EDF R&D RN

FLuib DyNAMICS, POWER GENERATION AND ENVIRONMENT DEPARTMENT
SINGLE PHASE THERMAL-HYDRAULICS GROUP

6, QUAT WATIER
F-78401 Cuatrou CEDEX

TeL: 33 1 30 87 75 40
Fax: 331308779 16 JULY 2010

Code_Saturne documentation

Code_Saturne version 1.3.3 practical user’s guide

contact: saturne-support@edf.fr

http://rd.edf.com/code_saturne © EDF 2010

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 2/172
ABSTRACT

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D axisym-
metric or 3D flows. Its main module is designed for the simulation of flows which may be steady or
unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and
turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred
to as “specific physics”, for the treatment of lagrangian particle tracking, semi-transparent radiative
transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and electric arcs)
and compressible flows. The code also includes an engineering module, Matisse, for the simulation of
nuclear waste surface storage.

Code_Saturne relies on a finite volume discretisation and allows the use of various mesh types which may
be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging
nodes).

The present document is a practical user’s guide for Code_Saturne version 1.3.3. It is the result of the
joint effort of all the members in the development team. It presents all the necessary elements to run
a calculation with Code_Saturne version 1.3.3. It then lists all the variables of the code which may be
useful for more advanced utilisation. The user subroutines of all the modules within the code are then
documented. Eventually, for each key word and user-modifiable parameter in the code, their definition,
allowed values, default values and conditions for use are given. These key words and parameters are
grouped under headings based on their function. An alphabetical index list is also given at the end of
the document for easier consultation.

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code_Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

EDF R&D Code_Saturne version 1.3.3 practical user’s
guide

Code_Saturne
documentation
Page 3/172

TABLE OF CONTENTS

1 Introduction i i i i i i i i i e e e e e e e e e e e e
2 Practical information about Code_Saturne
2.1 SYSTEM ENVIRONMENT FOR Code_Saturne

2.1.1 Preliminary settings

2.1.2 Standard architecture of the directories

2.1.8 Code_Saturne Kernel library files
2.2 SETTING UP AND RUNNING OF A CALCULATION

2.2.1 Step by step calculation

2.2.2 Temporary execution directory

2.2.8 Execution modes e e

2.2.4 Interactive modification of the target time step
2.3 CASE PREPARER v v v v i e i et e e e e e e
2.4 PREPROCESSING v v v v it e e e e e e e e e e e e e

2.4.1 Usable meshes e

2.4.2 Preprocessor command line options
2.5 KERNEL COMMAND LINE OPTIONS« ¢ v v v v v v
2.6 PARAMETERS IN THE LAUNCH SCRIPT « « v v v v v v v e .
2.7 GRAPHICAL USER INTERFACE
2.8 FACE AND CELL MESH-DEFINED PROPERTIES AND SELECTION
3 Main variables L e e e e e e e e e e e e e e e
3.1 ARRAY SIZES . . .« v v i i i e e e
3.2 GEOMETRIC VARIABLES v v v v v e e e e it e e e e e e
3.3 PHYSICAL VARIABLES v v v v i e e e e e e e e e e e
3.4 VARIABLES RELATED TO THE NUMERICAL METHODS
3.5 USER ARRAYS« .t i ittt i e e e e e
3.6 DEVELOPER ARRAYS v v v v vt e e e e e e e e e e e e e
3.7 PARALLELISM AND PERIODICITY« v v v v v vt e e oo e
3.8 GEOMETRY AND PARTICULE ARRAYS RELATED TO LAGRANGIAN MODELING
3.9 VARIABLES SAVED TO ALLOW CALCULATION RESTARTS
4 User subroutines i 0 i i i i i i i e e e e e e e e e e e e
4.1 PRELIMINARY COMMENTS« v v v v v ittt et e e e e e e
4.2 USING SELECTION CRITERIA IN USER SUBROUTINES
4.3 INITIALISATION OF THE MAIN KEY WORDS: USINI1
4.4 MANAGEMENT OF BOUNDARY CONDITIONS: USCLIM

4.4.1 Coding of standard boundary conditions

ooooooo

ooooooo

.......

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation

guide Page 4/172
4.4.2 Coding of non-standard boundary conditions 53
4.4.3 Checking of the boundary conditions 54
4.4.4 Sorting of the boundary faces 55
4.5 MANAGEMENT OF THE BOUNDARY CONDITIONS WITH LES: usvorT 55
4.6 MANAGEMENT OF THE VARIABLE PHYSICAL PROPERTIES: USPHYV 58
4.7 NON-STANDARD INITIALISATION OF THE VARIABLES: USINIV 58
4.8 NON-STANDARD MANAGEMENT OF THE CHRONOLOGICAL RECORD FILES: USHIST 59
4.9 USER SOURCE TERMS IN NAVIER-STOKES: USTSNS« v v v vt v io e o 60
4.10 USER SOURCE TERMS FOR k AND €: USTSKE . . + « v v v v v v e e et e e e e e e e e 61
4.11 USER SOURCE TERMS FOR I;; AND €: USTSRI 62
4.12 USER SOURCE TERMS FOR ¢ AND f: USTSV2 o v v v v i e e e e e 62
4.13 USER SOURCE TERMS FOR k AND W: USTSKW . . + « v v v v v e e e et e e e e e e e e 62
4.14 USER SOURCE TERMS FOR THE USER SCALARS: USTSSC « « « « « v v v v v v v . . 62
4.15 MANAGEMENT OF THE PRESSURE DROPS: USKPDC « « « « v v v v v v e e e u 63
4.16 MANAGEMENT OF THE MASS SOURCES: USTSMA « v v v v v v vt e e et e 63
4.17 THERMAL MODULE IN A 1D WALL e e e e e 64
4.18 MODIFICATION OF THE TURBULENT VISCOSITY: USVIST « « « « v v v v v v v v . 66
4.19 MODIFICATION OF THE FRICTION VELOCITY: USRUET « « v v « v v v v v e oo 66
4.20 MODIFICATION OF THE VARIABLE C' OF THE DYNAMIC LES MODEL: USSMAG 66
4.21 TEMPERATURE-ENTHALPY AND ENTHALPY-TEMPERATURE CONVERSIONS: USTHHT 67
4.22 MODIFICATION OF THE MESH GEOMETRY: USMODG « + « « v v v e v e e oo o 67
4.23 MANAGEMENT OF THE POST-PROCESSING INTERMEDIARY OUTPUTS: USNPST 67
4.24 DEFINITION OF POST-PROCESSING AND MESH ZONES: USDPST « « + « « « v o « . . 69
4.25 MODIFICATION OF THE MESH ZONES TO POST-PROCESS: USMPST 70
4.26 DEFINITION OF THE VARIABLES TO POST-PROCESS: USVPST « « v v v v o o . . 71
4.27 MODIFICATION OF THE VARIABLES AT THE END OF A TIME STEP: USPROJ 72
4.28 RADIATIVE THERMAL TRANSFERS IN SEMI-TRANSPARENT GRAY MEDIA 73
4.28.1 Initialisation of the radiation main key words: usrayl 73
4.28.2 Management of the radiation boundary conditions: usray2 73

4.28.8 Absorption coefficient of the medium, boundary conditions for the luminance and cal-
cualtion of the net radiative flux: usray3.o 74
4.28.4 Encapsulation of the temperature-enthalpy conversion: usray4 74
4.29 UTILISATION OF A SPECIFIC PHYSICS: USPPMO . . . « v v v v v e e e e e e e e e e e 75

4.30 MANAGEMENT OF THE BOUNDARY CONDITIONS RELATED TO PULVERISED COAL AND
GAS COMBUSTION: USEBUC, USD3PC, USLWCC, USCPCL ET USCPLC 81

4.31 INITIALISATION OF THE VARIABLES RELATED TO PULVERISED COAL AND GAS COMBUS-

TION: USEBUI, USD3PI, USLWCI AND USCPIV « « v v v v i it i i it e s 82

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 5/172
4.32 INITIALISATION OF THE OPTIONS OF THE VARIABLES RELATED TO PULVERISED COAL
AND GAS COMBUSTION: USEBU1l, uUsD3pl, USLWCl, USCPI1 AND USCPL1l 83
4.33 MANAGEMENT OF BOUNDARY CONDITIONS OF THE ELECTRIC ARC: USELCL 85
4.34 INITIALISATION OF THE VARIABLES IN THE ELECTRIC MODULE 86
4.35 INITIALISATION OF THE VARIABLE OPTIONS IN THE ELECTRIC MODULE 86
4.36 MANAGEMENT OF VARIABLE PHYSICAL PROPERTIES IN THE ELECTRIC MODULE 87
4.37 MANAGEMENT OF THE FEnSight OUTPUT IN THE ELECTRIC MODULE : USELEN 88
4.38 COMPRESSIBLE MODULE . . . v v« v v ittt i e e e e e e e e e e s s s e e 88
4.38.1 Initialisation of the options of the variables related to the compressible module: uscfz1
and WSCFT2 e e 88
4.38.2 Management of the boundary conditions related to the compressible module: uscfel . 89
4.58.8 Ininitialisation of the variables related to the compressible module: uscfzi 89
4.38.4 Compressible module thermodynamics: uscfth. 89

4.38.5 Management of the variable physical properties in the compressible module: uscfpv . . 89

4.39

LAGRANGIAN MODELING OF MULTIPHASIC FLOWS WITH DIPERSED INCLUSIONS 90

4.39.1 Initialisation of the main key words in the lagrangian modeling: uslagl 90

4.39.2 Management of the boundary conditions related to the particles: uslag2 and uslain . 91

4.89.3 Treatment of the particle/boundary interaction: uslabo 94
4.39.4 Option of particle cloning/fusion: uslaru 95
4.39.5 Manipulation of particulate variables at the end of an iteration and user volumetric
statistics: uslast and uslaen 96
4.89.6 User stochastic differential equations: uslaed 96
4.39.7 Particle relaxation time: uslatp o 97
4.39.8 Particle thermal characteristic time: uslatc 97
5 Key word list 0 o i i i i e e e e e e e e e e e e e 98
5.1 INPUTS-OUTPUTS vt it ettt e e e e e e e e e e 98
5.1.1 7Calculation” files 99
5.1.2 Post-processing for EnSight or other tools 103
5.1.8 Chronological records of the variables on specific points 105
5.1.4 Time GUETageso e e e e e 107
5.1.5 Others 108
5.2 NUMERICAL OPTIONS o vttt it e et e e s e e e 110
5.2.1 Calculation management e 110
5.2.2 Scalar unknowns 111
5.2.83 Definition of the equations 113
5.2.4 Definition of the time advancement 114
5.2.5 Turbulence 115

5.2.6 Time scheme e 120

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 6/172

5.2.7 Gradient TecOnStruction o e e e e e e e e e e e 125
5.2.8 Solution of the linear systems 126
5.2.9 Convective scheme 128
5.2.10 Pressure-continuity Step o e e 128
5.2.11 FError estimators for Navier-Stokes 129
5.2.12 Calculation of the distance to the wall 131
5.2.13 Others 133
5.3 NUMERICAL, PHYSICAL AND MODELING PARAMETERS« o oo 134
5.3.1 Numeric Parameters e e e e e 134
5.3.2 Physical parameterso 135
5.3.3 Physical variables 135
5.8.4 Modeling parameters 139
5.4 THERMAL RADIATIVE TRANSFERS: GLOBAL SETTINGS 143
5.5 ELECTRIC MODULE (JOULE EFFECT AND ELECTRIC ARC): SPECIFICITIES 147
5.6 COMPRESSIBLE MODULE: SPECIFICITIES ¢« v v v et e et e e e e o 148
5.7 LAGRANGIAN MULTIPHASE FLOWS o i ittt e e e e e 149
5.7.1 Global settings e e 149
5.7.2 Specific physics models associated with the particles 151
5.7.3 Options for two-way coupling 152
5.7.4 Numerical modeling e e 152
5.7.5 Volume statistics 153
5.7.6 Display of trajectories and particle movements 155

5.7.7 Display of the particle/boundary interactions and the statistics at the boundaries . . . 156

6 Bibliography L e e e e e e e e e e e e e e e e e 159
7 Appendix 1 : automatic validation procedure. 161
7.1 INTRODUCTION o ottt ittt et e e e e e s s 161
7.2 PRACTICAL INFORMATIONS ON THE PROCEDURE 161
7.3 DIRECTORIES ARCHITECTURE i i ittt it et e e 161
7.4 VALIDATION BASE ittt e e e e 161
7.4.1 Elementary tests : gradient calculations 162
7.4.2 Laplacien calculation L 162
7.5 ARCHITECTURE DESCRIPTION ¢ v v v v v vt et et et et e e e e 162
7.5.1 Python files in the modules directory 162
7.5.2 XML file description e e 163
7.5.8 Toadd a new study e 164
7.5.4 Report files e 164

Index of the main variables and keywords 165

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 7/172
1 Introduction

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D axisym-
metric or 3D flows. Its main module is designed for the simulation of flows which may be steady or
unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and
turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred
to as “specific physics”, for the treatment of lagrangian particle tracking, semi-transparent radiative
transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and electric arcs)
and compressible flows. The code also includes an engineering module, Matisse, for the simulation of
nuclear waste surface storage.

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code_Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.!

Code_Saturne relies on a finite volume discretisation and allows the use of various mesh types which may
be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging
nodes).

Code_Saturne is composed of two main elements :

e the Kernel module is the numerical solver

e the Preprocessor module is in charge of mesh data reading (many file formats allowed), mesh
pasting (arbitrary interfaces), domain decomposition for parallel computing and definition of
periodicity boundary conditions (translation and/or rotation)

Code_Saturne also relies on two compulsory libraries (under LGPL licence) :

e BFT (Base Functions and Types) for the management of memory and input/output as well as
specific utilities (estimation of time and memory usage for instance)

e FVM (Finite Volume Mesh) for the post-processing output and the management of code coupling

The present document is a practical user’s guide for Code_Saturne version 1.3.3. It is the result of the
joint effort of all the members in the development team.

The aim of this document is to give practical information to the users of Code_Saturne. 1t is therefore
strictly oriented towards the usage of the code. For more details about the algorithms and their
numerical implementation, please refer to the reports [10] and [3], and to the theoretical documentation
[11], which is newer and more detailled (the latest updated version of this document is available on-line
with the version of Code_Saturne and accessible through the command info_cs theory).

The present document first presents all the necessary elements to run a calculation with Code_Saturne
version 1.3.3. It then lists all the variables of the code which may be useful for more advanced
utilisation. The user subroutines of all the modules within the code are then documented. Eventually,
for each key word and user-modifiable parameter in the code, their definition, allowed values, default
values and conditions for use are given. These key words and parameters are grouped under headings
based on their function. An alphabetical index list is also given at the end of the document for easier
consultation.

You should have received a copy of the GNU General Public License along with Code_Saturne; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 8/172

2 Practical information about Code Saturne

2.1 System Environment for Code Saturne

2.1.1 Preliminary settings

At the install procedure of Code_Saturne, a directory is dedicated to the code and its components. It is
stored in the environment variable PATHCS. It is usually the root of a specific account /home/saturne.
For installs outside EDF R&D, please refer to the administrator who installed the code for the PATHCS
location.

The current version of Code_Saturne (1.3.3) is located in the directory $PATHCS/Noyau/ncs-1.3.3 .

“

”2.

In order to use Code_Saturne, every user must add the following line in their file “.profile”=:

xxxxxxx/Noyau/ncs-1.3.3/bin/cs_profile, where xxxxxxx represents the PATHCS
directory where Code_Saturne and its components have been installed (refer to the administrator re-
sponsible for Code_Saturne).

This command runs the environment file of Code_Saturne, which sets the different environment variables
to their correct value. Code_Saturne will not work correctly if those variables have not been
set properly.

After adding this line to the .profile, it is necessary to logout of the session and relog in (simply
reading the file by typing “. ~ /.profile” is usually not enough and might not set the PATH variable

correctly for the whole session).

WARNING: Other pieces of information related to Code_Saturne must not be included in .profile. In
particular, lines referring to previous versions of the code must be suppressed

2.1.2 Standard architecture of the directories

The standard architecture for the simulation studies is:
A study directory containing:
e A directory MAILLAGE containing the mesh(es) necessary for the study
e A directory POST for the potential post-processing routines (not used directly by the code)

e One or several calculation directories
Every calculation directory contains:

e A directory FORT for the potential user subroutines necessary for the calculation

e A directory DATA for the calculation data (data file from the interface, input profiles, thermo-
chemical data, ...)

e A directory SCRIPTS for the launch script

e A directory RESU for the results
To improve the calculation traceability, the files and directories sent to RESU after a calculation
are given a suffix identifying the calculation start date and time by an eight-digit number (two
digits for each month, day, hour and minute; the result of a calculation started at 14h03 on
december 315 will therefore be indexed 12311403)

2or .monprofile if the modifications of the .profile file are reserved for the administators, as is the case in the

MFEE departement of EDF

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 9/172

In the standard cases, RESU contains a directory CHR.ENSIGHT.mmddhhmm with the post-processing
files in EnSight format, a directory SUITE.mmddhhmm for the calculation restart files, a directory
HIST.mmddhhmm for the files of chronological record of the results at specific locations (probes),
listpre.mmddhhmm and listing.mmddhhmm files reporting the Preprocessor and the Kernel execution.
For an easier follow-up of the modifications in former calculations, the user-subroutines used in a cal-
culation are stored in a directory FORT.mmddhhmm in the directory RESU. The Xml Interface data file,
thermo-chemical data files and launch script are also copied into the directory RESU with the appro-
priate suffix (whatever its name, the launch script appears in the directory RESU as lance .mmddhhmm).
compil.log.mmddhhmm and resume.mmddhhmm are respectively reports of the compilation phase and
general information on the calculation (which kind of machine, which user, which version of the code,
...). Eventually, when the user subroutines produce specific result files (extraction of 1D profiles for
instance), a directory RES_USERS.mmddhhmm is created in the directory RESU for these files3.

During calcualtions coupled with SYRTHES (option specified in the launch script of Code_Saturne or
via the Interface) the same organisation is used for the files related to Code_Saturne. For the files
related to SYRTHES, the localisation of the upstream files is specified in the syrthes.env file. Yet,
the launch script is built presuming that the following organisation is applied:

e a directory FORT_SYR for the potential SYRTHES user subroutines

e a directory DATA_SYR containing the configuration file syrthes.env (localisation of files specific
to SYRTHES). The file defining the SYRTHES calculation options (syrthes.data) and the
potential restart files can also be placed in this directory.

The SYRTHES result files (geometry file, chronological result files, calculation restart files and the
historic file) are placed in a sub-directory RESU_SYR.mmddhhmm of the RESU directory, where mmddhhmm
corresponds to the calculation identification suffix.

The SYRTHES execution report file is placed in the RESU directory (same as for the Code_Saturne
review) under the name listsyr.mmddhhmm. The compilation report file is the same for SYRTHES
and Code_Saturne. It is placed in the RESU directory under the name compil.log.mmddhhmm. For an
easier follow-up of the modifications in former calculations, the potential SYRTHES user-subroutines
used in a calculation are stored in a directory FORT_SYR.mmddhhmm in the directory RESU.

3in order for the script to copy them properly, their names have to be given in the variable

FICHIERS_RESULTATS_UTILISATEUR of the launch script, see §2.6

EDF R&D

Code_Saturne version 1.3.3 practical user’s

Code_Saturne
documentation
Page 10/172

guide

Below are typical contents of a case directory CASE1 in a study STUDY
(Code_Saturne calculation coupled with SYRTHES):

STUDY/CASE1/DATA:
SaturneGUI
study.xml
THCH

STUDY/CASE1/DATA_SYR:

syrthes.data

syrthes.env
STUDY/CASE1/FORT:

USERS

usclim.F

usinil.F
STUDY/CASE1/RESU:

CHR.ENSIGHT.08211921

FORT.08211921

FORT_SYR.08211921
HIST.08211921
RES_USERS. 08211921
SUITE. 08211921
compil.log.08211921
study.xml.08211921

lance. 08211921

listpre.08211921
listing.08211921
listsyr.08211921
resume.08211921
RESU_SYR.08211921:

geoms

histosl

resusl

resuscl

STUDY/CASE1/SCRIPTS:
lance

Code_Saturne data

Graphical User Interface launch script

Graphical User Interface parameter file

example of thermochemical files (used with the specific
physics modules for gas combustion, pulverised coal
or electric arcs)

SYRTHES data

SYRTHES data file

SYRTHES configuration file

Code_Saturne user subroutines

examples of a user subroutines

user subroutines used for the present the calculation

results

directory containing the Code_Saturne post-processing results
in the EnSight format for the calculation 08211921

(contains both volume and boundary results;

the contents of the directory are user modifiable)

Code_Saturne user subroutines used for the

calculation 08211921

SYRTHES user subroutines used in the calculation 08211921
directory containing the chronological records for Code_Saturne
optional directroy containing the user results files

directory containing the Code_Saturne restart files

compilation report

Graphical User Interface parameter file used for the
calculation 08211921

launch script used for the calculation 08211921

(whatever the name given to the file in the SCRIPT directory,
the file will be referred as “lance.*” in the RESU directory)
execution report for the Preprocessor module of Code_Saturne
execution report for the Kernel module of Code_Saturne
execution report for SYRTHES

general information (machine, user, version, ...)

SYRTHES results (file names given in the syrthes.env file)
SYRTHES solid geometry file

SYRTHES chronological records at specified probes
SYRTHES calculation restart file (1 time step)

SYRTHES chronolgical solid post-processing file (may be tranformed
into the EnSight format with the syrthes2ensight utility)
launch script

launch script (compliant with all architectures on which
Code_Saturne has been ported)

Code_Saturne

EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 11/172

2.1.3 Code_Saturne Kernel library files

Below are given information about the content of the Code_Saturne base directories. They are not of
vital interest for the user, but given only as general information. Indeed, the case preparer cree_sat
automatically extracts the necessary files and prepares the launch script without the user having to
go directly into the Code_Saturne base directories (see §2.3). The info_cs gives direct access to the
most needed information (especially the user and progammer’s guides and the tutorial) without the
user having to look for them in the Code_Saturne directories.

The subdirectory arch contains the libraries and compiled executables.

The environment variable NOM_ARCH allows to distinguish the different architectures:

e Blue_Gene_L for the EDF BlueGene machine

e HP-UX for HP-UX system

e IRIX64 for SGI Irix system

e Linux for general PC machines under Linux

e Linux CCRT Opteron cluster (Tantale cluster at CCRT)

e Linux_Ch for the Chatou cluster

e Linux_IA64 for Itanium clusters (Platine cluster at the CCRT)

e Sun0S for Sun machines

For each architecture, a subdirectory (named after NOM_ARCH) stores the compiled elements (1ibsaturne*.a
libraries in 1ib and executable in bin?). The launch script automatically loads them for the standard
calculations. The different libraries correspond to the different modules of Code_Saturne:

e libsaturneBASE.a for the basic Kernel,

e libsaturneCOGZ.a for the gas combustion module,

e libsaturneCFBL.a for the compressible module,

e libsaturneCPLV.a for the pulverised coal combustion module,
e libsaturneELEC.a for the electric module,

e libsaturneFUEL.a for the heavy fuel oil combustion module,
e libsaturneLAGR.a for the lagrangian module,

e libsaturneMATI.a for the Matisse module,

e libsaturneRAYT.a for the radiation module.
Different compilation options are available for each module:

e DBG for debugging,
e EF for the “Electric Fence” utility,
e LO for low optimisation,

e PROF for profiling,

4This executable is used only for standalone mesh analysis. In a standard Code_Saturne run, the executable is recom-
piled to allow for user routines to be taken into account.

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 12/172

e PUR to use the “Purify” utility.

Each option is related to a specific library, for instance 1libstaurneBASELO. a for the “low optimisation”
library of the base module.

The data files (for instance thermochemical data) are located in the directory data.

The source files, when available, are stored in the directory src, under subdirectories corresponding
to each module: base (general routines), cfbl (compressible flows), cogz (gas combustion), cplv
(pulverised coal combustion), elec (electric module), fuel (heavy fuel oil combustion module), lagr
(lagrangian module, mati (Matisse module), pprt (general specific physics routines) and rayt (radia-
tive heat transfer).

The user subroutines are available in the directory users, under similar subdirectories corresponding to
each module: base, cfbl, cogz, cplv, elec, fuel, lagr, pprt and rayt. The case preparer cree_sat
copies all these files in the user directory FORT/USERS during the case preparation.

The “include” files are available in the directory include, under similar subdirectories corresponding
to each module: base, cfbl, cogz, cplv, elec, fuel, lagr, mati, pprt and rayt.

The directory bin contains an example of the launch script, the compilation parameter files and various
utility programs.

2.2 Setting up and running of a calculation
2.2.1 Step by step calculation

This paragraph summarises the different steps which are necessary to prepare and run a standard case:

e Check the version of Code_Saturne set for use in the environment variables (info_cs version).
If it does not correspond to the desired version, update the .profile file to set the environment
variables correctly. Log out of the session and log in again to take the modifications into account
properly (cf. §2.1.1).

e Prepare the different directories using cree_sat(see §2.3) and, when needed, add the directories
DATA_SYR and FORT_SYR which are required to accomodate the SYRTHES files.

e Place the mesh(es) in the directory MAILLAGE. Make sure they are in a format compliant with
Code_Saturne (see §2.4.1). There can be several meshes in case of mesh pasting or coupling with
SYRTHES °.

e Go to the directory DATA and launch the Graphical User Interface using the command . /SaturneGUI
(see §2.7).

e Place the necessary user subroutines in the directory FORT (see §4). When not using the Interface,
some subroutines are compulsory.

For the standard physics:

compulsory without Graphical User Interface:
- usinil to specify the calculation parameters
- usclim to manage the boundary conditions
very useful:
- usphyv to manage the variable physical properties (fluid density, viscosity ...)
- usiniv to manage the non-standard initialisations

For the specific physics “gas combustion”:
(not compliant with the Graphical User Interface in version 1.3.3)

5SYRTHES uses meshes composed of 10-node tetrahedra (vertices and centers of edges)

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 13/172
compulsory:

- usinil to specify the calculation parameters
- usppmo to select a specific physics module and combustion model

- usebuc, usd3pc or uslwce (depending on the selected combustion model) to manage
the boundary conditions of all variables (i.e. mnot only the ones related to the
combustion model)

very useful:

- usebul, usd3pl or uslwcl (depending on the selected combustion model) to specify
the calculation options for the variables corresponding to combustion model

- usebui, usd3pi or uslwci (depending on the selected combustion model) to manage
the initialisation of the variables corresponding to the combustion model
For the specific physics “coal combustion”:

compulsory without Graphical User Interface:
- usinil to specify the calculation parameters
- usppmo to select the specific physics module

- uscpcl or uscplc (depending on the specific physics module) to manage the bound-
ary conditions of all variables (i.e. not only the ones related to the specific physics
module)

very useful:

- uscpil to specify the calculation options for the variables corresponding to the
specific physics module

- uscpiv to manage the initialisation of the variables corresponding to the specific
physics module
For the specific physics “electric module” (Joule effect and electric arc):
(not compliant with the Graphical User Interface in version 1.3.3)

compulsory:
- usinil to specify the calculation parameters
- usppmo to select the specific physics module

- uselcl to manage the boundary conditions of all variables (i.e. not only the ones
related to the electric module)

- useliv to initialise the enthalpy in case of Joule effect
- uselph to define the physical properties in case of Joule effect
very useful:

- uselil to manage the options related to the variables corresponding to the electric
module

- useliv to manage the initialisation of the variables corresponding to the electric
module
For the specific physics “heavy fuel oil combustion module”:)
(not compliant with the Graphical User Interface in version 1.3.3)

compulsory:
- usinil to specify the calculation parameters
- usppmo to select the specific physics module

- usfucl to manage the boundary conditions of all variables (i.e. not only the ones
related to the specific physics module)

very useful:
- usfuil to specify the calculation options for the variables corresponding to the
specific physics module
- usfuiv to manage the initialisation of the variables corresponding to the specific
physics module

Code_Saturne

EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 14/172

For the Lagrangian module (dispersed phase):
(the continuous phase is managed in the same way as for a case of standard physics)
(the Lagrangian module is not compliant with the Graphical User Interface in version 1.3.3)
compulsory:
- uslagl to manage the calculation conditions
- uslag2 to manage the boundary conditions for the dispersed phase
very useful:
- uslabo to manage potential specific treatments at the boundaries (rebound condi-
tions, specific statistics, ...)
For the compressible module:

(not compliant with the Graphical User Interface in version 1.3.3)

compulsory:
- uscfxl et uscfx2 to manage the calculation parameters
- uscfcl to manage the boundary conditions
- uscfth to define the thermodynamics.

very useful:

- uscfxi to manage non-standard initialisations of the variables

The comprehensive list of the user subroutines and their instructions for use are given in §4.

If necessary, place in the directory DATA the different external data (input profiles, thermochemical
data files, ...)

Prepare the launch script lance, directly or through the Graphical Interface (see §2.6)

Run the calculation and analyse the results

Purge the temporary files (in the directory RUN defined in the launch script, see §2.6)

2.2.2 Temporary execution directory

During a calculation, Code_Saturne uses a temporary directory for the compilation and the execution,
the result files being only copied at the end in the directory RESU. This temporary directory is defined
in the variable RUN of the launch script. This variable is set top a default value in the non-user section
of the launch script, depending on the architecture:

RUN=$HOME/tmp_Saturne/$ETUDE/$CAS .mmddhhmm for stand-alone workstations or for the Chatou clus-
ter

RUN=$SCRATCHDIR/tmp_Saturne/$ETUDE/$CAS . mmddhhmm for Tantale and Platine at the CCRT
where $ETUDE and $CAS are the names of the study and the case. The usual suffix with the date and
time is added so that successive calculations will not get mixed-up.

This default value might not always be the optimal choice. Indeed, on a stand-alone machine, it might
be useful to take advantage of large sized local disks on a machine when the $HOME account is on an
NFS disk.

For this matter, the variable CS_TMP_PREFIX of the launch script (see §2.6) allows the user to change
this directory. If the variable is empty, the default RUN directory will be used. If it is not empty, the
launch script will set the RUN directory to $CS_TMP_PREFIX/tmp_Saturne/$ETUDE/$CAS.mmddhhmm.

WARNING: in most cases, the temporary directories are not deleted after a calculation. They will
accumulate and may hinder the correct running of the machine.
It is therefore essential to remove them regularly.

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 15/172

2.2.3 Execution modes

As explained before, Code_Saturne is composed of two modules, the Preprocessor and the Kernel. The
Preprocessor is in charge of the preprocessing. It reads the meshes and performs the necessary pastings
and domain decompositions. The resulting data are transfered to the Kernel through specific files, one
for each processor the Kernel will be running on. These files are named n00001 to n/N, N being the
number of processors used for the calculation, and stored in a subdirectory preprocessor_output of
the temporary execution directory. In a standard calculation, the files are left there as they have no
interest for data analysis and are too dependent on the number of processors or the machine to be
kept.

Yet, the Preprocessor module does not work in parallel and sometimes requires a large amount of
memory. Hence it is sometimes useful to run the Preprocessor separately, on a machine or in batch
queues with extended memory, and to run the proper parallel calculation on another machine or
in another batch queue. The launch scripts therefore defines three “execution modes”, that can be
specified in the variable MODE_EXEC (see §2.6):

complet: complete mode. The Preprocessor module is executed for preprocessing, followed by the
Kernel for the calculation. The preprocessor_output/n* files are created and left in the temporary
execution directory.

pre-traitement: only the Preprocessor module is executed. The preprocessor_output/nx* files
are stored in a directory PRE_TRAITEMENT . mmddhhmm automatically created in the RESU directory, for
later use.

calcul: only the Kernel is executed. The preprocessor_output/n* files are read from the directory
specified in the variable PRE_TRAITEMENT _AMONT of the launch script.

2.2.4 Interactive modification of the target time step

During a calculation, it is possible to change the limit time step number (NTMABS) specified through
the Interface or in usinil. To do so, a file named ficstp must be placed in the temporary execution
directory (see §2.2.2). This file must contain a blank first line and the second line indicating the value
of the new limit number of time steps.

If this new limit has already been passed in the calculation, Code_Saturne will stop properly at the end
of the current time step (the results and restart files will be written correctly).

This procedure allows the user to stop a calculation in a clean and interactive way whenever they wish.

2.3 Case preparer

The case preparer cree_sat automatically creates a study directory according to the typical architec-
ture and copies and pre-fills an example of calculation launch script.

The syntax of cree_sat is as follows:

cree_sat -etude STUDY CASE_NAME1 CASE_NAME2...
creates a study directory STUDY with case subdirectories CASE_NAME1 and CASE_NAME2... If no case
name is given, a default case directory called CAS1 is created.

cree_sat -cas DEBIT3 DEBIT4
executed in the directory STUDY adds the case directories DEBIT3 and DEBIT4.

An option -noihm is available for the use of Code_Saturne without Graphic Interface (see §2.7). This
option must be either the first or the last argument and appear only once.

In the directory DATA, cree_sat places a subdirectory THCH containing examples of thermochemical
data files used for pulverised coal combustion, gas combustion or electric arc. The file to be used for
the calculation must be copied directly in the DATA directory and its name must be referenced in the
launch script in the variable DONNEES_THERMOCHIMIE. All other files in the DATA or in the THCH
will be ignored.

Code_Saturne

EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 16/172

cree_sat also places in the directory DATA the launch script for the Graphical User Interface: SaturneGUI.

In the directory FORT, cree_sat creates a subdirectory USERS containing all the user subroutines,
classified by module type: base, cfbl, cogz, cplv, elec, fuel, lagr, pprt and rayt. Only the user
subroutines placed directly under the directory FORT will be considered. The others will be ignored.

In the directory SCRIPTS, cree_sat copies and pre-fills an example of the launch script: lance. The
study, case and user name are filled automatically in the launch script, as are the paths leading to
the different directories. Other parameters must be specified in the script (see §2.6), especially the
mesh file(s) to use (by default a name $ETUDE.unv is put), but everything can be specified throuhg
the Graphical Interface.

2.4 Preprocessing

The Preprocessor module of Code_Saturne is in charge of the preprocessing. It reads the mesh file(s)
(under any supported format) and transfers the necessary information to the Kernel. Mesh pasting
and domain decomposition for parallel calculations are made during this phase. In case of periodic
boundary conditions, the Preprocessor module also identifies the boundary faces that are related
through periodicity and creates the corresponding connectivity table.

For a complete information on the Preprocessor module, please refer to the corresponding user’s guide
[9] (available on-line through the command info_cs ecsmu).

2.4.1 Usable meshes

Code_Saturne allows to run calculations using meshes of different formats:

- I-deas universal (*.unv) format, generated by I-deas (Master Series 6 to 9, NX series 10 to 12),
ICEM, ...

- SIMAIL NOPO format: the *.des files may be read directly by Code_Saturne.

- NUMECA Hex format (*.hex files): this format is seldom used. It is the product of IggHeza
(which has since become Hezpress). It is not maintained, since the corresponding mesh generator
in not available at EDF R&D/MFEE. The filter is based on specifications and some example
meshes provided by the NUMECA company in 2001.

- MED 2.3. format: this format used by the SALOME platform and many EDF and CEA tools is
based on HDFS5 files.

- CGNS 2.0 (or later) format: CFD General Notation System format, used extensively by NASA,
Boeing, ONERA, and ICEM (preferred over I-deas universal format for files generated with
ICEM, as it may handle more cell types and leads to smaller files).

- EnSight 6 or later and EnSight Gold format. Note that EnSight 6 format files generated by
Harpoon have badly-oriented prism type cells, and require the using the -reorient Preprocessor
option.

- Gmsh format (free 3D mesh generation tool with integrated pre- and post-processing functions).

- Comet-Design pro-STAR/STAR4 format (polyhedric mesh generation tool). This might allow
reading of files generated by pro-STAR, though it has only been tested on polyhedral meshes
generated by Comet-Design (now STAR-Design).

- Gambit Neutral format: format of the FLUENT mesh generator.

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 17/172

The use of files of the “Common Solver” typeS is still possible but is not maintained anymore. The
reading of the mesh is done directly from the Kernel, without the Preprocessor module. The variable
SOLCOM must be set to 1 in the launch scripts. Many potentialities of Code_Saturne are not compliant
with this file format (mesh pasting with hanging nodes, periodicity, parallel computing, ...). The
slc2ideas utility can be used to convert the ’Common Solver’ files to the I-deas format. slc2ideas
is automatically available in the user’s PATH (who can therefore enter the command slc2ideas
directly) when the environment variables for Code_Saturne have been set correctly. However, not all
the files can be converted. In particular, they must comply with the initial choice (tlc) according to
which each internal face possesses two and only two neighboring cells, and each boundary face only
one neighboring cell. For non-converted, or non-convertale meshes of the ’'Common Solver’ type, the
calculation must be done without using the Preprocessor (keyword SOLCOM=1). For all the other
formats, the Preprocessor must be used (SOLCOM=0).

The Preprocessor can also accept zipped mesh files (for Formats other than MED or CGNS, which use
specific external libraries) on most machines.

WARNING: Unless a specific option is used, the Preprocessor module determines the mesh format
directly from the file suffix: “.unv” for the universal Ideas format, “.des” for the SIMAIL format,
“.hez” fot the NUMECA Hex format, “.med” for the MED format, “.cgns” for the CGNS format,
“.case” for the EnSight format, “.ngeom” for the Comet format, “.msh” for the Gmsh format, “.neu”
for the Gambit Neutral format, (voir info_cs ecsmu).

WARNING: Some turbulence models (k—¢, R;;—¢ SSG, ...) used in Code_Saturne are “High-Reynolds”
models. Therefore the size of the cells neighboring the wall needs to be greater than the thickness
of the viscous sublayer (at the wall, y= > 2.5 is required, and 30 < y* < 100 is preferable). If the
mesh does not match this constraint, the results may be false (particularly if thermal phenomena are
involved). For more details on these constraints, see the keyword ITURB.

2.4.2 Preprocessor command line options

A complete description of the Preprocessor command line options can be found in [9], accessible by the
command info_cs ecsmu. The executable of the Preprocessor module is ecs, accessible directly once
the environment variables of Code_Saturne are set properly. A summary of the command line options
is also given by the command ecs -help.

For the main options, the launch script lance contains corresponding environment variables at its
beginning, that are used later when the executable is called. This way, the user only has to fill these
variables and doesn’t need to search deep in the script for the Preprocessor command line.

The main options are:

e -help: gives a summary of the different command line options

e -m meshl mesh2: used to specify the names of the different meshes used. The launch script au-
tomatically calls the Preprocessor with the option -m $MAILLAGE, where MAILLAGE is the variable
where the user has specified the different meshes to be used.

e -p n: to trigger the decomposition of the domain into n subdomains, for parallel computing.
In the launch script, the number of processors used is specified in the NOMBRE _DE_PROCESSEURS
variable, or through the batch headers. If necessary, the launch script then automatically passes
the -p option to the Preprocessor command line (see 2.6).

e —join: triggers the mesh pasting functions. If nothing more is specified, every area of contact
between two meshes will be pasted together. The pasting can be limited to certain selected faces.
For instance, to paste only the faces of colors 6 and 7, the full option will be -j -color 6 7.

SFile type specifically developped for the early prototype versions of Code_Saturne to be read directly by the Kernel
while the Preprocessor module was under development (extension tlc)

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 18/172

These options are to be specified in the COMMANDE RC variable in the launch script, to be auto-
matically passed to the command line.

-perio: triggers periodic boundary conditions. Two types of periodic boundaries are possible:
translation or rotation (see §3.7 for additional details). For the translation, the basic option line
is -perio -trans tx ty tz

where tx, ty and tz are the coordinates of the translation vector. For the rotation, there are
two possibilities. The transformation can be defined with a rotation angle (in degrees, between
-180 and 180), a direction and an invariant point

-perio -rota -angle a -dir dx dy dz -invpt px py pz

(with obvious notations), or by giving the rotation matrix and an invariant point

-perio -rota -matrix mll ml12 mi13 m21 m22 m23 m31 m32 m33 -invpt px py pz

A rotation and a translation can be combined, by giving both -rota and -trans specifications.
The translation will always be applied first, whatever the order in which the rotation and the
translation have been given.

The orientation of the transformations is not important since both the transformation and its
inverse will be used to connect faces. Yet, when combining a translation and a rotation, the
orientations given for both have to be consistent.

It is possible (and usually recommended) to restrict the search for periodic connections between
faces to a certain group of faces, by adding selection arguments like —color. It is also possible
to specify up to 3 independent periodicities, simply by repeating the -perio option. Below is
given a example of the option line for a triple periodicity (the \ indicates the continuation of the
command line):

-perio -trans -10.2 0 0 -color 2\

-perio -rota -angle 90 -dir 0 O 1 -invpt O O O -color 3 4\

-perio -trans 0 1 0 -rota -matrix 1 0 0 0 0 -1 0 1 O -invpt 0 O -0.2

This option is to be specified in the COMMANDE_PERIO variable in the launch script, to be auto-
matically passed to the command line.

-reorient: try to re-orient badly-oriented cells if it is necessary to compensate for mesh-
generation software whose output does not conform to the format specifications.

2.5 Kernel command line options

In the standard cases, the compilation of Code_Saturne and its execution are entirely controlled by the
launch script. The potential command line options are passed through user modifiable variables at the
beginning of the script. This way, the user only has to fill these variables and doesn’t need to search
deep in the script for the Kernel command line. Yet, below is given the complete list of options, with
the variables in which they should be specified in the script.

e —ec n or ——echo-comm n: triggers the display of the communications between the Preprocessor

module and the Kernel.

n=-1: display only the error messages

n=0: display the headers of messages

n>0: display the headers and the n first and last elements of the messages
The usage of this option is very limited, and generally restricted to developpers. The value of n is
to be placed in the ECHOCOMM variable of the launch script, the option —-echo-comm $ECHOCOMM
is then automatically passed to the Kernel command line.

-solcom: this option indicates that the Kernel will read the mesh directly, not using the Prepro-
cessor output files. This is only possible with “Common Solver” type of mesh files (see §2.4.1 for
restrictions).

This option is triggered by the SOLCOM variable in the launch script. If SOLCOM is set to 1, the
-solcom option is automatically added to the Kernel command line. The variable IFOENV in
the FORTRAN code will be set to 0 if the -solcom option has been used, otherwise it will be
set to 1.

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 19/172

e -iasize n: specifies the size n of the macro-array of integers IA (number of integers in the
array). If the size is not sufficient, Code_Saturne stops and indicates the additional size needed.
The value of n is to be placed in the LONGIA variable in the launch script. The option -iasize $LONGIA
is automatically added to the Kernel command line.
The value of n is accessible in the variable LONGIA in the FORTRAN code.

e -rasize n: specifies the size n of the macro-array of reals RA (number of reals in the array). If
the size is not sufficient, Code_Saturne stops and indicates the additional size needed.
The value of n is to be placed in the LONGRA variable in the launch script. The option -rasize $LONGRA
is automatically added to the Kernel command line.
The value of n is accessible in the variable LONGRA in the FORTRAN code.

e —p nor -parallel n: specifies the number of processors (potentially virtual) on which the Kernel
will run. In the launch script, the number of processors used is specified in the NOMBRE_DE_PROCESSEURS
variable, or through the batch headers. If necessary, the launch script then automatically passes
the -p option to the Kernel command line (see 2.6).

e —-coupl-cs: this option concerns the coupling of different executions of Code_Saturne. It is still
under development. Please refer to Code_Saturne development team for further information.

e -syrthes: triggers the coupling with the code SYRTHES (thermal diffusion and transparent
radiation in a solid). It has to be combined with a selection sub-option, to specify the boundary
faces that need to be coupled. The syntax for selecting the faces is similar to that in the
Preprocessor command line, with keywords color (for color selection), group (for group selection)
and invsel (to invert the selection). See [9] for further details. For instance, to couple all the
boundary faces except the faces of color 2 and 3, the command line option would be
-syrthes -color 2 3 -invsel
It is possible to couple a Code_Saturne calculation with a 2D SYRTHES calculation. To do so,
the sub-option -2d must be added, potentially completed by the specification of the direction
normal to the 2D mesh: -X, =Y or -Z (default). For instance:

-syrthes -group PAROI -2d -X

All these options are to be placed in the COMMANDE_SYRTHES variable of the launch script to be
passed automatically to the Kernel command line.

To be thourough, there are two other sub-options to the -syrthes option: -proc n the specify that the SYRTHES
executable is Tunning on the processor m and -socket in to specify that the communication between Code_Saturne
and SYRTHES is made through sockets. These options are not to be specified by the user. They are automatically

set and passed to the command line by the launch script.

e —-q n or ——quality n: triggers the verification mode. The code runs without any Interface

parameter file nor any user subroutine. The mesh is read and elementary tests are performed.

n=-1: no test (default value if no -q option is specified. The code runs normally

n=0: the quality criteria of the mesh are calculated (non-orthogonality angles, internal faces
off-set, ...) and corresponding EnSight post-processing parts are created.

n=1: test calculation of the gradient of sin(xz 4+ 2y + 3z). The calculated value is compared
to the exact value, and an EnSight part for the corresponding error is created. The gradient is
calculated with option IMRGRA=0.

n=2: test calculation of the gradient of sin(x + 2y + 3z). The calculated value is compared
to the exact value, and an EnSight part for the corresponding error is created. The gradient is
calculated with option IMRGRA=1.

n=3: test calculation of the gradient of sin(xz 4 2y + 3z). The calculated value is compared
to the exact value, and an EnSight part for the corresponding error is created. The gradient is
calculated with option IMRGRA=2.

n=4: test calculation of the gradient of sin(x + 2y + 3z). The calculated value is compared
to the exact value, and an EnSight part for the corresponding error is created. The gradient is
calculated with option IMRGRA=3.

n=5: test calculation of the gradient of sin(xz + 2y + 3z). The calculated value is compared
to the exact value, and an EnSight part for the corresponding error is created. The gradient is

Code_Saturne
EDF R&D Code_Saturne version 1.3.3 practical user’s documentation
guide Page 20/172

calculated with option IMRGRA=A4.

The command -q n is to be placed in the ARG_CS_VERIF variable in the launch script to be added
automatically to the Kernel command line.

The value of n is accessible in the variable IVERIF in the FORTRAN code.

e —cwf: triggers the cutting of boundary and internal faces which have a warp angle larger than a
certain limit”. The concerned faces are divided into triangles. This option is to handle with care,
since the division of the faces increases the non-orthogonalities of the mesh, but it is sometimes
required (for the Lagrangian modeling, for instance, where non-plane faces lead to noticeable
particle loss). By default, the faces are divided if their warp angle is larger than 0.01 degrees.
This default value can be changed by adding an optional angle value to the command. For
instance, to devide faces with a warp angle larger than 0.02 degrees, the full option will be
-cwf 0.02.

This option is to be specified in the COMMANDE DF variable in the launch script, to be automatically
passed to the command line.

e ——benchmark: triggers the benchmark mode, for a timing of elementary operations on the ma-
chine. A secondary option —-mpitrace can be added. It is to be activated when the benchmark
mode is used in association with a MPI trace utility. It restricts the elementary operations to
those implying MPI communications and does only one of each elementary operation, to avoid
overfilling the MPI trace report.

This command is to be placed in the ARG_.CS_VERIF variable in the launch script to be added
automatically to the Kernel command line.

e —-log n: specifies the destination of the output for a monoprocessor calculation or for the
processor of rank 0 in a parallel calculation.
n=0: output directed towards the standard output
n=1: output redirected towards a file 1isting (default behaviour)
This option can be specified in the ARG_CS_OUTPUT variable of the launch script.

e ——logp n: specifies the destination of the output for the processors of rank 1 to N — 1 in a

calculation in parallel on N processors (i.e. the redirection of all but the first processor).

n=-1: no output for the processors of rank 1 to N — 1 (default behaviour).

n=0: no redirection. Every processor will write to the standard output. This might be useful
in case a debugger is used, with separate terminals for each processor.

n=1: one file for the output of each processor. The output of the processors of rank 1 to
N — 1 are directed to the files 1isting n0002 to listing n/N. This option can be specified in
the ARG_CS_OUTPUT variable of the launch script.

e -param xxx: specifies the name of the Interface parameter