Contents

1 Functions

1.1

equation — solving equations, congruences
1.1.1 el — solve equation with degree 1
1.1.2 el ZnZ - solve congruent equation modulo n with degree 1
1.1.3 e2 —solve equation with degree 2
1.1.4 e2_ Fp - solve congruent equation modulo p with degree 2
1.1.5 e3 — solve equation with degree 3
1.1.6 e3_Fp — solve congruent equation modulo p with degree 3
1.1.7 Newton — solve equation using Newton’s method
1.1.8 SimMethod — find all roots simultaneously
1.1.9 root Fp — solve congruent equation modulop.
1.1.10 allroots _Fp — solve congruent equation modulop

Chapter 1

Functions

1.1 equation — solving equations, congruences

In the following descriptions, some type aliases are used.

poly list :
poly_list is a list [a0, al, ..., an] representing a polynomial coeffi-
cients in ascending order, i.e., meaning ag + a1 X + -+ a, X". The type
of each ai depends on each function (explained in their descriptions).

integer :
integer is one of int, long or Integer.

complex :
complex includes all number types in the complex field: integer, float,
complex of Python , Rational of NZMATH , etc.

1.1.1 el — solve equation with degree 1

el(f: poly list) — complex
Return the solution of linear equation ax + b = 0.

f ought to be a poly list [b, a] of complex.

1.1.2 el ZnZ - solve congruent equation modulo n with
degree 1

el ZnZ(f: poly list, n: integer) — integer

Return the solution of ax +b =0 (mod n).

f ought to be a poly list [b, al of integer.

1.1.3 e2 — solve equation with degree 2

e2(f: poly list) — tuple
Return the solution of quadratic equation az? + bx + ¢ = 0.

f ought to be a poly list [c, b, al of complex.
The result tuple will contain exactly 2 roots, even in the case of double root.

1.1.4 e2 Fp - solve congruent equation modulo p with
degree 2

e2 Fp(f: poly list, p: integer) — list
Return the solution of az? + bz + ¢ =0 (mod p).
If the same values are returned, then the values are multiple roots.
f ought to be a poly list of integers [c, b, al. In addition, p must be a

prime integer.

1.1.5 3 — solve equation with degree 3

e3(f: poly list) — list
Return the solution of cubic equation az® + bx? + cx +d = 0.

f ought to be a poly list [d, ¢, b, al of complex.
The result tuple will contain exactly 3 roots, even in the case of including double
roots.

1.1.6 e3 Fp — solve congruent equation modulo p with
degree 3

e3 Fp(f: poly list, p: integer) — list

Return the solutions of ax® + bx? + cx +d =0 (mod p).
If the same values are returned, then the values are multiple roots.

f ought be a poly list [d, c, b, al of integer. In addition, p must be a
prime integer.

1.1.7 Newton — solve equation using Newton’s method

Newton(f: poly list, initial: complex=1, repeat: integer=250)
— complex

Return one of the approximated roots of a,z" + --- 4+ a1 + ag = 0.

If you want to obtain all roots, then use SimMethod instead.
1If initial is a real number but there is no real roots, then this function returns
meaningless values.

f ought to be a poly list of complex. initial is an initial approximation
complex number. repeat is the number of steps to approximate a root.

1.1.8 SimMethod — find all roots simultaneously

SimMethod(f: poly list, NewtonInitial: complex=1, repeat: inte-
ger=250)
— list

Return the approximated roots of a,z™ + - - - + a1z + ag.
tIf the equation has multiple root, maybe raise some error.
f ought to be a poly list of complex.

NewtonInitial and repeat will be passed to Newton to obtain the first ap-
proximations.

1.1.9 root Fp — solve congruent equation modulo p

root Fp(f: poly list, p: integer) — integer
Return one of the roots of a,z™ + -+ + a1z + ap = 0 (mod p).

If you want to obtain all roots, then use allroots Fp.

f ought to be a poly list of integer. In addition, p must be a prime integer.
If there is no root at all, then nothing will be returned.

1.1.10 allroots Fp — solve congruent equation modulo p

allroots Fp(f: poly list, p: integer) — integer
Return all roots of ap,a™ + -+ + a1z + ap =0 (mod p).

f ought to be a poly list of integer. In addition, p must be a prime integer.
If there is no root at all, then an empty list will be returned.

Examples
>>> equation.el([1, 2])
-0.5
>>> equation.el([1j, 21)
-0.5j

>>> equation.el_ZnZ([3, 2], 5)

1

>>> equation.e2([-3, 1, 1])
(1.3027756377319946, -2.3027756377319948)
>>> equation.e2_Fp([-3, 1, 1], 13)

[6, 6]

>>> equation.e3([1, 1, 2, 1)
[(-0.12256116687665397-0.744861766619744793) ,
(-1.7548776662466921+1.8041124150158794e-163) ,
(-0.12256116687665375+0.744861766619744685)]
>>> equation.e3_Fp([1, 1, 2, 11, 7)

[3]

>>> equation.Newton([-3, 2, 1, 1])
0.84373427789806899

>>> equation.Newton([-3, 2, 1, 1], 2)
0.84373427789806899

>>> equation.Newton([-3, 2, 1, 1], 2, 1000)
0.84373427789806899

>>> equation.SimMethod([-3, 2, 1, 1])
[(0.84373427789806887+03) ,
(-0.92186713894903438+1.64492637759997233) ,
(-0.92186713894903438-1.64492637759997237)]
>>> equation.root_Fp([-3, 2, 1, 11, 7)

>>> equation.root_Fp([-3, 2, 1, 1], 11)

9L

>>> equation.allroots_Fp([-3, 2, 1, 1], 7)

[]
>>> equation.allroots_Fp([-3, 2, 1, 1], 11)

[9L]
>>> equation.allroots_Fp([-3, 2, 1, 1], 13)

(3L, 7L, 2L]

	1 Functions
	1.1 equation – solving equations, congruences
	1.1.1 e1 – solve equation with degree 1
	1.1.2 e1_ZnZ – solve congruent equation modulo n with degree 1
	1.1.3 e2 – solve equation with degree 2
	1.1.4 e2_Fp – solve congruent equation modulo p with degree 2
	1.1.5 e3 – solve equation with degree 3
	1.1.6 e3_Fp – solve congruent equation modulo p with degree 3
	1.1.7 Newton – solve equation using Newton's method
	1.1.8 SimMethod – find all roots simultaneously
	1.1.9 root_Fp – solve congruent equation modulo p
	1.1.10 allroots_Fp – solve congruent equation modulo p

