[ VIGRA Homepage | Class Index | Function Index | File Index | Main Page ]

details Gaussian Class Template Reference VIGRA

#include "vigra/gaussians.hxx"


Public Types

typedef T value_type
typedef T argument_type
typedef T result_type

Public Methods

 Gaussian (T sigma=1.0, unsigned int derivativeOrder=0)
result_type operator() (argument_type x) const
value_type sigma () const
unsigned int derivativeOrder () const
double radius (double sigmaMultiple=3.0) const


Detailed Description


template<class T = double>
class vigra::Gaussian< T >

The Gaussian function and its derivatives.

Implemented as a unary functor. Since it supports the radius() function it can also be used as a kernel in resamplingConvolveImage().

#include "vigra/gaussians.hxx"
Namespace: vigra


Member Typedef Documentation


typedef T argument_type

 

the functor's argument type


typedef T result_type

 

the functor's result type


typedef T value_type

 

the value type if used as a kernel in resamplingConvolveImage().


Constructor & Destructor Documentation


Gaussian   sigma = 1.0,
unsigned int    derivativeOrder = 0
[inline, explicit]

 

Create functor for the given standard deviation sigma and derivative order n. The functor then realizes the function

Precondition:

            sigma > 0.0


Member Function Documentation


unsigned int derivativeOrder   const [inline]

 

Get the derivative order of the Gaussian.


Gaussian< T >::result_type operator() argument_type    x const

 

Function (functor) call.


double radius double    sigmaMultiple = 3.0 const [inline]

 

Get the required filter radius for a discrete approximation of the Gaussian. The radius is given as a multiple of the Gaussian's standard deviation (default: sigma * (3 + 1/2 * derivativeOrder() -- the second term accounts for the fact that the derivatives of the Gaussian become wider with increasing order). The result is rounded to the next higher integer.


value_type sigma   const [inline]

 

Get the standard deviation of the Gaussian.


The documentation for this class was generated from the following file:

© Ullrich Köthe (koethe@informatik.uni-hamburg.de)
Cognitive Systems Group, University of Hamburg, Germany

html generated using doxygen and Python
VIGRA 1.3.2 (27 Jan 2005)