
Contents

1 Classes 3
1.1 elliptic � elliptic class object . 3

1.1.1 †ECGeneric � generic elliptic curve class 4
1.1.1.1 simple � simplify the curve coe�cient 6
1.1.1.2 changeCurve � change the curve by coordinate

change . 6
1.1.1.3 changePoint � change coordinate of point on the

curve . 6
1.1.1.4 coordinateY � Y-coordinate from X-coordinate . 6
1.1.1.5 whetherOn � Check point is on curve 7
1.1.1.6 add � Point addition on the curve 7
1.1.1.7 sub � Point subtraction on the curve 7
1.1.1.8 mul � Scalar point multiplication on the curve . 7
1.1.1.9 divPoly � division polynomial 7

1.1.2 ECoverQ � elliptic curve over rational �eld 8
1.1.2.1 point � obtain random point on curve 9

1.1.3 ECoverGF � elliptic curve over �nite �eld 10
1.1.3.1 point � �nd random point on curve 11
1.1.3.2 naive � Frobenius trace by naive method 11
1.1.3.3 Shanks_Mestre � Frobenius trace by Shanks and

Mestre method 11
1.1.3.4 Schoof � Frobenius trace by Schoof's method . . 11
1.1.3.5 trace � Frobenius trace 12
1.1.3.6 order � order of group of rational points on the

curve . 12
1.1.3.7 pointorder � order of point on the curve 12
1.1.3.8 TatePairing � Tate Pairing 13
1.1.3.9 TatePairing_Extend � Tate Pairing with �nal

exponentiation 13
1.1.3.10 WeilPairing � Weil Pairing 13
1.1.3.11 BSGS � point order by Baby-Step and Giant-Step 13
1.1.3.12 DLP_BSGS � solve Discrete Logarithm Prob-

lem by Baby-Step and Giant-Step 14
1.1.3.13 structure � structure of group of rational points 14

1

1.1.3.14 issupersingular � check supersingular curve . . . 14
1.1.4 EC(function) . 16

2

Chapter 1

Classes

1.1 elliptic � elliptic class object

• Classes

� ECGeneric

� ECoverQ

� ECoverGF

• Functions

� EC

This module using following type:

weierstrassform :
weierstrassform is a list (a1, a2, a3, a4, a6) or (a4, a6), it represents E :
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 or E : y2 = x3 + a4x + a6,
respectively.

infpoint :
infpoint is the list [0], which represents in�nite point on the elliptic
curve.

point :
point is two-dimensional coordinate list [x, y] or infpoint.

3

1.1.1 †ECGeneric � generic elliptic curve class

Initialize (Constructor)

ECGeneric(coefficient: weierstrassform, basefield: Field=None)
→ ECGeneric

Create an elliptic curve object.

The class is for the de�nition of elliptic curves over general �elds. Instead of
using this class directly, we recommend that you call EC.
†The class precomputes the following values.

• shorter form: y2 = b2x
3 + b4x

2 + b6x+ b8

• shortest form: y2 = x3 + c4x+ c6

• discriminant

• j-invariant

All elements of coefficient must be in basefield.
Seeweierstrassform for more information about coefficient. If discriminant
of self equals 0, it raises ValueError.

Attribute

base�eld :
It expresses the �eld which each coordinate of all points in self is on.
(This means not only self is de�ned over basefield.)

ch :
It expresses the characteristic of basefield.

infpoint :
It expresses in�nity point (i.e. [0]).

a1, a2, a3, a4, a6 :
It expresses the coe�cients a1, a2, a3, a4, a6.

b2, b4, b6, b8 :
It expresses the coe�cients b2, b4, b6, b8.

c4, c6 :
It expresses the coe�cients c4, c6.

disc :
It expresses the discriminant of self.

4

j :
It expresses the j-invariant of self.

coe�cient :
It expresses the weierstrassform of self.

5

Methods

1.1.1.1 simple � simplify the curve coe�cient

simple(self) → ECGeneric

Return elliptic curve corresponding to the short Weierstrass form of self by
changing the coordinates.

1.1.1.2 changeCurve � change the curve by coordinate change

changeCurve(self, V: list) → ECGeneric

Return elliptic curve corresponding to the curve obtained by some coordinate
change x = u2x′ + r, y = u3y′ + su2x′ + t.

For u ̸= 0, the coordinate change gives some curve which is base�eld-
isomorphic to self.

V must be a list of the form [u, r, s, t], where u, r, s, t are in base�eld.

1.1.1.3 changePoint � change coordinate of point on the curve

changePoint(self, P: point, V: list) → point

Return the point corresponding to the point obtained by the coordinate
change x′ = (x− r)u−2, y′ = (y − s(x− r) + t)u−3.

Note that the inverse coordinate change is x = u2x′+r, y = u3y′+su2x′+t.See
changeCurve.

V must be a list of the form [u, r, s, t], where u, r, s, t are in base�eld.u must
be non-zero.

1.1.1.4 coordinateY � Y-coordinate from X-coordinate

coordinateY(self, x: FieldElement) → FieldElement / False

Return Y-coordinate of the point on self whose X-coordinate is x.

The output would be one Y-coordinate (if a coordinate is found). If such a
Y-coordinate does not exist, it returns False.

6

1.1.1.5 whetherOn � Check point is on curve

whetherOn(self, P: point) → bool

Check whether the point P is on self or not.

1.1.1.6 add � Point addition on the curve

add(self, P: point, Q: point) → point

Return the sum of the point P and Q on self.

1.1.1.7 sub � Point subtraction on the curve

sub(self, P: point, Q: point) → point

Return the subtraction of the point P from Q on self.

1.1.1.8 mul � Scalar point multiplication on the curve

mul(self, k: integer, P: point) → point

Return the scalar multiplication of the point P by a scalar k on self.

1.1.1.9 divPoly � division polynomial

divPoly(self, m: integer=None) → FieldPolynomial/(f: list, H: integer)

Return the division polynomial.

If m is odd, this method returns the usual division polynomial. If m is even,
return the quotient of the usual division polynomial by 2y + a1x+ a3.
†If m is not speci�ed (i.e. m=None), then return (f, H). H is the least prime sat-
isfying

∏
2≤l≤H, l:prime l > 4

√
q, where q is the order of base�eld. f is the list

of k-division polynomials up to k ≤ H. These are used for Schoof's algorithm.

7

1.1.2 ECoverQ � elliptic curve over rational �eld

The class is for elliptic curves over the rational �eld Q (RationalField in
nzmath.rational).
The class is a subclass of ECGeneric.

Initialize (Constructor)

ECoverQ(coefficient: weierstrassform) → ECoverQ

Create elliptic curve over the rational �eld.

All elements of coefficient must be integer or Rational.
See weierstrassform for more information about coefficient.

Examples

>>> E = elliptic.ECoverQ([ratinal.Rational(1, 2), 3])

>>> print E.disc

-3896/1

>>> print E.j

1728/487

8

Methods

1.1.2.1 point � obtain random point on curve

point(self, limit: integer=1000) → point

Return a random point on self.

limit expresses the time of trying to choose points. If failed, raise ValueError.
†Because it is di�cult to search the rational point over the rational �eld, it might
raise error with high frequency.

Examples

>>> print E.changeCurve([1, 2, 3, 4])

y ** 2 + 6/1 * x * y + 8/1 * y = x ** 3 - 3/1 * x ** 2 - 23/2 * x - 4/1

>>> E.divPoly(3)

FieldPolynomial([(0, Rational(-1, 4)), (1, Rational(36, 1)), (2, Rational(3, 1)

), (4, Rational(3, 1))], RationalField())

9

1.1.3 ECoverGF � elliptic curve over �nite �eld

The class is for elliptic curves over a �nite �eld, denoted by Fq (FiniteField
and its subclasses in nzmath).
The class is a subclass of ECGeneric.

Initialize (Constructor)

ECoverGF(coefficient: weierstrassform, basefield: FiniteField)
→ ECoverGF

Create elliptic curve over a �nite �eld.

All elements of coefficient must be in basefield. basefield should be
an instance of FiniteField.
See weierstrassform for more information about coefficient.

Examples

>>> E = elliptic.ECoverGF([2, 5], finitefield.FinitePrimeField(11))

>>> print E.j

7 in F_11

>>> E.whetherOn([8, 4])

True

>>> E.add([3, 4], [9, 9])

[FinitePrimeFieldElement(0, 11), FinitePrimeFieldElement(4, 11)]

>>> E.mul(5, [9, 9])

[FinitePrimeFieldElement(0, 11)]

10

Methods

1.1.3.1 point � �nd random point on curve

point(self) → point

Return a random point on self.

This method uses a probabilistic algorithm.

1.1.3.2 naive � Frobenius trace by naive method

naive(self) → integer

Return Frobenius trace t by a naive method.

†The function counts up the Legendre symbols of all rational points on self.
Frobenius trace of the curve is t such that #E(Fq) = q + 1− t, where #E(Fq)
stands for the number of points on self over self.base�eld Fq.

The characteristic of self.base�eld must not be 2 nor 3.

1.1.3.3 Shanks_Mestre � Frobenius trace by Shanks and Mestre
method

Shanks_Mestre(self) → integer

Return Frobenius trace t by Shanks and Mestre method.

†This uses the method proposed by Shanks and Mestre. †See Algorithm 7.5.3
of [?] for more information about the algorithm.
Frobenius trace of the curve is t such that #E(Fq) = q + 1− t, where #E(Fq)
stands for the number of points on self over self.base�eld Fq.

self.base�eld must be an instance of FinitePrimeField.

1.1.3.4 Schoof � Frobenius trace by Schoof's method

Schoof(self) → integer

Return Frobenius trace t by Schoof's method.

†This uses the method proposed by Schoof.

11

Frobenius trace of the curve is t such that #E(Fq) = q + 1− t, where #E(Fq)
stands for the number of points on self over self.base�eld Fq.

1.1.3.5 trace � Frobenius trace

trace(self, r: integer=None) → integer

Return Frobenius trace t.

Frobenius trace of the curve is t such that #E(Fq) = q+1− t, where #E(Fq)
stands for the number of points on self over self.base�eld Fq.
If positive r given, it returns qr + 1−#E(Fqr).
†The method selects algorithms by investigating self.ch when self.base�eld
is an instance of FinitePrimeField. If ch<1000, the method uses naive.
If 104 < ch < 1030, the method uses Shanks_Mestre. Otherwise, it uses
Schoof.

The parameter r must be positive integer.

1.1.3.6 order � order of group of rational points on the curve

order(self, r: integer=None) → integer

Return order #E(Fq) = q + 1− t.

If positive r given, this computes #E(Fq
r) instead.

†On the computation of Frobenius trace t, the method calls trace.

The parameter r must be positive integer.

1.1.3.7 pointorder � order of point on the curve

pointorder(self, P: point, ord_factor: list=None)
→ integer

Return order of a point P.

†The method uses factorization of order.
If ord_factor is given, computation of factorizing the order of self is omitted
and it applies ord_factor instead.

12

1.1.3.8 TatePairing � Tate Pairing

TatePairing(self, m: integer, P: point, Q: point) → FiniteFieldElement

Return Tate-Lichetenbaum pairing ⟨P, Q⟩m.

†The method uses Miller's algorithm.
The image of the Tate pairing is F∗

q/F∗
q
m, but the method returns an element of

Fq, so the value is not uniquely de�ned. If uniqueness is needed, use TatePair-
ing_Extend.

The point P has to be a m-torsion point (i.e. mP =[0]). Also, the number m
must divide order.

1.1.3.9 TatePairing_Extend � Tate Pairing with �nal exponentia-
tion

TatePairing_Extend(self, m: integer, P: point, Q: point)
→ FiniteFieldElement

Return Tate Pairing with �nal exponentiation, i.e. ⟨P, Q⟩m
(q−1)/m

.

†The method calls TatePairing.

The point P has to be a m-torsion point (i.e. mP =[0]). Also the number m
must divide order.
The output is in the group generated by m-th root of unity in F∗

q .

1.1.3.10 WeilPairing � Weil Pairing

WeilPairing(self, m: integer, P: point, Q: point) → FiniteFieldElement

Return Weil pairing em(P, Q).

†The method uses Miller's algorithm.

The points P and Q has to be a m-torsion point (i.e. mP = mQ =[0]). Also,
the number m must divide order.

The output is in the group generated by m-th root of unity in F∗
q .

1.1.3.11 BSGS � point order by Baby-Step and Giant-Step

BSGS(self, P: point) → integer

Return order of point P by Baby-Step and Giant-Step method.

13

†See [?] for more information about the algorithm.

1.1.3.12 DLP_BSGS � solve Discrete Logarithm Problem by Baby-
Step and Giant-Step

DLP_BSGS(self, n: integer, P: point, Q: point) → m: integer

Return m such that Q = mP by Baby-Step and Giant-Step method.

The points P and Q has to be a n-torsion point (i.e. nP = nQ =[0]). Also,
the number n must divide order.
The output m is an integer.

1.1.3.13 structure � structure of group of rational points

structure(self) → structure: tuple

Return the group structure of self.

The structure of E(Fq) is represented as Z/dZ × Z/nZ. The method uses
WeilPairing.

The output structure is a tuple of positive two integers (d, n). d divides
n.

1.1.3.14 issupersingular � check supersingular curve

structure(self) → bool

Check whether self is a supersingular curve or not.

Examples

>>> E=nzmath.elliptic.ECoverGF([2, 5], nzmath.finitefield.FinitePrimeField(11))

>>> E.whetherOn([0, 4])

True

>>> print E.coordinateY(3)

4 in F_11

>>> E.trace()

2

>>> E.order()

14

10

>>> E.pointorder([3, 4])

10L

>>> E.TatePairing(10, [3, 4], [9, 9])

FinitePrimeFieldElement(3, 11)

>>> E.DLP_BSGS(10, [3, 4], [9, 9])

6

15

1.1.4 EC(function)

EC(coefficient: weierstrassform, basefield: Field)
→ ECGeneric

Create an elliptic curve object.

All elements of coefficient must be in basefield.
basefield must be RationalField or FiniteField or their subclasses. See
also weierstrassform for coefficient.

16

	1 Classes
	1.1 elliptic – elliptic class object
	1.1.1 ECGeneric – generic elliptic curve class
	1.1.1.1 simple – simplify the curve coefficient
	1.1.1.2 changeCurve – change the curve by coordinate change
	1.1.1.3 changePoint – change coordinate of point on the curve
	1.1.1.4 coordinateY – Y-coordinate from X-coordinate
	1.1.1.5 whetherOn – Check point is on curve
	1.1.1.6 add – Point addition on the curve
	1.1.1.7 sub – Point subtraction on the curve
	1.1.1.8 mul – Scalar point multiplication on the curve
	1.1.1.9 divPoly – division polynomial

	1.1.2 ECoverQ – elliptic curve over rational field
	1.1.2.1 point – obtain random point on curve

	1.1.3 ECoverGF – elliptic curve over finite field
	1.1.3.1 point – find random point on curve
	1.1.3.2 naive – Frobenius trace by naive method
	1.1.3.3 Shanks_Mestre – Frobenius trace by Shanks and Mestre method
	1.1.3.4 Schoof – Frobenius trace by Schoof's method
	1.1.3.5 trace – Frobenius trace
	1.1.3.6 order – order of group of rational points on the curve
	1.1.3.7 pointorder – order of point on the curve
	1.1.3.8 TatePairing – Tate Pairing
	1.1.3.9 TatePairing_Extend – Tate Pairing with final exponentiation
	1.1.3.10 WeilPairing – Weil Pairing
	1.1.3.11 BSGS – point order by Baby-Step and Giant-Step
	1.1.3.12 DLP_BSGS – solve Discrete Logarithm Problem by Baby-Step and Giant-Step
	1.1.3.13 structure – structure of group of rational points
	1.1.3.14 issupersingular – check supersingular curve

	1.1.4 EC(function)

