected. Name applied to all methods 
except ‘list’.

Other fields may be required depending on the object and the action being performed. For example, 
Section 5.2.1 gives examples of Command Channel operations using nom_tell.

Options and Parameters

Configuration applied to the objects described below are Options or Parameters. Options refers to 
DHCP Options only. These can be standard options that are pre-defined within DCS or custom 

Figure 3-1 Hierarchy Model
Nominum Confidential



Configuration Options 9
options that have been described by the administrator. Parameters control non-DHCP option config-
uration of DCS or can be used to set defaults for some options. For example, Failover is configured 
using parameters and Parameters can be used to set up a default lease time.

The Server Object

The Server object contains all configuration that pertains to the server as a whole. The Server object 
is at the top of the object hierarchy and any configuration done at the Server level will apply to all 
objects on the DCS server. The Server object will normally be used to specify default values such as 
default Domain Names and default lease times. There are some configuration parameters that are 
specific to the DCS server as a whole such as the location of the Embedded Python function file.

The Shared Network Object

A Shared Network is a grouping of networks that are on the same physical interface on a router or 
layer 3 switch. In this situation, only the IP address of the primary interface of the router/switch will 
be placed into the GIADDR field of the DHCP request. A Shared Network tells DCS that all networks 
in the Shared Network are related to the same GIADDR. The Shared Network object is above the 
Network object in the hierarchy.

The Network Object

The Network object is used to define the network topology and will ensure that DCS only offers 
addresses to clients that are correct for the subnet that they are on. A network object must be cre-
ated for any subnet that DCS will allocate IP addresses from. Options and parameters can be 
assigned to a Network and these will be inherited by objects below it.

Configuration Options

This section briefly examines some of DCS’ configuration options with a few specific examples for 
reference.  The decision regarding which options to implement is left up to each administrator. 
Remember that since DCS can make changes without restarting, removing (or adding) options has 
no effect on the performance or operation of the server although these changes can affect how DCS 
responds to future requests if the configuration is changed.

Most DHCP servers requires a configuration file to be able to operate.  While DCS can use a config-
uration file to get started, all other configuration is done ‘live’ using the Nominum Command Chan-
nel. The Command Channel can be accessed by nom_tell, the Command Channel API or Nominum 
EAC. Please refer to the DCS documentation or EAC documentation for more details.
Nominum Confidential



10 Chapter 3: DCS Overview
The Command Channel

Nominum provides a proprietary protocol called the command channel.  An implementation of a 
command channel client, called nom_tell is also bundled with DCS. nom_tell commands take the 
form:

# nom_tell service what

Where service is the specific service to be managed (in this case it is always 'dcs') and what provides 
details about what exactly it is we’re trying to do.  nom_tell commands can be used to get informa-
tion about the server as it’s running.  However, it can also be used to change the operation and con-
figuration of the server while it is running.   

A basic use of nom_tell is to determine the version of DCS.  The command:

# nom_tell dcs version 

will return the current version of the server.  The server can be stopped in the same manner.

nom_tell commands for DCS all take the same form. The user must specify the command class, the 
type of object, the method and the configuration information. This is described in more detail 
below.

While there are numerous nom_tell commands that are available to a DHCP administrator, we will 
focus on a few that are reasonably common.  For a complete list of nom_tell commands, please refer 
to the “Nominum Dynamic Configuration Server Administrator’s Manual”. 

Show Configuration

Nom_tell can be used to show the configuration of any object in DCS. The following most common 
objects’ configuration can be displayed with nom_tell:

1.    Server

2. Network

3. Shared Network

4. Pool

5. Client

6. Lease

7. Option Set

8. Functions
Nominum Confidential



Configuration Options 11
9. Events

10. Statistics

Nom_tell example

As an example of the robustness of DCS, below is an example of some of the operations we’ve 
already discussed.  The following examples show the information that can be displayed:

List DCS Pools:

# /usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=list
request:
{
    type => 'ccdb'
    objtype => 'pool'
    method => 'list'
}
response:
{
    type => 'ccdb'
    objtype => 'pool'
    method => 'list'
    list => (
        {
            name => 'example-public-pool'
        }
        {
            name => 'example2-public-pool'
        }
    )
    status => 'success'
}

To get information on a particular pool:

# /usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=get \ 
name=example-public-pool

request:
{
    type => 'ccdb'
    objtype => 'pool'
    method => 'get'
    name => 'example-public-pool'
}
response:
{
    type => 'ccdb'
    objtype => 'pool'
    method => 'get'
Nominum Confidential



12 Chapter 3: DCS Overview
    name => 'example-public-pool'
    ranges => (('66.218.71.1' '66.218.71.250'))
    attributes => ('predefined')
    last_stored_time => '1149024313.347098'
    generation => '1'
    range_accounting => (
        {
            range_start => '66.218.71.1'
            range_end => '66.218.71.250'
            range_used => '0'
            range_active => '0'
            my_addr_free => '250'
            peer_addr_free => '0'
            bootp => '0'
        }
    )
    status => 'success'
}

A Network’s configuration can be displayed using nom_tell:

# /usr/local/nom/sbin/nom_tell dcs ccdb objtype=network method=get \ 
name=example.nominum.com

request:
{
    type => 'ccdb'
    objtype => 'network'
    method => 'get'
    name => 'example.nominum.com'
}
response:
{
    type => 'ccdb'
    objtype => 'network'
    method => 'get'
    name => 'example.nominum.com'
    netaddr => '66.218.71.0'
    netmask => '255.255.255.0'
    pools => ('example-public-pool')
    generation => '0'
    optionsets => ('option_set_2')
    options => ('dhcp' ('subnet-mask' '255.255.255.0') ('routers' 

('66.218.71.253')) ('domain-name' 'example.nominum.com') ('broad-
cast-address' '66.218.71.255'))

    status => 'success'
}

To see information on a DHCP client that DCS knows about type the following. This will retrieve a 
client name of client1. The client could also be looked up by its MAC address or DHCP Client Identi-
fier.
Nominum Confidential



Configuration Options 13
# /usr/local/nom/sbin/nom_tell dcs ccdb objtype=client method=get \ 
name=client1

request:
{
    type => 'ccdb'
    objtype => 'client'
    method => 'get'
    name => 'client1'
}
response:
{
    type => 'ccdb'
    objtype => 'client'
    method => 'get'
    name => 'client1'
    dhcp_client_identifier => <binary:01001122334455>
    predefined => '1'
    dhcp_client_id_synthesized => '1'
    hardware_address => {
        type => 'ethernet'
        bytes => '00:11:22:33:44:55'
    }
    reverse_dns => '0'
    reverse_rcode => '255'
    forward_dns => '0'
    forward_rcode => '255'
    bootp => '0'
    last_stored_time => '1149024923.012162'
    generation => '2'
    status => 'success'
}

Nominum Confidential



14 Chapter 3: DCS Overview
Nominum Confidential



4

Testing DCS
This chapter details suggested methodology to test DCS. It covers the basics such as doing the initial 
configuration and testing some of the more common configurations for DCS. These tests assume a 
network topology similar to the one described in section.

In order to run the test, the test network must match the networks, ranges and DHCP options 
below. If the lab environment is different, the examples below must be changed appropriately to 
conform to the actual environment.

Basic Functionality

The easiest way to get started with DCS is to start with a blank database and make all configuration 
using the Nominum Command Channel. To start DCS with a blank database all that is required is to 
start DCS from the system init scripts as follows:

# /etc/init.d/dcs start

This will start DCS with a blank configuration and create a database in the default location of:

# /var/nom/dcs/dcsd-conf.d

The simplest network configuration for testing DCS is to configure a few subnets, pools, option sets 
and ranges. These can be configured into DCS as follows. Note that all changes are made live on the 
server and are active immediately. All of the commands below are included in the file scripts.txt 
which is included with this document. Note that once an object has been created in DCS, can be 
Nominum Confidential 15



16 Chapter 4: Testing DCS
referred to by its name in subsequent commands as can be seen below when creating shared net-
works.

Create Network:
# nom_tell dcs ccdb objtype=network method=create name=net1 \ 

netaddr=10.1.1.0/24

# nom_tell dcs ccdb objtype=network method=create name=net2 \ 
netaddr=10.1.2.0/24

# nom_tell dcs ccdb objtype=network method=create name=net3 \ 
netaddr=10.1.3.0/24

# nom_tell dcs ccdb objtype=network method=create name=net4 \ 
netaddr=10.1.4.0/24 

Create Shared Network:
# nom_tell dcs ccdb objtype=sharednet method=create name=shared1

# nom_tell dcs ccdb objtype=sharednet method=add_network \ 
name=shared1 network=net3

# nom_tell dcs ccdb objtype=sharednet method=add_network \ 
name=shared1 network=net4 

Create Pool
# nom_tell dcs ccdb objtype=pool method=create name=pool1

# nom_tell dcs ccdb objtype=pool method=create name=pool2

# nom_tell dcs ccdb objtype=pool method=create name=pool3 

Add Range to a Pool
# nom_tell dcs ccdb objtype=pool method=add_range \ 

name=pool1 range=('10.1.1.10', '10.1.1.100')

# nom_tell dcs ccdb objtype=pool method=add_range \ 
name=pool2 range=('10.1.2.10', '10.1.2.100')

# nom_tell dcs ccdb objtype=pool method=add_range \ 
name=pool3 range=('10.1.3.10', '10.1.3.100') 

# nom_tell dcs ccdb objtype=pool method=add_range \ 
name=pool3 range=('10.1.4.10', '10.1.4.100') 
Nominum Confidential



Basic Functionality 17
Create Option Sets:
# nom_tell dcs ccdb objtype=optionset method=create name=basicopts

# nom_tell dcs ccdb objtype=optionset method=setfield name=basicopts \ 
options='(dhcp (subnet-mask 255.255.255.0) (domain-name company.com) 
(domain-name-servers (10.1.2.251 10.12.12.1)))'

# nom_tell dcs ccdb objtype=optionset method=create name=net1opts

# nom_tell dcs ccdb objtype=optionset method=setfield \ 
name=net1opts options='('dhcp' ('routers' ('10.1.1.1')))'

# nom_tell dcs ccdb objtype=server method=add_optionset name=basicopts

# nom_tell dcs ccdb objtype=optionset method=create name=net2opts

# nom_tell dcs ccdb objtype=optionset method=setfield \ 
name=net2opts options='(dhcp (routers (10.1.2.1)))'

# nom_tell dcs ccdb objtype=optionset method=create name=net3opts

# nom_tell dcs ccdb objtype=optionset method=setfield \ 
name=net3opts options='(dhcp (routers (10.1.3.1)))'

# nom_tell dcs ccdb objtype=optionset method=create name=net4opts

# nom_tell dcs ccdb objtype=optionset method=setfield \ 
name=net4opts options='(dhcp (routers (10.1.4.1)))' 

Assign Option Sets to Networks:
# nom_tell dcs ccdb objtype=network method=add_optionset \ 

name=net1 optionset=net1opts

# nom_tell dcs ccdb objtype=network method=add_optionset \ 
name=net2 optionset=net2opts

# nom_tell dcs ccdb objtype=network method=add_optionset \ 
name=net3 optionset=net3opts

# nom_tell dcs ccdb objtype=network method=add_optionset \ 
name=net4 optionset=net4opts 

Assign Server Parameters:

Server parameters can be used to set configuration that applies to the server itself or to set global 
defaults. Here we will specify a minimum, maximum and default lease times.  Since DCS will nor-
mally respect the client’s request for a specific lease time, some limits need to be set to protect 
Nominum Confidential



18 Chapter 4: Testing DCS
against abnormally long or short lease times. For any requested lease time that is less than the mini-
mum, DCS will assign the minimum lease time and for any requested lease that is over the maxi-
mum, DCS will assign the maximum lease time. The default is used if the client does not ask for a 
specific lease time. These values can be set as follows:

# nom_tell dcs ccdb objtype=server method=setfield max_lease_time=86400

# nom_tell dcs ccdb objtype=server method=setfield min_lease_time=3600

# nom_tell dcs ccdb objtype=server method=setfield \ 
default_lease_time=7200 

Once the configuration above has been entered, DHCP clients can be activated on the test subnet. 
For each client, verify that the correct IP address has been allocated and that the assigning server is 
the DCS server. Whenever DCS receives a DHCP packet, it will log this in syslog (if the 
'info_msg_logging' parameter on the Server objet is set to true). 

Once DCS has been configured and clients are requesting leases from DCS, there are several ways to 
verify that DCS is seeing the requests, see how it is answering them and querying DCS for lease allo-
cations etc. 

Whenever DCS receives a DHCP packet, it will log this in syslog. The full four-way handshake will be 
written to syslog as well as any other messages as to why DCS may not offer an address to a client. 
Below is an example of a DHCPREQUEST received by DCS:

dcsd[543]: [ID 356978 local3.info] info: DHCPREQUEST (renew or rebind) for 10.1.1.106 from 
00:03:48:39:b4:c0 (01:00:03:48:39:b4:c0) via dmfe0, client name: client-3e67816f.5bd10.73a0, 
tid: 11, xid: 0x6269097c

It is possible to see how many leases have been assigned by DCS from a particular pool by examining 
the pool that the addresses are being assigned from As below:

# nom_tell dcs ccdb objtype=pool method=get name=pool1

Which will return the following output:

response:
{
    type => 'ccdb'
    objtype => 'pool'
    method => 'get'
    name => 'pool1'
    ranges => (('10.1.1.10' '10.1.1.100'))
    last_stored_time => '1150734810.712174'
    generation => '3'
    range_accounting => (
        {
            range_start => '10.1.1.10'
Nominum Confidential



Advanced Functionality 19
            range_end => '10.1.1.100'
            range_used => '0'
            range_active => '0'
            my_addr_free => '91'
            peer_addr_free => '0'
            bootp => '0'
        }
    )
    status => 'success'
}

As can be seen above, there are zero addresses in use. The DCS server has 91 addresses available. 
Since the pool is not part of a failover relationship, there are no addresses being allocated by the 
failover peer (peer_addr_free).

To look for a particular DHCP client and lease in the DCS database, the client or lease can be looked 
up by its name or client Identifier. The client Identifier is normally the MAC type pre-pended to the 
MAC address (e.g. 01001122334455 for an Ethernet device) The lease object will contain the IP 
Address, DHCP Client Identifier, state, Lease Expiry Time, Reserved. The Lease Expiry time is in Epoch 
time (number of seconds since January 1st, 1970). The reserved bit will indicate whether the lease is 
associated with a fixed client. 

The state can be one of the following values:

Advanced Functionality

In the advanced configuration section, we will set up DHCP Failover, Events and Statistics and 
Embedded Python.

Code State

1 free

2 active

3 expired

4 released

5 abandoned

6 reset

7 backup

8 freeorbackup

Table 4-1 State Codes
Nominum Confidential



20 Chapter 4: Testing DCS
DHCP Failover

Nominum DCS implements the draft standard for DHCP failover that has been defined by the IETF. 
This standard allows for ‘active-active’ failover where both servers in a failover relationship allocate 
addresses to clients and implement a load sharing algorithm. More detail on the failover draft stan-
dard can be obtained from the IETF or the DHCP Handbook.

In DCS, failover is done at the server, shared network, network or pool level. For pool level failover, 
each pool that is involved in a failover relationship is shared between two DCS servers. It is possible 
for a different pools on a DCS server to be part of different failover relationships with different DCS 
servers. For server level failover, the failover is done for all pools on the server with another DCS 
server. This allows for simplicity of configuration, the administrator can set up the failover relation-
ship once for a pair of servers and not have to ensure that all pools are configured for failover or that 
new pools get added to a failover relationship.

In order to configure failover, a failover relationship must be created and the pool(s), shared net-
work(s), networks(s) or server assigned to it. When creating a failover relationship, the two DCS serv-
ers must be defined. This can be done in DCS via the Command Channel as follows:

# nom_tell dcs ccdb objtype=failover method=create \ 
name=failover1 local_fqdn=primary.nominum.com \ 
peer_fqdn=secondary.nominum.com role=primary

The failover relationship can then be associated with the pool as follows:

# nom_tell dcs ccdb objtype=pool method=set_failover_relationship \ 
name=poolname failover_endpoint=foo

Or set up for the server as follows:

# nom_tell dcs ccdb objtype=server \ 
method=set_failover_relationship failover_endpoint=foo

Note that when setting up a failover relationship, it is important that the system clocks of the two 
DCS servers be as closely synchronized as possible. Where possible, NTP should be used to keep the 
clocks synchronized.

Once the failover relationship has been configured above, a client can be booted and observed to 
get an IP address from one of the DCS servers. Once the client has its IP address, unplug the network 
cable of the DCS server that allocated the lease, release and then renew the IP address of the client. 
The client should now get a lease from the other DCS server. 

On the server that is still connected to the network, it is possible to check the state of the failover 
relationship using the following command:

# nom_tell dcs ccdb objtype=failover method=getfield name=foo 
Nominum Confidential



Advanced Functionality 21
The output will have an entry for state which should have the value of 3 which is Communications 
Interrupted. The table below lists all possible values for the failover state.

The connected DCS server can be put into the Partner-Down mode as follows:

# nom_tell dcs ccdb objtype=failover method=partner_down name=foo

Where ‘foo’ is the name of the failover relationship.

This tells the connected DCS server that its peer is not operational. Once this is done, release and 
renew the client, it will be seen that the client still gets an IP address from the connected DCS server 
but the lease time is now normal.

Reconnect the other DCS server to the network and wait a few moments. Check the state on each 
server and they should each show state 2 (Normal). Also, run the following commands on the server 
that was disconnected to see that the lease information from the other server has been updated via 
the failover protocol:

To retrieve the Lease object:

# nom_tell dcs ccdb objtype=lease method=get \ 
dhcp_client_identifier=<identifier>

This will display the lease information for the client.

State Code Failover State

1 startup

2 normal

3 communications-interrupted

4 partner-down

5 potential-conflict

6 recover

7 pause

8 shutdown

9 recover-done

10 resolution-interrupted

11 conflict-done

12 recover-wait

Table 4-2 Failover state values
Nominum Confidential



22 Chapter 4: Testing DCS
Dynamic DNS

DCS is able to automatically update a DNS server with the A and PTR records for a client after it has 
been assigned a lease. This is done using the Dynamic DNS protocol (DDNS). The configuration 
below assumes that a DNS server has been correctly set up to allow DDNS updates from the DCS 
server(s). The configuration of the DNS Server is outside the scope of this document.

By default, DCS is configured to not do DDNS updates. To enable DDNS, DCS must be configured to 
do DDNS and a parent domain name must be set for updates. DDNS can be turned on as follows:

# nom_tell dcs ccdb objtype=server method=setfield do_ddns=true

The parent domain name will be appended to every host name sent by the client and is configured 
as follows:

# nom_tell dcs ccdb objtype=server method=setfield \ 
client_domain_name=company.com

This parameter can also be set on the Pool, Network, Shared Network, and Client. Settings that are 
on more specific objects will over ride parameters set at a higher level. For example, a Client Domain 
Name set at the pool level will over ride one set at the server level.

For security reasons, it is recommended that Transaction Signatures (TSIG) be used to secure DDNS 
updates. TSIG must also be configured on the DNS server in order for this to work which is outside 
the scope of this document. To configure TSIG signed updates in DCS, a TSIG key must be defined 
and the key must be associated with a DNS zone that updates will be sent to. The key can be set up 
as follows:

# nom_tell dcs ccdb objtype=key method=create algorithm='hmac-md5' \ 
name='key23' secret='896aa6483d232eaaa1c29eed26f5429a'

The TSIG key can then be associated with a zone as follows:

# nom_tell dcs ccdb objtype=zone method=create name='example.com' \ 
server='192.168.2.3' key='key23'

Once this is done, all DDNS updates to that zone will be signed with the key. It is recommended that 
a key generator be used to create the TSIG key and that they not be created by hand.

Statistics

Statistics allow DCS to capture data on the operation of DCS. A statistic consists of potentially four 
criteria. A statistic will have a type, interval, bucket and optionally a formula. There are two separate 
types of statistics; counter and quantity. A counter is simply incremented every time a new instance 
is noted and will only increase. Quantity statistics measure the size of an aggregation of data and the 
values may rise and fall. 
Nominum Confidential



Advanced Functionality 23
Statistics allow for the monitoring of historical data using Buckets. Buckets are snapshots of the data 
over a certain amount of time. The user specifies the interval and the number of buckets. Each 
bucket will contain data for the length of time of the interval. For example, and interval of 100 with 
50 buckets means 50 buckets of 100 seconds each. This means that the statistics will be kept for 
5000 seconds (50*100). When the statistic is created, DCS starts to capture data and after the first 
interval expires, it moves this data into a new bucket and starts a new one. Once the maximum 
number of buckets has been created, the oldest bucket will be deleted to make room for the next 
bucket.

For quantity statistics, the number of instances is reset for each bucket. For counter statistics, the 
number is not reset for each bucket, the value for each bucket is simply the value of the statistic at 
the time the bucket is created. 

DCS also has the ability to perform calculations on statistics. DCS can perform the following calcula-
tions on a statistic:

Below is a simple example of a statistic. This statistic will track the number of packets received by 
DCS within a 10 minute period. It will keep track of ten buckets and will sample the value of the 
bucket at the end of the bucket. In most statistics it would be required to enter an object type to 
sample but since the packet_in statistic only applies to the server, this is not necessary.

# nom_tell dcs ccdb objtype=stats method=create \ 
name=packets_in3 bucket_type=end interval=600 \ 
statkind=packets_in sampled_object_type=server buckets=10

Once the statistic has been created, it will continue to track the data. This data can then be accessed 
over the command channel as follows:

# nom_tell dcs ccdb objtype=stats method=get name=packets_in3

Type of Formula Data Returned

None Value of the current bucket

Average Average of all the buckets

First Derivative Value of the first derivative computed between the current 
and previous bucket

Difference Difference between the values of the current and previous 
buckets

Table 4-3 Calculations on Statistics
Nominum Confidential



24 Chapter 4: Testing DCS
The statistics types that can be gathered by DCS are listed in the table below:

Statistic Field Name Description Type Scope

activeleases Number of active leases Quantity Range

backupleases Number of backup leases Quantity Range

bad_dhcp Bad DHCP packets Counter Server

bndack Number of BNDACKs a failover 
end-point recieved

Counter Failover Endpoint

bndackrej Number of BNDACKs that have 
been rejected by a failover endpoint

Counter Failover Endpoint

bndupd Number of BNDUPDs a Failover 
end-point recieved

Counter Failover Endpoint

bootp Bootp packets Counter Server

bootp_not_honored Bootp packets not honored Counter Server

communications_notok Number of times communications 
have gone 'not ok' in a failover rela-
tionship

Counter Failover Endpoint

communications_ok Number of times communications 
have gone 'ok' in a failover relation-
ship

Counter Failover Endpoint

declines Number of declines Counter Server, SharedNetwork, Network, 
Pool

declines_not_honored Number of declines not honored Counter Server

discover Number of discovers Counter Server, SharedNetwork, Network, 
Pool

discover_no_leases Discovers not honored because 
there were no available leases

Counter Server

discover_no_permitted_
pools

Discovers not honored because 
there were no permitted pools

Counter Server

discover_not_honored Number of discovers not honored Counter Server, SharedNetwork, Network

freeleases Number of free leases Quantity Range

ignored Number of ignored (due to already 
active transaction) packets

Counter Server

inform Number of informs Counter Server, SharedNetwork, Network, 
Pool

Table 4-4 DCS statistic types
Nominum Confidential



Advanced Functionality 25
Events

Events provide a way for DCS to send notices of certain occurrences in DCS to external processes or 
files. Events are sent over specific channels that are configured at create time. This flexibility allows 
different events to be handled differently. Events can be written to a file and also be sent over a net-
work socket to an external listening application. There are four classes of Events for DCS; Lease, 
Failover, Server and Trigger. 

inform_not_honored Number of informs not honored Counter Server, SharedNetwork, Network, 
Pool

notdhcpbootp Number of packets that were not 
DHCP or BOOTP

Counter Server

packets_in Number of packets (of any type) Counter Server

packets_out Number of packets out (of any 
type)

Counter Server

releases Number of DHCPRELEASES the 
server has received

Counter Server, SharedNetwork, Network, 
Pool

reqrir Number of requests 
(renew/rebind/initreboot)

Counter Server, SharedNetwork, Network, 
Pool

reqrir_not_honored Number of requests 
(renew/rebind/initreboot) not hon-
ored

Counter Server, SharedNetwork, Network, 
Pool

reqsel Number of requests (selecting) Counter Server, SharedNetwork, Network, 
Pool

reqsel_not_honored Number of requests (selecting) not 
honored

Counter Server, SharedNetwork, Network, 
Pool

request_not_honored Number of requests not honored Counter Server

transaction Number of transactions Counter Server

transaction_duration Transaction duration Quantity Server

transaction_expire Number of times a transaction has 
expired due to timeout

Counter Server

transaction_queue_dept
h

Depth of the transaction queue Quantity Server

usedleases Number of in-use (not free or 
backup) leases

Quantity Range

Statistic Field Name Description Type Scope

Table 4-4 DCS statistic types
Nominum Confidential



26 Chapter 4: Testing DCS
When setting up an Event, there are two required steps. First, the Event channel must be set up with 
the facility it will be sent to (file or socket). The second step is to subscribe to a specific Event. Below 
is a simple example of setting up an event to write an entry to a file every time a lease is assigned by 
DCS:

First we set up the Event Channel:

# nom_tell  dcs ccdb objtype=eventchannel name=leaseevent \ 
method=create channel_type=file path_name=’/tmp/newleases.txt’ \ 
persistent=true

Note that unless the persistent=true section is included, the Event Channel will be deleted if DCS is 
restarted.

Next we subscribe to an Event:

# nom_tell dcs ccdb objtype=eventchannel name=leaseevent method=sub-
scribe events=lease.allocated

The following Events can be subscribed to in DCS:

lease.discover lease.released server.event-overflow

lease.offer failover.binding-active server.reload

lease.request failover.binding-expired server.newclient

lease.allocated failover.binding-released server.keepalive

lease.confirm failover.binding-abandoned server.shutdown

lease.denied failover.binding-reset lease.bootprequest

lease.decline failover.binding-backup lease.bootpreply

lease.renew failover.binding-free trigger.notify

lease.renewed failover.binding-update failover.failover-recvstate

lease.expired failover.failover-poolreq lease.bootp-not-honored

lease.abandoned failover.failover-connect server.database-changed

lease.reclaimed lease.discover-not-honored

lease.inform failover.failover-poolresp

server.transaction-expired failover.failover-state

failover.binding-rejected failover.failover-disconnect

Table 4-5 DCS subscribable events
Nominum Confidential



Advanced Functionality 27
Triggers

A trigger on a statistic will allow DCS to proactively send a notification when a particular threshold is 
reached.  A trigger is sent using an Event. Triggers are of two types; Threshold and ‘Every’. A thresh-
old trigger is activated when a statistic exceeds a defined value while an ‘Every’ trigger is activated 
every time DCS moves from one bucket to another.

A Trigger can be combined with an Event to set up powerful notification mechanisms. For the exam-
ple below, we can see how to write an event to a file when the an address range reaches more than 
90% utilization:

First we create a statistic to keep track of the number of used leases:

# nom_tell dcs ccdb objtype=stats method=create name=pool1_util2 \ 
bucket_type=end interval=600 statkind=usedleases \ 
sampled_object_type=poolrange sampled_object_name=public-pool \ 
range='(10.1.1.100 10.1.1.150)' buckets=10

Next we create the Event Channel:

# nom_tell dcs ccdb objtype=eventchannel name=pool1_lease_util \ 
method=create channel_type=file path_name='/tmp/events' \ 
persistent=true

Now we create the Trigger:

# nom_tell dcs ccdb objtype=trigger method=create name=pool1_over90pct \ 
event_channel_name=pool1_lease_util trigger_type=threshold \ 
threshold_value=90% threshold_over=True

This will cause DCS to write to a file whenever the range of addresses becomes more than 90% uti-
lized. It is important to note that DCS does not write this event to the file immediately. For perfor-
mance reasons, DCS writes the event to a buffer that is 16K in size. The contents of the buffer are 
not written to the file until the buffer is full. For real time notification, the event must be sent to an 
external application over a network socket using the Command Channel over TCP.
Nominum Confidential



28 Chapter 4: Testing DCS
Nominum Confidential



5

Embedded Python
DCS makes use of the Python language. The following is a brief overview of the Python environment 
within DCS.

Overview

Embedded Python allows the user to control how leases are allocated by DCS. It can be used to 
leverage any part of a DHCP request, as well as other data within DCS, to determine policies to deal 
with the client. This may include denying the client an address, allocation of specific addresses or 
DHCP options or applying logic when renewing an IP address.

Policies in DCS are enforced by using Pools. A Pool may contain one or more ranges of IP addresses. 
Pools can also have Attributes assigned to them. When a DHCP request is received, a client will 
potentially be able to get an IP address in one or more Pools. These ‘possible’ Pools are determined 
by the network topology. This is determined by the gateway address (GIADDR) contained in the  
DHCP request. 

Once DCS has determined which Pools are possible for a client, it must decide which Pools are ‘per-
mitted’ based on the logic configured in DCS. The ‘permitted’ list is determined by a Filter function 
in DCS which uses Attributes to make its policy decisions.

When a packet is received by DCS, DCS will call all functions that have been defined by the adminis-
trator. These functions are defined in more detail below.
Nominum Confidential 29



30 Chapter 5: Embedded Python
Embedded Python Functions

Within Embedded Python, there are eight types of functions that can be used. They are described 
below. They are listed in the order in which DCS will execute them. Note that if there is more than 
one function of a particular type, the order in which they will be executed by DCS can not be guar-
anteed. The last three types of functions; Lease In Use, Lease No Longer Used and Lease Bind Update 
Received are not part of the initial processing of a packet but are called after the client has received 
its address or been denied. 

Packet Receipt Function

The Packet receipt function is called as soon as a packet is received by DCS and before DCS either 
retrieves a matching client from the database or creates a client object for it. The only input into the 
Packet Receipt function is the packet object. The Packet Receipt function is normally used to decide 
whether to continue processing the packet or discard it. Attributes are not normally set in this type 
of function because there is no client object yet associated with the transaction and attributes can-
not be associated with packets. A sample application for a Packet is to search for something in the 
packet and decide if it should be dropped. For example, if the administrator wanted to drop all 
requests from Microsoft RAS servers, the Packet Receipt function could search for the string ‘RAS’ in 
the DHCP Client Identifier option in the packet and discard packets that have it.

Client Lookup Function

A Client Lookup function is called after all Packet Receipt functions have been called but before any 
attributes are assigned. A Client Lookup function can be used to modify a client associated with the 
DHCP request before any subsequent processing such as attribute assignment. In addition to the cli-
ent, the function can also modify or create other objects such as pools, networks etc.

NOTE Use caution when attempting to modify or create objects such as networks or pools 
in embedded python. Such network topological and policy elements are usually 
defined statically and do not make sense to be generated on the fly.

Association Function

The association function is used to associate attributes (text strings) with a client. These attributes 
can then be used in other functions to make decisions on how a request is processed. All subsequent 
functions can use the attributes assigned here. 
Nominum Confidential



Examples 31
Attribute Complete Function

These functions are executed after all attribute assignments have been done but before any other 
processing. This function can modify or create other objects such as pools, networks etc. 

Filter Function

The Filter function decides which pools a client may get an address from (if any). The filter function 
can use any attributes that have been associated with the client or any part of the client or packet 
objects to make this determination. As has been described above, a Filter function will normally be 
used to modify the list of permitted pools that a client can receive an address from. 

Lease In Use function

A lease In Use function is called anytime a lease changes state from any status to ACTIVE.

Lease No Longer Used function

This function is called anytime a lease changes from  the ACTIVE state to any other state. That is, if 
you want to do something after a lease expires or is released, this is where the user should do it. This 
may be used to detect when clients leave the network (although it is not possible to know precisely 
when a client left. The time the client left will be any time between the last lease renewal and the 
lease expiry. 

Lease Bind Update Received function

This function is called whenever DCS receives an update on a lease from its failover peer. 

Examples

The following examples are the two most common usages of Embedded Python. 

Example – Restriction by MAC Address

There are two ways to limit which clients can get addresses from which Pools in DCS. The first is to 
create an entry in the DCS User database for each MAC address and have DCS search this list for 
every lease request. This is not efficient since the longer the list, the longer the search will take.

The preferred method is to create a client object manually (either via the DCS configuration file, 
nom_tell or the CC API). Clients that are created manually have the ‘predefined’ bit set on the client 
object. The filter functions can then be set to only allow predefined clients to get an address. This 
method is more scalable since DCS simply has to look to see if a client object exists rather than pars-
Nominum Confidential



32 Chapter 5: Embedded Python
ing through a list of MAC addresses in the User database. Looking up clients in DCS is substantially 
quicker than looking up objects in the user database 

A client can be predefined as follows using the Command Channel:

# nom_tell dcs ccdb objtype=client method=create name=client1 \ 
hardware_address='{type=>ethernet bytes=>00:11:22:33:44:55}'

A sample of a DCS Configuration file and the embedded Python configuration file is listed below:

DCS Configuration 

In order to use an Embedded Python function in DCS, the Python function file must exist with the 
proper logic (As shown below), the DCS server must be told which functions to use, where to find 
the function file, and any attributes must be assigned to the appropriate pools. These can all be 
done using the Command Channel as shown below:

Specify the location of the Python function file and the file name:

# nom_tell dcs ccdb objtype=server method=setfield \ 
userpath='/usr/local/nom/etc'

# nom_tell dcs ccdb objtype=server method=setfield userfile='dcsuser.py'

Create the Assoctiation Function and the Filter function. Note that the name must correspond to the 
function name in the function file:

# nom_tell dcs ccdb objtype=attr_assoc_func name=assoc_attrib \ 
method=create

# nom_tell dcs ccdb objtype=filter_func method=create name=filter_pools

Create the Attribute and add it to the pool:

# nom_tell dcs ccdb objtype=attribute method=create \ 
attribute=attrib1 name=known

# nom_tell dcs ccdb objtype=pool method=add_attribute \ 
name=pool1 attribute=known

To restrict access to known clients on all pools, the add_attribute command can be run for each pool 
in the DCS server.

DCS Embedded Python Functions

import sys
# All the DCS-specific stuff is in this module
import pydcs

# DCS hands the AssociationFunc the client object and the packet
# that is being handled at present.
Nominum Confidential



Example – Pool Selection based on Relay agent 33
# with clients
def assoc_attrib(client, packet):

known_attr = pydcs.Attribute.find(name = 'known')
# If this client has the predefined boolean set, meaning it was
# defined in the config file or over the Command Channel, give it
# the "Known Clients" attribute
if (client.predefined == True):

client.add_attribute(known_attr)
# Else, do nothing

# DCS hands the FilterFunc the current client, packet, list of
# possible pools, and the (starting empty) list of pools the client
# is permitted to.
def filter_pools(client,packet,possible,permitted):

# iterate through all the pools DCS thinks are allowed
is_known = client.find_attribute(name = 'known')
for pool in possible:

# If the client is known ...
if is_known:

# ... and the pool has a known-clients attribute,
# let the client into this pool.
if pool.find_attribute(name = 'known'):

permitted.append(pool)
# if the client is unknown, 
else:

if pool.find_attribute(name = 'known') == None:
permitted.append(pool)

Example – Pool Selection based on Relay agent

This example is used to allocate clients whose Circuit ID is known to one pool while unknown clients 
get an address on the other pool. It is assumed that the userfile and userpath have been set up as 
described in the previous example.

DCS Configuration

Create the Association Function and the Filter function. Note that the name must correspond to the 
function name in the function file:

# nom_tell dcs ccdb objtype=attr_assoc_func name=associate_attributes \ 
method=create

# nom_tell dcs ccdb objtype=filter_func method=create name=filter_pools

Create the Attribute and add it to one of the pools:

# nom_tell dcs ccdb objtype=attribute method=create \ 
attribute=attrib1 name=known-clients
Nominum Confidential



34 Chapter 5: Embedded Python
# nom_tell dcs ccdb objtype=pool method=add_attribute \ 
name=pool1 attribute=known-clients

Create the Circuit IDs in the DCS User Database:

# nom_tell dcs ccdb objtype=user_data method=create \ 
name='01:02:03:04:05:06:07:08' value=’customer1’

# nom_tell dcs ccdb objtype=user_data method=create \ 
name='01:02:03:04:05:06:07:09' value=’customer2’

Embedded Python Functions

# This Python file is only executable from DCS
# This will look up Circuit ID information from the User Database 
# to determine if the incoming request is from a known client

# import some necessary modules
import pydcs # This has all the DCS specific stuff
import sys   # system stuff, just in case

def associate_attributes(client,packet):
# Check for the relay agent option, assume if there is, that there's
#    a circuit id

# If there aren't any agent options, do nothing.
if client.agent_options != None:

agent_opts = client.agent_options['options']
circuit_id = agent_opts['agent-circuit-id']

# If we don't have any relay agent options, don't do anything else.
else:

return # Leave the function

# Look up to see if the User Data exists
user_data = None
user_data = pydcs.UserData.find(name = circuit_id)

# Assign the client an attribute since we know about it already
attr = pydcs.Attribute.find(name = 'known-clients')

# If we don't find the attribute, give up.  We can't do anything
# without this attribute
if attr == None:

return

# If the user data exists (client is known), and we succeeded
# at getting the attribute out of the database, add the attribute
# to the client object
Nominum Confidential



Example – Pool Selection based on Relay agent 35
if (user_data != None):
client.add_attribute(attr)

# else, we should remove the known clients attribute from the client
# if it's there, since clearly this client has roved.
else:

if client.find_attribute('known-clients'):
client.del_attribute(attr)

def filter_pools(client,packet,permitted,possible):
# If the client is known, add the known-clients pools to the
# permitted list
if client.find_attribute('known-clients'):

for pool in possible:
if pool.find_attribute('known-clients'):

permitted.append(pool)
# If the client is unknown, skip all the known-clients pools
else:

for pool in possible:
if pool.find_attribute('known-clients') == None:

permitted.append(pool)
Nominum Confidential



36 Chapter 5: Embedded Python
Nominum Confidential



6

Client and Packet Objects
The client and packet objects that are accessible by Embedded Python have a great deal of informa-
tion that is accessible to the Python functions. These are described in more detail below:
Nominum Confidential 37



38 Chapter 6: Client and Packet Objects
The Packet Object

Table 6-1 The Packet Object

Methods for accessing packet data:

To access the client hardware address:

mac_addr = packet.chaddr

Packet fields Data Type Description

chaddr binary data of a fixed size Client Hardware Address

ciaddr IPv4 address Client’s IP address, set by the client when it has 
confirmed that the IP address is valid

dhcp_msg_type integer 

file string Name of the file for the client to request from 
the next hop server

flags integer Flags field

giaddr IPv4 address Relay Agent IP address

hlen integer Length of hardware address in bytes

hops integer Number of relay agents that have forwarded the 
packet

htype integer Hardware type (Ethernet is 1)

max_message_size integer 

op integer Message operation code (1 for messages sent by 
client and 2 for messages sent by the server)

options list of options Requested DHCP Options

options_length integer Length of Options field

secs integer 

siaddr IPv4 address IP address of the next hop server

sname string Name of the next server to use in the configura-
tion process

total_length integer Total length of packet

xid integer Transaction identifier

yiaddr IPv4 address Requested IP 
Nominum Confidential



The Packet Object 39
To access the remote circuit id:

option_82_data = packet.agent_options[‘options’]
remote_id = option_82_data[‘agent-remote-id’]

To access the hostname:

dhcp_options = packet.options[‘options’]
client_name = dhcp_options[‘dhcp_client_identifier’]

To drop a request from a Microsoft RAS server, a Packet Receipt Function can be used. The function 
would be as follows:

def drop_ras(packet)

dhcp_options = packet.options[‘options’]
client_name = dhcp_options[‘dhcp_client_identifier’]

if client_name.search(‘ RAS’)
 raise pydcs.cancelled
Nominum Confidential



40 Chapter 6: Client and Packet Objects
The Client Object

Client Parameter Data Type

agent_options list of options 

attributes list of strings 

boot_server_address domain name or IPv4 address 

bootp boolean 

client_domain_name string 

client_fqdn string 

client_name string 

client_updates boolean 

default_lease_time integer 

default_options list of options 

dhcp_client_id_synthesized boolean 

dhcp_client_identifier binary data 

dns_name string 

dns_update_override boolean 

do_ddns boolean 

filename string 

fixed_address list of strings 

forward_dns boolean 

forward_rcode integer 

fqdn_is_multiple_labels boolean 

generation integer 

get_lease_hostnames boolean 

hardware_address MAC address 

inaddr_domain string 

last_ddnsupdate_time floating-point seconds since epoch 

last_stored_time floating-point seconds since epoch 

last_transaction_time integer seconds since epoch 

lease IPv4 address 

max_lease_time integer 

Table 6-2 Client Parameter Data Types  
Nominum Confidential



The Client Object 41
min_lease_time integer 

name string 

notifies list of event channels, each has an associated integer notify count 

optionsets list of strings 

parameter_request_list list of strings 

picked_net string 

picked_pool string 

picked_sharednet string 

predefined boolean 

replace_fqdn_domain boolean 

reverse_dns boolean 

reverse_rcode integer 

sent_options list of options 

server_identifier domain name or IPv4 address 

Client Parameter Data Type

Table 6-2 Client Parameter Data Types (continued) 
Nominum Confidential



42 Chapter 6: Client and Packet Objects
DHCP Options

Option Number Option Name

1 subnet-mask

2 time-offset

3 routers

4 time-servers

5 name-servers

6 domain-name-servers

7 log-servers

8 cookie-servers

9 lpr-servers

10 impress-servers

11 resource-location-servers

12 host-name

13 boot-size

14 merit-dump

15 domain-name

16 swap-server

17 root-path

18 extensions-path

19 ip-forwarding

20 non-local-source-routing

21 policy-filter

22 max-datagram-reassembly-size

23 default-ip-ttl

24 path-mtu-aging-timeout

25 path-mtu-plateau-table

26 interface-mtu

27 all-subnets-local

28 broadcast-address

29 perform-mask-discovery

Table 6-3 DHCP Options  
Nominum Confidential



DHCP Options 43
30 mask-supplier

31 router-discovery

32 router-solicitation-address

33 static-routes

34 trailer-encapsulation

35 arp-cache-timeout

36 ieee802.3-encapsulation

37 default-tcp-ttl

38 tcp-keepalive-interval

39 tcp-keepalive-garbage

40 nis-domain

41 nis-servers

42 ntp-servers

43 vendor-encapsulated-options

44 netbios-name-servers

45 netbios-dd-server

46 netbios-node-type

47 netbios-scope

48 font-servers

49 x-display-manager

50 requested-address

51 lease-time

52 option-overload

53 message-type

54 server-identifier

55 parameter-request-list

56 message

57 max-message-size

58 renewal-time

59 rebinding-time

60 vendor-class-identifier

Option Number Option Name

Table 6-3 DHCP Options (continued) 
Nominum Confidential



44 Chapter 6: Client and Packet Objects
61 dhcp-client-identifier

62 nwip-domain-name

63 nwip-suboptions

64 nis+-domain

65 nis+-servers

66 tftp-server-name

67 bootfile-name

68 mobile-ip-home-agents

69 smtp-servers

70 pop3-servers

71 nntp-servers

72 www-servers

73 finger-servers

74 irc-servers

75 streettalk-servers

76 streettalk-directory-assistance-servers

77 user-class

78 slp-directory-agent

79 slp-service-scope

81 fqdn

82 relay-agent-information

85 nds-servers

86 nds-tree-name

87 nds-context

98 uap-servers

116 autoconfiguration

117 name-service-search-order

118 subnet-selection

119 domain-search-list

121 classless-static-routes

Option Number Option Name

Table 6-3 DHCP Options (continued) 
Nominum Confidential



DHCP Options 45
Nominum Confidential



46 Chapter 6: Client and Packet Objects
Nominum Confidential



A

DCS Configuration Script
This appendix contains a script that can be used to populate DCS with the configuration data 
described above. This is a simple shell script which calls the nom_tell utility.

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=network method=create 
name=net1 netaddr=10.1.1.0/24

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=create name=
pool1

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=add_range 
name=pool1 range=('10.1.1.10', '10.1.1.100')

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=create 
name=basicopts 

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=setfield 
name=basicopts options=('dhcp'  ('subnet-mask' [255.255.255.0]) 
('domain-name' 'company.com') ('domain-name-servers' ('10.1.2.251' 
'10.12.12.1')))'

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=create 
name=net1opts

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=setfield 
name=net1opts options='('dhcp' ('routers' ('10.1.1.1')))'

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=server method=
add_optionset optionset=basicopts

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=network method=
add_optionset name=net1 optionset=net1opts

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=create 
name=net2opts
Nominum Confidential 47



48 Appendix A: DCS Configuration Script
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=setfield 
name=net2opts options='('dhcp' ('routers' ('10.1.2.1')))'

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=create 
name=net3opts

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=setfield 
name=net3opts options='('dhcp' ('routers' ('10.1.3.1')))'

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=create 
name=net4opts

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=optionset method=setfield 
name=net4opts options='('dhcp' ('routers' ('10.1.4.1')))'

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=network method=
add_optionset name=net2 optionset=net2opts

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=network method=create 
name=net3 netaddr=10.1.3.0/24

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=network method=
add_optionset name=net3 optionset=net3opts

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=network method=create 
name=net4 netaddr=10.1.4.0/24

/usr/local/nom/sbin/nom_tell dcs ccdb objtype=network method=
add_optionset name=net4 optionset=net4opts

# Additional Pools
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=create name=

pool2
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=add_range 

name=pool2 range=('10.1.2.10', '10.1.2.100')
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=create name=

pool3
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=add_range 

name=pool3 range=('10.1.3.10', '10.1.3.100') 
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=pool method=add_range 

name=pool3 range=('10.1.4.10', '10.1.4.100')

#Shared Network
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=sharednet method=create 

name=shared1
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=sharednet method=

add_network name=shared1 network=net3
/usr/local/nom/sbin/nom_tell dcs ccdb objtype=sharednet method=

add_network name=shared1 network=net4
Nominum Confidential



49
Nominum Confidential



50 Appendix A: DCS Configuration Script
Nominum Confidential



B

DCS Test Plan
This Appendix provides a concise plan for testing and evaluating DCS.

Overview

This document is intended to serve as a guide to assist in the process of evaluating Nominum’s 
Dynamic Configuration Server (DCS). This document will cover various test cases to run with DCS to 
certify it for use in a service provider network. This document can be used in conjunction with the 
DCS Evaluation Guide and the DCS documentation to provide detailed instructions on the configura-
tion of the scenarios below.

NOTE We have provided blank space in each table in which you can note the results of your 
tests.

Target Audience

This guide is aimed at potential Nominum customers who are interested in deploying DCS. A good 
working knowledge of DHCP and detailed knowledge of either the existing or anticipated DHCP 
deployment.
Nominum Confidential 51



52 Appendix B: DCS Test Plan
Lab Setup

In order to test all of the major features of DCS, it is important to have two machines to run DCS in 
failover mode. In addition, it is useful to have at least one router to forward DHCP traffic to the DCS 
servers. The diagram below shows a sample configuration that will allow for testing of all of the sce-
narios described below. In addition, if load testing is required, a traffic generation tool may also be 
connected to the network. 

Test Cases

The following test cases are designed to prove the suitability of Nominum DCS for use in a broad-
band network. For full detail on setting up the DCS configuration necessary for these tests, please 
refer to the DCS Tutorial or the DCS documentation. All tests assume a network topology as 
described in the above section.

Basic Operations

Objective

Determine that DCS is able to bring up a single client. 

Configuration

• This test can be done using a PC client, DSL modem or DHCP traffic generator. 

Figure B-1 Lab Setup
Nominum Confidential



Basic Operations 53
• There must be at least two DHCP pools, one that is set aside for Known clients and one 
that is set aside for Unknown clients. 

• There must be a BRAS between the client and DCS to append the Circuit ID to the DHCP 
request.

• Shorter leases are desirable in testing to reduce wait time for t clients to renew or time out. 
However, very short leases (up to 5 minutes) are not recommended. Using 10 minute 
leases should provide a reasonable balance between the need not to spend too much time 
waiting, and the need to use workable lease lengths.

Test #1 – Client’s Circuit ID is known

• Add the client’s Circuit ID to the DCS database

• Verify client gets an IP address in the ‘known’ pool

• Release and renew the client

• Remove the client from the network and verify that the lease is made available for other 
clients by DCS by looking at the pool statistics

• Monitor the IP allocation process using syslog on the DCS server or via a traffic analyzer

Test #2 – Client’s Circuit ID is not known

• Ensure the client’s Circuit ID is not in the DCS database

• Verify client gets an IP address in the ‘unknown’ pool

• Release and renew the client

• Remove the client from the network and verify that the lease is made available for other 
clients by DCS

P/F Comments

Table B-1 Single Client Test #1 - Clients Curcuit ID is known
Nominum Confidential



54 Appendix B: DCS Test Plan
• Monitor the IP allocation process using syslog on the DCS server or via a traffic analyzer

Interoperability with Network Devices

Objective

Determine that DCS is able to configure all types of devices expected on the network. 

Configuration

• This test can be done using at least one of each type of device to be tested. 

• There must be at least two DHCP pools, one that is set aside for Known clients and one 
that is set aside for Unknown clients. 

• There must be a BRAS between the client and DCS to append the Circuit ID to the DHCP 
request.

• Shorter leases are desirable in testing to reduce wait time for t clients to renew or time out. 
However, very short leases (up to 5 minutes) are not recommended. Using 10 minute 
leases should provide a reasonable balance between the need not to spend too much time 
waiting, and the need to use workable lease lengths..

P/F Comments

Table B-2 Single Client Test #1 - Clients Curcuit ID is not known

CPE P/F Comments

Table B-3 Interoperability with Network Devices Test
Nominum Confidential



Load and Capacity 55
Load and Capacity

Objective

Determine that DCS is able to deal with large numbers of DHCP clients. This test is designed to test 
both normal, high load, scenarios as well as to simulate large numbers of clients booting up after a 
power failure.

Configuration

• The address ranges in the pools must be large enough to support the large numbers of cli-
ents that will be simulated. Valid test results should be possible with 50,000 to 100,000 cli-
ents. It is suggested that the pools should contain ranges of approximately 16,000 
addresses each

• When discriminating between known and unknown clients, the Circuit IDs must be 
pre-generated and provisioned into DCS to ensure that clients that are ‘known’ get the 
proper addresses.

Denial of Service

Objective

This test will verify DCS’ abilities to operate while under a Denial of Service attack.

Configuration

• This test can be done using a DHCP traffic generator to simulate the DHCP traffic.

• Two scenarios should be attempted; A large number of requests with a small number of 
MAC addresses, and a large number of requests with a large number of MAC addresses.

Test P/F # Subscribers Leases/Sec Comments

DHCP w/o 
Circuit ID 
checking

DHCP with 
Circuit ID 
checking

Table B-4 Load and Capacity Test
Nominum Confidential



56 Appendix B: DCS Test Plan
• The address ranges in the pools must be large enough to support the large numbers of cli-
ents that will be simulated. Valid test results should be possible with 50,000 to 100,000 cli-
ents. It is suggested that the pools should contain ranges of approximately 16,000 
addresses each.

Small population of Mac Addresses

Large population of Mac Addresses

Long Running Test

Objective

This test is designed to verify that DCS can continue to operate over longer periods of time as nor-
mal to high loads. 

Configuration

Test #1 Long Running test

P/F
Requests/ 
Second % CPU Leases/ Second Comments

DHCP w/o Cir-
cuit ID check-
ing

DHCP with 
Circuit ID 
checking

Table B-5 Denial of Service Test: Small population of Mac Addresses

P/F
Requests/ 
Second % CPU Leases/ Second Comments

DHCP w/o Cir-
cuit ID check-
ing

DHCP with 
Circuit ID 
checking

Table B-6 Denial of Service Test: Large population of Mac Addresses
Nominum Confidential



DCHP Failover 57
• The address ranges in the pools must be large enough to support the large numbers of cli-
ents that will be simulated. Valid test results should be possible with 50,000 to 100,000 cli-
ents. It is suggested that the pools should contain ranges of approximately 16,000 
addresses each

• When discriminating between known and unknown clients, the Circuit IDs must be 
pre-generated to ensure that clients that are ‘known’ get the proper addresses.

Test #2 On the fly configuration

• Add new networks ranges and pools to DCS while the above test is running. This will verify 
that DCS can be reconfigured while DCS is responding to DHCP requests

DCHP Failover

Objective

This test is designed to validate DCS’ implementation of DHCP failover. This will demonstrate that 
DCS can continue to provide service in the event of the failure of a server.

Configuration

• This test can be performed using a PC client or DSL modem

• The two DCS servers must me configured to be failover peers for the subnets that the test 
clients will originate from.

Time CPU Utilization Memory Size

Table B-7 Long Running Test

P/F Comments

Table B-8 On the fly configuration test
Nominum Confidential



58 Appendix B: DCS Test Plan
Suggested test procedure

• Boot client with both DCS servers in operation

• Unplug network cable from DCS server that allocated the address

• Verify the Failover status of the active server

• Release and renew the client

• Verify the active server allocates the an IP address

• Reconnect the other DCS server, verify that the two DCS servers resynchronize

Scenario P/F Comments

Physically disconnect one DCS server 
from the network

Reattach DCS server to network

Shutdown one DCS server

Restart DCS Server

Table B-9 DHCP Failover Test
Nominum Confidential



Index
A
A record  22
activeleases  24
advanced functionality  19
association  30
attribute complete  31

B
backupleases  24
bad_dhcp  24
basic functionality  15
blank configuration  15
bndack  24
bndackrej  24
bndupd  24
bootp  24
bootp_not_honored  24
buckets  23

C
ccdb  8
checklist  6
client  40

fields  40
finding  19

client control  31
client Identifier  19
client lookup  30
Command Channel  5

accessing  9
command type  8
methods  8
name  8
service name  8
structure  8

command class
ccdb  8
Nominum Confidential
object type  8
command type  8
communications_notok  24
communications_ok  24
configuration file  5, 9
configuration methods  5
configuration options  9
configuration script  47
create

network  16
options set  17
pool  16
shared network  16

D
DCS  1

advanced functionality  19
basic functionality  15
clients  37
concepts  7
configuration file  5
configuration methods  5
configuration options  9
configuration script  47
embedded python  29
events  25
features  5
hierarchy model  8
importing configurations  5
introduction  1
lab setup  3, 52
network object  9
options and parameters  8
overview  7
packets  37
pool selection  33
server object  9
shared network object  9
starting  15
59



60 Index
statistics  22
target audience  51
test cases  52
test plan  51
testing  4, 15
tools  4
triggers  27

DDNS  22
enabling  22
TSIG  22

declines  24
declines_not_honored  24
default values  9
DHCP  1

failover  20
failover testing  5
options  8, 42
request generation  4

dhcperf  4
discover  24
discover_no_leases  24
discover_no_permitted_pools  24
discover_not_honored  24
domain name  22
dynamic configuration server

see DCS
Dynamic DNS  22

E
EAC  5
embedded python  29

examples  31
overview  29
python function file  32
usage  29
using a relay agent  33

embedded python functions  30
association  30
attribute complete  31
client lookup  30
filter  31
lease bind update  31
lease in use  31
lease no longer used  31
packet receipt  30

Engine Administration Console
see EAC
evaluation goals  5
events  25—26

classes  25
setting up  26

F
failover  20
failover peer  19
failover relationship  20

state codes  21
testing  20

failover states  21
communications-interrupted  21
conflict-done  21
normal  21
partner-down  21
pause  21
potential-conflict  21
recover  21
recover-done  21
recover-wait  21
resolution-interrupted  21
shutdown  21
startup  21

filter  31
freeleases  24

G
gateway address  29
GIARDDR  29

H
hierarchal configuration  7
hierarchy model  8

I
ignored  24
importing configurations  5
inform  24
inform_not_honored  25
ISC DHCP configurations  5
Nominum Confidential



Index 61
isc2dcs utility  5

L
lab setup  3

diagram  4
lease  19
lease bind update  31
lease in use  31
lease no longer used  31
lease times  18
limit  31
limiting clients  31
listing of  26

M
methods  8

get  11—12
list  11

N
name  8
network  16
network object  9
Nominum Command Channel

see Command Channel
Nominum DCS

see DCS
nom_tell  4—5, 10

example  11
show configuration  10

notdhcpbootp  25

O
object based configuration  7
object type  8
objects  9

client  40
failover relationship  20
lease  19
network  9
packet  38
server  9

objtype  8
Nominum Confidential
option set  17

P
packet  38

accessing data  38
fields  38

packet receipt  30
packets_in  25
packets_out  25
Partner-Down mode  21
permitted list  29
pool  16
PTR record  22
python function file  32

R
relay agent  33
releases  25
reqrir  25
reqrir_not_honored  25
reqsel  25
reqsel_not_honored  25
request_not_honored  25

S
sample configuration  3
server object  9
server parameters  17
service name  8
shared network  9, 16
shared network object  9
sharednet  9
shell script  47
show configuration  10
starting DCS  15
statistic types  24

activeleases  24
backupleases  24
bad_dhcp  24
bndack  24
bndackrej  24
bndupd  24
bootp  24



62 Index
bootp_not_honored  24
communications_notok  24
communications_ok  24
declines  24
declines_not_honored  24
discover  24
discover_no_leases  24
discover_no_permitted_pools  24
discover_not_honored  24
freeleases  24
ignored  24
inform  24
inform_not_honored  25
notdhcpbootp  25
packets_in  25
packets_out  25
releases  25
reqrir  25
reqrir_not_honored  25
reqsel  25
reqsel_not_honored  25
request_not_honored  25
transaction  25
transaction_duration  25
transaction_expire  25
transaction_queue_depth  25
usedleases  25

statistics  22
buckets  23
calculations on  23
criteria  22
example  23
types  22

syslog  18

T
target audience  1
test cases  52

basic operations  52
DCHP failover  57
denial of service  55
interoperability with network devices  54
load and capacity  55
long running test  56

testing
checklist  6
tools  4
traffic generation tool  4
transaction  25
transaction_duration  25
transaction_expire  25
transaction_queue_depth  25
triggers  27

types  27
TSIG  22
typographical conventions  2

U
usedleases  25
Nominum Confidential


	Table of Contents
	List of Tables
	List of Figures

	Overview
	Introduction
	Target Audience
	About this Manual
	Typographical Conventions


	Lab Setup
	Lab Setup
	Tools
	Evaluation Goals
	Before You Begin
	Checklist:


	DCS Overview
	DCS Concepts
	Command Channel Structure
	Options and Parameters
	The Server Object
	The Shared Network Object
	The Network Object

	Configuration Options
	The Command Channel
	Show Configuration
	Nom_tell example



	Testing DCS
	Basic Functionality
	Advanced Functionality
	DHCP Failover
	Dynamic DNS
	Statistics
	Events
	Triggers


	Embedded Python
	Overview
	Embedded Python Functions
	Packet Receipt Function
	Client Lookup Function
	Association Function
	Attribute Complete Function
	Filter Function
	Lease In Use function
	Lease No Longer Used function
	Lease Bind Update Received function

	Examples
	Example - Restriction by MAC Address
	DCS Configuration
	DCS Embedded Python Functions

	Example - Pool Selection based on Relay agent
	DCS Configuration
	Embedded Python Functions


	Client and Packet Objects
	The Packet Object
	The Client Object
	DHCP Options

	DCS Configuration Script
	DCS Test Plan
	Overview
	Target Audience
	Lab Setup
	Test Cases
	Basic Operations
	Interoperability with Network Devices
	Load and Capacity
	Denial of Service
	Long Running Test
	DCHP Failover
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	Index



