define fespace <name> <flaglist>defines the finite element space <name>. Example:
define fespace v -order=2 -dim=3There are various classes of finite element spaces. Default are continuous, nodal-valued finite element spaces. The following define flags select the type of spaces
non of the flags below continuous nodal finite element space -hcurl H(curl) finite elements (Nedelec-type, edge elements) -hdiv H(div) finite elements (Raviart-Thomas, face elements) -l2 non-continuous elements, element by element -l2surf element by element on surface -h1ho Arbitrary order continuous elements -hcurlho Arbitrary order H(curl) elements -hdivho Arbitrary order H(div) elements -l2ho Arbitrary order non-continuous elements
The following flags specify the finite element spaces
-order=<num> Order of finite elements -dim=<num> Number of fields (number of copies of fe), 2 for 2D elasticity -vec set -dim=spacedim -tensor set -dim=spacedim*spacedim -symtensor set -dim=spacedim * (spacedim+1) / 2, (symmetric stress tensor) -complex complex valued fe-space
A compound fe-space combines several fe-spaces to a new one. Useful, e.g., for Reissner-Mindlin plate models containing the deflection w and two rotations beta:
fespace vw -order=2 fespace vbeta -order=1 fespace v -compound -spaces=[vw,vbeta,vbeta]
The fespace maintains the degrees of freedom. On mesh refinement, the space provides the grid transfer operator (prolongation). High order fe spaces maintain a lowest-order fespace of the same type for preconditioning.